JP2016199806A - Steel plate for high strength line pipe and steel pipe for high strength line pipe excellent in low temperature toughness - Google Patents

Steel plate for high strength line pipe and steel pipe for high strength line pipe excellent in low temperature toughness Download PDF

Info

Publication number
JP2016199806A
JP2016199806A JP2016076850A JP2016076850A JP2016199806A JP 2016199806 A JP2016199806 A JP 2016199806A JP 2016076850 A JP2016076850 A JP 2016076850A JP 2016076850 A JP2016076850 A JP 2016076850A JP 2016199806 A JP2016199806 A JP 2016199806A
Authority
JP
Japan
Prior art keywords
less
strength line
steel
amount
line pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016076850A
Other languages
Japanese (ja)
Inventor
喜一郎 田代
Kiichiro Tashiro
喜一郎 田代
進佑 佐藤
Shinsuke Sato
進佑 佐藤
晴弥 川野
Haruya Kawano
晴弥 川野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Publication of JP2016199806A publication Critical patent/JP2016199806A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0006Adding metallic additives
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steel plate for a high strength line pipe excellent in low temperature toughness, specifically excellent in both CTOD characteristics and DWTT characteristics.SOLUTION: A steel plate for a high strength line pipe satisfies prescribed ingredients, and includes 10 pieces/mmor more oxides whose circular equivalent diameter is 2 μm or more, at a position of t/2 when plate thickness is set as t, with 10 μm or less of the circle-equivalent average diameter of crystal grains surrounded by large-angle grain boundaries with orientation difference of neighboring two crystals at the position of t/2 being 15° or larger. The fraction of hard tissue at the position of t/2 satisfies 5 area% or less. The separation index SI measured with a fracture of a Charpy test piece at a designated temperature satisfies 0.15 mm/mmor less.SELECTED DRAWING: Figure 2

Description

本発明は、低温靱性に優れた高強度ラインパイプ用鋼板、および上記高強度ラインパイプ用鋼板から製造される高強度ラインパイプ用鋼管に関する。詳細には、CTOD(Crack Tip Opening Displacement:亀裂開口変位)特性、およびDWTT(Drop Weight Tear Test:落重試験)特性の両方に優れた高強度ラインパイプ用鋼板、および高強度ラインパイプ用鋼管に関する。   The present invention relates to a steel plate for a high-strength line pipe excellent in low-temperature toughness, and a steel pipe for a high-strength line pipe manufactured from the steel plate for a high-strength line pipe. More specifically, the present invention relates to a steel plate for high-strength line pipe and a steel pipe for high-strength line pipe excellent in both CTOD (Crack Tip Opening Displacement) characteristics and DWTT (Drop Weight Tear Test) characteristics. .

天然ガスや原油の輸送用に用いられるラインパイプは、輸送効率の改善を目的に操業圧力の高圧化を行なう傾向にあり、ラインパイプ用の鋼材では高強度化の要求がある。これに加えて、安全性の観点から、脆性破壊の発生防止特性として破壊靱性の評価指標のひとつであるCTOD特性およびDWTT特性に優れることが要求される。   Line pipes used for transportation of natural gas and crude oil tend to increase the operating pressure for the purpose of improving transportation efficiency, and there is a demand for higher strength in steel materials for line pipes. In addition, from the viewpoint of safety, it is required to have excellent CTOD characteristics and DWTT characteristics, which are one of evaluation indices of fracture toughness, as a brittle fracture prevention characteristic.

高強度化の観点では、鉄鋼材料の強化機構として固溶強化、析出強化、変態強化、転位強化による強化が考えられる。この中で、転位密度の増加により材料の強度を増加させる転位強化は、鋼板製造時の圧延工程において、オーステナイト単相組織からフェライトが変態析出した、いわゆる二相域温度域での累積圧下率を増加させることでその効果が得られるため、他の強化機構と比較して適用が容易な強化機構である。   From the viewpoint of increasing the strength, it is conceivable that the strengthening mechanism of the steel material includes solid solution strengthening, precipitation strengthening, transformation strengthening, and dislocation strengthening. Among these, the dislocation strengthening, which increases the strength of the material by increasing the dislocation density, is the cumulative rolling reduction in the so-called two-phase temperature range where ferrite has transformed and precipitated from the austenite single-phase structure in the rolling process during steel plate production. Since the effect can be obtained by increasing the strength, it is a strengthening mechanism that is easier to apply than other strengthening mechanisms.

しかしながら、この二相域温度域での累積圧下率を増加させることにより、転位密度の増加と共に結晶方位の回転が起こり、集合組織が発達する。この集合組織の発達により、圧延面方向と板厚方向の靱性の差が大きくなることが原因して、圧延面方向から採取した試験片を用いたシャルピー試験あるいはCOTD試験の際、試験片破面にセパレーションと呼ばれる板厚方向への微小な開口が発生する。このセパレーションは、圧延面方向と板厚方向の靱性の差が大きくなることで発生するため、集合組織の影響以外に、鋼中に存在するSによって、主に板厚中央部の中心偏析部で圧延面方向に延伸したMnSが生成することでも発生する。   However, by increasing the cumulative rolling reduction in this two-phase region temperature range, the crystal orientation rotates with the increase of dislocation density, and the texture develops. Due to the development of this texture, the difference in toughness between the rolling surface direction and the sheet thickness direction becomes large, so that during the Charpy test or COTD test using a test specimen taken from the rolling surface direction, the fracture surface of the test specimen In addition, a minute opening in the thickness direction called separation is generated. This separation occurs due to a large difference in toughness between the rolling surface direction and the sheet thickness direction. Therefore, in addition to the influence of the texture, S present in the steel mainly causes the central segregation at the center of the sheet thickness. It also occurs when MnS stretched in the rolling surface direction is generated.

CTOD試験を実施する際、脆性亀裂が発生する前に上記のセパレーションが発生すると、セパレーションが発生した位置までしか安定して開口しないと判断され、CTOD特性の指標である限界CTOD値が本来評価される値より低位になる。このためセパレーションが発生する材料では、例えば、破面遷移温度vTrsで評価される母材靱性を改善しただけでは限界CTOD値は改善できない。   When performing the CTOD test, if the above-mentioned separation occurs before the brittle crack occurs, it is determined that the opening is stable only up to the position where the separation occurs, and the critical CTOD value, which is an index of the CTOD characteristic, is originally evaluated. Lower than the value. For this reason, in a material in which separation occurs, for example, the limit CTOD value cannot be improved only by improving the base material toughness evaluated by the fracture surface transition temperature vTrs.

こうしたことから、例えば特許文献1では、高価な元素の添加による固溶強化を図ると共に、セパレーションを抑制しつつ、優れたDWTT特性を得るためにオーステナイト未再結晶域における圧延温度、特に圧延終了温度などを制御する方法が開示されている。   For this reason, for example, in Patent Document 1, in order to obtain solid DWTT characteristics while achieving solid solution strengthening by adding an expensive element and suppressing separation, the rolling temperature in the austenite non-recrystallized region, particularly the rolling end temperature. A method for controlling the above is disclosed.

特開2013−47393号公報JP 2013-47393 A

上記特許文献1に記載の技術では、高価な元素の添加による固溶強化、オンラインの水冷設備と加熱設備を組み合わせた複雑な製造工程、および特殊な圧延条件を採用する必要があり、コストアップや生産性の低下を招く。   In the technology described in Patent Document 1, it is necessary to employ solid solution strengthening by adding expensive elements, a complicated manufacturing process that combines online water-cooling equipment and heating equipment, and special rolling conditions. This leads to a decrease in productivity.

本発明は上記のような事情に鑑みてなされたものであり、その目的は、低温靱性、特にCTOD特性およびDWTT特性の両方に優れた高強度ラインパイプ用鋼板を、低コストで簡易に製造することのできる技術を提供することにある。   The present invention has been made in view of the circumstances as described above, and its purpose is to easily produce a steel sheet for high-strength line pipe excellent in both low-temperature toughness, particularly CTOD characteristics and DWTT characteristics, at low cost. It is to provide technology that can.

上記課題を解決し得た本発明の高強度ラインパイプ用鋼板とは、質量%で、C:0.02〜0.2%、Si:0.02〜0.5%、Mn:0.6〜2.5%、P:0%超0.03%以下、S:0%超0.01%以下、Al:0.010〜0.08%、Nb:0.001〜0.1%、Ti:0.003〜0.03%、Ca:0.0003〜0.006%、N:0.001〜0.01%、O:0%超0.0045%以下、REM:0.0001〜0.005%、およびZr:0.0001〜0.005%を含有し、残部が鉄および不可避不純物であり、板厚をtとしたとき、t/2の位置において、円相当直径が2μm以上の酸化物を10個/mm2以下含有し、t/2の位置における、隣接する2つの結晶の方位差が15°以上の大角粒界で囲まれた結晶粒の円相当平均直径が10μm以下、且つt/2の位置における硬質組織の分率が5面積%以下を満足すると共に、指定温度のシャルピー試験片破面から測定したセパレーション指数SIが0.15mm/mm2以下であるところに要旨を有する。 The steel sheet for a high-strength line pipe of the present invention that has solved the above-mentioned problems is in mass%, C: 0.02-0.2%, Si: 0.02-0.5%, Mn: 0.6 -2.5%, P: more than 0% and 0.03% or less, S: more than 0% and 0.01% or less, Al: 0.010 to 0.08%, Nb: 0.001 to 0.1%, Ti: 0.003-0.03%, Ca: 0.0003-0.006%, N: 0.001-0.01%, O: more than 0% and 0.0045% or less, REM: 0.0001- 0.005%, and Zr: 0.0001 to 0.005%, the balance is iron and inevitable impurities, and when the plate thickness is t, the equivalent circle diameter is 2 μm or more at the position of t / 2 the oxide contained 10 / mm 2 or less, at a position of t / 2, the orientation difference between adjacent two crystals surrounded by a 15 ° or more high-angle grain boundaries In addition, the average equivalent circle diameter of the crystal grains is 10 μm or less, the hard structure fraction at the position of t / 2 is 5 area% or less, and the separation index SI measured from the Charpy test piece fracture surface at the specified temperature is 0. The main point is that it is 15 mm / mm 2 or less.

本発明の好ましい実施形態において、上記鋼板は、更に質量%で、Cu:0%超1.5%以下、Ni:0%超1.5%以下、Cr:0%超1.5%以下、Mo:0%超1.0%以下、V:0%超0.2%以下、およびB:0%超0.0003%以下よりなる群から選択される少なくとも1種を含有する。   In a preferred embodiment of the present invention, the steel sheet is further mass%, Cu: more than 0% and 1.5% or less, Ni: more than 0% and 1.5% or less, Cr: more than 0% and 1.5% or less, It contains at least one selected from the group consisting of Mo: more than 0% and not more than 1.0%, V: more than 0% and not more than 0.2%, and B: more than 0% and not more than 0.0003%.

本発明は、上記の高強度ラインパイプ用鋼板を用いて製造される低温靱性に優れた高強度ラインパイプ用鋼管も包含する。   The present invention also includes a steel pipe for high-strength line pipe that is manufactured using the steel sheet for high-strength line pipe and has excellent low-temperature toughness.

本発明によれば、板厚をtとしたとき、t/2の位置における円相当直径2μm以上の粗大な酸化物の個数密度、および指定温度のシャルピー試験片破面から測定したセパレーション指数SIを適切な範囲に設定することによってCTOD特性を向上させると共に、t/2の位置における、隣接する2つの結晶の方位差が15°以上の大角粒界で囲まれた結晶粒の円相当平均直径、および硬質組織分率を適切に制御することによってDWTT特性を向上させることができる。よって、本発明によれば、高価な合金元素を用いなくても、CTOD特性およびDWTT特性の両方に優れた、引張強度が520MPa以上の低温靱性に優れた高強度ラインパイプ用鋼板が実現できる。   According to the present invention, when the plate thickness is t, the number density of coarse oxides having a circle-equivalent diameter of 2 μm or more at the position of t / 2, and the separation index SI measured from the Charpy test piece fracture surface at the specified temperature. The CTOD characteristics are improved by setting to an appropriate range, and the average equivalent circle diameter of the crystal grains surrounded by a large-angle grain boundary where the orientation difference between two adjacent crystals is 15 ° or more at the position of t / 2, And DWTT characteristics can be improved by appropriately controlling the hard tissue fraction. Therefore, according to the present invention, it is possible to realize a steel sheet for high-strength line pipe excellent in low-temperature toughness having a tensile strength of 520 MPa or more and excellent in both CTOD characteristics and DWTT characteristics without using an expensive alloy element.

図1は、セパレーション指数SIの測定方法を説明するためのシャルピー試験片破面模式図である。FIG. 1 is a schematic diagram of a fracture surface of a Charpy test piece for explaining a method of measuring the separation index SI. 図2は、セパレーション指数SIとCTOD特性の指標である限界CTOD値との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the separation index SI and the limit CTOD value that is an index of the CTOD characteristic. 図3は、t/2位置における硬質組織分率と、冷却停止温度(FCT)との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the hard tissue fraction at the t / 2 position and the cooling stop temperature (FCT).

本発明者らは、CTOD特性およびDWTT特性の両方に優れた高強度ラインパイプ用鋼板を提供するため、検討を重ねてきた。具体的には、CTOD特性の向上に関しては、セパレーションの発生を完全に抑制するのではなく、セパレーションの発生をある程度許容した上で、優れた限界CTOD値が得られるような高強度ラインパイプ用鋼板を目指して、CTOD試験におけるセパレーションの発生とミクロ組織の関係について検討を行なった。その結果、CTOD試験で得られる限界CTOD値は、シャルピー試験におけるセパレーション指数SIと相関関係があり、指定温度のシャルピー試験片破面から測定したセパレーション指数SIを低下させると共に、t/2の位置における円相当直径2μm以上の粗大な酸化物の個数密度を抑制すれば良いことを突き止めた。また、DWTT特性の向上に関しては、t/2の位置における、隣接する2つの結晶の方位差が15°以上の大角粒界で囲まれた結晶粒の円相当平均直径を微細化すると共に、硬質組織分率を抑制すれば良いことを見出し、本発明を完成した。   The present inventors have repeatedly studied in order to provide a steel plate for a high-strength line pipe excellent in both CTOD characteristics and DWTT characteristics. Specifically, regarding the improvement of CTOD characteristics, steel sheets for high-strength line pipes that do not completely suppress the occurrence of separation, but allow for the occurrence of separation to a certain extent and obtain an excellent limit CTOD value. In order to achieve this, the relationship between the occurrence of separation and the microstructure in the CTOD test was examined. As a result, the critical CTOD value obtained in the CTOD test has a correlation with the separation index SI in the Charpy test, and decreases the separation index SI measured from the Charpy test piece fracture surface at the specified temperature, and at the position of t / 2. It has been found that the number density of coarse oxides having a circle equivalent diameter of 2 μm or more should be suppressed. As for the improvement of DWTT characteristics, the average equivalent circle diameter of crystal grains surrounded by a large-angle grain boundary where the orientation difference between two adjacent crystals is 15 ° or more at the position of t / 2 is refined and hardened. The present inventors have found that the tissue fraction should be suppressed and completed the present invention.

以下、本発明のラインパイプ用鋼板で規定する各要件について説明する。本明細書において、特に断りのない限り、tは板厚を意味する。   Hereinafter, each requirement prescribed | regulated with the steel plate for line pipes of this invention is demonstrated. In this specification, unless otherwise specified, t means a plate thickness.

(t/2の位置における、隣接する2つの結晶の方位差が15°以上の大角粒界で囲まれた結晶粒の平均結晶粒径:10μm以下)
良好なDWTT特性を確保するためには、結晶粒の微細化による母材靱性の確保が必要となる。そのため、本発明では、t/2の位置における、隣接する2つの結晶の方位差が15°以上の大角粒界で囲まれた結晶粒の円相当平均直径の上限を10μm以下とした。上記平均結晶粒径は、好ましくは8.0μm以下であり、より好ましくは7.0μm以下である。平均結晶粒径は小さいほど好ましいが、下限は、おおむね4μm以上である。
(Average crystal grain size of crystal grains surrounded by a large-angle grain boundary where the orientation difference between two adjacent crystals is 15 ° or more at the position of t / 2: 10 μm or less)
In order to ensure good DWTT characteristics, it is necessary to ensure the toughness of the base material by refining crystal grains. Therefore, in the present invention, the upper limit of the circle-equivalent average diameter of the crystal grains surrounded by the large-angle grain boundaries where the orientation difference between two adjacent crystals is 15 ° or more at the position of t / 2 is set to 10 μm or less. The average crystal grain size is preferably 8.0 μm or less, and more preferably 7.0 μm or less. The average crystal grain size is preferably as small as possible, but the lower limit is approximately 4 μm or more.

なお、本発明において、隣接する2つの結晶の方位差が15°以上の大角粒界で囲まれた結晶粒の円相当平均直径、並びに後記する硬質組織分率および円相当直径2μm以上の酸化物個数密度の測定位置を、鋼板特性評価の代表的な位置であるt/4でなく、t/2とした理由は、破壊発生起点となる部分の靱性を向上させて、目的とするDWTT特性を確保するためである。   In the present invention, the circle equivalent average diameter of crystal grains surrounded by a large-angle grain boundary where the orientation difference between two adjacent crystals is 15 ° or more, as well as an oxide having a hard structure fraction and an equivalent circle diameter of 2 μm or more described later. The reason for setting the number density measurement position to t / 2 instead of t / 4, which is a representative position for steel sheet characteristic evaluation, is to improve the toughness of the portion that becomes the starting point of fracture, and to achieve the desired DWTT characteristic. This is to ensure.

(指定温度のシャルピー試験片破面から測定したセパレーション指数SI:0.15mm/mm2以下)
指定温度でのシャルピー試験片破面のセパレーション指数SIを0.15mm/mm2以下とすることで、CTOD試験においてセパレーションが発生しても目標とする限界CTOD値を確保できる。目標とする限界CTOD値は、試験温度を−10℃としたときに、0.25mm以上となる。尚、上記指定温度とは、下記(1)式から求めることができる。即ち、シャルピー試験を行なうときの試験温度(指定温度)は、板厚によって異なることになり、試験温度を−10℃としたときに目標とする限界CTOD値を評価するには、この指定温度(T1)も考慮する必要がある。但し、T1:シャルピー試験温度(℃)、T2:CTOD試験温度(℃)であり、本明細書では−10℃、t:板厚(mm)を夫々示す。
1=T2−6×(t)1/2+20・・・(1)
(Separation index SI measured from the fracture surface of Charpy specimen at the specified temperature: 0.15 mm / mm 2 or less)
By setting the separation index SI of the fracture surface of the Charpy test piece at the specified temperature to 0.15 mm / mm 2 or less, the target limit CTOD value can be secured even if separation occurs in the CTOD test. The target limit CTOD value is 0.25 mm or more when the test temperature is −10 ° C. The specified temperature can be obtained from the following equation (1). That is, the test temperature (designated temperature) at the time of performing the Charpy test varies depending on the plate thickness. In order to evaluate the target limit CTOD value when the test temperature is set to −10 ° C., the designated temperature (designated temperature) T 1 ) must also be considered. However, T 1 : Charpy test temperature (° C.), T 2 : CTOD test temperature (° C.), and in this specification, −10 ° C. and t: plate thickness (mm), respectively.
T 1 = T 2 −6 × (t) 1/2 +20 (1)

セパレーション指数SIは、下記(2)式に示す通り、シャルピー試験片破面の板厚方向に垂直に発生したセパレーションの総長さを、試験片破断面の面積(断面積)で割ることで求めることができる(後記図1参照)。但し、Lnはn番目のセパレーション長さ(mm)、SAは破面の断面積(mm2)を夫々示す。
SI=Σ(Ln)/SA (2)
The separation index SI is obtained by dividing the total length of separation generated perpendicular to the thickness direction of the Charpy specimen fracture surface by the area (cross-sectional area) of the specimen fracture surface, as shown in the following formula (2). (See Fig. 1 below). However, L n is the n-th separation length (mm), S A represents the cross-sectional area of the fracture surface of (mm 2) respectively.
SI = Σ (L n ) / S A (2)

本発明の高強度ラインパイプ用鋼板では、上記のようにして求められるセパレーション指数SIを0.15mm/mm2以下とする必要がある。このセパレーション指数SIは、好ましくは0.12mm/mm2以下であり、より好ましくは0.10mm/mm2以下である。但し、セパレーションが発生しても、高い限界CTOD値を示すとの観点からすれば、このセパレーション指数SIは、必ずしも0mm/mm2である必要はない。こうした観点からして、セパレーション指数SIは、0.05mm/mm2以上であることが好ましく、より好ましくは0.10mm/mm2以上である。 In the steel sheet for high-strength line pipe of the present invention, the separation index SI obtained as described above needs to be 0.15 mm / mm 2 or less. This separation index SI is preferably 0.12 mm / mm 2 or less, more preferably 0.10 mm / mm 2 or less. However, even if separation occurs, this separation index SI does not necessarily have to be 0 mm / mm 2 from the viewpoint of showing a high limit CTOD value. From such a viewpoint, the separation index SI is preferably 0.05 mm / mm 2 or more, and more preferably 0.10 mm / mm 2 or more.

参考のため、図2に、セパレーション指数SIとCTOD特性との関係を示す。この図は、後記する実施例の結果に基づき、CTOD特性の指標として測定した限界CTOD値と、セパレーション指数SIとの関係をプロットしたものである。この図より、セパレーション指数SIが0.15mm/mm2以下のとき、CTOD特性の合格基準である、−10℃での限界CTOD値≧0.25mmを満足することが分かる。 For reference, FIG. 2 shows the relationship between the separation index SI and the CTOD characteristic. This figure is a plot of the relationship between the critical CTOD value measured as an index of the CTOD characteristic and the separation index SI based on the results of Examples described later. From this figure, it can be seen that when the separation index SI is 0.15 mm / mm 2 or less, the critical CTOD value at −10 ° C. ≧ 0.25 mm is satisfied, which is an acceptance criterion for CTOD characteristics.

(t/2の位置において、円相当直径が2μm以上の酸化物を10個/mm2以下)
粗大な酸化物はCTOD特性の向上に悪影響を及ぼすため、本発明では、上記サイズの酸化物の個数密度を10個/mm2以下とした。上記酸化物の個数密度は少ない程良く、好ましくは8個/mm2以下であり、より好ましくは5個/mm2以下である。その下限は上記観点からは特に限定されないが、スラブ製造段階における生産性などを考慮すると、おおむね、0.1個/mm2以上であることが好ましい。
(At t / 2 position, 10 oxides / mm 2 or less having an equivalent circle diameter of 2 μm or more)
Since coarse oxides adversely affect the improvement of CTOD characteristics, in the present invention, the number density of oxides of the above size is set to 10 pieces / mm 2 or less. The number density of the oxide is preferably as low as possible, preferably 8 pieces / mm 2 or less, more preferably 5 pieces / mm 2 or less. The lower limit is not particularly limited from the above viewpoint, but in view of productivity in the slab manufacturing stage, the lower limit is preferably about 0.1 / mm 2 or more.

なお、本発明で対象とする酸化物とは、後記する実施例に記載の方法で観察したときに観察されるものを意味する。   In addition, the oxide made into object by this invention means what is observed when it observes by the method as described in the Example mentioned later.

(t/2の位置における硬質組織の分率が5面積%以下)
硬質組織はDWTT特性の向上に悪影響を及ぼすため、本発明では、t/2の位置に観察される全組織に占める硬質組織の面積分率を5%以下とした。硬質組織の面積分率は少ない程良く、好ましくは3面積%以下であり、より好ましくは1面積%以下である。なお、その下限は上記観点からは特に限定されず、例えば0面積%であっても良い。
(The fraction of hard structure at the position of t / 2 is 5 area% or less)
Since the hard tissue adversely affects the improvement of the DWTT characteristics, in the present invention, the area fraction of the hard tissue occupying the entire tissue observed at the position of t / 2 is set to 5% or less. The area fraction of the hard tissue is preferably as small as possible, preferably 3 area% or less, more preferably 1 area% or less. In addition, the minimum is not specifically limited from the said viewpoint, For example, 0 area% may be sufficient.

なお、本発明で対象とする硬質組織としては、例えば、島状マルテンサイト、マルテンサイトなどが挙げられる。   In addition, as a hard structure | tissue made into object by this invention, an island-like martensite, a martensite, etc. are mentioned, for example.

本発明の高強度ラインパイプ用鋼板は、その化学成分組成も適切に調整する必要がある。化学成分組成の範囲設定理由は、以下の通りである。なお、化学成分組成について、%は質量%を意味する。   In the steel sheet for high-strength line pipe of the present invention, it is necessary to appropriately adjust the chemical composition. The reason for setting the range of the chemical composition is as follows. In addition, regarding a chemical component composition,% means the mass%.

(C:0.02〜0.2%)
Cは、母材である鋼板および溶接部の強度を確保するために必要不可欠な元素であり、そのためには、Cは0.02%以上含有させる必要がある。C量は、好ましくは0.03%以上であり、より好ましくは0.05%以上である。しかしながら、C量が過剰になると島状マルテンサイト(MA:Martensite−Austenite contituent)が生成しやすくなり、HAZ(熱影響部:Heat Affected zone)の靱性が低下すると共に、溶接性が低下する。こうした観点から、C量は0.2%以下とする必要がある。C量は、好ましくは0.15%以下、より好ましくは0.12%以下である。
(C: 0.02-0.2%)
C is an element indispensable for securing the strength of the steel plate and the welded portion as the base material, and for that purpose, C needs to be contained by 0.02% or more. The amount of C is preferably 0.03% or more, and more preferably 0.05% or more. However, when the amount of C is excessive, island-shaped martensite (MA) is easily generated, and the toughness of HAZ (heat affected zone) is lowered and weldability is also lowered. From such a viewpoint, the C amount needs to be 0.2% or less. The amount of C is preferably 0.15% or less, more preferably 0.12% or less.

(Si:0.02〜0.5%)
Siは、脱酸作用を有する上に、母材である鋼板および溶接部の強度向上に有効である。これらの効果を発揮させるには、Si量は0.02%以上とする。Si量は、好ましくは0.05%以上であり、より好ましくは0.15%以上である。しかしながら、Si量が過剰になると溶接性や靱性が劣化する。よってSi量は、0.5%以下に抑える必要がある。Si量は、好ましくは0.45%以下、より好ましくは0.35%以下である。
(Si: 0.02-0.5%)
In addition to having a deoxidizing action, Si is effective for improving the strength of a steel plate and a welded portion that are base materials. In order to exert these effects, the Si content is 0.02% or more. The amount of Si is preferably 0.05% or more, and more preferably 0.15% or more. However, when the amount of Si becomes excessive, weldability and toughness deteriorate. Therefore, the amount of Si needs to be suppressed to 0.5% or less. The amount of Si is preferably 0.45% or less, more preferably 0.35% or less.

(Mn:0.6〜2.5%)
Mnは、母材である鋼板および溶接部の強度向上に有効な元素である。こうした効果を発揮させるには、Mnは0.6%以上含有させる必要がある。Mn量は、好ましくは1.0%以上であり、より好ましくは1.2%以上である。しかしながら、Mn量が過剰になると、MnSを生成してセパレーションの発生が促進されるだけでなく、HAZ靱性や溶接性も劣化するため、Mn量の上限を2.5%以下とする。Mn量は、好ましくは2.0%以下であり、より好ましくは1.9%以下であり、更に好ましくは1.8%以下である。
(Mn: 0.6-2.5%)
Mn is an element effective for improving the strength of the base steel plate and the weld. In order to exert such an effect, it is necessary to contain 0.6% or more of Mn. The amount of Mn is preferably 1.0% or more, more preferably 1.2% or more. However, when the amount of Mn is excessive, not only MnS is generated and the generation of separation is promoted, but also HAZ toughness and weldability are deteriorated, so the upper limit of the amount of Mn is made 2.5% or less. The amount of Mn is preferably 2.0% or less, more preferably 1.9% or less, and still more preferably 1.8% or less.

(P:0%超0.03%以下)
Pは、鋼材中に不可避的に含まれる元素であり、P量が0.03%を超えると母材靱性およびHAZ靱性の劣化が著しい。よって本発明では、P量を0.03%以下に抑える。P量は、好ましくは0.020%以下、より好ましくは0.015%以下、更に好ましくは0.010%以下である。P量はできるだけ少ない方が良いが、工業的に0%にすることは困難である。
(P: more than 0% and 0.03% or less)
P is an element inevitably contained in the steel material. When the amount of P exceeds 0.03%, the base material toughness and the HAZ toughness are significantly deteriorated. Therefore, in the present invention, the amount of P is suppressed to 0.03% or less. The amount of P is preferably 0.020% or less, more preferably 0.015% or less, and still more preferably 0.010% or less. The amount of P is preferably as small as possible, but it is difficult to make it 0% industrially.

(S:0%超0.01%以下)
S量が過剰になると、MnSを生成し、セパレーションの発生を促進させるため、その上限を0.01%以下とする。S量は、好ましくは0.008%以下であり、より好ましくは0.006%以下、更に好ましくは0.005%以下である。この様にセパレーションの発生を抑制するという観点からは、S量は少ない方が望ましいが、工業的に0%にすることは困難である。S量の好ましい下限は、概ね0.0001%以上である。
(S: more than 0% and 0.01% or less)
When the amount of S becomes excessive, MnS is generated and the generation of separation is promoted, so the upper limit is made 0.01% or less. The amount of S is preferably 0.008% or less, more preferably 0.006% or less, and still more preferably 0.005% or less. In this way, from the viewpoint of suppressing the occurrence of separation, a smaller amount of S is desirable, but it is difficult to make it 0% industrially. A preferable lower limit of the amount of S is approximately 0.0001% or more.

(Al:0.010〜0.08%)
Alは強脱酸元素であり、脱酸効果を得るには0.010%以上含有させる必要がある。Al量は、好ましくは0.02%以上、より好ましくは0.03%以上である。一方、Al量が過剰になると、AlNが多量に生成し、TiN析出量が減少することでHAZ靱性が低下する。よってAl量は0.08%以下とする必要がある。Al量は、好ましくは0.06%以下であり、より好ましくは0.05%以下である。
(Al: 0.010 to 0.08%)
Al is a strong deoxidizing element, and it is necessary to contain 0.010% or more in order to obtain a deoxidizing effect. The amount of Al is preferably 0.02% or more, more preferably 0.03% or more. On the other hand, when the amount of Al becomes excessive, a large amount of AlN is generated, and the amount of TiN precipitation decreases, thereby reducing the HAZ toughness. Therefore, the Al amount needs to be 0.08% or less. The amount of Al is preferably 0.06% or less, and more preferably 0.05% or less.

(Nb:0.001〜0.1%)
Nbは、溶接性を劣化させることなく強度と母材靱性を高めるのに有効な元素である。このような効果を発揮させるには、Nb量は0.001%以上とする必要がある。Nb量は、好ましくは0.005%以上、より好ましくは0.010%以上である。しかしながら、Nb量が過剰になって0.1%を超えると、母材とHAZの靱性が劣化する。よってNb量の上限を0.1%以下とする。Nb量は、好ましくは0.08%以下、より好ましくは0.05%以下である。
(Nb: 0.001 to 0.1%)
Nb is an element effective for increasing strength and base metal toughness without degrading weldability. In order to exert such an effect, the Nb amount needs to be 0.001% or more. The Nb amount is preferably 0.005% or more, more preferably 0.010% or more. However, if the amount of Nb becomes excessive and exceeds 0.1%, the toughness of the base material and the HAZ deteriorates. Therefore, the upper limit of the Nb amount is set to 0.1% or less. The Nb amount is preferably 0.08% or less, more preferably 0.05% or less.

(Ti:0.003〜0.03%)
Tiは、鋼中にTiNとして析出することで、スラブ加熱時のオーステナイト粒の粗大化の抑制による母材靱性の向上や、溶接時のHAZでのオーステナイト粒の粗大化によるHAZ靱性の向上に必要な元素である。このような効果を発揮させるには、Ti量を0.003%以上とする必要がある。Ti量は、好ましくは0.005%以上、より好ましくは0.01%以上である。一方、Ti量が過剰になると、固溶TiやTiCが析出して母材とHAZの靱性が劣化するため、0.03%以下とする必要がある。Ti量は、好ましくは0.025%以下、より好ましくは0.020%以下である。
(Ti: 0.003-0.03%)
Ti precipitates in the steel as TiN, which is necessary for improving the base metal toughness by suppressing the coarsening of austenite grains during slab heating and for improving the HAZ toughness by coarsening of austenite grains in the HAZ during welding Element. In order to exert such effects, the Ti amount needs to be 0.003% or more. The amount of Ti is preferably 0.005% or more, more preferably 0.01% or more. On the other hand, if the amount of Ti is excessive, solute Ti or TiC is precipitated and the toughness of the base material and the HAZ deteriorates, so it is necessary to make it 0.03% or less. The amount of Ti is preferably 0.025% or less, more preferably 0.020% or less.

(Ca:0.0003〜0.006%)
Caは、硫化物の形態を制御する作用があり、CaSを形成することによってMnSの形成を抑制する効果がある。このような効果を発揮させるために、Ca量を0.0003%以上とする必要がある。Ca量は、好ましくは0.0005%以上であり、より好ましくは0.0010%以上である。一方、Ca量が0.006%を超えて過剰になると、靱性が劣化するため、Ca量の上限を0.006%以下とする。Ca量は、好ましくは0.005%以下であり、より好ましくは0.004%以下である。
(Ca: 0.0003 to 0.006%)
Ca has the effect | action which controls the form of sulfide, and there exists an effect which suppresses formation of MnS by forming CaS. In order to exert such an effect, the Ca content needs to be 0.0003% or more. The Ca content is preferably 0.0005% or more, and more preferably 0.0010% or more. On the other hand, if the Ca content exceeds 0.006% and becomes excessive, the toughness deteriorates, so the upper limit of the Ca content is 0.006% or less. The amount of Ca is preferably 0.005% or less, and more preferably 0.004% or less.

(N:0.001〜0.01%)
Nは、鋼中にTiNとして析出することで、スラブ加熱時のオーステナイト粒の粗大化の抑制による母材靱性の向上や、溶接時のHAZでのオーステナイト粒の粗大化によるHAZ靱性の向上に必要な元素である。これらの効果を発揮させるには、Nは0.001%以上含有させる必要がある。N量は、好ましくは0.003%以上であり、より好ましくは0.004%以上である。しかしながら、N量が過剰になると、固溶Nの存在によりHAZでの靱性が劣化するため、0.01%以下にする必要がある。N量は、好ましくは0.008%以下であり、より好ましくは0.006%以下である。
(N: 0.001 to 0.01%)
N precipitates in the steel as TiN, and is necessary for improving the base metal toughness by suppressing the coarsening of austenite grains during slab heating and for improving the HAZ toughness by coarsening of austenite grains in the HAZ during welding Element. In order to exert these effects, N needs to be contained by 0.001% or more. The N amount is preferably 0.003% or more, and more preferably 0.004% or more. However, if the amount of N becomes excessive, the toughness in HAZ deteriorates due to the presence of solute N, so it is necessary to make it 0.01% or less. The N amount is preferably 0.008% or less, and more preferably 0.006% or less.

(O:0%超0.0045%以下)
Oは、粗大酸化物を抑制する観点から少ない方が好ましい。このような観点から、本発明では、O量の上限を0.0045%以下とする。好ましくは0.0040%以下、より好ましくは0.0035%以下である。O量は少ない方が良いが、工業的に0%とすることは困難である。
(O: more than 0% and 0.0045% or less)
A smaller amount of O is preferable from the viewpoint of suppressing coarse oxides. From such a viewpoint, in the present invention, the upper limit of the O amount is set to 0.0045% or less. Preferably it is 0.0040% or less, More preferably, it is 0.0035% or less. A smaller amount of O is better, but it is difficult to make it 0% industrially.

(REM:0.0001〜0.005%)
REM(希土類元素)は、酸化物を形成して微細に分散することで、CTOD特性の向上に寄与する元素である。このような効果を発揮させるには、REMを0.0001%以上含有させる必要がある。REM量は、好ましくは0.0003%以上、より好ましくは0.0005%以上である。一方、REMを多量に含有させると粗大な介在物を形成して母材靱性を劣化させるため、REM量の上限は0.005%以下とする。尚、本発明において、REMとは、ランタノイド元素であるLaからLuまでの15元素とスカンジウムScおよびイットリウムYを意味する。
(REM: 0.0001-0.005%)
REM (rare earth element) is an element that contributes to the improvement of CTOD characteristics by forming an oxide and finely dispersing it. In order to exert such an effect, it is necessary to contain REM 0.0001% or more. The amount of REM is preferably 0.0003% or more, more preferably 0.0005% or more. On the other hand, when a large amount of REM is contained, coarse inclusions are formed and the base material toughness is deteriorated. Therefore, the upper limit of the REM amount is set to 0.005% or less. In the present invention, REM means 15 elements from La to Lu, which are lanthanoid elements, scandium Sc, and yttrium Y.

(Zr:0.0001〜0.005%)
Zrは、酸化物を形成して微細に分散することでCTOD特性の向上に寄与する元素である。このような効果を発揮させるには、Zr量を0.0001%以上とする必要がある。Zr量は、好ましくは0.0003%以上、より好ましくは0.0005%以上である。一方、Zr量が過剰になると、粗大な介在物を形成して母材靱性を劣化させるため、Zr量は0.005%以下とする必要がある。Zr量は、好ましくは0.003%以下、より好ましくは0.002%以下、更に好ましくは0.001%以下である。
(Zr: 0.0001 to 0.005%)
Zr is an element that contributes to the improvement of CTOD characteristics by forming an oxide and finely dispersing it. In order to exert such an effect, the Zr amount needs to be 0.0001% or more. The amount of Zr is preferably 0.0003% or more, more preferably 0.0005% or more. On the other hand, if the amount of Zr is excessive, coarse inclusions are formed and the toughness of the base material is deteriorated, so the amount of Zr needs to be 0.005% or less. The amount of Zr is preferably 0.003% or less, more preferably 0.002% or less, and still more preferably 0.001% or less.

本発明の高強度ラインパイプ用鋼板における化学成分組成は、上記の通りであり、残部は実質的に鉄である。但し、原料、資材、製造設備等の状況によって持ち込まれる不可避不純物が鋼中に含まれることは当然に許容される。上記不可避不純物としては、例えば、As、Sb、Sn、H等が挙げられる。   The chemical component composition in the steel sheet for high-strength line pipe of the present invention is as described above, and the balance is substantially iron. However, it is naturally allowed that inevitable impurities brought into the steel depending on the situation of raw materials, materials, manufacturing equipment, etc. are contained in the steel. Examples of the inevitable impurities include As, Sb, Sn, H, and the like.

また本発明のラインパイプ用鋼板には、必要に応じて、更に下記量のCu、Ni、Cr、Mo、VおよびBよりなる群から選択される1種類以上の元素を含有させることも好ましい。これらの元素は、母材やHAZの強度や靱性を改善する元素であり、夫々単独で、または2種以上を併用して含有させてもよい。これらを含有させるときの範囲設定理由は下記の通りである。   Moreover, it is also preferable that the steel plate for line pipes of the present invention further contains one or more elements selected from the group consisting of Cu, Ni, Cr, Mo, V, and B in the following amounts as necessary. These elements are elements that improve the strength and toughness of the base material and HAZ, and may be contained alone or in combination of two or more. The reason for setting the range when these are contained is as follows.

(Cu:0%超1.5%以下)
Cuは、強度を高めるのに有効な元素である。このような効果を発揮させるには、Cuを0.01%以上含有させることが好ましい。Cu量は、より好ましくは0.05%以上、更に好ましくは0.10%以上である。しかしながら、Cu量が過剰になると、母材の靱性が劣化するため、1.5%以下とすることが好ましい。Cu量は、より好ましくは1.0%以下、更に好ましくは0.5%以下である。
(Cu: more than 0% and 1.5% or less)
Cu is an element effective for increasing the strength. In order to exhibit such an effect, it is preferable to contain 0.01% or more of Cu. The amount of Cu is more preferably 0.05% or more, and still more preferably 0.10% or more. However, if the amount of Cu becomes excessive, the toughness of the base material deteriorates, so it is preferable to set it to 1.5% or less. The amount of Cu is more preferably 1.0% or less, still more preferably 0.5% or less.

(Ni:0%超1.5%以下)
Niは、母材および溶接部の強度と靱性の向上に有効な元素である。このような効果を得るには、Ni量を0.01%以上とすることが好ましい。Ni量は、より好ましくは0.05%以上、更に好ましくは0.10%以上である。しかしながら、Niが多量に含まれると、構造用鋼材として極めて高価となるため、経済的な観点からNi量は1.5%以下とすることが好ましい。Ni量は、より好ましくは1.0%以下、更に好ましくは0.5%以下である。
(Ni: more than 0% and 1.5% or less)
Ni is an element effective for improving the strength and toughness of the base material and the weld. In order to obtain such an effect, the Ni content is preferably 0.01% or more. The amount of Ni is more preferably 0.05% or more, and still more preferably 0.10% or more. However, if a large amount of Ni is contained, it becomes extremely expensive as a structural steel material. Therefore, the Ni content is preferably 1.5% or less from an economical viewpoint. The amount of Ni is more preferably 1.0% or less, still more preferably 0.5% or less.

(Cr:0%超1.5%以下)
Crは、強度の向上に有効な元素であり、このような効果を得るには0.01%以上含有させることが好ましい。Cr量は、より好ましくは0.05%以上、更に好ましくは0.10%以上である。一方、Cr量が1.5%を超えるとHAZ靱性が劣化する。よってCr量は1.5%以下とすることが好ましい。Cr量は、より好ましくは1.0%以下、更に好ましくは0.5%以下である。
(Cr: more than 0% and 1.5% or less)
Cr is an element effective for improving the strength, and in order to obtain such an effect, it is preferable to contain 0.01% or more. The amount of Cr is more preferably 0.05% or more, and still more preferably 0.10% or more. On the other hand, if the Cr content exceeds 1.5%, the HAZ toughness deteriorates. Therefore, the Cr content is preferably 1.5% or less. The amount of Cr is more preferably 1.0% or less, and still more preferably 0.5% or less.

(Mo:0%超1.0%以下)
Moは、母材の強度と靱性の向上に有効な元素である。このような効果を得るには、Mo量を0.01%以上とすることが好ましい。Mo量は、より好ましくは0.05%以上、更に好ましくは0.10%以上である。しかし、Mo量が1.0%を超えるとHAZ靱性および溶接性が劣化する。よってMo量は1.0%以下とすることが好ましく、より好ましくは0.5%以下である。
(Mo: more than 0% and 1.0% or less)
Mo is an element effective for improving the strength and toughness of the base material. In order to obtain such an effect, the Mo amount is preferably 0.01% or more. The amount of Mo is more preferably 0.05% or more, and still more preferably 0.10% or more. However, if the Mo amount exceeds 1.0%, the HAZ toughness and weldability deteriorate. Therefore, the Mo amount is preferably 1.0% or less, and more preferably 0.5% or less.

(V:0%超0.2%以下)
Vは、強度の向上に有効な元素であり、このような効果を得るには0.003%以上含有させることが好ましい。V量は、より好ましくは0.010%以上である。一方、V量が0.2%を超えると溶接性と母材靱性が劣化する。よってV量は0.2%以下とすることが好ましく、より好ましくは0.1%以下、更に好ましくは0.08%以下である。
(V: more than 0% and 0.2% or less)
V is an element effective for improving the strength. In order to obtain such an effect, V is preferably contained in an amount of 0.003% or more. The amount of V is more preferably 0.010% or more. On the other hand, if the V content exceeds 0.2%, the weldability and the base metal toughness deteriorate. Therefore, the V amount is preferably 0.2% or less, more preferably 0.1% or less, and still more preferably 0.08% or less.

(B:0%超0.0003%以下)
Bは、焼入れ性を高め、母材および溶接部の強度を高める作用がある。更にBは、溶接時に加熱されたHAZ部が冷却する過程でNと結合してBNを析出し、オーステナイト粒内からのフェライト変態を促進するため、HAZ靱性を向上させる作用もある。これらの効果を得るためには、B量を0.0001%以上含有させることが好ましい。しかし、B量が過剰になると、母材およびHAZ部の靱性が劣化したり、溶接性の劣化を招くため、B量の上限を0.0003%以下とすることが好ましい。
(B: more than 0% and 0.0003% or less)
B has the effect of increasing the hardenability and increasing the strength of the base material and the welded portion. Further, B is combined with N in the process of cooling the HAZ portion heated during welding to precipitate BN and promote ferrite transformation from within the austenite grains, and thus has an effect of improving HAZ toughness. In order to obtain these effects, the B content is preferably 0.0001% or more. However, if the amount of B becomes excessive, the toughness of the base material and the HAZ part deteriorates or weldability deteriorates, so the upper limit of the amount of B is preferably made 0.0003% or less.

本発明の鋼板を製造するにあたっては、その製造工程も適切に制御する必要がある。以下、工程順に説明する。   In manufacturing the steel sheet of the present invention, it is necessary to appropriately control the manufacturing process. Hereinafter, it demonstrates in order of a process.

まず、Mn、Si、およびAlを用いて脱酸する。次いで、粗大酸化物を浮上分離させるため、RH還流時間を10分以上確保する。後記する実施例で実証したように、RH還流時間が短いと、2μm以上の粗大な酸化物の個数密度が増加してCTOD特性が低下する。RH還流時間は、好ましくは15分以上、より好ましくは20分以上である、なお、RH還流時間の好ましい上限は、上記観点からは特に限定されないが、生産性などを考慮すると、60分以下であることが好ましい。   First, deoxidation is performed using Mn, Si, and Al. Next, in order to float and separate the coarse oxide, an RH reflux time of 10 minutes or more is secured. As demonstrated in Examples described later, when the RH reflux time is short, the number density of coarse oxides of 2 μm or more increases and the CTOD characteristics deteriorate. The RH reflux time is preferably 15 minutes or more, and more preferably 20 minutes or more. Note that the upper limit of the RH reflux time is not particularly limited from the above viewpoint, but in consideration of productivity and the like, it is 60 minutes or less. Preferably there is.

次に、Ti→(REM、Zr)→Caの順に元素を添加する。この添加順序以外の順序で各元素を添加すると、酸化物が適切な組成とならず、後記する実施例で実証したように2μm以上の粗大な酸化物の個数密度が増加して、CTOD特性が低下する。特に、Caは脱酸力が極めて強いため、REM、Zrを添加する前にCaを添加すると、REMやZrと結合する酸素が全てなくなってしまい、所望とするREMおよびZrの酸化物を得ることができない。なお、(REM、Zr)と記載したのは、REM、Zrの添加順序は特に限定されないことを意味する。すなわち、Tiの後で、Caの前であれば、REM→Zrの順序、Zr→REMの順序いずれでも良い。或いは、REMとZrを同時に添加してもよい。   Next, elements are added in the order of Ti → (REM, Zr) → Ca. When each element is added in an order other than this addition order, the oxide does not have an appropriate composition, and the number density of coarse oxides of 2 μm or more increases as demonstrated in the examples described later, and the CTOD characteristics are improved. descend. In particular, since Ca has a very strong deoxidizing power, if Ca is added before REM and Zr are added, all oxygen bonded to REM and Zr disappears, and a desired oxide of REM and Zr is obtained. I can't. Note that (REM, Zr) indicates that the order of adding REM and Zr is not particularly limited. That is, as long as it is after Ti and before Ca, either the order of REM → Zr or the order of Zr → REM may be used. Alternatively, REM and Zr may be added simultaneously.

本発明では、(REM、Zr)添加から鋳造開始までの時間を10分以上確保することが必要である。この時間が10分未満になると、後記する実施例で実証したように2μm以上の粗大な酸化物の個数密度が増加して、CTOD特性が低下する。(REM、Zr)添加から鋳造開始までの時間は、好ましくは15分以上、より好ましくは20分以上である。なお、上記時間の好ましい上限は、上記観点からは特に限定されないが、生産性などを考慮すると、90分以下であることが好ましい。   In the present invention, it is necessary to secure 10 minutes or more from the addition of (REM, Zr) to the start of casting. When this time is less than 10 minutes, as demonstrated in the examples described later, the number density of coarse oxides of 2 μm or more increases and CTOD characteristics deteriorate. The time from the addition of (REM, Zr) to the start of casting is preferably 15 minutes or more, more preferably 20 minutes or more. In addition, although the preferable upper limit of the said time is not specifically limited from the said viewpoint, when productivity etc. are considered, it is preferable that it is 90 minutes or less.

上記のようにして例えば、スラブなどの鋳片を作製した後、加熱温度を通常の温度範囲の1050〜1200℃としてスラブを再加熱し、所定の粗圧延を実施した後、Ar3変態点〜950℃の温度範囲(以下、「Ar3点〜950℃」と表示する)で、累積圧下率が50%以上になるように熱間圧延する。この熱間圧延時の累積圧下率を50%以上とすることで、t/2の位置における、隣接する2つの結晶の方位差が15°以上の大角粒界で囲まれた結晶粒の円相当平均直径を10μm以下とすることができ、DWTT特性が向上する。このときの累積圧下率は、好ましくは55%以上であり、より好ましくは60%以上である。ただし、上記累積圧下率が80%を超えると、集合組織が発達してセパレーション指数SIが大きくなり、CTOD特性が低下するため、その上限を80%以下とする。上記累積圧下率は、好ましくは70%以下である。 For example, after producing a slab such as a slab as described above, the slab is reheated at a heating temperature of 1050 to 1200 ° C. in the normal temperature range, and after performing predetermined rough rolling, the Ar 3 transformation point to In the temperature range of 950 ° C. (hereinafter referred to as “Ar 3 point to 950 ° C.”), hot rolling is performed so that the cumulative rolling reduction is 50% or more. By setting the cumulative reduction ratio during this hot rolling to 50% or more, it corresponds to a circle of crystal grains surrounded by a large-angle grain boundary where the orientation difference between two adjacent crystals is 15 ° or more at the position of t / 2. The average diameter can be 10 μm or less, and the DWTT characteristics are improved. The cumulative rolling reduction at this time is preferably 55% or more, more preferably 60% or more. However, if the cumulative rolling reduction exceeds 80%, the texture develops, the separation index SI increases, and the CTOD characteristic decreases, so the upper limit is made 80% or less. The cumulative rolling reduction is preferably 70% or less.

上記「累積圧下率」は、下記(3)式から計算される値である。上記温度は、スラブもしくは鋼板の表面温度から、板厚等を考慮して、計算により求めた平均温度で定義される。下記(3)式中、t0は平均温度が圧延温度範囲にあるときの鋼板の圧延開始厚み(mm)、t1は平均温度が圧延温度範囲にあるときの鋼板の圧延終了厚み(mm)、t2は圧延前の鋳片(例えばスラブ)の厚みを、夫々示す。
累積圧下率=(t0−t1)/t2×100 …(3)
The “cumulative rolling reduction” is a value calculated from the following equation (3). The temperature is defined as an average temperature obtained by calculation from the surface temperature of the slab or steel plate in consideration of the plate thickness and the like. In the following formula (3), t 0 is the rolling start thickness (mm) of the steel sheet when the average temperature is in the rolling temperature range, and t 1 is the rolling finish thickness (mm) of the steel sheet when the average temperature is in the rolling temperature range. , T 2 indicate the thickness of the slab (for example, slab) before rolling.
Cumulative rolling reduction = (t 0 −t 1 ) / t 2 × 100 (3)

また、上記Ar3点は、下記(4)式によって求められる値を採用した。後述する表1に示した値も同じである。下記(4)式中、[C]、[Mn]、[Cu]、[Cr]、[Ni]および[Mo]は、夫々C、Mn、Cu、Cr、NiおよびMoの含有量(質量%)を示し、tは温度測定時の板厚(mm)を示す。
Ar3(℃)=910−310×[C]−80×[Mn]−20×[Cu]−15×[Cr]−55×[Ni]−80×[Mo]−0.35×(t−8)・・・(4)
Also, the Ar 3 point adopts the value determined by the following equation (4). The values shown in Table 1 described later are also the same. In the following formula (4), [C], [Mn], [Cu], [Cr], [Ni] and [Mo] are the contents (mass%) of C, Mn, Cu, Cr, Ni and Mo, respectively. ) And t indicates the plate thickness (mm) at the time of temperature measurement.
Ar 3 (° C.) = 910−310 × [C] −80 × [Mn] −20 × [Cu] −15 × [Cr] −55 × [Ni] −80 × [Mo] −0.35 × (t -8) ... (4)

上記圧延の後、冷却する。本発明では、所望とする低温靱性(特にDWTT特性)を確保するため、未再結晶温度で圧延を行い、圧延終了直後に水冷などの冷却を行うことが推奨される。具体的には、Ar3点以上(冷却開始温度)から550℃以下(冷却停止温度)までの範囲における平均冷却速度を10℃/秒以上とする。上記温度範囲における冷却条件をこのように制御することにより、t/2位置における硬質組織分率を所定範囲に制御することができ、所望のDWTT特性を確保できる。上記冷却開始温度の上限は、おおむね、Ar3+80℃以下にすることが好ましい。上記平均冷却速度の好ましい下限は15℃/秒以上である。但し、平均冷却速度が速すぎると、強度が著しく増加して靱性の劣化を招くため、その上限を50℃/秒以下とする。上記平均冷却速度の好ましい上限は45℃/秒以下である。 It cools after the said rolling. In the present invention, in order to ensure the desired low temperature toughness (particularly DWTT characteristics), it is recommended to perform rolling at a non-recrystallization temperature and perform cooling such as water cooling immediately after the end of rolling. Specifically, the average cooling rate in the range from the Ar 3 point or higher (cooling start temperature) to 550 ° C. or lower (cooling stop temperature) is set to 10 ° C./second or higher. By controlling the cooling conditions in the above temperature range in this way, the hard tissue fraction at the t / 2 position can be controlled within a predetermined range, and desired DWTT characteristics can be ensured. The upper limit of the cooling start temperature is preferably about Ar 3 + 80 ° C. or lower. A preferable lower limit of the average cooling rate is 15 ° C./second or more. However, if the average cooling rate is too high, the strength is remarkably increased and the toughness is deteriorated, so the upper limit is made 50 ° C./second or less. A preferable upper limit of the average cooling rate is 45 ° C./second or less.

上記工程において、冷却停止温度はt/2位置における硬質組織分率と密接な関係があり、冷却停止温度を550℃以下に制御することにより、硬質組織分率を5面積%以下に抑制することができる。   In the above process, the cooling stop temperature is closely related to the hard tissue fraction at the t / 2 position, and the hard tissue fraction is suppressed to 5 area% or less by controlling the cooling stop temperature to 550 ° C. or lower. Can do.

参考のため、図3に、t/2位置における硬質組織分率と、冷却停止温度(FCT)との関係を示す。この図は、本発明者らの多数の基礎実験に基づいて、硬質組織分率と冷却停止温度の関係をプロットしたものである。この図より、冷却停止温度を550℃以下に制御することにより、硬質組織分率を5面積%以下に抑制できることが分かる。FCTは、好ましくは530℃以下であり、より好ましくは500℃以下である。なお、FCTが低温になると強度上昇を招いて靱性が劣化するため、その下限を350℃以上とする。   For reference, FIG. 3 shows the relationship between the hard tissue fraction at the t / 2 position and the cooling stop temperature (FCT). This figure plots the relationship between the hard tissue fraction and the cooling stop temperature based on a number of basic experiments conducted by the present inventors. From this figure, it can be seen that the hard tissue fraction can be suppressed to 5 area% or less by controlling the cooling stop temperature to 550 ° C. or less. FCT is preferably 530 ° C. or lower, and more preferably 500 ° C. or lower. In addition, since strength raises when FCT becomes low temperature and toughness deteriorates, the lower limit shall be 350 degreeC or more.

本発明に係る高強度ラインパイプ用鋼板の板厚は特に限定されないが、ラインパイプとして適用するには、板厚は少なくとも6mm以上が好ましく、より好ましくは10mm以上である。また、板厚の上限は30mm以下が好ましく、より好ましくは25mm以下である。   The plate thickness of the steel sheet for high-strength line pipe according to the present invention is not particularly limited, but for application as a line pipe, the plate thickness is preferably at least 6 mm or more, more preferably 10 mm or more. Further, the upper limit of the plate thickness is preferably 30 mm or less, and more preferably 25 mm or less.

本発明の高強度ラインパイプ用鋼板は、その後ラインパイプ用鋼管とされるが、得られる鋼管は、素材の鋼板の特性が反映されて、低温靱性が優れたものとなる。   The steel sheet for high-strength line pipes of the present invention is then used as a steel pipe for line pipes, and the obtained steel pipe reflects the characteristics of the raw steel sheet and has excellent low-temperature toughness.

以下、実施例を挙げて本発明をより具体的に説明する。本発明は以下の実施例によって制限されず、前記、後記の趣旨に適合し得る範囲で変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited by the following examples, and can be implemented with modifications within a range that can be adapted to the gist described below, and these are all included in the technical scope of the present invention.

以下の方法により、下記表1に化学成分組成およびAr3点を有する各種鋼材A〜Oを製造した。表1中の単位は質量%であり、残部:鉄および不可避不純物である。尚、表1のREMは、LaおよびCeを含むミッシュメタルの形態で添加した。 Various steel materials A to O having chemical composition and Ar 3 points shown in Table 1 below were produced by the following methods. The unit in Table 1 is mass%, and the balance is iron: unavoidable impurities. The REMs in Table 1 were added in the form of misch metal containing La and Ce.

まず、溶鋼処理工程において、Mn、Si、およびAlを用いて脱酸した。次に、粗大な酸化物を浮上分離させるために、RH還流を表2に示す時間行った。次いで、表2に示すように、一部の鋼材Nを除いて、Ti、(REM、Zr)、Caの順に添加した後、鋳造を開始した。表2に、(REM、Zr)の添加から鋳造開始までの時間を記載した。   First, in the molten steel treatment step, deoxidation was performed using Mn, Si, and Al. Next, RH reflux was performed for the time shown in Table 2 in order to float and separate the coarse oxide. Next, as shown in Table 2, except for some steel materials N, Ti, (REM, Zr), and Ca were added in this order, and then casting was started. Table 2 shows the time from the addition of (REM, Zr) to the start of casting.

このようにして得られたスラブを、表2に示す加熱温度で再加熱した後、鋼板の表面温度で900℃以上の累積圧下率が40%以上になるように粗圧延を実施し、更にAr3点〜950℃で表2に示す累積圧下率で熱間圧延して板厚t(20mm)の鋼板を得た。 The slab thus obtained was reheated at the heating temperature shown in Table 2, and then rough rolled so that the cumulative rolling reduction at 900 ° C. or higher was 40% or higher at the surface temperature of the steel sheet, and further Ar Hot rolling was performed at 3 to 950 ° C. at the cumulative reduction shown in Table 2 to obtain a steel sheet having a thickness t (20 mm).

上記圧延の後、表2に示すSCT(冷却開始温度)からFCT(冷却停止温度)までの範囲を、30℃/秒の平均冷却速度で冷却した後、室温まで放冷して種々の鋼板を得た。   After the rolling, the range from SCT (cooling start temperature) to FCT (cooling stop temperature) shown in Table 2 was cooled at an average cooling rate of 30 ° C./second, and then allowed to cool to room temperature to produce various steel sheets. Obtained.

このようにして得られた鋼板について、下記の方法により、円相当直径2μm以上の酸化物の個数密度、t/2の位置における平均結晶粒径、t/2の位置における硬質組織分率、引張特性(降伏強度、引張強度)、シャルピー特性(セパレーション指数SI)、CTOD特性(限界CTOD値)、およびDWTT特性(85%延性破面遷移温度、85%SATT)を測定した。   With respect to the steel sheet thus obtained, the number density of oxides having an equivalent circle diameter of 2 μm or more, the average crystal grain size at the position of t / 2, the hard structure fraction at the position of t / 2, the tensile strength by the following method Characteristics (yield strength, tensile strength), Charpy characteristics (separation index SI), CTOD characteristics (limit CTOD value), and DWTT characteristics (85% ductile fracture surface transition temperature, 85% SATT) were measured.

(円相当直径2μm以上の酸化物の個数密度の測定)
鋼板表面と垂直且つ圧延方向に平行な断面(L断面)について、t/2の位置を測定位置として、島津製作所EPMA−8705を用い、観察倍率400倍、観察視野約50mm2で観察し、2μm以上の介在物を対象に特性X線の波長分散分光により介在物中央部での成分組成を定量分析した。分析対象元素は、Al、Mn、Si、Mg、Ca、Ti、Zr、S、REM(La、Ce、Nd、Dy、Y)、Nbとした。既知物質を用いて各元素のX線強度と元素濃度の関係を予め検量線として求めておき、次いで、前記介在物から得られたX線強度と前記検量線からその介在物の元素濃度を定量した。得られた定量結果のうち、酸素含有率が5%以上の介在物を酸化物とし、その個数密度を求めた。
(Measurement of number density of oxides with equivalent circle diameter of 2 μm or more)
The cross section (L cross section) perpendicular to the surface of the steel sheet and parallel to the rolling direction was observed at an observation magnification of 400 times and an observation field of view of about 50 mm 2 using a Shimadzu EPMA-8705 at a measurement position of t / 2, and 2 μm. The component composition at the center of the inclusion was quantitatively analyzed by wavelength dispersion spectroscopy of characteristic X-rays for the above inclusion. The analysis target elements were Al, Mn, Si, Mg, Ca, Ti, Zr, S, REM (La, Ce, Nd, Dy, Y), and Nb. The relationship between the X-ray intensity of each element and the element concentration is obtained in advance using a known substance as a calibration curve, and then the element concentration of the inclusion is determined from the X-ray intensity obtained from the inclusion and the calibration curve. did. Among the obtained quantitative results, inclusions having an oxygen content of 5% or more were used as oxides, and the number density was determined.

(t/2の位置における、隣接する2つの結晶の方位差が15°以上の大角粒界で囲まれた結晶粒の円相当平均直径の測定)
鋼板表面と垂直且つ圧延方向に平行な断面(L断面)を、コロイダルシリカを用いて研磨した試験片を用いた。t/2の位置を測定位置として、EBSD法により結晶粒径を測定した。具体的には、TexSEM Laboratries社のEBSD(Electron BackScatter Diffraction)装置をSEMと組み合わせて用い、隣り合う結晶粒の方位差が15°以上の大角粒界で囲まれた領域を結晶粒として円相当平均直径を求めた。このときの測定条件は、測定領域:200μm×200μm(鋼板のt/2位置を中心とし、板厚方向両側に100μmの広がりのある領域)、測定ステップ:0.5μm間隔とし、測定方位の信頼性を示すCI(Confidence Index)が0.1よりも小さい測定点は解析対象から除外した。
(Measurement of circle equivalent average diameter of crystal grains surrounded by a large-angle grain boundary whose orientation difference between two adjacent crystals is 15 ° or more at the position of t / 2)
A test piece obtained by polishing a cross section (L cross section) perpendicular to the steel sheet surface and parallel to the rolling direction using colloidal silica was used. The crystal grain size was measured by the EBSD method with the t / 2 position as the measurement position. Specifically, using an EBSD (Electron Backscatter Diffraction) device from TexSEM Laboratories in combination with SEM, the area surrounded by a large-angle grain boundary where the orientation difference between adjacent crystal grains is 15 ° or more is used as a crystal grain. The diameter was determined. The measurement conditions at this time are as follows: measurement area: 200 μm × 200 μm (area centered at the t / 2 position of the steel sheet and 100 μm spread on both sides in the thickness direction), measurement step: 0.5 μm interval, and reliability of measurement orientation Measurement points with CI (Confidence Index) indicating sex were less than 0.1 were excluded from the analysis target.

(t/2の位置における硬質組織分率の測定)
鋼板表面と垂直且つ圧延方向に平行な断面(L断面)を研磨し、レペラ試薬で腐食を行なった試験片を用いた。t/2の位置を測定位置として、400倍で撮影した光学顕微鏡組織写真から画像解析により硬質組織を同定し、その分率を求めた。
(Measurement of hard tissue fraction at t / 2 position)
The test piece which grind | polished the cross section (L cross section) perpendicular | vertical to a steel plate surface and parallel to a rolling direction, and corroded with the repeller reagent was used. Using the position of t / 2 as a measurement position, a hard tissue was identified by image analysis from an optical microscope tissue photograph taken at a magnification of 400 times, and the fraction was determined.

(引張特性(降伏強度、引張強度)の測定)
引張特性は、API−5Lに準拠した全厚引張試験片を用いて、API−5L規格に準拠した試験方法で降伏強度YSおよび引張強度TSを測定し、引張特性を評価した。
(Measurement of tensile properties (yield strength, tensile strength))
Tensile properties were evaluated by measuring the yield strength YS and the tensile strength TS by a test method based on the API-5L standard using a full thickness tensile test piece based on API-5L.

(シャルピー特性(セパレーション指数SI)の測定)
ASTM−A370規格に準拠した2mmVノッチシャルピー試験片を用いて、この規格に準拠した試験方法で評価した。その際、シャルピー試験片は、t/2の位置からCTOD試験片と同じ方向となる様に採取し、下記表3に示すセパレーション指数測定温度で3本試験を行ない、セパレーション指数を測定した上で、その値が最大となるものをセパレーション指数SIとして採用した。図1は、セパレーション指数SIを測定するときのシャルピー試験片破面を模式的に示した図である。図1において、1はセパレーション、2は破面、3は2mmVノッチ、4は板厚方向をそれぞれ示している。セパレーション指数SIは、シャルピー試験片の破面に発生したセパレーションの各長さL1〜L3を測定し、その総長さを前記(2)式に従って試験片の破面の断面積で割って測定したものである。
(Measure Charpy characteristics (separation index SI))
Using a 2 mm V notch Charpy test piece compliant with the ASTM-A370 standard, evaluation was performed by a test method compliant with this standard. At that time, Charpy test specimens were sampled from the t / 2 position so as to be in the same direction as the CTOD test specimens, three tests were conducted at the separation index measurement temperatures shown in Table 3 below, and the separation index was measured. The value with the maximum value was adopted as the separation index SI. FIG. 1 is a diagram schematically showing a fracture surface of a Charpy specimen when measuring a separation index SI. In FIG. 1, 1 is a separation, 2 is a fractured surface, 3 is a 2 mmV notch, and 4 is a thickness direction. The separation index SI is measured by measuring the lengths L 1 to L 3 of the separation generated on the fracture surface of the Charpy test piece and dividing the total length by the cross-sectional area of the fracture surface of the test piece according to the above equation (2). It is what.

(CTOD特性(限界CTOD値)の測定)
BS7448に準拠したB×2B形状の3点曲げCTOD試験片を用いて、規格に準拠した試験方法で評価した。CTOD試験は、−10℃において各鋼板で2本ずつ行ない、2本のうち値が低い方を限界CTOD値として採用した。本実施例では、−10℃でのCTOD値が0.25mm以上の場合をCTOD特性に優れる(合格)と評価した。
(Measurement of CTOD characteristics (limit CTOD value))
Using a B × 2B-shaped three-point bending CTOD test piece conforming to BS7448, evaluation was performed by a test method conforming to the standard. The CTOD test was performed on each steel plate at −10 ° C., and the lower value of the two was adopted as the limit CTOD value. In this example, the case where the CTOD value at −10 ° C. was 0.25 mm or more was evaluated as having excellent CTOD characteristics (pass).

(DWTT特性(85%延性破面遷移温度)の測定)
API5L3規格に準拠してシェブロンノッチ加工したDWTT試験片を用いて、この規格に準拠した試験方法でDWTT特性を評価した。試験は種々の温度にて2本ずつ行った。本実施例では、延性破面率が85%となる最低温度(85%延性破面遷移温度、85%SATT)を求め、この値が−10℃以下の場合をDWTT特性に優れる(合格)と評価した。
(Measurement of DWTT characteristics (85% ductile fracture surface transition temperature))
Using a DWTT test piece that was chevron notched according to the API5L3 standard, the DWTT characteristic was evaluated by a test method that conformed to this standard. Two tests were performed at various temperatures. In this example, the lowest temperature at which the ductile fracture surface ratio becomes 85% (85% ductile fracture surface transition temperature, 85% SATT) is obtained, and when this value is −10 ° C. or less, the DWTT characteristics are excellent (pass). evaluated.

これらの結果を表3に示す。なお、表3では「t/2の位置における、隣接する2つの結晶の方位差が15°以上の大角粒界で囲まれた結晶粒の円相当平均直径」を、「t/2の位置における大角粒の円相当平均直径」と略記した。   These results are shown in Table 3. In Table 3, the “circle equivalent average diameter of crystal grains surrounded by a large-angle grain boundary where the orientation difference between two adjacent crystals is 15 ° or more at the position of t / 2” is expressed as “at the position of t / 2”. It was abbreviated as “equivalent circle average diameter of large-angle grains”.

Figure 2016199806
Figure 2016199806

Figure 2016199806
Figure 2016199806

Figure 2016199806
Figure 2016199806

これらの結果から、次のように考察できる。   From these results, it can be considered as follows.

まず、表3の試験No.1〜8は、本発明で規定する化学成分組成を満足する表1の鋼材A〜Hを用いて、推奨される条件で製造した本発明例である。これらは、本発明で規定する円相当直径2μm以上の粗大な酸化物の個数密度、隣接する2つの結晶の方位差が15°以上の大角粒界で囲まれた結晶粒の円相当平均直径、硬質組織分率、およびセパレーション指数SIのいずれもが本発明の要件を満足しているため、試験温度−10℃で行なったCTOD試験において、限界CTOD値が目標値である0.25mm以上を満足していることが分かる。更に85%SATTはいずれも−10℃以下であり、DWTT特性に優れることも分かる。   First, test No. in Table 3 1-8 are the examples of this invention manufactured on the conditions recommended using the steel materials AH of Table 1 which satisfy | fill the chemical component composition prescribed | regulated by this invention. These are the number density of coarse oxides having a circle equivalent diameter of 2 μm or more as defined in the present invention, the circle equivalent average diameter of crystal grains surrounded by a large-angle grain boundary in which the orientation difference between two adjacent crystals is 15 ° or more, Since both the hard tissue fraction and the separation index SI satisfy the requirements of the present invention, the critical CTOD value satisfies the target value of 0.25 mm or more in the CTOD test performed at a test temperature of −10 ° C. You can see that Furthermore, it can be seen that 85% SATT is -10 ° C. or lower and is excellent in DWTT characteristics.

これに対し、表3の試験No.9〜15は、本発明で規定する要件のいずれかを満足していないため、限界CTOD値または85%SATTが目標値に達していない。   On the other hand, test no. Since Nos. 9 to 15 do not satisfy any of the requirements defined in the present invention, the limit CTOD value or 85% SATT does not reach the target value.

詳細には表3の試験No.9は、鋼中にREMおよびZrを添加しない表1の鋼材Iを用いた例であり、酸化物組成が適切でないため、粗大な酸化物の個数密度が増加し、限界CTOD値が目標値に達していない。   For details, see Test No. in Table 3. 9 is an example using the steel material I of Table 1 in which REM and Zr are not added to the steel. Since the oxide composition is not appropriate, the number density of coarse oxides increases, and the critical CTOD value reaches the target value. Not reached.

表3の試験No.10は、本発明で規定する化学成分組成を満足する表1の鋼材Jを用いたが、Ar3点〜950℃での累積圧下率が低いため、隣接する2つの結晶の方位差が15°以上の大角粒界で囲まれた結晶粒の円相当平均直径が大きくなって母材靱性が劣化し、限界CTOD値および85%SATTの両方が目標値に達していない。 Test No. in Table 3 No. 10 used the steel material J in Table 1 satisfying the chemical composition defined in the present invention. However, since the cumulative rolling reduction at the Ar 3 point to 950 ° C. is low, the orientation difference between two adjacent crystals is 15 °. The circle-equivalent average diameter of the crystal grains surrounded by the above large-angle grain boundaries is increased, and the base material toughness is deteriorated. Both the critical CTOD value and 85% SATT do not reach the target values.

表3の試験No.11は、本発明で規定する化学成分組成を満足する表1の鋼材Kを用いたが、Ar3点〜950℃での累積圧下率が高いため、セパレーション指数SIが増加し、限界CTOD値が目標に達していない。 Test No. in Table 3 No. 11 used the steel material K in Table 1 that satisfies the chemical composition defined in the present invention. However, since the cumulative rolling reduction at Ar 3 to 950 ° C. is high, the separation index SI increases and the critical CTOD value is The goal has not been reached.

表3の試験No.12は、本発明で規定する化学成分組成を満足する表1の鋼材Lを用いたが、圧延後の冷却停止温度(FCT)が高いため、t/2位置における硬質組織面積率が大きくなり、85%SATTが目標値に達していない。   Test No. in Table 3 12 used the steel material L in Table 1 satisfying the chemical composition defined in the present invention, but because the cooling stop temperature (FCT) after rolling is high, the hard structure area ratio at the t / 2 position is increased, 85% SATT has not reached the target value.

表3の試験No.13は、本発明で規定する化学成分組成を満足する表1の鋼材Mを用いたが、溶鋼処理工程におけるRH還流時間が短いため、粗大な酸化物の個数密度が増加し、限界CTOD値が目標に達していない。   Test No. in Table 3 No. 13 used the steel material M in Table 1 that satisfies the chemical composition defined in the present invention, but because the RH reflux time in the molten steel treatment process is short, the number density of coarse oxides increased, and the critical CTOD value was The goal has not been reached.

表3の試験No.14は、本発明で規定する化学成分組成を満足する表1の鋼材Nを用いたが、溶鋼処理工程における元素の添加順序が適切でないため、粗大な酸化物の個数密度が増加し、限界CTOD値が目標に達していない。   Test No. in Table 3 No. 14 used the steel material N in Table 1 that satisfies the chemical composition defined in the present invention. However, since the addition order of elements in the molten steel treatment process was not appropriate, the number density of coarse oxides increased, and the limit CTOD The value has not reached the target.

表3の試験No.15は、本発明で規定する化学成分組成を満足する表1の鋼材Oを用いたが、溶鋼処理工程における、(REM、Zr)添加から鋳造開始までの時間が短いため、粗大な酸化物の個数密度が増加し、限界CTOD値が目標に達していない。   Test No. in Table 3 15 used the steel material O of Table 1 that satisfies the chemical composition defined in the present invention, but in the molten steel treatment process, the time from the addition of (REM, Zr) to the start of casting is short, so that the coarse oxide The number density has increased and the critical CTOD value has not reached the target.

Claims (3)

質量%で、
C :0.02〜0.2%、
Si:0.02〜0.5%、
Mn:0.6〜2.5%、
P :0%超0.03%以下、
S :0%超0.01%以下、
Al:0.010〜0.08%、
Nb:0.001〜0.1%、
Ti:0.003〜0.03%、
Ca:0.0003〜0.006%、
N :0.001〜0.01%、
O :0%超0.0045%以下、
REM:0.0001〜0.005%、および
Zr:0.0001〜0.005%
を含有し、残部が鉄および不可避不純物であり、
板厚をtとしたとき、
t/2の位置において、円相当直径が2μm以上の酸化物を10個/mm2以下含有し、
t/2の位置における、隣接する2つの結晶の方位差が15°以上の大角粒界で囲まれた結晶粒の円相当平均直径が10μm以下、且つ
t/2の位置における硬質組織の分率が5面積%以下
を満足すると共に、
指定温度のシャルピー試験片破面から測定したセパレーション指数SIが0.15mm/mm2以下であることを特徴とする低温靱性に優れた高強度ラインパイプ用鋼板。
% By mass
C: 0.02 to 0.2%,
Si: 0.02 to 0.5%,
Mn: 0.6 to 2.5%
P: more than 0% and 0.03% or less,
S: more than 0% and 0.01% or less,
Al: 0.010 to 0.08%,
Nb: 0.001 to 0.1%,
Ti: 0.003 to 0.03%,
Ca: 0.0003 to 0.006%,
N: 0.001 to 0.01%
O: more than 0% and 0.0045% or less,
REM: 0.0001 to 0.005%, and Zr: 0.0001 to 0.005%
The balance is iron and inevitable impurities,
When the plate thickness is t,
at a position of t / 2, containing 10 oxides / mm 2 or less of oxide having an equivalent circle diameter of 2 μm or more,
The fraction of hard structure at the position of t / 2 where the circle equivalent average diameter of the crystal grains surrounded by the large-angle grain boundary where the orientation difference between two adjacent crystals is 15 ° or more at the position of t / 2 is 10 μm or less Satisfies 5% by area or less,
A steel sheet for a high-strength line pipe excellent in low-temperature toughness, having a separation index SI measured from a fracture surface of a Charpy specimen at a specified temperature of 0.15 mm / mm 2 or less.
更に、質量%で、
Cu:0%超1.5%以下、
Ni:0%超1.5%以下、
Cr:0%超1.5%以下、
Mo:0%超1.0%以下、
V :0%超0.2%以下、および
B :0%超0.0003%以下
よりなる群から選択される少なくとも1種を含有する請求項1に記載の高強度ラインパイプ用鋼板。
Furthermore, in mass%,
Cu: more than 0% and 1.5% or less,
Ni: more than 0% and 1.5% or less,
Cr: more than 0% and 1.5% or less,
Mo: more than 0% and 1.0% or less,
The steel plate for high-strength line pipes according to claim 1, comprising at least one selected from the group consisting of V: more than 0% and 0.2% or less, and B: more than 0% and 0.0003% or less.
請求項1または2に記載の高強度ラインパイプ用鋼板を用いて製造される低温靱性に優れた高強度ラインパイプ用鋼管。   A steel pipe for a high-strength line pipe excellent in low-temperature toughness manufactured using the steel sheet for a high-strength line pipe according to claim 1 or 2.
JP2016076850A 2015-04-10 2016-04-06 Steel plate for high strength line pipe and steel pipe for high strength line pipe excellent in low temperature toughness Pending JP2016199806A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015081206 2015-04-10
JP2015081206 2015-04-10

Publications (1)

Publication Number Publication Date
JP2016199806A true JP2016199806A (en) 2016-12-01

Family

ID=57073139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016076850A Pending JP2016199806A (en) 2015-04-10 2016-04-06 Steel plate for high strength line pipe and steel pipe for high strength line pipe excellent in low temperature toughness

Country Status (5)

Country Link
EP (1) EP3282028A4 (en)
JP (1) JP2016199806A (en)
KR (1) KR20170118899A (en)
CN (1) CN107532254A (en)
WO (1) WO2016163451A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019104955A (en) * 2017-12-11 2019-06-27 日本製鉄株式会社 Carbon steel slab and manufacturing method of the same
CN110004356A (en) * 2019-03-28 2019-07-12 包头钢铁(集团)有限责任公司 One kind rust-proof oil casing steel of low carbon high alloy containing rare earth and its preparation process
CN110004357A (en) * 2019-03-28 2019-07-12 包头钢铁(集团)有限责任公司 One kind shale gas seamless steel pipe of high-ductility containing rare earth high-strength and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7440741B2 (en) * 2019-12-18 2024-02-29 日本製鉄株式会社 ERW steel pipe for line pipe and method for manufacturing ERW steel pipe for line pipe
CN113604747B (en) * 2021-08-18 2022-04-08 宝武集团鄂城钢铁有限公司 High-performance corrosion-resistant refractory steel with excellent-80 ℃ low-temperature toughness and production method thereof
KR20230090416A (en) * 2021-12-14 2023-06-22 주식회사 포스코 Steel plate having excellent hydrogen induced craking resistance and low-temperature impact toughness, and method for manufacturing the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5201665B2 (en) * 2007-11-13 2013-06-05 株式会社神戸製鋼所 High strength thick steel plate for welding with excellent toughness of heat affected zone during high heat input welding
JP5342902B2 (en) * 2009-03-11 2013-11-13 株式会社神戸製鋼所 Steel material excellent in toughness and base metal fatigue characteristics of weld heat-affected zone and its manufacturing method
JP5576640B2 (en) * 2009-03-25 2014-08-20 株式会社神戸製鋼所 Steel with excellent toughness in weld heat affected zone
CN103080358B (en) * 2011-02-24 2015-12-23 新日铁住金株式会社 The high tensile steel plate of stretch flangeability and has excellent bending properties and the melting method of molten steel thereof
JP5824401B2 (en) * 2012-03-30 2015-11-25 株式会社神戸製鋼所 Steel sheet with excellent resistance to hydrogen-induced cracking and method for producing the same
JP5820341B2 (en) * 2012-06-19 2015-11-24 株式会社神戸製鋼所 Steel with excellent toughness in weld heat affected zone
JP5883369B2 (en) * 2012-09-19 2016-03-15 株式会社神戸製鋼所 Thick steel plate with excellent toughness in weld heat affected zone
JP6165088B2 (en) * 2013-03-29 2017-07-19 株式会社神戸製鋼所 Steel sheets and line pipe steel pipes with excellent resistance to hydrogen-induced cracking and toughness of weld heat affected zone
US10081042B2 (en) * 2013-08-16 2018-09-25 Nippon Steel & Sumitomo Metal Corporation Electric resistance welded steel pipe excellent in weld zone and method of production of same
JP6343472B2 (en) * 2014-03-28 2018-06-13 株式会社神戸製鋼所 Steel sheets for high-strength line pipes and steel pipes for high-strength line pipes with excellent low-temperature toughness

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019104955A (en) * 2017-12-11 2019-06-27 日本製鉄株式会社 Carbon steel slab and manufacturing method of the same
JP7027858B2 (en) 2017-12-11 2022-03-02 日本製鉄株式会社 Manufacturing method of carbon steel slabs and carbon steel slabs
CN110004356A (en) * 2019-03-28 2019-07-12 包头钢铁(集团)有限责任公司 One kind rust-proof oil casing steel of low carbon high alloy containing rare earth and its preparation process
CN110004357A (en) * 2019-03-28 2019-07-12 包头钢铁(集团)有限责任公司 One kind shale gas seamless steel pipe of high-ductility containing rare earth high-strength and preparation method thereof

Also Published As

Publication number Publication date
WO2016163451A1 (en) 2016-10-13
KR20170118899A (en) 2017-10-25
EP3282028A1 (en) 2018-02-14
CN107532254A (en) 2018-01-02
EP3282028A4 (en) 2018-11-07

Similar Documents

Publication Publication Date Title
WO2016163451A1 (en) Steel sheet for high strength line pipe with excellent low temperature toughness and steel pipe for high strength line pipe
JP5574059B2 (en) High-strength H-section steel with excellent low-temperature toughness and method for producing the same
JP5846311B2 (en) Thick high-strength steel excellent in welding heat affected zone CTOD characteristics and method for producing the same
JP6211296B2 (en) Steel plate with excellent sour resistance and HAZ toughness
JP4950528B2 (en) Low yield ratio high strength steel with excellent toughness of heat affected zone and its manufacturing method
TWI418641B (en) High-strength steel plate and producing method thereof
JP5910792B2 (en) Thick steel plate and method for manufacturing thick steel plate
JP6018453B2 (en) High strength thick steel plate with excellent cryogenic toughness
JP4515430B2 (en) Steel with excellent toughness and base metal toughness of weld heat affected zone and its manufacturing method
JP4515427B2 (en) Steel with excellent toughness and fatigue crack growth resistance in weld heat affected zone and its manufacturing method
JP5729803B2 (en) High-tensile steel plate and manufacturing method thereof
KR101169866B1 (en) Steel material having excellent toughness in welding heat-affected zone, and method for producing the same
WO2014175122A1 (en) H-shaped steel and method for producing same
JP4950529B2 (en) Steel with excellent toughness and base metal toughness of weld heat affected zone and its manufacturing method
KR20200057041A (en) Low-temperature nickel-containing steel
KR102309124B1 (en) Low-temperature nickel-containing steel
WO2017094593A1 (en) Non-heat-treated steel sheet having high yield strength in which hardness of a welding-heat-affected zone and degradation of low-temperature toughness of the welding-heat-affected zone are suppressed
WO2019082325A1 (en) Nickel-containing steel for use at low temperatures
JP2010121199A (en) Steel having excellent weld heat-affected zone toughness and base metal low temperature toughness, and method for producing the same
JP5515954B2 (en) Low yield ratio high-tensile steel plate with excellent weld crack resistance and weld heat-affected zone toughness
JP5234952B2 (en) Low yield ratio steel material excellent in toughness of weld heat affected zone, and method for producing the same
JP2017082267A (en) Thick steel plate
JP6226163B2 (en) High-tensile steel plate with excellent low-temperature toughness in heat affected zone and its manufacturing method
JP6343472B2 (en) Steel sheets for high-strength line pipes and steel pipes for high-strength line pipes with excellent low-temperature toughness
JP4515428B2 (en) Steel material excellent in toughness and brittle fracture occurrence characteristics of weld heat affected zone and its manufacturing method

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170210

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170321