JP2016198697A5 - - Google Patents

Download PDF

Info

Publication number
JP2016198697A5
JP2016198697A5 JP2015078978A JP2015078978A JP2016198697A5 JP 2016198697 A5 JP2016198697 A5 JP 2016198697A5 JP 2015078978 A JP2015078978 A JP 2015078978A JP 2015078978 A JP2015078978 A JP 2015078978A JP 2016198697 A5 JP2016198697 A5 JP 2016198697A5
Authority
JP
Japan
Prior art keywords
acid solution
organic acid
ozone
decomposition
parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015078978A
Other languages
Japanese (ja)
Other versions
JP2016198697A (en
JP6616583B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2015078978A priority Critical patent/JP6616583B2/en
Priority claimed from JP2015078978A external-priority patent/JP6616583B2/en
Publication of JP2016198697A publication Critical patent/JP2016198697A/en
Publication of JP2016198697A5 publication Critical patent/JP2016198697A5/ja
Application granted granted Critical
Publication of JP6616583B2 publication Critical patent/JP6616583B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

[有機酸溶液分解方法]
まず始めにシュウ酸1a及びギ酸1bを混合槽3にそれぞれ注入し、混合する。そして、混合溶液を配管5を介して分解槽9に移送する。その移送過程の途中(ギ酸分解部5a)で過酸化水素水注入装置4によって過酸化水素水を注入し、ギ酸の大部分を分解する。ギ酸の大部分が分解された有機酸溶液を分解槽9に収容し、分解槽9において、オゾン発生装置6で発生させたオゾンを有機酸溶液に注入する。分解槽9には測定装置8aが設置されており、その測定された値(信号)を基に、オゾン注入量制御装置6bにて分解槽9に注入するオゾン量(濃度)が制御されるシステムとなっている。
[Organic acid solution decomposition method]
First, oxalic acid 1a and formic acid 1b are respectively injected into the mixing tank 3 and mixed. Then, the mixed solution is transferred to the decomposition tank 9 through the pipe 5. In the middle of the transfer process (formic acid decomposition part 5a), hydrogen peroxide solution is injected by the hydrogen peroxide solution injection device 4 to decompose most of the formic acid. The organic acid solution were largely degraded in formic acid containing the decomposition tank 9, in the decomposition tank 9, to inject ozone generated by the ozone generator 6 a to the organic acid solution. A measuring device 8a is installed in the decomposition tank 9, and the ozone amount (concentration) injected into the decomposition tank 9 is controlled by the ozone injection amount control device 6b based on the measured value (signal). It has become.

(3)オゾン注入速度の決定
ステンレス鋼の電位は先に示した図3及び図4のとおり、オゾン注入速度及びシュウ酸濃度によって決定される。図6はステンレス鋼の電位を0.8Vとしたときのオゾン注入速度のシュウ酸濃度依存性を示すグラフである。図6から、分解槽9のシュウ酸濃度に応じてオゾン注入量を制御すれば、ステンレス鋼の電位を腐食抑制臨界値(0.8V)以下に保ち、腐食を軽減させることが可能となる。なお、図6は温度を60℃で一定に保ったときのグラフである。図6のグラフは当然温度に依存するものであるが、ここで温度を60℃としているのは、シュウ酸をオゾンで分解する際に最も効率良く分解できるのが60℃であり、分解槽は基本的に60℃に制御されているためである。したがって、一般的には温度変化でオゾン流量を変化させる制御は必要では無いが、分解槽9に測定装置として温度センサーを追加し、その信号を元にオゾン注入量制御装置6bでオゾン注入量を制御することも可能である。
(3) Determination of ozone injection rate The potential of stainless steel is determined by the ozone injection rate and the oxalic acid concentration as shown in FIGS. FIG. 6 is a graph showing the oxalic acid concentration dependence of the ozone injection rate when the potential of stainless steel is 0.8V. From FIG. 6, if the ozone injection amount is controlled according to the oxalic acid concentration in the decomposition tank 9, the potential of the stainless steel can be kept below the corrosion inhibition critical value (0.8 V) and the corrosion can be reduced. FIG. 6 is a graph when the temperature is kept constant at 60.degree. The graph of FIG. 6 naturally depends on the temperature. Here, the temperature is set to 60 ° C., and when the oxalic acid is decomposed with ozone, it can be decomposed most efficiently at 60 ° C. This is because the temperature is basically controlled at 60 ° C. Therefore, although in general not necessary control for changing the ozone flow rate temperature changes, adding a temperature sensor and the measurement equipment in the decomposition vessel 9, the ozone with an ozone injection rate control device 6b on the basis of the signal It is also possible to control the injection amount.

図2は、本発明に係る有機酸溶液分解システムの第2の例を示すブロック図である。図2に示す有機酸溶液分解システム100bにおいて、図1に示す有機酸溶液分解処理装置100aと異なる部分は、配管5の途中に触媒層5bを設けている点と、分解槽9の測定装置8bをサンプリング部(サンプリングユニット10と分析部11とで構成した点にある。 FIG. 2 is a block diagram showing a second example of the organic acid solution decomposition system according to the present invention. In the organic acid solution decomposition system 100b shown in FIG. 2, the difference from the organic acid solution decomposition processing apparatus 100a shown in FIG. 1 is that a catalyst layer 5b is provided in the middle of the pipe 5, and a measuring device 8b of the decomposition tank 9. Is composed of a sampling unit ( sampling unit ) 10 and an analysis unit 11.

Claims (12)

カルボン酸を含む有機酸溶液を収容する分解槽と、
前記有機酸溶液にオゾンを注入するオゾン注入装置と、
前記分解槽の電位、前記有機酸溶液のpH、カルボン酸濃度又は二酸化炭素濃度のうちの少なくとも1つのパラメータを測定する測定装置と、を備え、
前記オゾン注入装置は、前記測定装置によって測定された値に基づいてオゾンの注入量を制御することを特徴とする有機酸溶液分解システム。
A decomposition tank containing an organic acid solution containing a carboxylic acid;
An ozone injection device for injecting ozone into the organic acid solution;
A measuring device for measuring at least one parameter of the potential of the decomposition tank, the pH of the organic acid solution, the carboxylic acid concentration or the carbon dioxide concentration,
The organic acid solution decomposition system, wherein the ozone injection device controls an injection amount of ozone based on a value measured by the measurement device .
前記カルボン酸は、ギ酸及びシュウ酸であることを特徴とする請求項1記載の有機酸溶液分解システム。   The organic acid solution decomposition system according to claim 1, wherein the carboxylic acid is formic acid and oxalic acid. 前記測定装置は、サンプリング部と分析部とを有し、
前記サンプリング部は、前記有機酸溶液の一部を採取し、
前記分析部は、採取された前記有機酸溶液の一部について前記測定を行うものであることを特徴とする請求項1記載の有機酸溶液分解システム。
The measuring device has a sampling unit and an analysis unit,
The sampling unit collects a part of the organic acid solution,
The organic acid solution decomposition system according to claim 1, wherein the analysis unit performs the measurement on a part of the collected organic acid solution.
前記オゾン注入装置は、前記測定された値が変化し始めた時点でオゾンの注入量を制御することを特徴とする請求項1記載の有機酸溶液分解システム。 2. The organic acid solution decomposition system according to claim 1, wherein the ozone injection device controls an injection amount of ozone at a time when the measured value starts to change. 前記オゾン注入装置は、前記測定された値の変化量に応じてオゾンの注入量を制御することを特徴とする請求項1記載の有機酸溶液分解システム。 The organic acid solution decomposition system according to claim 1, wherein the ozone injection device controls an injection amount of ozone in accordance with a change amount of the measured value . 前記オゾン注入装置は、あらかじめ測定された前記分解槽の腐食電位と、前記腐食電位と前記パラメータとの関係から算出された前記パラメータの腐食抑制臨界値を求め、前記パラメータが前記腐食抑制臨界値以下となるよう、オゾン注入量を制御することを特徴とする請求項1記載の有機酸溶液分解システム。 The ozone injection device obtains a corrosion inhibition critical value of the parameter calculated from a relationship between the corrosion potential of the decomposition tank measured in advance and the corrosion potential and the parameter, and the parameter is equal to or less than the corrosion inhibition critical value. The organic acid solution decomposition system according to claim 1, wherein the ozone injection amount is controlled so that カルボン酸を含む有機酸溶液を分解槽に収容し、
測定装置によって、前記分解槽の電位、前記有機酸溶液のpH、カルボン酸濃度又は二酸化炭素濃度のうちの少なくとも1つのパラメータを測定し、
定された前記パラメータの値に基づいて決定された注入量で、オゾン注入装置によって前記有機酸溶液にオゾンを注入して前記カルボン酸の分解を行うことを特徴とする有機酸溶液分解方法。
An organic acid solution containing carboxylic acid is placed in a decomposition tank,
The measurement device measures at least one parameter of the potential of the decomposition tank, the pH of the organic acid solution, the carboxylic acid concentration or the carbon dioxide concentration,
In injection amount determined based on the measurement value of the parameter, the organic acid solution cracking process, characterized in that the ozone injection device to inject ozone into the organic acid solution disassembly of the carboxylic acid.
前記カルボン酸は、ギ酸及びシュウ酸であることを特徴とする請求項7記載の有機酸溶液分解方法。   The organic acid solution decomposition method according to claim 7, wherein the carboxylic acid is formic acid and oxalic acid. 前記測定は、前記有機酸溶液の一部を採取して行われるものであることを特徴とする請求項7記載の有機酸溶液分解方法。   The organic acid solution decomposition method according to claim 7, wherein the measurement is performed by collecting a part of the organic acid solution. 前記オゾン注入量を、測定された前記が変化し始めた時点で制御することを特徴とする請求項7記載の有機酸溶液分解方法。 The injection amount of the ozone, measured organic acid solution decomposition method according to claim 7, wherein the controller controls when the value began to change. 前記オゾンの注入量を、測定された前記の変化量に応じて制御することを特徴とする請求項7記載の有機酸溶液分解方法。 8. The organic acid solution decomposition method according to claim 7, wherein the ozone injection amount is controlled in accordance with the measured change amount of the value . あらかじめ測定された前記分解槽の腐食電位と、前記腐食電位と前記パラメータとの関係から算出された前記パラメータの腐食抑制臨界値を求め、前記パラメータが前記腐食抑制臨界値以下となるよう、オゾン注入量を制御することを特徴とする請求項7記載の有機酸溶液分解方法。 Obtain the corrosion inhibition critical value of the parameter calculated from the corrosion potential of the decomposition tank measured in advance, and the relationship between the corrosion potential and the parameter, and inject the ozone so that the parameter is equal to or less than the corrosion inhibition critical value. 8. The organic acid solution decomposition method according to claim 7, wherein the amount is controlled.
JP2015078978A 2015-04-08 2015-04-08 Organic acid solution decomposition system and organic acid solution decomposition method Active JP6616583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015078978A JP6616583B2 (en) 2015-04-08 2015-04-08 Organic acid solution decomposition system and organic acid solution decomposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015078978A JP6616583B2 (en) 2015-04-08 2015-04-08 Organic acid solution decomposition system and organic acid solution decomposition method

Publications (3)

Publication Number Publication Date
JP2016198697A JP2016198697A (en) 2016-12-01
JP2016198697A5 true JP2016198697A5 (en) 2018-03-08
JP6616583B2 JP6616583B2 (en) 2019-12-04

Family

ID=57422185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015078978A Active JP6616583B2 (en) 2015-04-08 2015-04-08 Organic acid solution decomposition system and organic acid solution decomposition method

Country Status (1)

Country Link
JP (1) JP6616583B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019189974A (en) * 2018-04-26 2019-10-31 アクアス株式会社 Addition method of germicide in paper making facility
CN114544813A (en) * 2022-02-23 2022-05-27 中国科学院赣江创新研究院 Method for quantitatively detecting oxalic acid in mixed acid of oxalic acid and hydrochloric acid

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS606718B2 (en) * 1977-01-28 1985-02-20 三菱電機株式会社 Wastewater treatment method
JP4083607B2 (en) * 2003-03-19 2008-04-30 株式会社東芝 Radioactive chemical decontamination method and apparatus
JP3931258B2 (en) * 2003-07-31 2007-06-13 株式会社日立製作所 Ozone decomposition apparatus and decomposition method
JP4301992B2 (en) * 2004-04-27 2009-07-22 株式会社東芝 Decontamination waste liquid processing method and processing apparatus
JP5603271B2 (en) * 2011-03-04 2014-10-08 日立Geニュークリア・エナジー株式会社 Method and apparatus for treating radioactive liquid waste
JP5868229B2 (en) * 2012-03-13 2016-02-24 日立Geニュークリア・エナジー株式会社 Organic matter decomposition system using ozone

Similar Documents

Publication Publication Date Title
RU2015103675A (en) DEFINITION OF TRANSFERABLE COEFFICIENT ESTABLISHING THE RATIO BETWEEN CONDUCTIVITY AND HARDNESS OF WATER
US20140262233A1 (en) Monitoring produced water
JP2016198697A5 (en)
JP2018506713A5 (en) Method for maintaining sensor accuracy
JP6331145B2 (en) Ammonia treatment system
Burns et al. Monitoring of CaCO3 production on a spinning disc reactor using conductivity measurements
WO2019225433A1 (en) Fluorine concentration measurement method, fluorine concentration measurement device, water treatment method, and water treatment device
JP5213601B2 (en) Circulating ozone water generation method and circulating ozone water production apparatus
JP2018025454A (en) Hydrogen peroxide analyzer and hydrogen peroxide analysis method
Uysal et al. Kinetics of absorption of carbon dioxide into sodium metaborate solution
JP6616583B2 (en) Organic acid solution decomposition system and organic acid solution decomposition method
JP6493867B2 (en) Anaerobic treatment device, anaerobic treatment method, and display device for anaerobic treatment device
Ilić et al. Ultrasonic degradation of GenX (HFPO-DA)–Performance comparison to PFOA and PFOS at high frequencies
KR101334693B1 (en) Sensor and regression model based method of determining for injection amount of a coagulant, and purified-water treatment system using the same
Odeigah et al. The effect of monoethylene glycol on calcium carbonate solubility at high temperatures
JP2014010145A (en) Device for detecting in-liquid ammonia and for controlling reaction
KR20090026544A (en) Monitoring method and system of trihalomethane formation potential and haloacetic acids formation potential in drinking water treatment
KR101395626B1 (en) flow measurement and control methods for ballast water treatment system
Matino et al. Application of unconventional techniques for evaluation and monitoring of physico-chemical properties of water streams
KR101494083B1 (en) Method for determining residual ozone decay kinetic constant in ozone water treatment system
Nakagaki et al. Experimental evaluation of effect of oxidative degradation of aqueous monoethanolamine on heat of CO2 absorption, vapor liquid equilibrium and CO2 absorption rate
CN110763622A (en) On-line monitoring test device for evaluating corrosion inhibition performance of corrosion inhibitor
JP2005324121A (en) Water treatment method and water treatment apparatus
CN204129540U (en) Concentration of oxalic acid controller
SG11201903260SA (en) Method for controlling concentration of solid content and method for producing trichlorosilane