JP2016197013A - Building damage intensity estimating system and method - Google Patents

Building damage intensity estimating system and method Download PDF

Info

Publication number
JP2016197013A
JP2016197013A JP2015075660A JP2015075660A JP2016197013A JP 2016197013 A JP2016197013 A JP 2016197013A JP 2015075660 A JP2015075660 A JP 2015075660A JP 2015075660 A JP2015075660 A JP 2015075660A JP 2016197013 A JP2016197013 A JP 2016197013A
Authority
JP
Japan
Prior art keywords
earthquake
building
virtual
floor
damage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015075660A
Other languages
Japanese (ja)
Other versions
JP6549877B2 (en
Inventor
久人 若林
Hisato Wakabayashi
久人 若林
高橋 正樹
Masaki Takahashi
正樹 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Azbil Corp
Original Assignee
Keio University
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University, Azbil Corp filed Critical Keio University
Priority to JP2015075660A priority Critical patent/JP6549877B2/en
Publication of JP2016197013A publication Critical patent/JP2016197013A/en
Application granted granted Critical
Publication of JP6549877B2 publication Critical patent/JP6549877B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To reduce the cost of estimating the intensity of damage to buildings having suffered an earthquake.SOLUTION: A building damage intensity estimating system comprises a building damage intensity estimating device 1, an earthquake sensor 20 installed on the foundation ground surface of a building 2, and earthquake sensors 21-1 and 21-2 installed at representative points in the building 2. The building damage intensity estimating device 1 comprises a virtual building model deriving unit 10 that derives a virtual building model mathematically expressing earthquake-caused motions of the building 2 from known building information on the building 2; an earthquake response analyzer 11 that inputs ground motion acceleration measured by the earthquake sensor 20 during an earthquake into the virtual building model to analyze the responses of the virtual building model to the earthquake; an earthquake/motion information calculator 12 that calculates earthquake information and motion information indicating the motions of the building caused by the earthquake; and a damage intensity estimator 13 that estimates the intensity of the damage to the building by using the earthquake information and the motion information after the earthquake is over.SELECTED DRAWING: Figure 1

Description

本発明は、地震発生後の建物の被災度を推定する建物被災推定システムおよび方法に関するものである。   The present invention relates to a building damage estimation system and method for estimating the damage level of a building after an earthquake occurs.

地震発生後の建物の損傷程度を推定するシステムとして、建物の各層の加速度を計測する加速度センサの計測データから各層の層間変位を求め、建物の最上層あるいは最上層近傍の層の微振動を計測する微振動センサから、建物の常時微動の固有周期を求め、各層の層間変位と建物の常時微動の固有周期とにより建物の健全性を評価するシステムが提案されている(特許文献1参照)。   As a system for estimating the degree of damage to a building after an earthquake, the displacement of each layer is obtained from the measurement data of an acceleration sensor that measures the acceleration of each layer of the building, and the microvibration of the top layer of the building or the layer near the top layer is measured. A system has been proposed in which the natural period of microtremors of a building is obtained from a microvibration sensor, and the soundness of the building is evaluated by the interlayer displacement of each layer and the natural period of microtremors of the building (see Patent Document 1).

特開2014−134436号公報JP 2014-134436 A

特許文献1に開示された技術では、建物の全ての層に加速度センサが必要となり、コストがかかるという問題点があった。特に、建築構造設計時の評定用建物構造データが無い場合は全層に加速度センサを設置する必要があった。   In the technique disclosed in Patent Document 1, acceleration sensors are required for all the layers of the building, and there is a problem that costs are increased. In particular, when there is no building structure data for evaluation at the time of building structure design, it is necessary to install acceleration sensors in all layers.

本発明は、上記課題を解決するためになされたもので、地震発生後の建物の被災度を従来よりも安価に推定することができる建物被災推定システムおよび方法を提供することを目的とする。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a building damage estimation system and method that can estimate the damage degree of a building after an earthquake at a lower cost than before.

本発明の建物被災推定システムは、推定対象の建物の基礎地盤面に設置された第1の地震センサと、前記建物の既知の建物情報に基づいて、この建物の地震による動きを数式化した仮想建物モデルを導出する仮想建物モデル導出手段と、地震発生中に前記第1の地震センサで計測された地動加速度を前記仮想建物モデルに入力して、仮想建物モデルの地震応答解析を行う地震応答解析手段と、地震発生中に前記地震応答解析の結果を用いて、地震情報と、前記建物の地震による動きを示す動き情報とを算出する地震・動き情報算出手段と、地震終了後に、前記地震・動き情報算出手段が地震発生中に算出した地震情報と動き情報とを用いて、前記建物の被災度を推定する被災度推定手段とを備えることを特徴とするものである。   The building damage estimation system according to the present invention includes a first earthquake sensor installed on the foundation ground surface of a building to be estimated and a virtual motion obtained by formulating the movement of the building due to an earthquake based on the known building information of the building. A virtual building model deriving means for deriving a building model, and an earthquake response analysis for performing an earthquake response analysis of the virtual building model by inputting the ground motion acceleration measured by the first seismic sensor during the earthquake to the virtual building model. Means, earthquake / movement information calculating means for calculating earthquake information and movement information indicating movement of the building due to the earthquake, using the result of the earthquake response analysis during the occurrence of the earthquake; The present invention is characterized by comprising damage degree estimation means for estimating the damage degree of the building using the earthquake information and the movement information calculated by the movement information calculation means during the occurrence of the earthquake.

また、本発明の建物被災推定システムの1構成例は、さらに、前記建物内の代表ポイントに設置された第2の地震センサと、地震発生中に前記第2の地震センサで計測された加速度と、地震発生中に前記地震応答解析手段で算出された地震応答解析結果に含まれる、前記代表ポイントの加速度とを照合し、前記第2の地震センサで計測された加速度と算出された加速度との誤差が一定値を超える場合に、この誤差が一定値以内になるように前記仮想建物モデルのパラメータの修正値を算出するパラメータ修正手段と、このパラメータ修正手段が算出したパラメータの修正値を前記仮想建物モデル導出手段で用いるパラメータとして設定することにより、前記仮想建物モデルを更新する仮想建物モデル更新手段とを備えることを特徴とするものである。
また、本発明の建物被災推定システムの1構成例において、前記地震応答解析手段で得られる地震応答解析結果は、前記建物の各階の変位、各階の速度、各階の加速度であり、前記地震・動き情報算出手段で得られる地震情報は、各階の計測震度、各階の長周期地震動階級であり、前記地震・動き情報算出手段で得られる動き情報は、各階の最大加速度、各階の最大速度、各階の最大変位、各階間の最大層間変形角である。
In addition, one configuration example of the building damage estimation system according to the present invention further includes a second earthquake sensor installed at a representative point in the building, and an acceleration measured by the second earthquake sensor during the occurrence of the earthquake. The acceleration of the representative point included in the earthquake response analysis result calculated by the earthquake response analysis means during the occurrence of the earthquake is collated, and the acceleration measured by the second earthquake sensor and the calculated acceleration When the error exceeds a certain value, the parameter correcting means for calculating the parameter correction value of the virtual building model so that the error is within the certain value, and the parameter correction value calculated by the parameter correcting means is the virtual correction value. Virtual building model updating means for updating the virtual building model by setting as a parameter used in the building model deriving means A.
Moreover, in one structural example of the building damage estimation system of this invention, the earthquake response analysis result obtained by the said earthquake response analysis means is the displacement of each floor of the said building, the speed of each floor, the acceleration of each floor, and said earthquake and motion The earthquake information obtained by the information calculation means is the measured seismic intensity of each floor and the long-period ground motion class of each floor, and the motion information obtained by the earthquake / motion information calculation means is the maximum acceleration of each floor, the maximum speed of each floor, Maximum displacement, maximum inter-layer deformation angle between each floor.

また、本発明の建物被災推定方法は、推定対象の建物の既知の建物情報に基づいて、この建物の地震による動きを数式化した仮想建物モデルを導出する仮想建物モデル導出ステップと、前記建物の基礎地盤面に設置された第1の地震センサで地震発生中に計測された地動加速度を前記仮想建物モデルに入力して、仮想建物モデルの地震応答解析を行う地震応答解析ステップと、地震発生中に前記地震応答解析の結果を用いて、地震情報と、前記建物の地震による動きを示す動き情報とを算出する地震・動き情報算出ステップと、地震終了後に、前記地震・動き情報算出ステップで地震発生中に算出した地震情報と動き情報とを用いて、前記建物の被災度を推定する被災度推定ステップとを含むことを特徴とするものである。   Further, the building damage estimation method of the present invention includes a virtual building model derivation step for deriving a virtual building model obtained by formulating the movement of the building due to an earthquake based on known building information of the building to be estimated; An earthquake response analysis step for inputting the ground acceleration measured during the occurrence of the earthquake by the first seismic sensor installed on the foundation ground surface to the virtual building model and performing an earthquake response analysis of the virtual building model; The earthquake / motion information calculating step for calculating earthquake information and the motion information indicating the motion of the building due to the earthquake using the result of the earthquake response analysis, and the earthquake / motion information calculating step after the earthquake A damage degree estimation step of estimating the damage degree of the building using the earthquake information and the motion information calculated during the occurrence.

本発明によれば、建物の全ての層に加速度センサを設ける必要がなくなり、建物の基礎地盤面と建物内の代表ポイントに地震センサを設置すればよいので、地震発生後の建物の被災度を従来よりも安価に推定することができる。また、本発明では、地震発生中に、地震情報と、建物の地震による動きを示す動き情報とを算出することができるので、避難誘導に関わる情報を建物の管理者に提供することができる。   According to the present invention, it is not necessary to provide acceleration sensors in all layers of the building, and it is only necessary to install seismic sensors on the foundation ground surface of the building and representative points in the building. It can be estimated at a lower cost than before. Further, according to the present invention, since earthquake information and movement information indicating the movement of the building due to the earthquake can be calculated during the occurrence of the earthquake, information related to evacuation guidance can be provided to the building manager.

また、本発明では、地震が発生する度に建物の実態に合った仮想建物モデルになるようにモデルを更新するので、建物の被災度の推定精度を向上させることができ、建物の安全性を素早く且つ高い精度で確認することができる。その結果、本発明では、詳細な設計データが無い60m以下の建物の場合であっても、建物の被災度を精度よく推定することができる。   Further, in the present invention, every time an earthquake occurs, the model is updated so that it becomes a virtual building model that matches the actual situation of the building, so that the accuracy of estimating the damage level of the building can be improved, and the safety of the building can be improved. It can be confirmed quickly and with high accuracy. As a result, in the present invention, the damage degree of the building can be accurately estimated even in the case of a building of 60 m or less without detailed design data.

本発明の実施の形態に係る建物被災推定システムの構成を示すブロック図である。It is a block diagram which shows the structure of the building damage estimation system which concerns on embodiment of this invention. 本発明の実施の形態に係る建物被災推定システムの動作を説明するフローチャートである。It is a flowchart explaining operation | movement of the building damage estimation system which concerns on embodiment of this invention.

以下、本発明の実施の形態について図面を参照して説明する。図1は本発明の実施の形態に係る建物被災推定システムの構成を示すブロック図である。本実施の形態の建物被災推定システムは、建物被災推定装置1と、推定対象の建物2の基礎地盤面に設置された地震センサ20と、建物2内の代表ポイントに設置された地震センサ21とから構成される。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a configuration of a building damage estimation system according to an embodiment of the present invention. The building damage estimation system according to the present embodiment includes a building damage estimation apparatus 1, an earthquake sensor 20 installed on the foundation ground surface of the estimation target building 2, and an earthquake sensor 21 installed at a representative point in the building 2. Consists of

建物被災推定装置1は、建物2の既知の建物情報に基づいて、建物2の地震による動きを数式化した仮想建物モデルを導出する仮想建物モデル導出部10と、地震発生中に地震センサ20で計測された地動加速度を仮想建物モデルに入力して、仮想建物モデルの地震応答解析を行う地震応答解析部11と、地震発生中に地震応答解析の結果を用いて、地震情報と、建物の地震による動きを示す動き情報とを算出する地震・動き情報算出部12と、地震終了後に、地震・動き情報算出部12が地震発生中に算出した地震情報と動き情報とを用いて、建物の被災度を推定する被災度推定部13と、情報表示のための表示部14と、仮想建物モデルのパラメータの修正値を算出するパラメータ修正部15と、パラメータの修正値を仮想建物モデル導出部10で用いるパラメータとして設定することにより、仮想建物モデルを更新する仮想建物モデル更新部16とを備えている。   The building damage estimation apparatus 1 includes a virtual building model deriving unit 10 for deriving a virtual building model obtained by formulating the movement of the building 2 due to an earthquake based on the known building information of the building 2, and an earthquake sensor 20 during the occurrence of the earthquake. The measured ground motion acceleration is input to the virtual building model, and the earthquake response analysis unit 11 that performs the earthquake response analysis of the virtual building model, and the earthquake information and the earthquake of the building using the result of the earthquake response analysis during the earthquake occurrence The earthquake / motion information calculation unit 12 that calculates the motion information indicating the motion by the earthquake, and the earthquake information and the motion information calculated by the earthquake / motion information calculation unit 12 during the occurrence of the earthquake after the earthquake The degree of damage estimation unit 13 for estimating the degree of information; the display unit 14 for displaying information; the parameter correction unit 15 for calculating the correction value of the parameter of the virtual building model; By setting the parameters used in parts 10, and a virtual building model updating unit 16 for updating the virtual building model.

以下、本実施の形態の建物被災推定システムの動作を図2のフローチャートを用いて説明する。
まず、仮想建物モデル導出部10は、推定対象の建物2の地震による動きを数式化した仮想建物モデルを導出する(図2ステップS1)。本実施の形態では、時刻歴応答解析に用いられる建物構造設計データがない建物2でも地震応答解析ができるよう、階高などの建物情報と建築構造設計統計データベース3から仮想建物モデルを導出する。以下、この仮想建物モデルの導出方法について詳細に説明する。
Hereinafter, operation | movement of the building damage estimation system of this Embodiment is demonstrated using the flowchart of FIG.
First, the virtual building model deriving unit 10 derives a virtual building model obtained by formulating the motion of the building 2 to be estimated due to the earthquake (step S1 in FIG. 2). In the present embodiment, a virtual building model is derived from building information such as floor height and the building structure design statistical database 3 so that the earthquake response analysis can be performed even in the building 2 without building structure design data used for the time history response analysis. Hereinafter, a method for deriving the virtual building model will be described in detail.

本実施の形態では、超高層建物に該当しない高さ60m以下の建物2を想定し、一般に公開されている建築構造設計統計データベース3に基づいて、建物2の既知の建物情報(建築面積、構造種別(RC造、S造、SRC造、木造)、階数、階高、および建物高さ)から以下の手順を経て、仮想建物モデルを決定する。なお、建築構造設計統計データベース3とは、特定のデータベースを指すのではなく、過去の建物構造設計および建物の実測データから得られた知識の集合を意味する。   In the present embodiment, a building 2 having a height of 60 m or less that does not correspond to a super high-rise building is assumed, and based on a publicly disclosed building structure design statistical database 3, known building information (building area, structure, etc.) of the building 2 is disclosed. The virtual building model is determined through the following procedure from the type (RC building, S building, SRC building, wooden building), number of floors, floor height, and building height). The architectural structure design statistical database 3 does not indicate a specific database, but means a set of knowledge obtained from past building structure design and actual building data.

耐震設計においては,建物の高さを基に次の略算式で建物の一次固有周期を求めてよいとされている(昭和55年建設省告示第1793号)。
T=0.03H ・・・(1)
T=0.02H ・・・(2)
In seismic design, it is said that the primary natural period of a building may be obtained by the following approximate formula based on the height of the building (Ministry of Construction Notification No. 1793 in 1980).
T = 0.03H (1)
T = 0.02H (2)

式(1)は建物がS造(鉄骨造)または木造である場合の式であり、式(2)は建物がRC造(鉄筋コンクリート造)またはSRC造(鉄骨鉄筋コンクリート造)の場合の式である。Tは秒単位の一次固有周期で、Hはm単位の建物高さである。   Expression (1) is an expression when the building is an S structure (steel structure) or wooden structure, and expression (2) is an expression when the building is an RC structure (reinforced concrete structure) or SRC structure (steel reinforced concrete structure). . T is the primary natural period in seconds and H is the building height in m.

また、日本建築学会(1981)では次のような直線近似式が示されている。
T=0.021H ・・・(3)
T=0.014H ・・・(4)
T=0.021H ・・・(5)
T=0.015H ・・・(6)
The Architectural Institute of Japan (1981) provides the following linear approximation formula.
T = 0.021H (3)
T = 0.014H (4)
T = 0.021H (5)
T = 0.015H (6)

式(3)は建物がS造高層建物の場合の式であり、式(4)は建物がSRC造高層建物の場合の式であり、式(5)は建物がS造中低層建物の場合の式であり、式(6)は建物がRC造中低層建物またはSRC造中低層建物である場合の式である。
仮想建物モデル導出部10は、式(1)〜式(6)のうち、推定対象の建物2の構造種別(RC造、S造、SRC造、木造)および建物高さHに該当するいずれかの式により推定対象の建物2の一次固有周期Tを求める。
Expression (3) is an expression when the building is an S-rise high-rise building, Expression (4) is an expression when the building is an SRC high-rise building, and Expression (5) is an expression when the building is an S-building medium-rise building. Formula (6) is a formula in the case where the building is a RC low-rise building or SRC low-rise building.
The virtual building model deriving unit 10 is one of the formulas (1) to (6) that corresponds to the structure type (RC structure, S structure, SRC structure, wooden structure) of the building 2 to be estimated and the building height H. The primary natural period T of the estimation target building 2 is obtained by the following equation.

本実施の形態では、日本建築学会(2000)のデータベースより、実在S造建物の剛性は建築基準法の式の約2倍であると推定して、この剛性の値を仮想建物モデル導出部10に予め設定しておく。その他の構造種別、すなわちRC造、SRC造、木造の建物の剛性についても、過去の統計データベースのデータを基に予め設定しておけばよい。また、本実施の形態では、日本建築学会(2000)のデータを参考に、減衰定数を2%として仮想建物モデル導出部10に予め設定しておく。   In the present embodiment, from the database of the Architectural Institute of Japan (2000), it is estimated that the rigidity of a real S building is about twice the formula of the Building Standard Law, and the value of this rigidity is derived from the virtual building model deriving unit 10. Set in advance. Other structural types, that is, the rigidity of the RC building, the SRC building, and the wooden building may be set in advance based on the data of the past statistical database. In the present embodiment, the virtual building model deriving unit 10 is set in advance with a damping constant of 2% with reference to data from the Architectural Institute of Japan (2000).

仮想建物モデル導出部10は、推定対象の建物2の各階を質点とみなし、各質点(各階)の質量を建物2の建築面積および構造種別から推定する。各階の質量を推定するためには、建物の建築面積および構造種別と各階の質量との関係を過去の統計データベースから求め、各階の質量の推定式を仮想建物モデル導出部10に予め設定しておけばよい。   The virtual building model deriving unit 10 regards each floor of the estimation target building 2 as a mass point, and estimates the mass of each mass point (each floor) from the building area and the structural type of the building 2. In order to estimate the mass of each floor, the relationship between the building area and structure type of the building and the mass of each floor is obtained from the past statistical database, and an estimation formula of the mass of each floor is set in the virtual building model deriving unit 10 in advance. Just keep it.

続いて、仮想建物モデル導出部10は、建築基準法で規定される地震層せん断力の分布係数Aiによって定まる静的な地震力を評価し、この地震力によって建物2の各階が直線的に変形するような各階の剛性分布を求める。分布係数Aiについては、前記の一次固有周期Tと各階の質量とから求めることができる。次に、仮想建物モデル導出部10は、この剛性分布と各階の質量とから固有値解析により求めた固有周期が建物2の構造種別および建物高さHから求めた一次固有周期Tに合致するように、各階の剛性の比率を一定に保ったまま剛性分布を調整する。   Subsequently, the virtual building model deriving unit 10 evaluates the static seismic force determined by the distribution coefficient Ai of the seismic layer shear force defined by the Building Standard Law, and each floor of the building 2 is linearly deformed by this seismic force. Find the rigidity distribution of each floor. The distribution coefficient Ai can be obtained from the primary natural period T and the mass of each floor. Next, the virtual building model deriving unit 10 makes the natural period obtained from the stiffness distribution and the mass of each floor by eigenvalue analysis coincide with the primary natural period T obtained from the structural type of the building 2 and the building height H. The stiffness distribution is adjusted while keeping the stiffness ratio of each floor constant.

次に、仮想建物モデル導出部10は、建築基準法で規定される各層の必要保有水平耐力Qunを求める。まず、地震地域係数Zとしては、国土交通省が地域別に定めた値を仮想建物モデル導出部10に予め設定しておけばよい。また、標準せん断力係数C0についても一般的に知られている値を仮想建物モデル導出部10に予め設定しておけばよい。仮想建物モデル導出部10は、予め設定された周知の計算式により、T=0.02Hの一次固有周期Tから振動特性係数Rtを算出する。   Next, the virtual building model deriving unit 10 obtains the necessary horizontal strength Qun of each layer defined by the Building Standard Law. First, as the earthquake area coefficient Z, a value determined by the Ministry of Land, Infrastructure, Transport and Tourism for each area may be set in the virtual building model deriving unit 10 in advance. Further, a generally known value for the standard shear force coefficient C0 may be set in advance in the virtual building model deriving unit 10. The virtual building model deriving unit 10 calculates the vibration characteristic coefficient Rt from the primary natural period T of T = 0.02H using a well-known calculation formula set in advance.

靭性による低減係数Dsについては、S造、RC造、SRC造の設計で用いられる平均的なDsを0.4とし、この耐力の2倍を見込み、ここではDs=0.8という値を仮想建物モデル導出部10に予め設定しておく。形状特性係数Fesについては、推定対象の建物2として平均的な建物を想定し、剛性のバランスがよいFes=1という値を仮想建物モデル導出部10に予め設定しておく。仮想建物モデル導出部10は、上記の各階の質量から、各階が支える上部の総重量Wiを算出し、このWiと地震地域係数Zと標準せん断力係数C0と振動特性係数Rtと低減係数Dsと形状特性係数Fesと分布係数Aiとから次式により必要保有水平耐力Qunを求める。
Qun=Ds×Fes×Z×Rt×Ai×C0×Wi ・・・(7)
For the reduction factor Ds due to toughness, the average Ds used in the design of S, RC, and SRC structures is assumed to be 0.4, and double this proof strength is expected. Here, a value of Ds = 0.8 is assumed. It is preset in the building model deriving unit 10. As for the shape characteristic coefficient Fes, an average building is assumed as the building 2 to be estimated, and a value of Fes = 1 with good rigidity balance is set in the virtual building model deriving unit 10 in advance. The virtual building model deriving unit 10 calculates the total weight Wi of the upper part supported by each floor from the mass of each floor, and calculates the Wi, the earthquake area coefficient Z, the standard shear force coefficient C0, the vibration characteristic coefficient Rt, and the reduction coefficient Ds. From the shape characteristic coefficient Fes and the distribution coefficient Ai, the required horizontal proof stress Qun is obtained by the following equation.
Qun = Ds × Fes × Z × Rt × Ai × C0 × Wi (7)

最終的に、仮想建物モデル導出部10は、減衰定数、各階の質量、各階の剛性分布、必要保有水平耐力から仮想建物モデルの状態方程式を得る。
dX/dt=A×X+B×U+D×z ・・・(8)
Finally, the virtual building model deriving unit 10 obtains a state equation of the virtual building model from the attenuation constant, the mass of each floor, the rigidity distribution of each floor, and the necessary horizontal strength.
dX / dt = A × X + B × U + D × z (8)

ここで、Xは状態変数である。状態変数Xには、各階の変位、各階の速度、制振装置の変位(建物2に制振装置がある場合)などが含まれる。Uは制振装置を制御する制御器への制御入力(制振装置および制御器がない場合にはU=0)、zは地動加速度を示す。以上で、仮想建物モデル導出部10の処理が終了する。   Here, X is a state variable. The state variable X includes the displacement of each floor, the speed of each floor, the displacement of the damping device (when the building 2 has the damping device), and the like. U is a control input to a controller that controls the vibration damping device (U = 0 if there is no vibration damping device and no controller), and z is the ground motion acceleration. Above, the process of the virtual building model derivation | leading-out part 10 is complete | finished.

次に、地震応答解析部11は、推定対象の建物2の基礎地盤面に設置された地震センサ20で計測された地動加速度zが所定の地震判定閾値以上の場合、地震発生と判定し(図2ステップS2においてYES)、地震センサ20で計測された地動加速度zと制振装置の制御システムで演算された制御入力U(制振装置および制御器がない場合にはU=0)とを仮想建物モデルに入力し、数値シミュレーションにより仮想建物モデルの地震応答解析を行う(図2ステップS3)。この地震応答解析により、地震応答解析部11は、各階の変位、各階の速度を得ることができる。また、各階の速度を微分することにより、各階の加速度を得ることができる。   Next, the seismic response analysis unit 11 determines that an earthquake has occurred when the ground motion acceleration z measured by the earthquake sensor 20 installed on the foundation ground surface of the estimation target building 2 is equal to or greater than a predetermined earthquake determination threshold (see FIG. (YES in 2 step S2), the ground motion acceleration z measured by the seismic sensor 20 and the control input U calculated by the control system of the vibration control device (U = 0 when there is no vibration control device and a controller) are virtually The building model is input, and the earthquake response analysis of the virtual building model is performed by numerical simulation (step S3 in FIG. 2). By this earthquake response analysis, the earthquake response analysis unit 11 can obtain the displacement of each floor and the speed of each floor. Moreover, the acceleration of each floor can be obtained by differentiating the speed of each floor.

数値シミュレーションは、以下の式(9)に示す4次のルンゲクッタ法を用いて行う。
X1=X
b1=dt×(A×X1+B×U+D×z)
X2=X+b1/2
b2=dt×(A×X2+B×U+D×z)
X3=X+b2/2
b3=dt×(A×X3+B×U+D×z)
X4=X+b3
b4=dt×(A×X4+B×U+D×z)
Y=X+(b1+2×b2+2×b3+b4)/6 ・・・(9)
Numerical simulation is performed using a fourth-order Runge-Kutta method shown in the following equation (9).
X1 = X
b1 = dt × (A × X1 + B × U + D × z)
X2 = X + b1 / 2
b2 = dt × (A × X2 + B × U + D × z)
X3 = X + b2 / 2
b3 = dt × (A × X3 + B × U + D × z)
X4 = X + b3
b4 = dt × (A × X4 + B × U + D × z)
Y = X + (b1 + 2 × b2 + 2 × b3 + b4) / 6 (9)

ここで、dtはサンプリング時間を表す。次に、地震・動き情報算出部12は、地震の発生中は、現在時刻から一定時間ΔT1だけ遡った地震応答解析部11の地震応答解析結果(各階の変位、各階の速度、各階の加速度)を用いて、地震情報と、推定対象の建物2の地震による動きを示す動き情報とを算出する(図2ステップS4)。   Here, dt represents the sampling time. Next, during the occurrence of the earthquake, the earthquake / motion information calculation unit 12 receives the earthquake response analysis result (displacement of each floor, speed of each floor, acceleration of each floor) from the earthquake response analysis unit 11 that is back by a certain time ΔT1 from the current time. Is used to calculate earthquake information and motion information indicating the motion of the building 2 to be estimated due to the earthquake (step S4 in FIG. 2).

地震情報としては、各階の計測震度、各階の長周期地震動階級がある。動き情報としては、各階の最大加速度、各階の最大速度、各階の最大変位、各階間の最大層間変形角がある。各階の計測震度は、各階の加速度から算出することができる。各階の長周期地震動階級は、地動加速度zを積分して得た地動速度と各階の速度とから求めることができる絶対速度応答に基づいて算出することができる。各階間の最大層間変形角は、各階間の最大層間変位を階高で割ることで算出することができる。   As earthquake information, there are measured seismic intensity of each floor and long-period ground motion class of each floor. The motion information includes the maximum acceleration of each floor, the maximum speed of each floor, the maximum displacement of each floor, and the maximum interlayer deformation angle between floors. The measured seismic intensity of each floor can be calculated from the acceleration of each floor. The long-period seismic motion class of each floor can be calculated based on the absolute speed response that can be obtained from the ground motion speed obtained by integrating the ground motion acceleration z and the speed of each floor. The maximum interlayer deformation angle between each floor can be calculated by dividing the maximum interlayer displacement between each floor by the floor height.

表示部14は、地震・動き情報算出部12が算出した地震情報と動き情報とを一定時間ΔT2の間隔で表示する(図2ステップS5)。
次に、被災度推定部13は、地震センサ20で計測された地動加速度zが地震判定閾値未満になると、地震が止んだと判定し(図2ステップS6においてYES)、地震発生中に地震・動き情報算出部12が算出した全データを用いて建物2の被災度を推定する(図2ステップS7)。
The display unit 14 displays the earthquake information and the motion information calculated by the earthquake / motion information calculation unit 12 at intervals of a predetermined time ΔT2 (step S5 in FIG. 2).
Next, the damage level estimation unit 13 determines that the earthquake has stopped when the ground motion acceleration z measured by the earthquake sensor 20 is less than the earthquake determination threshold value (YES in step S6 in FIG. 2). The damage level of the building 2 is estimated using all the data calculated by the motion information calculation unit 12 (step S7 in FIG. 2).

各階の計測震度、各階の長周期地震動階級、各階の最大加速度、各階の最大速度、各階の最大変位、各階間の最大層間変形角のそれぞれには、建物の損傷無しと判定する無被害判定閾値や、建物の損傷有りと判定する被害判定閾値が予め設定されている。被災度推定部13は、例えば建物2のある階の計測震度が計測震度判定用に予め設定された無被害判定閾値未満であれば、当該階に損傷無しと判定し、計測震度が計測震度判定用に予め設定された被害判定閾値以上であれば、当該階に損傷有りと判定する。   Non-damage determination threshold for determining that there is no damage to the building for each seismic intensity of each floor, long-period ground motion class of each floor, maximum acceleration of each floor, maximum speed of each floor, maximum displacement of each floor, and maximum interlayer deformation angle between each floor In addition, a damage determination threshold value for determining that the building is damaged is set in advance. For example, if the measured seismic intensity of a certain floor of the building 2 is less than the no damage determination threshold set in advance for determining the measured seismic intensity, the damage level estimating unit 13 determines that the floor is not damaged, and the measured seismic intensity is determined as the measured seismic intensity. If it is greater than or equal to the damage determination threshold set in advance, it is determined that the floor is damaged.

同様に、被災度推定部13は、建物2のある階の最大加速度が最大加速度判定用に予め設定された無被害判定閾値未満であれば、当該階に損傷無しと判定し、最大加速度が最大加速度判定用に予め設定された被害判定閾値以上であれば、当該階に損傷有りと判定する。被災度推定部13は、以上のような判定を、各階の計測震度、各階の長周期地震動階級、各階の最大加速度、各階の最大速度、各階の最大変位、各階間の最大層間変形角のそれぞれについて階毎に行えばよい。なお、被害判定閾値については複数のレベルを設定して損傷の程度(損傷大、損傷小など)を判定できるようにしてもよい。   Similarly, if the maximum acceleration of a certain floor of the building 2 is less than the no damage determination threshold set in advance for determining the maximum acceleration, the damage level estimation unit 13 determines that the floor is not damaged and the maximum acceleration is the maximum. If it is equal to or greater than a damage determination threshold set in advance for acceleration determination, it is determined that the floor is damaged. The degree of damage estimation unit 13 makes the above determination based on the measured seismic intensity of each floor, the long-period seismic motion class of each floor, the maximum acceleration of each floor, the maximum speed of each floor, the maximum displacement of each floor, and the maximum interlayer deformation angle between each floor. About the floor. Note that a plurality of levels may be set for the damage determination threshold value so that the degree of damage (large damage, small damage, etc.) can be determined.

表示部14は、被災度推定部13が推定した建物2の被災度を表示する(図2ステップS8)。
次に、パラメータ修正部15は、建物2内の代表ポイント(特定の階)に設置された地震センサ21が地震発生中の特定時刻において計測した加速度と、地震発生中に地震応答解析部11が算出した地震応答解析結果のうち、前記代表ポイントに該当する階の前記特定時刻における加速度とを照合する(図2ステップS9)。パラメータ修正部15は、このような照合を地震発生中の各時刻について行う。
The display unit 14 displays the damage level of the building 2 estimated by the damage level estimation unit 13 (step S8 in FIG. 2).
Next, the parameter correction unit 15 includes the acceleration measured by the earthquake sensor 21 installed at the representative point (specific floor) in the building 2 at a specific time during the occurrence of the earthquake, and the earthquake response analysis unit 11 during the occurrence of the earthquake. Of the calculated earthquake response analysis results, the acceleration at the specific time of the floor corresponding to the representative point is collated (step S9 in FIG. 2). The parameter correction unit 15 performs such collation for each time during the occurrence of the earthquake.

パラメータ修正部15は、地震センサ21が計測した加速度と地震応答解析部11が算出した加速度との誤差が一定値以内であれば(図2ステップS10においてNO)、処理を終える。また、パラメータ修正部15は、地震センサ21が計測した加速度と地震応答解析部11が算出した加速度との誤差が一定値を超える場合(ステップS10においてYES)、誤差が一定値以内になるように仮想建物モデルの減衰定数、剛性分布に補正を加え、式(8)に示した仮想建物モデルの状態方程式のパラメータA,B,Dの修正値を算出する(図2ステップS11)。   If the error between the acceleration measured by the earthquake sensor 21 and the acceleration calculated by the earthquake response analysis unit 11 is within a certain value (NO in step S10 in FIG. 2), the parameter correction unit 15 ends the process. Further, when the error between the acceleration measured by the earthquake sensor 21 and the acceleration calculated by the earthquake response analysis unit 11 exceeds a certain value (YES in step S10), the parameter correction unit 15 causes the error to be within the certain value. Correction values are added to the attenuation constant and stiffness distribution of the virtual building model, and correction values of the parameters A, B, and D of the state equation of the virtual building model shown in Expression (8) are calculated (step S11 in FIG. 2).

仮想建物モデル更新部16は、パラメータ修正部15が算出したパラメータの修正値を仮想建物モデル導出部10に設定することにより、仮想建物モデルを更新する(図2ステップS12)。   The virtual building model update unit 16 updates the virtual building model by setting the parameter correction value calculated by the parameter correction unit 15 in the virtual building model deriving unit 10 (step S12 in FIG. 2).

以上のように、本実施の形態では、建物の全ての層に加速度センサを設ける必要がなくなり、建物の基礎地盤面と代表ポイントに地震センサを設置すればよいので、地震発生後の建物の被災度を従来よりも安価に推定することができる。また、従来より、地震で被災した建物について、損傷度合の状況や継続使用の可否判断に関する情報提供の迅速化が求められているが、本実施の形態では、地震が発生する度に建物の実態に合った仮想建物モデルになるようにモデルを更新するので、建物の被災度の推定精度を向上させることができ、建物の安全性を素早く且つ高い精度で確認することができる。   As described above, in this embodiment, it is not necessary to provide acceleration sensors in all layers of the building, and it is only necessary to install earthquake sensors on the foundation ground and representative points of the building. The degree can be estimated at a lower cost than in the past. In addition, for buildings damaged by an earthquake, it has been required to provide information on the degree of damage and whether to continue use or not, but in this embodiment, every time an earthquake occurs, the actual state of the building is required. Since the model is updated so as to become a virtual building model suitable for the building, it is possible to improve the estimation accuracy of the damage level of the building and to confirm the safety of the building quickly and with high accuracy.

また、本実施の形態では、地震発生中に地震・動き情報算出部12が算出した地震情報と動き情報とを表示することにより、避難誘導に関わる情報を建物の管理者に提供することができる。
また、本実施の形態では、地震センサ20が計測する地動加速度zの代わりに、過去の地震波形に基づく地動加速度zあるいは模擬地震動に基づく地動加速度zを仮想建物モデルに入力して、図2のステップS3〜S5,S7,S8の処理を行えば、被害想定シミュレーションを実現することができる。
Further, in the present embodiment, information related to evacuation guidance can be provided to the building manager by displaying the earthquake information and motion information calculated by the earthquake / motion information calculation unit 12 during the occurrence of the earthquake. .
Further, in the present embodiment, instead of the ground acceleration z measured by the earthquake sensor 20, the ground acceleration z based on the past earthquake waveform or the ground acceleration z based on the simulated earthquake motion is input to the virtual building model, as shown in FIG. If the processes in steps S3 to S5, S7, and S8 are performed, a damage estimation simulation can be realized.

本実施の形態で説明した建物被災推定装置1は、CPU(Central Processing Unit)、記憶装置及びインタフェースを備えたコンピュータと、これらのハードウェア資源を制御するプログラムによって実現することができる。CPUは、記憶装置に格納されたプログラムに従って本実施の形態で説明した処理を実行する。   The building damage estimation apparatus 1 described in the present embodiment can be realized by a computer having a CPU (Central Processing Unit), a storage device, and an interface, and a program for controlling these hardware resources. The CPU executes the processing described in the present embodiment in accordance with a program stored in the storage device.

本発明は、地震発生後の建物の被災度を推定する技術に適用することができる。   The present invention can be applied to a technique for estimating the damage level of a building after an earthquake.

1…建物被災推定装置、2…建物、3…建築構造設計統計データベース、10…仮想建物モデル導出部、11…地震応答解析部、12…地震・動き情報算出部、13…被災度推定部、14…表示部、15…パラメータ修正部、16…仮想建物モデル更新部、20,21…地震センサ。   DESCRIPTION OF SYMBOLS 1 ... Building damage estimation apparatus, 2 ... Building, 3 ... Architectural structure design statistical database, 10 ... Virtual building model derivation part, 11 ... Earthquake response analysis part, 12 ... Earthquake / motion information calculation part, 13 ... Damage degree estimation part, DESCRIPTION OF SYMBOLS 14 ... Display part, 15 ... Parameter correction part, 16 ... Virtual building model update part, 20, 21 ... Earthquake sensor.

Claims (5)

推定対象の建物の基礎地盤面に設置された第1の地震センサと、
前記建物の既知の建物情報に基づいて、この建物の地震による動きを数式化した仮想建物モデルを導出する仮想建物モデル導出手段と、
地震発生中に前記第1の地震センサで計測された地動加速度を前記仮想建物モデルに入力して、仮想建物モデルの地震応答解析を行う地震応答解析手段と、
地震発生中に前記地震応答解析の結果を用いて、地震情報と、前記建物の地震による動きを示す動き情報とを算出する地震・動き情報算出手段と、
地震終了後に、前記地震・動き情報算出手段が地震発生中に算出した地震情報と動き情報とを用いて、前記建物の被災度を推定する被災度推定手段とを備えることを特徴とする建物被災推定システム。
A first seismic sensor installed on the foundation ground of the building to be estimated;
Virtual building model deriving means for deriving a virtual building model that formulates the movement of the building due to an earthquake based on the known building information of the building;
An earthquake response analyzing means for inputting ground motion acceleration measured by the first seismic sensor during an earthquake to the virtual building model and performing an earthquake response analysis of the virtual building model;
Using the result of the earthquake response analysis during the occurrence of an earthquake, earthquake / movement information calculating means for calculating earthquake information and movement information indicating movement due to the earthquake of the building;
A building damage characterized by comprising: a damage degree estimating means for estimating the damage degree of the building using the earthquake information and the movement information calculated by the earthquake / motion information calculating means during the occurrence of the earthquake after the end of the earthquake. Estimation system.
請求項1記載の建物被災推定システムにおいて、
さらに、前記建物内の代表ポイントに設置された第2の地震センサと、
地震発生中に前記第2の地震センサで計測された加速度と、地震発生中に前記地震応答解析手段で算出された地震応答解析結果に含まれる、前記代表ポイントの加速度とを照合し、前記第2の地震センサで計測された加速度と算出された加速度との誤差が一定値を超える場合に、この誤差が一定値以内になるように前記仮想建物モデルのパラメータの修正値を算出するパラメータ修正手段と、
このパラメータ修正手段が算出したパラメータの修正値を前記仮想建物モデル導出手段で用いるパラメータとして設定することにより、前記仮想建物モデルを更新する仮想建物モデル更新手段とを備えることを特徴とする建物被災推定システム。
In the building damage estimation system according to claim 1,
A second seismic sensor installed at a representative point in the building;
The acceleration measured by the second seismic sensor during the occurrence of an earthquake is compared with the acceleration of the representative point included in the earthquake response analysis result calculated by the earthquake response analysis means during the occurrence of the earthquake. Parameter correction means for calculating a correction value of the parameter of the virtual building model so that the error is within a certain value when the error between the acceleration measured by the earthquake sensor of 2 and the calculated acceleration exceeds a certain value When,
A building damage estimation comprising: a virtual building model updating unit configured to update the virtual building model by setting a correction value of the parameter calculated by the parameter correcting unit as a parameter used in the virtual building model deriving unit system.
請求項1または2記載の建物被災推定システムにおいて、
前記地震応答解析手段で得られる地震応答解析結果は、前記建物の各階の変位、各階の速度、各階の加速度であり、
前記地震・動き情報算出手段で得られる地震情報は、各階の計測震度、各階の長周期地震動階級であり、
前記地震・動き情報算出手段で得られる動き情報は、各階の最大加速度、各階の最大速度、各階の最大変位、各階間の最大層間変形角であることを特徴とする建物被災推定システム。
In the building damage estimation system according to claim 1 or 2,
The seismic response analysis result obtained by the seismic response analysis means is the displacement of each floor of the building, the speed of each floor, the acceleration of each floor,
The earthquake information obtained by the earthquake / motion information calculating means is the measured seismic intensity of each floor, the long-period earthquake motion class of each floor,
The building damage estimation system characterized in that the motion information obtained by the earthquake / motion information calculating means is a maximum acceleration of each floor, a maximum speed of each floor, a maximum displacement of each floor, and a maximum interlayer deformation angle between the floors.
推定対象の建物の既知の建物情報に基づいて、この建物の地震による動きを数式化した仮想建物モデルを導出する仮想建物モデル導出ステップと、
前記建物の基礎地盤面に設置された第1の地震センサで地震発生中に計測された地動加速度を前記仮想建物モデルに入力して、仮想建物モデルの地震応答解析を行う地震応答解析ステップと、
地震発生中に前記地震応答解析の結果を用いて、地震情報と、前記建物の地震による動きを示す動き情報とを算出する地震・動き情報算出ステップと、
地震終了後に、前記地震・動き情報算出ステップで地震発生中に算出した地震情報と動き情報とを用いて、前記建物の被災度を推定する被災度推定ステップとを含むことを特徴とする建物被災推定方法。
A virtual building model derivation step for deriving a virtual building model obtained by formulating the movement of the building due to the earthquake based on the known building information of the building to be estimated;
An earthquake response analysis step of inputting ground motion acceleration measured during an earthquake by a first earthquake sensor installed on the foundation ground surface of the building to the virtual building model and performing an earthquake response analysis of the virtual building model;
Using the result of the earthquake response analysis during the occurrence of an earthquake, an earthquake / movement information calculation step for calculating earthquake information and movement information indicating movement due to the earthquake of the building;
A building damage characterized by including a damage degree estimation step for estimating the damage degree of the building using the earthquake information and the movement information calculated during the occurrence of the earthquake in the earthquake / motion information calculation step after the end of the earthquake. Estimation method.
請求項4記載の建物被災推定方法において、
さらに、前記建物内の代表ポイントに設置された第2の地震センサで地震発生中に計測された加速度と、地震発生中に前記地震応答解析ステップで算出した地震応答解析結果に含まれる、前記代表ポイントの加速度とを照合し、前記第2の地震センサで計測された加速度と算出した加速度との誤差が一定値を超える場合に、この誤差が一定値以内になるように前記仮想建物モデルのパラメータの修正値を算出するパラメータ修正ステップと、
このパラメータ修正ステップで算出したパラメータの修正値を前記仮想建物モデル導出ステップで用いるパラメータとして設定することにより、前記仮想建物モデルを更新する仮想建物モデル更新ステップとを含むことを特徴とする建物被災推定方法。
In the building damage estimation method according to claim 4,
Further, the representative included in the acceleration measured during the occurrence of the earthquake by the second seismic sensor installed at the representative point in the building and the earthquake response analysis result calculated in the earthquake response analysis step during the occurrence of the earthquake. When the error between the acceleration measured at the second seismic sensor and the calculated acceleration exceeds a certain value by collating with the acceleration at the point, the parameter of the virtual building model is set so that the error is within the certain value. A parameter correction step for calculating a correction value of
A building damage estimation comprising: a virtual building model updating step of updating the virtual building model by setting a correction value of the parameter calculated in the parameter correcting step as a parameter used in the virtual building model deriving step Method.
JP2015075660A 2015-04-02 2015-04-02 Building disaster estimation system and method Active JP6549877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015075660A JP6549877B2 (en) 2015-04-02 2015-04-02 Building disaster estimation system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015075660A JP6549877B2 (en) 2015-04-02 2015-04-02 Building disaster estimation system and method

Publications (2)

Publication Number Publication Date
JP2016197013A true JP2016197013A (en) 2016-11-24
JP6549877B2 JP6549877B2 (en) 2019-07-24

Family

ID=57358400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015075660A Active JP6549877B2 (en) 2015-04-02 2015-04-02 Building disaster estimation system and method

Country Status (1)

Country Link
JP (1) JP6549877B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017194309A (en) * 2016-04-19 2017-10-26 株式会社大林組 Earthquake damage estimation system, structure having earthquake damage estimation system, and earthquake damage estimation program
JP2019015713A (en) * 2017-07-03 2019-01-31 河村電器産業株式会社 Seismoscopic relay
JP2019039861A (en) * 2017-08-28 2019-03-14 アズビル株式会社 Building disaster-affected estimation system and method
CN110134682A (en) * 2019-04-16 2019-08-16 同济大学 Data interactive method and data library device based on earthquake motion database sharing
JP2020046329A (en) * 2018-09-20 2020-03-26 アールシーソリューション株式会社 Long-period ground motion relevant information notification system, long-period ground motion relevant information notification server, portable terminal, and long-period ground motion relevant information notification method
JP2020128951A (en) * 2019-02-12 2020-08-27 国立研究開発法人防災科学技術研究所 Building damage state estimation system and building damage state estimation method
IT202000005938A1 (en) * 2020-03-19 2021-09-19 Franco Ferri System and method for managing the risk deriving from vibrations

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008298704A (en) * 2007-06-04 2008-12-11 Sekisui Chem Co Ltd Damage diagnosis system of building
JP2012168008A (en) * 2011-02-14 2012-09-06 Ohbayashi Corp Earthquake damage determination system, structure with the same and earthquake damage determination program
JP2013200284A (en) * 2012-03-26 2013-10-03 Shimizu Corp Earthquake detection device
JP2014016249A (en) * 2012-07-09 2014-01-30 Ntt Facilities Inc System and method for evaluating earthquake resistance of building
JP2014114145A (en) * 2012-12-12 2014-06-26 Toda Constr Co Ltd Building safety management system
US20140324356A1 (en) * 2013-04-30 2014-10-30 Republic Of Korea (National Disaster Management Institute) Apparatus for evaluating safety of building using earthquake acceleration measurement

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008298704A (en) * 2007-06-04 2008-12-11 Sekisui Chem Co Ltd Damage diagnosis system of building
JP2012168008A (en) * 2011-02-14 2012-09-06 Ohbayashi Corp Earthquake damage determination system, structure with the same and earthquake damage determination program
JP2013200284A (en) * 2012-03-26 2013-10-03 Shimizu Corp Earthquake detection device
JP2014016249A (en) * 2012-07-09 2014-01-30 Ntt Facilities Inc System and method for evaluating earthquake resistance of building
JP2014114145A (en) * 2012-12-12 2014-06-26 Toda Constr Co Ltd Building safety management system
US20140324356A1 (en) * 2013-04-30 2014-10-30 Republic Of Korea (National Disaster Management Institute) Apparatus for evaluating safety of building using earthquake acceleration measurement

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017194309A (en) * 2016-04-19 2017-10-26 株式会社大林組 Earthquake damage estimation system, structure having earthquake damage estimation system, and earthquake damage estimation program
JP2019015713A (en) * 2017-07-03 2019-01-31 河村電器産業株式会社 Seismoscopic relay
JP2019039861A (en) * 2017-08-28 2019-03-14 アズビル株式会社 Building disaster-affected estimation system and method
JP2020046329A (en) * 2018-09-20 2020-03-26 アールシーソリューション株式会社 Long-period ground motion relevant information notification system, long-period ground motion relevant information notification server, portable terminal, and long-period ground motion relevant information notification method
WO2020059321A1 (en) * 2018-09-20 2020-03-26 アールシーソリューション株式会社 System for communicating information relating to long period ground motion, server for communicating information relating to long period ground motion, mobile terminal, and method for communicating information relating to long period ground motion
JP2020128951A (en) * 2019-02-12 2020-08-27 国立研究開発法人防災科学技術研究所 Building damage state estimation system and building damage state estimation method
JP7117737B2 (en) 2019-02-12 2022-08-15 国立研究開発法人防災科学技術研究所 Building Damage Estimation System and Building Damage Estimation Method
CN110134682A (en) * 2019-04-16 2019-08-16 同济大学 Data interactive method and data library device based on earthquake motion database sharing
IT202000005938A1 (en) * 2020-03-19 2021-09-19 Franco Ferri System and method for managing the risk deriving from vibrations

Also Published As

Publication number Publication date
JP6549877B2 (en) 2019-07-24

Similar Documents

Publication Publication Date Title
JP6549877B2 (en) Building disaster estimation system and method
Tubaldi et al. A probabilistic performance-based risk assessment approach for seismic pounding with efficient application to linear systems
KR101935558B1 (en) System and method for earthquake damage prediction and analysis of structures, and a recording medium having computer readable program for executing the method
EP2733103B1 (en) Elevator operation control method and operation control device
JP2016197014A (en) Building damage intensity estimating system, and method
KR102098888B1 (en) System and method for disaster prediction and analysis of structures, and a recording medium having computer readable program for executing the method
JP6768369B2 (en) Building soundness evaluation system and building soundness evaluation method
JP6963275B2 (en) Building damage estimation system and method
JP6409550B2 (en) Part impact level estimation method, damage assessment method, and part impact level estimation device
JP2019060884A (en) Building earthquake resistance evaluation system and building earthquake resistance evaluation method
JP6934434B2 (en) Building evaluation system and building evaluation method
CN103528778A (en) Rapid damage detection method for three-layer-of-base shock isolation system on basis of incomplete measurement
JP5799183B2 (en) Building safety verification system, building safety verification method and program
JP2018100494A (en) Building having earthquake damage evaluation function
JP6642232B2 (en) Earthquake damage estimation system, structure with earthquake damage estimation system, and earthquake damage estimation program
JP6389663B2 (en) Structure verification system, structure verification device, structure verification program
JP6689002B2 (en) Mass / rigidity distribution setting method for building soundness determination and mass / rigidity distribution setting system for building soundness determination
Pierdicca et al. Vibration-based SHM of ordinary buildings: Detection and quantification of structural damage
JP2001208641A (en) Method for analyzing response to earthquake
JP2016017848A (en) Structure verification system, structure verification device, and structure verification program
JP6994760B2 (en) Evaluation method and evaluation system for the remaining useful life of the building
JP6746348B2 (en) Method and device for identifying building stiffness of a building
JP6850615B2 (en) Seismic retrofit design support device, seismic retrofit design method, and program
JP6983648B2 (en) Structure natural period estimation method, structure seismic resistance judgment method, structure natural period estimation system and structure seismic resistance judgment system
JP7343380B2 (en) Building health monitoring system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190628

R150 Certificate of patent or registration of utility model

Ref document number: 6549877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250