JP2016192477A - Multilayer ceramic electronic component - Google Patents
Multilayer ceramic electronic component Download PDFInfo
- Publication number
- JP2016192477A JP2016192477A JP2015071415A JP2015071415A JP2016192477A JP 2016192477 A JP2016192477 A JP 2016192477A JP 2015071415 A JP2015071415 A JP 2015071415A JP 2015071415 A JP2015071415 A JP 2015071415A JP 2016192477 A JP2016192477 A JP 2016192477A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- dielectric
- internal electrode
- multilayer ceramic
- electrode layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Ceramic Capacitors (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Abstract
Description
本発明は、積層セラミック電子部品に関するものである。 The present invention relates to a multilayer ceramic electronic component.
電子部品の一例である積層セラミックコンデンサは、たとえば、所定の誘電体磁器組成物からなるセラミックグリーンシートに、所定パターンの内部電極を印刷し、それらを複数交互に重ね、その後一体化して得られるグリーンチップを焼成して製造される。 A multilayer ceramic capacitor, which is an example of an electronic component, is obtained by, for example, printing a predetermined pattern of internal electrodes on a ceramic green sheet made of a predetermined dielectric ceramic composition, alternately stacking them, and then integrating them. Manufactured by firing chips.
積層セラミックコンデンサの内部電極は焼成によりセラミックの誘電体と一体化されるために、誘電体と反応しないような材料を選択する必要がある。このため、内部電極層を構成する材料として、従来ではPtやPdなどの高価な貴金属を用いることを余儀なくされていた。 Since the internal electrode of the multilayer ceramic capacitor is integrated with the ceramic dielectric by firing, it is necessary to select a material that does not react with the dielectric. For this reason, expensive noble metals such as Pt and Pd have been conventionally used as a material constituting the internal electrode layer.
しかし、近年ではNiやCuなどの安価な卑金属を用いることができる誘電体磁器組成物が開発され、大幅なコストダウンが実現した。特に、耐酸化性と融点が高いNiが主に用いられている。 However, in recent years, dielectric ceramic compositions that can use inexpensive base metals such as Ni and Cu have been developed, and a significant cost reduction has been realized. In particular, Ni having high oxidation resistance and high melting point is mainly used.
また、電子回路の高密度化に伴う電子部品の小型化に対する要求は高く、積層セラミックコンデンサの小型化かつ大容量化が急速に進んでおり、そのために誘電体層および内部電極を薄層化する方法が採用されている。 In addition, there is a high demand for miniaturization of electronic components due to the increase in the density of electronic circuits, and the miniaturization and increase in capacity of multilayer ceramic capacitors are rapidly progressing. For this reason, the dielectric layers and internal electrodes are made thinner. The method is adopted.
Niを用いた内部電極層の薄層化の方法としては、粒径0.1μm〜1.0μmのNi粉末を内部電極層の材料として導電性ペーストに用いることが知られている。 As a method of thinning the internal electrode layer using Ni, it is known that Ni powder having a particle diameter of 0.1 μm to 1.0 μm is used as a material for the internal electrode layer in the conductive paste.
しかし、内部電極層のNi粉末は、焼結開始温度が誘電体層のセラミック粉末の焼結開始温度よりも低いため、収縮挙動の差が生じる。この収縮挙動の差は、大きくなるほど積層体の内部に大きな応力を引き起こし、積層セラミックコンデンサとしてのクラックやデラミネーション等の構造欠陥を生じやすい。さらに、薄層化を目的として微粒のNi粉末を用いた場合には、Ni粉末の焼結開始温度が下がり、内部電極層のNiが球状化することにより膜として不連続となり、積層セラミックコンデンサの取得静電容量の減少を引き起こす。 However, the Ni powder of the internal electrode layer has a difference in shrinkage behavior because the sintering start temperature is lower than the sintering start temperature of the ceramic powder of the dielectric layer. As the difference in the shrinkage behavior increases, a larger stress is caused in the multilayer body, and structural defects such as cracks and delamination as the multilayer ceramic capacitor are likely to occur. Furthermore, when fine Ni powder is used for the purpose of thinning the layer, the sintering start temperature of Ni powder is lowered, and Ni in the internal electrode layer is spheroidized to become discontinuous as a film. Causes a decrease in acquired capacitance.
また、Ni粉末の酸化防止のために不活性雰囲気中や還元雰囲気中で焼成すると、Ni粉末の焼結が開始する温度はより一層低くなり、400℃以下の低温で焼結を開始する場合もある。一方、誘電体層のセラミック粉末の焼結が開始する温度は高く、たとえ不活性雰囲気中や還元雰囲気中で焼成する場合であっても、通常1200℃程度である。そのため、内部電極膜の連続性が低下する。 In addition, when firing in an inert atmosphere or reducing atmosphere to prevent oxidation of Ni powder, the temperature at which Ni powder starts to be sintered becomes even lower, and sometimes sintering starts at a low temperature of 400 ° C. or lower. is there. On the other hand, the temperature at which the ceramic powder of the dielectric layer starts to be sintered is high, and is usually about 1200 ° C. even when firing in an inert atmosphere or a reducing atmosphere. Therefore, the continuity of the internal electrode film is lowered.
上記のような問題に対し、従来、以下のような改善方法が提案されている。 Conventionally, the following improvement methods have been proposed for the above problems.
特許文献1では内部電極膜の連続性を向上するために、内部電極膜のNiと共材の充填率を高くする方法が提案されている。Niの充填率を高くすることで途切れを防止し、内部電極膜の連続性を向上することができる。 Patent Document 1 proposes a method for increasing the filling rate of Ni and the common material of the internal electrode film in order to improve the continuity of the internal electrode film. By increasing the filling rate of Ni, interruption can be prevented and the continuity of the internal electrode film can be improved.
しかしながら、より一層の小型大容量化を求めて誘電体層や内部電極層の薄層化を進めた場合、以下のような問題が発生する。 However, when the dielectric layer and the internal electrode layer are made thinner in order to further reduce the size and capacity, the following problems occur.
内部電極層を薄層化するためにNi粉末と共材を微粒化すると、Ni粉末も共材も焼結開始温度が低下するため、特許文献1に紹介するようなNiと共材の高充填化だけでは内部電極膜の連続性を保つことが困難となる。 When Ni powder and co-material are atomized in order to make the internal electrode layer thinner, the sintering start temperature of both Ni powder and co-material is lowered. Therefore, high filling of Ni and co-material as introduced in Patent Document 1 It is difficult to maintain the continuity of the internal electrode film only by making it easy.
本発明は上記に鑑みてなされたものであって、内部電極層が薄層化された場合でも、内部電極膜の連続性を保つことができる積層セラミック電子部品を提供することを目的とする。 The present invention has been made in view of the above, and an object thereof is to provide a multilayer ceramic electronic component capable of maintaining the continuity of an internal electrode film even when the internal electrode layer is thinned.
上述した課題を解決し、目的を達成するために、本発明の積層セラミック電子部品は、誘電体層及び内部電極層を有し、前記内部電極層は第1金属と第2金属を含み、前記第2金属は、前記第1金属に対して0.5〜4.0体積%の範囲で含み、 前記第2金属の少なくとも一部は前記誘電体層と前記内部電極層との界面に存在している、前記第2金属の前記誘電体層を構成する誘電体に対する濡れ性は、前記第1金属の前記誘電体層を構成する誘電体に対する濡れ性よりも高いことを特徴とする。なお、第2金属は内部電極層の内部に存在していても問題はない。 In order to solve the above-described problems and achieve the object, a multilayer ceramic electronic component of the present invention has a dielectric layer and an internal electrode layer, and the internal electrode layer includes a first metal and a second metal, The second metal is included in the range of 0.5 to 4.0% by volume with respect to the first metal, and at least a part of the second metal is present at the interface between the dielectric layer and the internal electrode layer. The wettability of the second metal to the dielectric constituting the dielectric layer is higher than the wettability of the first metal to the dielectric constituting the dielectric layer. Note that there is no problem even if the second metal is present in the internal electrode layer.
本発明の濡れ性とは以下のように評価した特性である。図5を参照しながら説明する。 The wettability of the present invention is a property evaluated as follows. This will be described with reference to FIG.
まず、各金属のターゲットを準備して、実施例に記載の積層セラミックコンデンサの誘電体層と同組成の誘電体基板上21に室温で金属33を蒸着し、サンプルを作製した。得られたサンプルの蒸着した金属33の状態を走査型トンネル顕微鏡(STM)で観察した。
First, a target for each metal was prepared, and a
金属33の状態は大きく3種類に分けられる。金属33が誘電体基板21との接触面積を増やすように平面で成長する場合、誘電体基板との接触面積をなるべく少なくするように島状に成長する場合、平面と島状の成長が混在している場合である。金属33が誘電体基板21との接触面積を増やすように平面で成長する程、誘電体との濡れ性が良い金属であることを示す。
The state of the
第1金属は酸化物である誘電体との親和性が低いため濡れ性が悪く、焼成工程の熱で金属の表面張力が働いて収縮し、球状化するため、膜として不連続になりやすい。一方、第2金属は誘電体との親和性が高く濡れ性が良いため、誘電体層と内部電極層の界面に存在しやすい。また、第2金属は非酸化状態であるため第1金属との親和性も高い。誘電体層と内部電極層の両方に存在しやすい第2金属を、誘電体層と内部電極層の界面に非酸化状態で存在させることにより、誘電体層との濡れ性が悪い第1金属と誘電体層をつなぐことができ、第1金属が連続性を保つことができる。 Since the first metal has low affinity with the dielectric that is an oxide, the wettability is poor, and the surface tension of the metal acts by the heat of the firing process to shrink and spheroidize, so that the film tends to be discontinuous. On the other hand, since the second metal has a high affinity with the dielectric and good wettability, it is likely to exist at the interface between the dielectric layer and the internal electrode layer. In addition, since the second metal is in a non-oxidized state, the affinity for the first metal is high. By causing the second metal that tends to exist in both the dielectric layer and the internal electrode layer to exist in the non-oxidized state at the interface between the dielectric layer and the internal electrode layer, the first metal having poor wettability with the dielectric layer and The dielectric layers can be connected and the first metal can be kept continuous.
第2金属は、誘電体に対する濡れ性が第1金属よりも高い。さらに第2金属は、誘電体層に含まれる成分である事が好ましい。その理由は、内部電極層に含まれる第2金属と同じ元素が誘電体層にも含まれている方が、第2金属の誘電体層に対する濡れ性が良くなるからである。さらに、第2金属が誘電体層に拡散した場合にも、誘電体特性を不所望に変化させる確率が少なくなる。 The second metal has higher wettability with respect to the dielectric than the first metal. Further, the second metal is preferably a component contained in the dielectric layer. The reason is that the wettability of the second metal to the dielectric layer is improved when the same element as the second metal contained in the internal electrode layer is also contained in the dielectric layer. Furthermore, even when the second metal diffuses into the dielectric layer, the probability of undesirably changing the dielectric characteristics is reduced.
上述した第1金属はNiであり、第2金属はCa、Mg、Ba、Mnであることが好ましい。 The first metal described above is preferably Ni, and the second metal is preferably Ca, Mg, Ba, or Mn.
本発明は、内部電極層が薄層化された場合でも、内部電極膜の連続性を保った積層セラミック電子部品を得ることができるという効果を有する。 The present invention has an effect that it is possible to obtain a multilayer ceramic electronic component that maintains the continuity of the internal electrode film even when the internal electrode layer is thinned.
以下、本発明を適用した積層セラミック電子部品の一例として積層セラミックコンデンサについて、図面を参照しながら説明する。 Hereinafter, a multilayer ceramic capacitor as an example of a multilayer ceramic electronic component to which the present invention is applied will be described with reference to the drawings.
本発明の一実施形態に係る積層セラミックコンデンサ1は、複数の誘電体層2と内部電極層3とを有する素子本体を有する。電極層3は、素子本体の対向する両端面に各電極端面が交互に露出するように積層されており、素子本体の両端面に配置された一対の外部電極4と各々導通するように形成される。素子本体においては、誘電体層2及び内部電極層3の積層方向の両最外層に外装誘電体層5が配置されている。
A multilayer ceramic capacitor 1 according to an embodiment of the present invention has an element body having a plurality of
まず、焼成後に誘電体層2を構成する内装グリーンシート11、および外装誘電体層5を構成する外装グリーンシート12を準備する。原料セラミック粉末をボールミルを用いて有機ビヒクル、分散剤とともに混合、解砕して塗料を作製する。作製した塗料をドクターブレードでPET上に塗布、乾燥して内装グリーンシート11および外装グリーンシート12を得た。
First, an interior
次に、焼成後に内部電極膜を形成する導電性ペーストを準備した。第1金属のNi粉末100重量部に対して、5〜30重量部の共材と、10〜100重量部の有機ビヒクルと、第2金属のMnレジネートを金属成分がNi粉末に対して0.5〜4.0体積%とを加えた。Ni粉末、共材、有機ビヒクル、第2金属を三本ロールミルで混合、分散して導電性ペーストを作製した。 Next, a conductive paste for forming an internal electrode film after firing was prepared. 5 to 30 parts by weight of a co-material, 10 to 100 parts by weight of an organic vehicle, and a second metal of Mn resinate with respect to 100 parts by weight of the first metal Ni powder, the metal component of the Ni powder is 0. 5-4.0% by volume was added. Ni powder, common material, organic vehicle, and second metal were mixed and dispersed by a three-roll mill to produce a conductive paste.
次に、内装グリーンシート上に、焼成後に電極層3を構成する成分を含む導電性ペーストをスクリーン印刷等によって形成する。
Next, a conductive paste containing components constituting the
導電性ペーストを印刷した内装グリーンシートを複数積層するとともに、その積層方向両側に外装グリーンシート12を単層または複層で積層して、所定の寸法に切断し、積層体14を形成する。
A plurality of interior green sheets printed with a conductive paste are stacked, and exterior
前記積層体を所定の条件で脱バインダ、焼成し、焼結体の端面をサンドブラストにて研磨した後、焼結体の両端面に外部電極を形成することにより積層セラミックコンデンサ1を得た。 The laminated body was debindered and fired under predetermined conditions, the end face of the sintered body was polished by sand blasting, and then external electrodes were formed on both end faces of the sintered body to obtain a laminated ceramic capacitor 1.
素子を形成する誘電体層2、外装誘電体層5および内部電極層3に含まれる共材は、誘電体磁器組成物で構成される。誘電体磁器組成物としては、組成式ABO3(式中、AサイトはSr、CaおよびBaから選ばれる少なくとも1つの元素で構成される。BサイトはTiおよびZrから選ばれる少なくとも1つの元素で構成される。)で表され、ペロブスカイト型結晶構造を有する複合酸化物を主成分として含有することが好ましい。前記誘電体酸化物の中でも、AサイトをBaで主として構成し、BサイトをTiで主として構成し、チタン酸バリウムとすることが好ましい。
The common material contained in the
誘電体磁器組成物中には、主成分のほか、各種副成分が含まれていてもよい。副成分としては、Sr、Zr、Y、Gd、Tb、Dy、V、Mo、Zn、Cd、Ti、Sn、W、Ba、Ca、Mn、Mg、Cr、SiおよびPの酸化物から選ばれるすくなくとも1つが例示される。副成分を添加することにより、主成分の誘電特性を劣化させることなく低温焼成が可能となる。また、誘電体層2を薄層化した場合の信頼性不良が低減し、長寿命化が可能となる。内部電極層の連続性改善の観点からは、Ca、Mg、Ba、Mnが好ましい。内部電極層に含まれる第2金属と同じ元素が誘電体層にも含まれている方が、第2金属の誘電体層に対する濡れ性が良くなるからである。
The dielectric ceramic composition may include various subcomponents in addition to the main component. Subcomponents are selected from oxides of Sr, Zr, Y, Gd, Tb, Dy, V, Mo, Zn, Cd, Ti, Sn, W, Ba, Ca, Mn, Mg, Cr, Si and P. At least one is illustrated. By adding the subcomponent, low temperature firing is possible without deteriorating the dielectric properties of the main component. Further, the reliability failure when the
内装部15を構成する誘電体層2の積層数や厚み等の諸条件は、用途に応じて適宜決定すればよい。積層セラミックコンデンサの小型化、大容量化を図る観点からは0.5μm〜1.0μm以下であり、積層数は150層以上とすることが好ましい。外装誘電体層5の厚みも、用途に応じて適宜決定すればよく、例えば20μm〜数百μm程度である。
Various conditions such as the number and thickness of the
内部電極層3を形成するのに使用する導電性ペーストは、第1金属と、第1金属よりも誘電体と濡れ性が良い第2金属と、素子を形成する誘電体層2および外装誘電体層5と同組成の共材と、有機ビヒクルで構成される。
The conductive paste used to form the
前記導電性ペーストにおいて、第1金属はNiであり、第2金属はCa、Mg、Ba、Mnであることが好ましい。 In the conductive paste, the first metal is preferably Ni, and the second metal is preferably Ca, Mg, Ba, or Mn.
第2金属は、金属レジネートとして添加するか第1の金属と合金化させることが好ましい。第2の金属として好ましいCa、Mg、Ba、Mnは、単体の金属状態で添加すると空気中で容易に酸化されるためである。 The second metal is preferably added as a metal resinate or alloyed with the first metal. This is because Ca, Mg, Ba, and Mn preferable as the second metal are easily oxidized in the air when added in a single metal state.
誘電体層と内部電極層の界面に存在する第2金属は金属状態の単体であることが好ましい。第1金属との合金として存在してもよいが、誘電体層との濡れ性が単体の場合に比べて低下し、界面の存在量が減少する可能性があると考えられる。 The second metal present at the interface between the dielectric layer and the internal electrode layer is preferably a single metal state. Although it may exist as an alloy with the first metal, it is considered that the wettability with the dielectric layer is lower than in the case of a single substance, and the amount of the interface may be reduced.
内部電極層中の第2金属の存在量は0.5〜4.0体積%であることが好ましい。第2金属の存在量が0.5体積%より少ない場合、被覆率が改善しない。その理由は量が少ないため、第1金属と誘電体層をつなぐ効果を発揮できないからである。第2金属の存在量が4.0体積%より多い場合、製品特性が不所望に変化する。その理由は酸化されやすい第2金属を非酸化状態に保つために強還元雰囲気で焼成すると、誘電体層が還元されるためである。 The amount of the second metal present in the internal electrode layer is preferably 0.5 to 4.0% by volume. When the amount of the second metal is less than 0.5% by volume, the coverage is not improved. The reason is that the amount is small and the effect of connecting the first metal and the dielectric layer cannot be exhibited. If the amount of the second metal is more than 4.0% by volume, the product characteristics change undesirably. This is because the dielectric layer is reduced when fired in a strong reducing atmosphere in order to keep the second metal that is easily oxidized in a non-oxidized state.
有機ビヒクルとは、バインダを有機溶剤中に溶解したものである。有機ビヒクルに用いるバインダは特に限定されず、エチルセルロース、ポリビニルブチラール等の通常の各種バインダから適宜選択すればよい。また、有機ビヒクルに用いる有機溶剤も特に限定されず、テルピネオール、ブチルカルビトール、アセトン、トルエン等の各種有機溶剤から適宜選択すればよい。 An organic vehicle is obtained by dissolving a binder in an organic solvent. The binder used for the organic vehicle is not particularly limited, and may be appropriately selected from usual various binders such as ethyl cellulose and polyvinyl butyral. Moreover, the organic solvent used for the organic vehicle is not particularly limited, and may be appropriately selected from various organic solvents such as terpineol, butyl carbitol, acetone, and toluene.
内部電極層3の厚みは、用途に応じて適宜決定すればよく、例えば0.3〜1.0μm程度であり、積層セラミックコンデンサの小型化、大容量化を図る観点から0.3μm〜0.8μmであることが好ましい。
The thickness of the
脱バインダ、焼成の条件はエリンガム図等を参考に第2金属が酸化しないN2−H2−H2Oを混合した雰囲気において、脱バインダ、焼成を行った。第2金属が酸化されると、第1金属の誘電体に対する濡れ性の改善効果を発揮できなかったり、積層セラミックコンデンサの特性を不所望に変化させたりするためである。Niが焼結する際に共材と一緒に誘電体層側に拡散し、内部電極層と誘電体層の界面に存在できないからである。 The binder removal and firing conditions were performed in a mixed atmosphere of N 2 —H 2 —H 2 O that does not oxidize the second metal with reference to the Ellingham diagram and the like. This is because when the second metal is oxidized, the effect of improving the wettability of the first metal to the dielectric cannot be exhibited, or the characteristics of the multilayer ceramic capacitor are undesirably changed. This is because when Ni is sintered, it diffuses together with the co-material to the dielectric layer side and cannot exist at the interface between the internal electrode layer and the dielectric layer.
本発明の内容を実施例と比較例を用いてさらに詳細に説明する。ただし、本発明は以下の実施例に限定されるものではない。 The contents of the present invention will be described in further detail using examples and comparative examples. However, the present invention is not limited to the following examples.
(実施例1)
まず、内装グリーンシート11および外装グリーンシート12を準備した。原料セラミック粉末をボールミルを用いて有機ビヒクル、分散剤とともに混合、解砕して塗料を作製した。作製した塗料をドクターブレードでPET上に塗布、乾燥して内装グリーンシート11および外装グリーンシート12を得た。
Example 1
First, an interior
次に、焼成後に内部電極膜を形成する導電性ペーストを準備した。第1金属のNi粉末100重量部に対して、15重量部の共材と、60重量部の有機ビヒクルと、第2金属のMnレジネートを16重量部加えた。Mnレジネートは金属成分がNi粉末に対して2.0体積%である。Ni粉末、共材、有機ビヒクル、第2金属を三本ロールミルで混合、分散して導電性ペーストを作製した。 Next, a conductive paste for forming an internal electrode film after firing was prepared. 16 parts by weight of 15 parts by weight of co-material, 60 parts by weight of organic vehicle, and second metal of Mn resinate were added to 100 parts by weight of Ni powder of the first metal. Mn resinate has a metal component of 2.0% by volume with respect to Ni powder. Ni powder, common material, organic vehicle, and second metal were mixed and dispersed by a three-roll mill to produce a conductive paste.
前記内装グリーンシート上に、スクリーン印刷で前記導電性ペーストを印刷した13。印刷量は焼成後の被覆率が90%の時に厚みが0.50μmになるように、第1金属と第2金属の合計量で調整した。前記外装グリーンシートを20層、内部電極層に挟まれた誘電体層が200層になるように積層、0.75mm×0.38mmに切断し、積層体14を得た。
The conductive paste was printed on the interior green sheet by
前記積層体を第2の金属であるMnが酸化しないようにN2−H2−H2Oを混合した雰囲気において、650℃で脱バインダ、1230℃で焼成を行った。得られた0.60mm×0.30mmの焼結体端面をサンドブラストにて研磨した後、焼結体の両端面に外部電極を形成し、積層セラミックコンデンサ1を得た。 The laminate was baked at 650 ° C. with a binder removed and 1230 ° C. in an atmosphere in which N 2 —H 2 —H 2 O was mixed so that Mn as the second metal was not oxidized. After polishing the end face of the obtained 0.60 mm × 0.30 mm sintered body by sand blasting, external electrodes were formed on both end faces of the sintered body to obtain a multilayer ceramic capacitor 1.
(実施例2〜4)
実施例2〜4では、第2の金属を表1に示すように変化させ、その他は実施例1と同様にして積層セラミックコンデンサを作製した。
(Examples 2 to 4)
In Examples 2 to 4, multilayer ceramic capacitors were produced in the same manner as in Example 1 except that the second metal was changed as shown in Table 1.
(実施例5)
実施例5では、第2の金属の添加形態を表1に示すように変え、その他は実施例1と同様にして積層セラミックコンデンサを作製した。
(Example 5)
In Example 5, a multilayer ceramic capacitor was fabricated in the same manner as in Example 1 except that the addition form of the second metal was changed as shown in Table 1.
(実施例6、7)
実施例6、7では、第2の金属の添加量を表1に示すように変え、その他は実施例1と同様にして積層セラミックコンデンサを作製した。
(Examples 6 and 7)
In Examples 6 and 7, the addition amount of the second metal was changed as shown in Table 1, and the others were made in the same manner as in Example 1 to produce a multilayer ceramic capacitor.
(比較例1)
比較例1では、第2の金属を添加せず、その他は実施例1と同様にして積層セラミックコンデンサを作製した。
(Comparative Example 1)
In Comparative Example 1, a multilayer ceramic capacitor was produced in the same manner as in Example 1 except that the second metal was not added.
(比較例2、3)
比較例2、3では第2の金属を表1に示すように変え、その他は実施例1と同様にして積層セラミックコンデンサを作製した。
(Comparative Examples 2 and 3)
In Comparative Examples 2 and 3, the second metal was changed as shown in Table 1, and the others were the same as in Example 1 to produce a multilayer ceramic capacitor.
(比較例4)
比較例4では積層体の脱バインダ雰囲気を表1に示すように変え、その他は実施例1と同様にして積層セラミックコンデンサを作製した。
(Comparative Example 4)
In Comparative Example 4, a multilayer ceramic capacitor was manufactured in the same manner as in Example 1 except that the binder removal atmosphere of the multilayer body was changed as shown in Table 1.
(比較例5)
比較例5では積層体の焼成雰囲気を表1に示すように変え、その他は実施例1と同様にして積層セラミックコンデンサを作製した。
(Comparative Example 5)
In Comparative Example 5, a multilayer ceramic capacitor was fabricated in the same manner as in Example 1 except that the firing atmosphere of the multilayer body was changed as shown in Table 1.
比較例6、7では第2金属の添加量を表1に示すように変え、その他は実施例1と同様にして積層セラミックコンデンサを作製した。 In Comparative Examples 6 and 7, the addition amount of the second metal was changed as shown in Table 1, and the others were made in the same manner as in Example 1 to produce a multilayer ceramic capacitor.
(濡れ性の評価)
各金属種の誘電体に対する濡れ性の評価は、誘電体基板21上で金属33が成長する方向で判断した。まず、各金属の蒸着源と、実施例に記載の積層セラミックコンデンサの誘電体層と同組成の誘電体基板とを準備した。真空蒸着装置を用いて3.0×10−5Torr以下の真空中で、金属をその膜厚が1〜20nmになるように誘電体基板上に蒸着し、サンプルを作製した。得られたサンプルの蒸着した金属の状態を走査型トンネル顕微鏡(STM)で、50nm×50nmの範囲で観察した。
(Evaluation of wettability)
The evaluation of the wettability of each metal type with respect to the dielectric was determined in the direction in which the
金属33が誘電体基板21との接触面積を増やすように平面で成長する場合を「○」、誘電体基板との接触面積をなるべく少なくするように島状に成長する場合を「×」とした。平面と島状の成長が混在している場合を「△」とした。「○」が誘電体との濡れ性が良い金属である。
The case where the
(内部電極膜の連続性評価)
内部電極膜の連続性を被覆率で評価した。作製した積層セラミックコンデンサを樹脂埋めし、中央部まで研磨して積層方向に対して垂直な面を露出させ、走査型電子顕微鏡(SEM)で観察して得られた画像をもとに、電極層が完全に連続していた場合の長さに対する実際に連続している部分の合計の長さの割合を計算して被覆率とした。
(Continuity evaluation of internal electrode film)
The continuity of the internal electrode film was evaluated by the coverage. The produced multilayer ceramic capacitor is filled with resin, polished to the center to expose the surface perpendicular to the lamination direction, and an electrode layer based on an image obtained by observation with a scanning electron microscope (SEM) The ratio of the total length of the actually continuous portion to the length when the was completely continuous was calculated as the coverage.
(第2金属の分布)
作製した積層セラミックコンデンサを樹脂埋めして、中央部まで研磨して積層方向に対して垂直な面を露出させ、研磨面を電子線マイクロアナライザ(EPMA)で観察し、第2の金属が誘電体層と電極層の界面、電極層内部に存在しているかを調べた。存在している場合を「○」、存在していない場合を「×」とした。分布量はEPMAのマッピング画像をもとに、第1金属31の面積に対する第2金属32の面積の割合を計算し、体積%で表した。
(Distribution of second metal)
The produced multilayer ceramic capacitor is filled with resin, polished to the center to expose the surface perpendicular to the lamination direction, and the polished surface is observed with an electron beam microanalyzer (EPMA). The second metal is a dielectric. The presence of the interface between the electrode layer and the electrode layer and the inside of the electrode layer were examined. The case where it existed was indicated as “◯”, and the case where it did not exist was indicated as “x”. Based on the mapping image of EPMA, the distribution amount was calculated by calculating the ratio of the area of the
(取得容量)
作製した積層セラミックコンデンサの取得容量を測定した。表1の取得容量は内部電極の被覆率が100%である場合の容量に対する各サンプルの容量測定結果の割合を、百分率で表したものである。
(Acquisition capacity)
The obtained capacity of the produced multilayer ceramic capacitor was measured. The acquired capacity in Table 1 is a percentage of the capacity measurement result of each sample with respect to the capacity when the coverage of the internal electrode is 100%.
実施例1〜7と比較例1〜7を比べると、実施例1〜7の場合において、内部電極の被覆率が90%以上となり、内部電極膜の連続性が高い積層セラミックコンデンサが得られた。実施例1〜7の場合、被覆率が90%以上となることで、比較例1〜7に比べて内部電極層が薄層化した。金属量が同じであるため、被覆率が高い方が内部電極層が薄層化したと考えられる。 When Examples 1-7 were compared with Comparative Examples 1-7, in the case of Examples 1-7, the coverage of the internal electrode was 90% or more, and a multilayer ceramic capacitor having high continuity of the internal electrode film was obtained. . In the case of Examples 1-7, the internal electrode layer was thinned compared with Comparative Examples 1-7 because the coverage was 90% or more. Since the amount of metal is the same, it is considered that the higher the coverage, the thinner the internal electrode layer.
内部電極層中の第2金属の分布状況を分析したところ、実施例1〜7と比較例2、3については内部電極層と誘電体層の界面、および内部電極層中に金属の状態で存在していた。比較例4、5は内部電極層中には存在しておらず、内部電極層と誘電体層の界面に酸化物として存在していたが添加量よりも少なくなっていることから、誘電体層に拡散した可能性が高いと考えられる。 When the distribution state of the second metal in the internal electrode layer was analyzed, Examples 1 to 7 and Comparative Examples 2 and 3 existed in the metal state in the interface between the internal electrode layer and the dielectric layer and in the internal electrode layer. Was. Since Comparative Examples 4 and 5 were not present in the internal electrode layer and were present as oxides at the interface between the internal electrode layer and the dielectric layer, the amount of the dielectric layer was smaller than the amount added. It is highly probable that it has spread.
比較例7は特性評価ができなかった。内部電極層中で第2金属の占める割合が多くなり、導電性が確保できなかったためと考えられる。 Comparative Example 7 could not be characterized. This is probably because the proportion of the second metal in the internal electrode layer increased and the conductivity could not be secured.
以上のように、本発明に係る積層セラミック電子部品は内部電極層が薄くなった場合でも内部電極膜の連続性が高い構造を得るのに有用である。 As described above, the multilayer ceramic electronic component according to the present invention is useful for obtaining a structure having high continuity of the internal electrode film even when the internal electrode layer becomes thin.
1 積層セラミックコンデンサ
2 誘電体層
3 内部電極層
4 外部電極
5 外装誘電体層
11 内装グリーンシート
12 外装グリーンシート
13 電極前駆体層
14 積層体
15 内装部
16 外装部
21 誘電体基板
31 第1の金属
32 第2の金属
33 金属
DESCRIPTION OF SYMBOLS 1 Multilayer
Claims (2)
前記内部電極層は第1金属と第2金属を含み、
前記第2金属は、前記第1金属に対して0.5〜4.0体積%の範囲で含み、
前記第2金属の少なくとも一部は前記誘電体層と前記内部電極層との界面に存在している、
前記第2金属の前記誘電体層を構成する誘電体に対する濡れ性は、
前記第1金属の前記誘電体層を構成する誘電体に対する濡れ性よりも高い
ことを特徴とする請求項1に記載の積層セラミック電子部品。 Having a dielectric layer and an internal electrode layer;
The internal electrode layer includes a first metal and a second metal,
The second metal is included in a range of 0.5 to 4.0% by volume with respect to the first metal,
At least a portion of the second metal is present at the interface between the dielectric layer and the internal electrode layer;
The wettability of the second metal with respect to the dielectric constituting the dielectric layer is as follows:
The multilayer ceramic electronic component according to claim 1, wherein the first metal has higher wettability with respect to a dielectric constituting the dielectric layer.
3. The multilayer ceramic electronic component according to claim 1, wherein the first metal is Ni, and the second metal is selected from at least one of Ca, Mg, Ba, and Mn.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015071415A JP2016192477A (en) | 2015-03-31 | 2015-03-31 | Multilayer ceramic electronic component |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015071415A JP2016192477A (en) | 2015-03-31 | 2015-03-31 | Multilayer ceramic electronic component |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016192477A true JP2016192477A (en) | 2016-11-10 |
Family
ID=57245821
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015071415A Pending JP2016192477A (en) | 2015-03-31 | 2015-03-31 | Multilayer ceramic electronic component |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2016192477A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11721491B2 (en) | 2020-12-24 | 2023-08-08 | Samsung Electro-Mechanics Co., Ltd. | Multilayer electronic component |
US11967463B2 (en) | 2021-06-23 | 2024-04-23 | Taiyo Yuden Co., Ltd. | Ceramic electronic device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1145617A (en) * | 1997-07-28 | 1999-02-16 | Kyocera Corp | Conductive paste and multilayer ceramic capacitor |
JP2001060527A (en) * | 1999-08-19 | 2001-03-06 | Murata Mfg Co Ltd | Laminated ceramic electronic component and manufacture thereof |
JP2006066835A (en) * | 2004-08-30 | 2006-03-09 | Tdk Corp | Ceramic electronic component and its manufacturing method |
JP2009032837A (en) * | 2007-07-26 | 2009-02-12 | Taiyo Yuden Co Ltd | Laminated ceramic capacitor and its manufacturing method |
JP2014038820A (en) * | 2012-08-20 | 2014-02-27 | Samsung Electro-Mechanics Co Ltd | Conductive paste composition for internal electrode and multilayered ceramic electronic component containing the same |
JP2014123698A (en) * | 2012-12-21 | 2014-07-03 | Samsung Electro-Mechanics Co Ltd | Multilayer ceramic electronic component |
-
2015
- 2015-03-31 JP JP2015071415A patent/JP2016192477A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1145617A (en) * | 1997-07-28 | 1999-02-16 | Kyocera Corp | Conductive paste and multilayer ceramic capacitor |
JP2001060527A (en) * | 1999-08-19 | 2001-03-06 | Murata Mfg Co Ltd | Laminated ceramic electronic component and manufacture thereof |
JP2006066835A (en) * | 2004-08-30 | 2006-03-09 | Tdk Corp | Ceramic electronic component and its manufacturing method |
JP2009032837A (en) * | 2007-07-26 | 2009-02-12 | Taiyo Yuden Co Ltd | Laminated ceramic capacitor and its manufacturing method |
JP2014038820A (en) * | 2012-08-20 | 2014-02-27 | Samsung Electro-Mechanics Co Ltd | Conductive paste composition for internal electrode and multilayered ceramic electronic component containing the same |
JP2014123698A (en) * | 2012-12-21 | 2014-07-03 | Samsung Electro-Mechanics Co Ltd | Multilayer ceramic electronic component |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11721491B2 (en) | 2020-12-24 | 2023-08-08 | Samsung Electro-Mechanics Co., Ltd. | Multilayer electronic component |
US11967463B2 (en) | 2021-06-23 | 2024-04-23 | Taiyo Yuden Co., Ltd. | Ceramic electronic device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5046700B2 (en) | Dielectric porcelain and multilayer ceramic capacitor | |
JP4782598B2 (en) | Multilayer ceramic capacitor | |
KR101577395B1 (en) | Multilayer ceramic electronic component and method for manufacturing same | |
JP5825322B2 (en) | Multilayer ceramic capacitor, method for manufacturing the same, and mounting substrate for multilayer ceramic capacitor | |
US20130063862A1 (en) | Multilayer ceramic electronic component and fabrication method thereof | |
US9202625B2 (en) | Laminated ceramic electronic component and method of fabricating the same | |
JP3785966B2 (en) | Manufacturing method of multilayer ceramic electronic component and multilayer ceramic electronic component | |
JP2020155523A (en) | Multilayer ceramic capacitor | |
US20130148261A1 (en) | Conductive paste for external electrode, multilayer ceramic electronic component using the same, and method of manufacturing the same | |
US11062847B2 (en) | Capacitor component and method for manufacturing the same | |
JP2012169620A (en) | Multilayer ceramic electronic component and method for manufacturing the same | |
JP2014011449A (en) | Multilayer ceramic electronic component | |
JP2005294317A (en) | Multilayer ceramic capacitor | |
JP5870625B2 (en) | Electrode sintered body, laminated electronic component, internal electrode paste, method for producing electrode sintered body, method for producing laminated electronic component | |
KR102583482B1 (en) | Multilayer Type Electronic Component and Method for Manufacturing Multilayer Type Electronic Component | |
JP2016192477A (en) | Multilayer ceramic electronic component | |
JP4826881B2 (en) | Conductive paste, multilayer ceramic electronic component manufacturing method, and multilayer ceramic electronic component | |
JP7209072B2 (en) | Multilayer ceramic capacitor | |
JP2004111698A (en) | Laminated ceramic electronic component | |
JP2003115416A (en) | Conductive paste, method of manufacturing laminated ceramic electronic component, and laminated ceramic electronic component | |
JP4905569B2 (en) | Conductive paste, multilayer ceramic electronic component and manufacturing method thereof | |
JP3759386B2 (en) | Multilayer ceramic capacitor and internal electrode paste used therefor | |
JP2003317542A (en) | Conductive paste and multilayer ceramic electronic component | |
JP2021153089A (en) | Multilayer ceramic electronic component | |
JP4529358B2 (en) | Ceramic green sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171129 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180824 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180828 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20190319 |