JP2016192341A - Titanium-based material for sodium ion secondary battery, manufacturing method thereof, electrode active material using titanium-based material, electrode active material layer, electrode, and sodium ion secondary battery - Google Patents

Titanium-based material for sodium ion secondary battery, manufacturing method thereof, electrode active material using titanium-based material, electrode active material layer, electrode, and sodium ion secondary battery Download PDF

Info

Publication number
JP2016192341A
JP2016192341A JP2015072260A JP2015072260A JP2016192341A JP 2016192341 A JP2016192341 A JP 2016192341A JP 2015072260 A JP2015072260 A JP 2015072260A JP 2015072260 A JP2015072260 A JP 2015072260A JP 2016192341 A JP2016192341 A JP 2016192341A
Authority
JP
Japan
Prior art keywords
titanium
ion secondary
atom
sodium ion
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015072260A
Other languages
Japanese (ja)
Other versions
JP6656816B2 (en
Inventor
阪本 浩規
Hiroki Sakamoto
浩規 阪本
森田 和樹
Kazuki Morita
和樹 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2015072260A priority Critical patent/JP6656816B2/en
Publication of JP2016192341A publication Critical patent/JP2016192341A/en
Application granted granted Critical
Publication of JP6656816B2 publication Critical patent/JP6656816B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a material which is easily combined, does not contain a rare metal and is available for a sodium ion secondary battery.SOLUTION: The material for a sodium ion secondary battery contains at least first group atoms of a periodic table, Ti atoms and O atoms, a ratio of the first group atoms of a periodic table with respect to the Ti atoms (periodic table first group atoms/Ti atoms) is 0.01 to 0.5 (molar ratio) and a ratio of the O atoms with respect to the Ti atoms (O atoms/Ti atoms) is 2.005 to 2.25.SELECTED DRAWING: None

Description

本発明は、ナトリウムイオン二次電池用チタン系材料及びその製造方法、並びに該チタン系材料を用いた電極活物質、電極活物質層、電極及びナトリウムイオン二次電池に関する。   The present invention relates to a titanium-based material for a sodium ion secondary battery, a method for producing the same, and an electrode active material, an electrode active material layer, an electrode, and a sodium ion secondary battery using the titanium-based material.

ナトリウムイオン二次電池はレアメタルを使用しない次世代二次電池として注目されている(非特許文献1)。しかし、ナトリウムはリチウムに対してイオン体積が大きいため、リチウムイオン二次電池用負極材として最も頻繁に使用されている黒鉛ではナトリウムイオンを吸蔵することができない。依って、従来、ナトリウムイオン二次電池の負極材の候補材料としては、主にハードカーボンが挙げられていた。しかしながら、このようなハードカーボンを負極材として用いた二次電池では、容量及びサイクル特性を十分に両立できていない。   Sodium ion secondary batteries are attracting attention as next-generation secondary batteries that do not use rare metals (Non-Patent Document 1). However, since sodium has a larger ion volume than lithium, graphite most frequently used as a negative electrode material for lithium ion secondary batteries cannot occlude sodium ions. Therefore, conventionally, hard carbon has been mainly cited as a candidate material for a negative electrode material of a sodium ion secondary battery. However, in a secondary battery using such hard carbon as a negative electrode material, capacity and cycle characteristics cannot be sufficiently achieved.

このような背景から、レアメタルを含まず、かつ容量及びサイクル特性に優れた負極材料の開発が望まれている。   From such a background, development of a negative electrode material that does not contain a rare metal and has excellent capacity and cycle characteristics is desired.

S. Komaba, W. Murata, T. Ishikawa, N. Yabuuchi, T.Ozeki, T. Nakayama, A. Ogata, K. Gotoh and K.Fujiwara, Adv. Funct. Mater., 21 (20), 3859 (2011).S. Komaba, W. Murata, T. Ishikawa, N. Yabuuchi, T. Ozeki, T. Nakayama, A. Ogata, K. Gotoh and K. Fujiwara, Adv. Funct. Mater., 21 (20), 3859 ( 2011).

本発明は、合成が容易で、レアメタルを含まず、ナトリウムイオン二次電池に使用できる材料を提供することを目的とする。   An object of the present invention is to provide a material that is easy to synthesize, does not contain a rare metal, and can be used for a sodium ion secondary battery.

上記目的に鑑み、鋭意検討した結果、特定濃度のアルカリ水溶液中に、Ti原子を有する物質を添加し、60〜450℃に加熱し、必要に応じてアルカリを水素原子に置換し、加熱することで、特定のチタン系構造体が得られ、このチタン系構造体を採用することで、上記課題を解決することができることを見出した。本発明者等は、その後さらに研究を重ね、本発明を完成させるに至った。   As a result of intensive investigations in view of the above-mentioned object, a substance having Ti atoms is added to an aqueous alkali solution having a specific concentration, heated to 60 to 450 ° C., and alkali is replaced with hydrogen atoms as necessary, followed by heating. Thus, the inventors have found that a specific titanium-based structure is obtained, and that the above-described problem can be solved by employing this titanium-based structure. The inventors of the present invention conducted further research and completed the present invention.

即ち、本発明は以下の構成を包含する。   That is, this invention includes the following structures.

項1.少なくとも周期表第1族原子、Ti原子及びO原子を含み、前記周期表第1族原子のTi原子に対する比(周期表第1族原子/Ti原子)が0.01〜0.5(モル比)であり、前記O原子のTi原子に対する比(O原子/Ti原子)が2.005〜2.25である、ナトリウムイオン二次電池用材料。   Item 1. It contains at least periodic group 1 atom, Ti atom and O atom, and the ratio of periodic group 1 atom to Ti atom (periodic group 1 atom / Ti atom) is 0.01 to 0.5 (molar ratio). And the ratio of O atoms to Ti atoms (O atoms / Ti atoms) is 2.005 to 2.25.

項2.平均最小サイズが1〜100nmであり、且つ、比表面積が10m/g以上である、前記項1に記載のナトリウムイオン二次電池用材料。 Item 2. Item 2. The material for a sodium ion secondary battery according to Item 1, wherein the average minimum size is 1 to 100 nm and the specific surface area is 10 m 2 / g or more.

項3.周期表第1族原子における、H原子、Li原子、Na原子、K原子の比率が99モル%以上である、前記項1又は2に記載のナトリウムイオン二次電池用材料。   Item 3. Item 3. The material for a sodium ion secondary battery according to Item 1 or 2, wherein the ratio of H atom, Li atom, Na atom, K atom in Group 1 atoms of the periodic table is 99 mol% or more.

項4.周期表第1族原子における、H原子の比率が、50モル%以上である前記項1〜3のいずれかに記載のナトリウムイオン二次電池用材料。   Item 4. Item 4. The material for a sodium ion secondary battery according to any one of Items 1 to 3, wherein a ratio of H atoms in Group 1 atoms of the periodic table is 50 mol% or more.

項5.含有するNaとKの合計が5重量%以下である、前記項1〜4のいずれかに記載のナトリウムイオン二次電池用材料。   Item 5. Item 5. The material for a sodium ion secondary battery according to any one of Items 1 to 4, wherein the total of Na and K contained is 5% by weight or less.

項6.形状が幅100nm以下の中実のファイバー状、ロッド状、ベルト状、中空のファイバー状、チューブ状、もしくは厚み10nm以下のシート状物質もしくはそのシート状物質が巻いたロール状である、前記項1〜5のいずれかに記載のナトリウムイオン二次電池用材料。   Item 6. Item 1 is a solid fiber shape, rod shape, belt shape, hollow fiber shape, tube shape, a sheet-like substance having a thickness of 10 nm or less, or a roll around which the sheet-like substance is wound. The material for sodium ion secondary batteries in any one of -5.

項7.前記項1〜6のいずれかに記載のナトリウムイオン二次電池用材料の製造方法であって、
(1)2〜20mol/Lのアルカリ水溶液中で、少なくともチタンを含む材料を、160〜450℃で1時間以上アルカリ処理する工程
を備える、製造方法。
Item 7. The method for producing a sodium ion secondary battery material according to any one of Items 1 to 6,
(1) A production method comprising a step of alkali-treating a material containing at least titanium at 160 to 450 ° C. for 1 hour or more in an alkaline aqueous solution of 2 to 20 mol / L.

項8.前記少なくともチタンを含む材料が、金属チタン、酸化チタン、水酸化チタン、チタンアルコキシド、三塩化チタン、四塩化チタン、硫酸チタン、硫酸チタニル、及び硝酸チタンである、前記項7に記載の製造方法。   Item 8. Item 8. The method according to Item 7, wherein the material containing at least titanium is metal titanium, titanium oxide, titanium hydroxide, titanium alkoxide, titanium trichloride, titanium tetrachloride, titanium sulfate, titanyl sulfate, and titanium nitrate.

項9.前記少なくともチタンを含む材料が、酸化チタン、水酸化チタン、チタンテトラメトキシド、チタンテトラエトキシド、チタンテトラn−プロポキシド、チタンテトライソプロポキシド、チタンテトラn−ブトキシド、チタンテトラs−ブトキシド、チタンテトラt−ブトキシドよりなる群から選ばれる少なくとも1種であるである、前記項7又は8に記載の製造方法。   Item 9. The material containing at least titanium is titanium oxide, titanium hydroxide, titanium tetramethoxide, titanium tetraethoxide, titanium tetra n-propoxide, titanium tetraisopropoxide, titanium tetra n-butoxide, titanium tetra s-butoxide, Item 9. The method according to Item 7 or 8, which is at least one selected from the group consisting of titanium tetra-t-butoxide.

項10.前記少なくともチタンを含む材料が、50nm以下の酸化チタンもしくは水酸化チタンを含む、前記項7〜9のいずれかに記載の製造方法。   Item 10. Item 10. The production method according to any one of Items 7 to 9, wherein the material containing at least titanium contains titanium oxide or titanium hydroxide having a thickness of 50 nm or less.

項11.前記アルカリが、水酸化ナトリウム及び/又は水酸化カリウム及び/又は水酸化リチウムを含む、前記項7〜10のいずれかに記載の製造方法。   Item 11. Item 11. The production method according to any one of Items 7 to 10, wherein the alkali contains sodium hydroxide and / or potassium hydroxide and / or lithium hydroxide.

項12.前記アルカリが、少なくとも水酸化ナトリウムを50重量%以上含む、前記項7〜11のいずれかに記載の製造方法。   Item 12. Item 12. The method according to any one of Items 7 to 11, wherein the alkali contains at least 50% by weight of sodium hydroxide.

項13.さらに、
(2)工程(1)で得られた材料中に存在する水素以外の周期表第1族原子を水素(H)に置換する工程
を備える、前記項7〜12のいずれかに記載の製造方法。
Item 13. further,
(2) The production method according to any one of Items 7 to 12, comprising a step of substituting hydrogen (H) for Group 1 atoms of the periodic table other than hydrogen present in the material obtained in step (1). .

項14.前記工程(2)が、酸性化合物を含む溶液と工程(1)で得られた材料を接触させる工程である、前記項13に記載の製造方法。   Item 14. Item 14. The manufacturing method according to Item 13, wherein the step (2) is a step of bringing the solution containing an acidic compound into contact with the material obtained in the step (1).

項15.前記酸性化合物を含む溶液が、塩酸、硝酸、酢酸よりなる群から選ばれる少なくとも1種を含む水溶液である、前記項14に記載の製造方法。   Item 15. Item 15. The method according to Item 14, wherein the solution containing the acidic compound is an aqueous solution containing at least one selected from the group consisting of hydrochloric acid, nitric acid, and acetic acid.

項16.さらに、
(3)工程(2)で得られたチタン系構造体を、200〜500℃で0.5〜24時間熱処理を行う工程
を備える、前記項13〜15のいずれかに記載の製造方法。
Item 16. further,
(3) The manufacturing method according to any one of Items 13 to 15, further comprising a step of heat-treating the titanium-based structure obtained in the step (2) at 200 to 500 ° C. for 0.5 to 24 hours.

項17.熱処理を250〜350℃で1時間〜15時間行う工程を備える、前記項16に記載の製造方法。   Item 17. Item 17. The method according to Item 16, comprising a step of performing heat treatment at 250 to 350 ° C for 1 to 15 hours.

項18.前記項1〜6のいずれかに記載のナトリウムイオン二次電池用材料、又は前記項7〜17のいずれかに記載の製造方法により得られたナトリウムイオン二次電池用材料を含有する、ナトリウムイオン二次電池用負極活物質層。   Item 18. The sodium ion secondary battery material according to any one of Items 1 to 6 or the sodium ion secondary battery material obtained by the production method according to any one of Items 7 to 17 A negative electrode active material layer for a secondary battery.

項19.負極集電体、及び、前記項18に記載のナトリウムイオン二次電池用負極活物質層を備える、ナトリウムイオン二次電池用負極。   Item 19. A negative electrode for a sodium ion secondary battery, comprising the negative electrode current collector and the negative electrode active material layer for a sodium ion secondary battery according to Item 18.

項20.前記項19に記載のナトリウムイオン二次電池用負極を備える、蓄電デバイス。   Item 20. An electricity storage device comprising the negative electrode for a sodium ion secondary battery according to Item 19.

本発明によれば、ナトリウムイオン二次電池に適用できるチタン系ナトリウムイオン二次電池用材料及びその簡易な製造方法を提供することができる。このチタン系材料は、チタン系ナトリウムイオン二次電池に採用する場合は高放電容量と優れたサイクル特性を示す。   ADVANTAGE OF THE INVENTION According to this invention, the titanium type sodium ion secondary battery material applicable to a sodium ion secondary battery and its simple manufacturing method can be provided. This titanium-based material exhibits a high discharge capacity and excellent cycle characteristics when employed in a titanium-based sodium ion secondary battery.

1.チタン系材料
本発明のナトリウムイオン二次電池用材料は、少なくとも周期表第1族原子、Ti原子及びO原子を含み、前記周期表第1族原子のTi原子に対する比(周期表第1族原子/Ti原子)が0.01〜0.5(モル比)であり、前記O原子のTi原子に対する比(O原子/Ti原子)が2.005〜2.25である。つまり、酸化チタン(TiO)ではないが、酸化チタンが混じっていてもよく、その比率は10重量%以下の好ましい。
1. Titanium-based material The material for a sodium ion secondary battery of the present invention includes at least a periodic table group 1 atom, a Ti atom, and an O atom, and a ratio of the periodic table group 1 atom to a Ti atom (periodic group 1 atom). / Ti atom) is 0.01 to 0.5 (molar ratio), and the ratio of O atom to Ti atom (O atom / Ti atom) is 2.005 to 2.25. That is, although it is not titanium oxide (TiO 2 ), titanium oxide may be mixed, and the ratio is preferably 10% by weight or less.

本発明のチタン系構造体において、周期表第1族原子のTi原子に対する比(周期表第1族原子/Ti原子;モル比)は、0.01〜0.5、好ましくは0.1〜0.35である。周期表第1族原子のTi原子に対する比が0.01未満では、TiOに近い化学構造でありサイクル特性が悪化することがある。また、周期表第1族原子のTi原子に対する比が0.5をこえると、充放電容量及びサイクル特性が低下する。また、周期表第1族原子のTi原子に対する比が整数比の単一物質である必要はなく、異なる比率の構造体の混合物でもよい。 In the titanium-based structure of the present invention, the ratio of group 1 atom of the periodic table to Ti atom (period group 1 atom / Ti atom; molar ratio) is 0.01 to 0.5, preferably 0.1 to 0.1. 0.35. If the ratio of group 1 atom of the periodic table to Ti atom is less than 0.01, the chemical structure is close to TiO 2 and the cycle characteristics may be deteriorated. Moreover, when the ratio of the periodic table group 1 atom to the Ti atom exceeds 0.5, the charge / discharge capacity and the cycle characteristics are deteriorated. Further, the ratio of the group 1 atom of the periodic table to the Ti atom is not necessarily a single substance having an integer ratio, and a mixture of structures having different ratios may be used.

本発明のチタン系構造体において、O原子のTi原子に対する比(O原子/Ti原子;モル比)は、2.005〜2.25、好ましくは2.05〜2.2である。O原子のTi原子に対する比が2.005未満では、サイクル特性が悪化することがある。また、O原子のTi原子に対する比が2.25をこえると、充放電容量及びサイクル特性が低下する。   In the titanium-based structure of the present invention, the ratio of O atom to Ti atom (O atom / Ti atom; molar ratio) is 2.005 to 2.25, preferably 2.05 to 2.2. When the ratio of O atoms to Ti atoms is less than 2.005, the cycle characteristics may be deteriorated. On the other hand, when the ratio of O atoms to Ti atoms exceeds 2.25, the charge / discharge capacity and the cycle characteristics deteriorate.

本発明のチタン系材料が有する周期表第1族原子としては、例えば、H原子、Li原子、Na原子、K原子等が挙げられる。なお、本発明のチタン系材料中のNa及びKの含有量は、多い方が合成は容易であるが、少なくした方がより充放電容量及びサイクル特性を向上させることができる。具体的には、チタン系材料中のNa及びKの含有量は、チタン系材料総重量の5重量%以下が好ましく、3重量%以下がより好ましい。   Examples of the periodic table Group 1 atoms of the titanium-based material of the present invention include H atoms, Li atoms, Na atoms, and K atoms. In addition, although the one where content of Na and K in the titanium-type material of this invention is large is easy to synthesize | combine, the one where it reduces can improve charge / discharge capacity and cycling characteristics more. Specifically, the content of Na and K in the titanium-based material is preferably 5% by weight or less of the total weight of the titanium-based material, and more preferably 3% by weight or less.

このような観点から、本発明のチタン系構造体が含有する周期表第1族原子は、H原子を50モル%以上(70〜100モル%、特に90〜100モル%)含むことが好ましい。   From such a viewpoint, it is preferable that the periodic table Group 1 atom contained in the titanium-based structure of the present invention contains 50 mol% or more (70 to 100 mol%, particularly 90 to 100 mol%) of H atoms.

なお、周期表第1族原子、Ti原子、O原子等の含有量は、蛍光X線(WDX)、X線回折(XRD)、TG−DTA、ICP、イオンクロマト等により測定するものとする。   In addition, content of periodic table group 1 atom, Ti atom, O atom, etc. shall be measured by fluorescent X-ray (WDX), X-ray diffraction (XRD), TG-DTA, ICP, ion chromatography, etc.

平均最小サイズが1〜100nmであり、且つ、比表面積が10m/g以上であることがレート特性の観点から好ましい。平均最小サイズが小さく、比表面積が大きいほどレート特性が良好である一方、凝集が発生しやすい。逆に平均最小サイズが1〜100nmの範囲で大きく、比表面積が10m/gの範囲で小さい場合は電極作製時の分散が容易になる。 It is preferable from the viewpoint of rate characteristics that the average minimum size is 1 to 100 nm and the specific surface area is 10 m 2 / g or more. As the average minimum size is smaller and the specific surface area is larger, the rate characteristics are better, while aggregation is more likely to occur. On the other hand, when the average minimum size is large in the range of 1 to 100 nm and the specific surface area is small in the range of 10 m 2 / g, dispersion during electrode production becomes easy.

なお、本発明において、チタン系材料の「平均最小サイズ」とは、例えば、中実のファイバー状、ロッド状、ベルト状、中空のファイバー状、チューブ状の場合には、平均直径と平均長さのうち最も小さいものを意味し、シート状もしくはシートが巻いて成るロール状の場合には、平均幅、平均厚み、平均長さのうち最も小さいものを意味する。つまり、チタン系材料の「平均最小サイズ」とは、チタン系材料の寸法のうち、最も小さいものを意味する。   In the present invention, the “average minimum size” of the titanium-based material is, for example, an average diameter and an average length in the case of a solid fiber shape, rod shape, belt shape, hollow fiber shape, or tube shape. In the case of a sheet shape or a roll shape formed by winding a sheet, it means the smallest one of average width, average thickness, and average length. That is, the “average minimum size” of the titanium-based material means the smallest dimension among the dimensions of the titanium-based material.

チタン系材料の形状(平均最小サイズ、平均直径、平均幅、平均長さ、及び平均アスペクト比)は、例えば、電子顕微鏡(SEM又はTEM)観察等により測定し、断面は例えば、FIB(Focused Ion Beam)により加工を行った後にTEMで観察するものとする。   The shape (average minimum size, average diameter, average width, average length, and average aspect ratio) of the titanium-based material is measured, for example, by observation with an electron microscope (SEM or TEM), and the cross section is, for example, FIB (Focused Ion). After processing by Beam), it shall be observed by TEM.

本発明のチタン系材料の比表面積は好ましくは10m/g以上、より好ましくは15m/g以上である。比表面積が10m/g以上では、電解液との接触面積が大きく、電解液との素早い反応性の低下を抑えるため、レート特性の悪化を防ぐことができる。一方、電極作製時の分散を容易にし、塗膜の収縮をより抑え、クラック等をより防止する観点から、比表面積は500m/g以下が好ましく、420m/g以下がより好ましい。比表面積は、BET法等により測定するものとする。 The specific surface area of the titanium-based material of the present invention is preferably 10 m 2 / g or more, more preferably 15 m 2 / g or more. When the specific surface area is 10 m 2 / g or more, the contact area with the electrolytic solution is large, and a rapid decrease in reactivity with the electrolytic solution is suppressed, so that deterioration of rate characteristics can be prevented. On the other hand, to facilitate dispersion during electrode fabrication suppress more shrinkage of the coating film, from the viewpoint of further preventing cracks, the specific surface area is preferably 500 meters 2 / g or less, more preferably 420 m 2 / g. The specific surface area is measured by the BET method or the like.

2.チタン系材料の製造方法
<工程(1)>
本発明のチタン系構造体は、例えば、
(1)2〜20mol/Lのアルカリ水溶液中で、少なくともチタンを含む材料を、60〜450℃で1時間以上アルカリ処理する工程
を備える方法により製造することができる。
2. Method for producing titanium-based material <Step (1)>
The titanium-based structure of the present invention is, for example,
(1) In a 2-20 mol / L alkaline aqueous solution, it can manufacture by the method provided with the process of alkali-treating the material containing at least titanium at 60-450 degreeC for 1 hour or more.

工程(1)では、これに限定されるわけではないが、少なくともチタンを含む材料と、2〜20mol/Lのアルカリ水溶液を、60〜450℃に加熱して1時間以上放置もしくは撹拌することが好ましい。   In step (1), although not limited thereto, a material containing at least titanium and an aqueous alkali solution of 2 to 20 mol / L may be heated to 60 to 450 ° C. and left or stirred for 1 hour or more. preferable.

具体的には、少なくともチタンを含む材料の分散液(例えば水分散液等)(特に酸化チタン又は酸化チタン前駆体の水分散液)に、アルカリ金属水酸化物を、上記の濃度になるように投入し、60〜450℃に加熱して1時間以上放置もしくは撹拌することが好ましい。また、具体的な方法はこれに限られることはなく、2〜20mol/Lアルカリ水溶液中に、少なくともチタンを含む材料(特に酸化チタン又は酸化チタン前駆体)又はその分散液(特に酸化チタン又は酸化チタン前駆体の水分散液)を投入し、60〜450℃に加熱して1時間以上放置してもよい。   Specifically, an alkali metal hydroxide is added to a dispersion (for example, an aqueous dispersion or the like) of a material containing at least titanium (in particular, an aqueous dispersion of titanium oxide or a titanium oxide precursor) so as to have the above concentration. It is preferable to put in, heat to 60 to 450 ° C., and leave or stir for 1 hour or more. In addition, the specific method is not limited to this, and a material containing at least titanium (particularly titanium oxide or a titanium oxide precursor) or a dispersion thereof (particularly titanium oxide or oxidation) in a 2 to 20 mol / L aqueous alkali solution. An aqueous dispersion of a titanium precursor) may be added, heated to 60 to 450 ° C., and allowed to stand for 1 hour or longer.

アルカリ水溶液は、アルカリ、特にアルカリ金属水酸化物(水酸化ナトリウム、水酸化カリウム、水酸化リチウム等)を溶解させた水溶液が好ましい。なかでも、水酸化ナトリウム及び/又は水酸化カリウムを含むことが好ましい。   The aqueous alkaline solution is preferably an aqueous solution in which an alkali, particularly an alkali metal hydroxide (sodium hydroxide, potassium hydroxide, lithium hydroxide, etc.) is dissolved. Especially, it is preferable that sodium hydroxide and / or potassium hydroxide are included.

アルカリ水溶液としては、原料のチタンを含む材料(特に酸化チタン又は酸化チタン前駆体)の表面を溶解し、反応を促進する点から、アルカリ金属の水酸化物の水溶液が好ましい。なお、アルカリとして、2種類以上のアルカリを含む水溶液としてもよく、例えば、水酸化ナトリウムを主成分とし、水酸化カリウム、水酸化リチウム等を併用することも可能である。   As the alkaline aqueous solution, an aqueous solution of an alkali metal hydroxide is preferable from the viewpoint of dissolving the surface of a raw material containing titanium (particularly titanium oxide or a titanium oxide precursor) and promoting the reaction. In addition, it is good also as an aqueous solution containing 2 or more types of alkalis as an alkali, for example, it is also possible to use sodium hydroxide as a main component and to use potassium hydroxide, lithium hydroxide, etc. together.

アルカリ水溶液の濃度は、2〜20mol/L、好ましくは3〜20mol/L程度、より好ましくは5〜15mol/L程度である。アルカリ水溶液の濃度が2mol/L未満では、原料のチタンを含む材料が溶解しにくく、反応が十分に進行しない、又は反応速度が極端に遅くなる。また、アルカリ水溶液の濃度が20mol/Lをこえると、反応液の粘度が高い、合成後に廃液が多く発生する等製造上の問題が生じる恐れがある。   The concentration of the alkaline aqueous solution is 2 to 20 mol / L, preferably about 3 to 20 mol / L, more preferably about 5 to 15 mol / L. When the concentration of the aqueous alkali solution is less than 2 mol / L, the material containing titanium as a raw material is difficult to dissolve, the reaction does not proceed sufficiently, or the reaction rate becomes extremely slow. On the other hand, when the concentration of the aqueous alkali solution exceeds 20 mol / L, there may be a problem in production such as a high viscosity of the reaction solution and a large amount of waste solution generated after synthesis.

使用するチタンを含む材料としては、特に制限はないが、酸化チタン又は酸化チタン前駆体が好ましい。具体的には、金属チタン、酸化チタン、水酸化チタン、チタンアルコキシド、三塩化チタン、四塩化チタン、硫酸チタン、硫酸チタニル、及び硝酸チタンなどが使用できる。公知又は市販の酸化チタン微粒子をそのまま使用してもよいし、水酸化チタンを使用してもよい。また、水との接触によって水酸化チタンを生じるハロゲン化チタン、チタンアルコキシド等を用いてもよい。これらのチタンを含む材料は、1種単独で用いてもよいし、2種以上を組合せて用いてもよい。   Although there is no restriction | limiting in particular as a material containing titanium to be used, A titanium oxide or a titanium oxide precursor is preferable. Specifically, titanium metal, titanium oxide, titanium hydroxide, titanium alkoxide, titanium trichloride, titanium tetrachloride, titanium sulfate, titanyl sulfate, and titanium nitrate can be used. Known or commercially available titanium oxide fine particles may be used as they are, or titanium hydroxide may be used. In addition, titanium halide, titanium alkoxide, or the like that generates titanium hydroxide by contact with water may be used. These materials containing titanium may be used alone or in combination of two or more.

これらの中でも特に純度という観点では、Ti、O、H又はアルコール構造以外を有していない酸化チタン、水酸化チタン、チタンテトラメトキシド、チタンテトラエトキシド、チタンテトラn−プロポキシド、チタンテトライソプロポキシド、チタンテトラn−ブトキシド、チタンテトラs−ブトキシド、チタンテトラt−ブトキシドが好ましい。   Among these, from the viewpoint of purity, titanium oxide, titanium hydroxide, titanium tetramethoxide, titanium tetraethoxide, titanium tetra n-propoxide, titanium tetraiso, which have no Ti, O, H or alcohol structure. Propoxide, titanium tetra n-butoxide, titanium tetra s-butoxide, and titanium tetra t-butoxide are preferred.

また、原料の平均粒子径は50nm以下が好ましい。なお、チタンアルコキシドは水と接触すると、平均粒子径は50nm以下のナノ粒子が生成するという意味で好ましい。なお、該酸化チタンもしくは水酸化チタンの平均粒子径の下限値は、特に制限はないが、通常1nm程度である。酸化チタンの平均粒子径は、電子顕微鏡(SEM又はTEM)観察等により測定するものとする。   The average particle diameter of the raw material is preferably 50 nm or less. Titanium alkoxide is preferable in the sense that when it comes into contact with water, nanoparticles having an average particle size of 50 nm or less are formed. The lower limit of the average particle diameter of the titanium oxide or titanium hydroxide is not particularly limited, but is usually about 1 nm. The average particle diameter of titanium oxide is measured by observation with an electron microscope (SEM or TEM).

アルカリ水溶液中に投入する、チタンを含む材料の量は、特に制限されないが、反応液の流動性と生産性とのバランスを取る観点から、水に対して0.1〜20重量%が好ましく、0.5〜10重量%がより好ましい。   The amount of the material containing titanium to be charged into the alkaline aqueous solution is not particularly limited, but is preferably 0.1 to 20% by weight with respect to water from the viewpoint of balancing the fluidity and productivity of the reaction solution, 0.5-10 weight% is more preferable.

また、チタンを含む材料の形態も特に制限されない。例えば、チタンを含む材料の水分散液であってもよいし、チタンを含む材料の水性ゾルであってもよい。また、チタンを含む材料をそのままアルカリ水溶液に投入してもよい。   Moreover, the form of the material containing titanium is not particularly limited. For example, an aqueous dispersion of a material containing titanium or an aqueous sol of a material containing titanium may be used. Further, a material containing titanium may be put into an alkaline aqueous solution as it is.

工程(1)の処理温度は、60〜450℃、好ましくは60〜300℃、より好ましくは80〜250℃である。温度が高いほど反応時間は短くてよく、同じ反応時間で比較すると平均最小サイズが大きくなる傾向にある。逆に低い温度で反応する場合は、比表面積が大きく、平均最小サイズが小さいチタン系材料が生成しやすい。   The process temperature of a process (1) is 60-450 degreeC, Preferably it is 60-300 degreeC, More preferably, it is 80-250 degreeC. The higher the temperature, the shorter the reaction time, and the average minimum size tends to increase when compared at the same reaction time. Conversely, when the reaction is performed at a low temperature, a titanium-based material having a large specific surface area and a small average minimum size is likely to be generated.

前記のアルカリ処理の時間は、特に制限はなく、0.1〜100時間程度が好ましく、反応の進行と生産性の観点から1〜24時間程度がより好ましい。チタンを含有する原料が小さいほど、またアルカリ水溶液の濃度が高いほど、反応時間を短くすることができる。   There is no restriction | limiting in particular in the time of the said alkali treatment, About 0.1 to 100 hours are preferable, About 1 to 24 hours are more preferable from a viewpoint of progress of reaction and productivity. The smaller the raw material containing titanium and the higher the concentration of the alkaline aqueous solution, the shorter the reaction time.

工程(1)に変えて、酸化チタンもしくは酸化チタン前駆体とNaOH、KOH、NaCO,KCO等のナトリウム塩を500℃から1000℃で熱処理し、微細なチタン酸ナトリウム、もしくはチタン酸カリウムを形成させてもよい。この手法では、比表面積は大きくならず、精々30m/gである。 In place of step (1), titanium oxide or a titanium oxide precursor and sodium salt such as NaOH, KOH, Na 2 CO 3 , K 2 CO 3 are heat-treated at 500 ° C. to 1000 ° C. to obtain fine sodium titanate, or Potassium titanate may be formed. In this method, the specific surface area does not increase and is at most 30 m 2 / g.

<工程(2)>
カルボジヒドラジド、メチルカルバゼート ナトリウム(Na)及び/又はカリウム(K)を水素(H)と置換する方法としては、工程(1)で得られたチタン系構造体を、酸性化合物を含む溶液と接触させることが好ましい。
<Step (2)>
Carbodihydrazide, methyl carbazate As a method of replacing sodium (Na) and / or potassium (K) with hydrogen (H), the titanium-based structure obtained in step (1) can be prepared with a solution containing an acidic compound. It is preferable to make it contact.

具体的には、工程(1)で得られたチタン系構造体を、酸性化合物を含む溶液中に浸漬させることが好ましい。具体的には、酸性化合物を含む溶液中にチタン系構造体を直接投入してもよいし、チタン系構造体の分散液と酸性化合物を含む溶液とを混合してもよい。酸性化合物を含む溶液中にチタン系構造体を均一に分散させる観点から、あらかじめチタン系構造体の分散液を作製し、これと酸性化合物を含む溶液とを混合することが好ましい。なお、浸漬の際には、分散を促進させるために、撹拌、超音波等による分散操作を行えば、時間を短縮することができる。   Specifically, it is preferable to immerse the titanium-based structure obtained in step (1) in a solution containing an acidic compound. Specifically, the titanium-based structure may be directly charged into a solution containing an acidic compound, or a dispersion of a titanium-based structure and a solution containing an acidic compound may be mixed. From the viewpoint of uniformly dispersing the titanium-based structure in the solution containing the acidic compound, it is preferable to prepare a dispersion of the titanium-based structure in advance and mix this with the solution containing the acidic compound. In addition, in order to promote dispersion | distribution in the case of immersion, time can be shortened if dispersion | distribution operation by stirring, an ultrasonic wave, etc. is performed.

前記酸性化合物としては、アルカリ金属イオンとプロトンを交換でき、後に容易に除去することができる、分子量が小さく、揮発又は分解しやすいプロト酸化合物が好ましい。具体的には、塩酸、硝酸、酢酸、シュウ酸、硫酸、フッ化水素酸、ギ酸等の一般的な無機酸又は有機酸の水溶液が挙げられ、より好ましくは、塩酸、硝酸、酢酸、シュウ酸等を挙げることができる。これらの酸は、一種単独で用いるか、二種以上を組み合わせて用いることもできる。   As the acidic compound, a protonic acid compound that can exchange alkali metal ions and protons and can be easily removed later, has a small molecular weight and is easily volatilized or decomposed is preferable. Specific examples include aqueous solutions of common inorganic acids or organic acids such as hydrochloric acid, nitric acid, acetic acid, oxalic acid, sulfuric acid, hydrofluoric acid, formic acid, and more preferably hydrochloric acid, nitric acid, acetic acid, oxalic acid. Etc. These acids can be used alone or in combination of two or more.

また、前記酸性化合物を含む溶液は、酸性化合物及び該酸性化合物の共役塩基を含むような緩衝溶液を用いることもできる。具体的には、酢酸及び酢酸ナトリウムを含む緩衝溶液を挙げることができる。   Moreover, the buffer solution which contains an acidic compound and the conjugate base of this acidic compound can also be used for the solution containing the said acidic compound. Specific examples include a buffer solution containing acetic acid and sodium acetate.

なお、酸性化合物を含む溶液を用いる場合は、この工程の後、チタン系材料を水洗して酸と遊離した金属塩を除去することが好ましい。   In addition, when using the solution containing an acidic compound, it is preferable after this process to wash the titanium-based material with water to remove the acid and the liberated metal salt.

酸性化合物を含む溶液と接触させる時間は、大気圧条件下の場合は0.1〜168時間程度が好ましく、充分にアルカリ金属を除去する必要がある場合は1時間以上がより好ましい。   The time for contacting with the solution containing the acidic compound is preferably about 0.1 to 168 hours under atmospheric pressure conditions, and more preferably 1 hour or more when it is necessary to sufficiently remove the alkali metal.

また、ナトリウム(Na)及び/又はカリウム(K)をリチウム(Li)と置換する方法としては、特に制限されないが、(1)チタン系構造体をリチウム塩水溶液と接触させる方法、(2)チタン系構造体をリチウム系溶融塩と接触させる方法、(3)チタン系構造体とリチウム塩とを乾燥状態で熱処理する方法等が挙げられる。方法(1)及び(2)においては、チタン系構造体はそのまま用いてもよいし、分散液として用いてもよい。これらのいずれの方法においても、ナトリウム(Na)及び/又はカリウム(K)を直接リチウム(Li)に置換することもできるし、一旦水素(H)に置換し、さらにリチウム(Li)に置換することもできる。   Further, the method for replacing sodium (Na) and / or potassium (K) with lithium (Li) is not particularly limited, but (1) a method in which a titanium-based structure is brought into contact with an aqueous lithium salt solution, and (2) titanium. Examples thereof include a method of bringing a system structure into contact with a lithium-based molten salt, and (3) a method of heat-treating a titanium-based structure and a lithium salt in a dry state. In the methods (1) and (2), the titanium-based structure may be used as it is or as a dispersion. In any of these methods, sodium (Na) and / or potassium (K) can be directly substituted with lithium (Li), or once substituted with hydrogen (H) and further substituted with lithium (Li). You can also.

方法(1)においては、例えば、チタン系構造体をLiCl、LiOH、LiNO等の水溶液と混合(浸漬)すること等により、接触させることが好ましい。 In the method (1), for example, the titanium-based structure is preferably contacted by mixing (immersing) with an aqueous solution of LiCl, LiOH, LiNO 3 or the like.

方法(2)においては、例えば、LiOH、LiNO、LiCl等の2種以上の混合物を250〜1000℃で溶融させ、チタン系構造体と混合(浸漬)すること等により、接触させることが好ましい。 In the method (2), for example, it is preferable that the mixture is brought into contact, for example, by melting a mixture of two or more of LiOH, LiNO 3 , LiCl and the like at 250 to 1000 ° C. and mixing (immersing) with a titanium structure. .

方法(3)においては、例えば、チタン系構造体をLiCO、LiOH等と混合し、400〜1000℃で熱処理を行うことが好ましい。 In the method (3), for example, it is preferable to mix a titanium-based structure with LiCO 3 , LiOH or the like and perform heat treatment at 400 to 1000 ° C.

<工程(3)>
本発明のチタン系材料の製造方法においては、上記の工程(2)の後、さらに、
(3)工程(2)で得られたチタン系構造体を、200〜500℃で熱処理を行う工程
を備えることが好ましい。
<Step (3)>
In the method for producing a titanium-based material of the present invention, after the above step (2),
(3) It is preferable to include a step of heat-treating the titanium-based structure obtained in step (2) at 200 to 500 ° C.

熱処理温度は、チタン系構造体に残存するTi−OH基の脱水反応を行わせながらも、完全にTiO2に転化しないという観点から、気相中200〜450℃が好ましく、250〜350℃がより好ましい。なお、気相で熱処理する場合の雰囲気としては、特に制限はなく、空気雰囲気、窒素雰囲気、アルゴン雰囲気等が好ましい。また、真空等の減圧下としてもよい。   The heat treatment temperature is preferably 200 to 450 ° C. in the gas phase and more preferably 250 to 350 ° C. from the viewpoint that the Ti—OH group remaining in the titanium-based structure is dehydrated and is not completely converted to TiO 2. preferable. In addition, there is no restriction | limiting in particular as atmosphere in the case of heat-processing in a gaseous phase, Air atmosphere, nitrogen atmosphere, argon atmosphere, etc. are preferable. Further, it may be under reduced pressure such as vacuum.

熱処理は通常の気相又は真空中における焼成を行ってもよいが、液相中で行ってもよい。液相中で行う場合は、低い処理温度で結晶性を上げることができるため、100〜400℃で行ってもよく、120〜350℃がより好ましく、150〜300℃がさらに好ましい。   The heat treatment may be performed in a normal gas phase or in vacuum, but may be performed in a liquid phase. When carried out in the liquid phase, the crystallinity can be increased at a low processing temperature, so it may be carried out at 100 to 400 ° C, more preferably 120 to 350 ° C, and even more preferably 150 to 300 ° C.

このようにして得られるチタン系材料は、上記の「1.酸化チタン材料」にて説明したような特性を有するものである。   The titanium-based material obtained in this way has the characteristics described in the above “1. Titanium oxide material”.

3.電極活物質層
本発明の電極活物質は、本発明のチタン系材料を含有する。そして、本発明においては、電極活物質層は、本発明のチタン系材料を含む電極活物質を含有する。
3. Electrode active material layer The electrode active material of the present invention contains the titanium-based material of the present invention. In the present invention, the electrode active material layer contains an electrode active material containing the titanium-based material of the present invention.

また、本発明において、電極活物質層には、他の負極活物質として、従来からナトリウムイオン二次電池に用いられている負極活物質を併用してもよい。   Moreover, in this invention, you may use together with the negative electrode active material conventionally used for the sodium ion secondary battery as another negative electrode active material in an electrode active material layer.

併用可能な負極活物質としては、例えば、難黒鉛化性炭素(ハードカーボン)、Si,SiO等のケイ素系材料、チタン酸リチウムなどの別のチタン系材料、酸化スズなどの金属酸化物、Al、Si、Pb、Sn、Zn、Cd等とナトリウムとの合金系化合物等を用いることができる。これらの負極活物質は、1種単独で用いてもよいし、2種以上を組合せて用いてもよい。   Examples of negative electrode active materials that can be used in combination include non-graphitizable carbon (hard carbon), silicon-based materials such as Si and SiO, other titanium-based materials such as lithium titanate, metal oxides such as tin oxide, Al , Si, Pb, Sn, Zn, Cd, etc. and an alloy compound of sodium and the like can be used. These negative electrode active materials may be used individually by 1 type, and may be used in combination of 2 or more type.

本発明の電極活物質層における、本発明のチタン系材料と、他の電極活物質との比率は特に制限されないが、安全性と充放電容量を両立する点から、全活物質に対して本発明のチタン系構造体を50〜100重量%が好ましく、70〜100重量%がより好ましい。   The ratio of the titanium-based material of the present invention and the other electrode active material in the electrode active material layer of the present invention is not particularly limited. However, the present invention is effective for all active materials in terms of both safety and charge / discharge capacity. The titanium-based structure of the invention is preferably 50 to 100% by weight, more preferably 70 to 100% by weight.

電極活物質層には、上記の活物質以外にも、周知の導電材、バインダ等を含ませることもできる。導電材としては、例えば、アセチレンブラック、ケッチェンブラック、カーボンブラック、グラファイト、カーボンナノチューブ、カーボンナノファイバー、グラフェン、有機物を熱処理して得られるアモルファスカーボン等が挙げられる。また、バインダとしては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体等のフッ素樹脂類の他、スチレン−ブタジエンゴム、アクリロニトリルブタジエンゴム(NBR)、ポリアクリロニトリル、ポリイミド、エチレン−ビニルアルコール共重合体樹脂(EVOH)、エチレン−プロピレン−ジエンゴム(EPDM)、ポリウレタン、ポリアクリル酸、ポリアミド、ポリアクリル酸エステル、ポリビニルエーテルの他、カルボキシメチルセルロースナトリウム塩、カルボキシメチルセルロースアンモニウム、ヒドロキシプロピルセルロース、ヒドロキシエチルセルロース、メチルセルロース等の変性セルロースやセルロースナノファイバー等も挙げられる。   In addition to the above active material, the electrode active material layer may contain a known conductive material, binder, and the like. Examples of the conductive material include acetylene black, ketjen black, carbon black, graphite, carbon nanotubes, carbon nanofibers, graphene, and amorphous carbon obtained by heat treating an organic substance. As the binder, for example, fluorinated resins such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), vinylidene fluoride-hexafluoropropylene copolymer, styrene-butadiene rubber, acrylonitrile butadiene rubber ( NBR), polyacrylonitrile, polyimide, ethylene-vinyl alcohol copolymer resin (EVOH), ethylene-propylene-diene rubber (EPDM), polyurethane, polyacrylic acid, polyamide, polyacrylic acid ester, polyvinyl ether, carboxymethylcellulose sodium Salt, carboxymethylcellulose ammonium, hydroxypropylcellulose, hydroxyethylcellulose, modified cellulose such as methylcellulose and cellulose nanofiber It may also be mentioned.

電極活物質層中の、電極活物質、導電材及びバインダの混合比率は特に制限されないが、容量と導電性を両立する点から、電極活物質は30〜99重量%が好ましく、40〜95重量%がより好ましい。また、導電材は1〜50重量%が好ましく、2〜40重量%がより好ましい。さらに、バインダは1〜30重量%が好ましく、3〜20重量%がより好ましい。   The mixing ratio of the electrode active material, the conductive material and the binder in the electrode active material layer is not particularly limited, but the electrode active material is preferably 30 to 99% by weight, and 40 to 95% by weight from the viewpoint of achieving both capacity and conductivity. % Is more preferable. Further, the conductive material is preferably 1 to 50% by weight, and more preferably 2 to 40% by weight. Further, the binder is preferably 1 to 30% by weight, and more preferably 3 to 20% by weight.

なお、本発明のチタン系材料は、上述のとおり、比表面積が大きいナノ材料である。また、他の活物質、導電材、バインダ等は粒子状又は粉末状の材料である。したがって、これらを混合して電極活物質層ペーストとする場合には、水、アルコール類、アセトン、N−メチルピロリドン、ジメチルスルホキシド、ジメチルホルムアミド等の有機溶媒を混合してペースト状とすることが好ましい。   The titanium-based material of the present invention is a nanomaterial having a large specific surface area as described above. Other active materials, conductive materials, binders, and the like are particulate or powder materials. Therefore, when these are mixed to form an electrode active material layer paste, it is preferable to form a paste by mixing an organic solvent such as water, alcohols, acetone, N-methylpyrrolidone, dimethyl sulfoxide, or dimethylformamide. .

また、本発明の電極活物質層の厚みは、十分な容量と電極の強度を確保する点から、5〜200μmが好ましく、10〜150μmがより好ましい。   The thickness of the electrode active material layer of the present invention is preferably 5 to 200 μm, more preferably 10 to 150 μm, from the viewpoint of securing sufficient capacity and electrode strength.

上記のような本発明の電極活物質層は、上記のとおり形成した電極活物質層ペーストを成形後乾燥させることにより形成することができる。   The electrode active material layer of the present invention as described above can be formed by molding and drying the electrode active material layer paste formed as described above.

4.ナトリウムイオン二次電池
本発明のナトリウムイオン二次電池は、本発明のナトリウムイオン二次電池用負極を備え、正極と負極とをセパレータを介して設置し、正極と負極との間に非水電解液を満たすことが好ましい。具体的には、正極と負極とを、非水電解液を含浸させたセパレータを介して設置することが好ましい。
4). Sodium ion secondary battery The sodium ion secondary battery of the present invention comprises the negative electrode for the sodium ion secondary battery of the present invention, and the positive electrode and the negative electrode are installed via a separator, and nonaqueous electrolysis is performed between the positive electrode and the negative electrode. It is preferable to fill the liquid. Specifically, it is preferable to install the positive electrode and the negative electrode through a separator impregnated with a nonaqueous electrolytic solution.

正極としては、ナトリウムを負極に供給できる物であればよく、周知の正極材料を使用することができる。特に高容量のナトリウムイオン二次電池を目的とする場合、定常状態(例えば、5回程度充放電を繰り返した後)で負極材料1g当たり150mAh以上の充放電容量相当分のナトリウムを供給できる物であることが好ましい。より好ましくは180mAh以上、さらに好ましくは200mAh以上の充放電容量相当分のナトリウムを供給できる物を用いる。例えば、一般式NaMO又はNa(PO(ただし、3個のMは同じか又は異なり、それぞれCr、Co又はNiを表す。)で表される複合金属酸化物、Naを含んだ層間化合物が好適で、特にNaCrO、NaCo(PO等を使用するとより良好な特性を得ることができる。これらの正極活物質は、1種単独で用いてもよいし、2種以上を組合せて用いてもよい。 The positive electrode may be any material that can supply sodium to the negative electrode, and a known positive electrode material can be used. In particular, when aiming at a high-capacity sodium ion secondary battery, it is possible to supply sodium equivalent to a charge / discharge capacity of 150 mAh or more per gram of negative electrode material in a steady state (for example, after repeated charge / discharge about 5 times). Preferably there is. More preferably, a material capable of supplying sodium equivalent to a charge / discharge capacity of 180 mAh or more, more preferably 200 mAh or more is used. For example, a composite metal oxidation represented by the general formula NaMO 2 or Na 4 M 3 (PO 4 ) 2 P 2 O 7 (wherein three M are the same or different and each represents Cr, Co or Ni). In particular, an intercalation compound containing Na is preferable, and better characteristics can be obtained particularly when NaCrO 2 , Na 4 Co 3 (PO 4 ) 2 P 2 O 7 or the like is used. These positive electrode active materials may be used individually by 1 type, and may be used in combination of 2 or more type.

導電材及び結着剤としては、上記説明したものを使用することができる。   As the conductive material and the binder, those described above can be used.

非水電解液としては、有機溶媒と電解質塩とを含む有機電解液が好ましい。   As the non-aqueous electrolyte, an organic electrolyte containing an organic solvent and an electrolyte salt is preferable.

有機電解液の有機溶媒としては、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート等の低粘度の鎖状炭酸エステル;エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等の高誘電率の環状炭酸エステル;γ−ブチロラクトン;1,2−ジメトキシエタン;テトラヒドロフラン;2−メチルテトラヒドロフラン;1−3ジオキソラン;メチルアセテート;メチルプロピオネート;ジメチルホルムアミド;スルホラン;トリグライム;テトラグライム;これらの混合溶媒等を挙げることができる。また、耐熱性を求める場合は、イミダゾリウム塩など各種溶融塩(イオン液体)を用いてもよい。なお、これらのなかでは、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート等が好ましい。   Examples of organic solvents for the organic electrolyte include low-viscosity chain carbonates such as dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate; cyclic carbonates with high dielectric constant such as ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate; γ -Butyrolactone; 1,2-dimethoxyethane; tetrahydrofuran; 2-methyltetrahydrofuran; 1-3 dioxolane; methyl acetate; methylpropionate; dimethylformamide; sulfolane; triglyme; tetraglyme; . Moreover, when seeking heat resistance, you may use various molten salts (ionic liquid), such as an imidazolium salt. Of these, ethylene carbonate, propylene carbonate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate and the like are preferable.

また、電解質塩としては、特に制限はなく、例えば、NaClO、NaAsF、NaPF、NaBF、NaB(C、CHSONa、CFSONa、NaCl、NaBr等が好ましい。 As the electrolyte salt is not particularly limited, for example, NaClO 4, NaAsF 6, NaPF 6, NaBF 4, NaB (C 6 H 5) 4, CH 3 SO 3 Na, CF 3 SO 3 Na, NaCl, NaBr Etc. are preferred.

セパレータとしては、ポリエチレン等のポリオレフィン樹脂からなる微多孔膜が用いられ、材料、重量平均分子量や空孔率の異なる複数の微多孔膜が積層してなるもの、これらの微多孔膜に各種の可塑剤、酸化防止剤、難燃剤等の添加剤を適量含有しているもの等であってもよい。また、本発明のチタン系構造体はデンドライトが発生し難いことから、通常の樹脂メッシュやセルロース膜等も用いることもできる。   As the separator, a microporous membrane made of a polyolefin resin such as polyethylene is used, which is formed by laminating a plurality of microporous membranes having different materials, weight average molecular weights and porosity, and various plastic films on these microporous membranes. It may be one containing an appropriate amount of additives such as an agent, an antioxidant, and a flame retardant. In addition, since the dendrites hardly occur in the titanium-based structure of the present invention, a normal resin mesh or cellulose film can also be used.

また、蓄電デバイスの形状としては巻回型の長円形状、円形状等を用いることができる。その他の電池の構成要素として、端子、絶縁板、電池ケース等があるが、これらの部品についても従来用いられてきたものをそのまま用いることができる。   As the shape of the electricity storage device, a wound oval shape, a circular shape, or the like can be used. Other constituent elements of the battery include a terminal, an insulating plate, a battery case, and the like. Conventionally, these components can be used as they are.

以下、実施例に基づいて、本発明を具体的に説明するが、本発明は、これらのみに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited only to these.

実施例1
16nmの酸化チタンナノ粒子2gを水100gとNaOH40gを混合した溶液(NaOH濃度28.6重量%)に投入し、ハステロイ製圧力容器の中に封入し、200℃で12h保持した。
Example 1
2 g of 16 nm titanium oxide nanoparticles were put into a solution (NaOH concentration 28.6% by weight) mixed with 100 g of water and 40 g of NaOH, sealed in a Hastelloy pressure vessel, and held at 200 ° C. for 12 hours.

得られた物質を2000gの水に加えてろ過した。ろ物に10gの酢酸と100gの水を加え、24時間撹拌した。その後、ろ過と1000gの水への分散を繰り返し、最終的に2.2gの白色物質を得た。   The resulting material was added to 2000 g of water and filtered. 10 g of acetic acid and 100 g of water were added to the filtrate and stirred for 24 hours. Thereafter, filtration and dispersion in 1000 g of water were repeated to finally obtain 2.2 g of a white substance.

この物質を真空中200℃で3時間、空気中300℃で5時間加熱することにより、2gの白色物質を得た。   This material was heated in vacuum at 200 ° C. for 3 hours and in air at 300 ° C. for 5 hours to give 2 g of white material.

SEMにより観察したところ、平均幅70nm、長手方向の平均長さ2.5μmのベルト状の物質が観察された。また、BET比表面積を測定したところ、35m/gであった。また、蛍光X線(WDX)によりNa含有量を調べたところ0.1重量%であった。 When observed by SEM, a belt-like substance having an average width of 70 nm and an average length in the longitudinal direction of 2.5 μm was observed. Moreover, it was 35 m < 2 > / g when the BET specific surface area was measured. Further, when the Na content was examined by fluorescent X-ray (WDX), it was 0.1% by weight.

実施例2
16nmの酸化チタンナノ粒子2gを水100gとNaOH40gを混合した溶液(NaOH濃度28.6重量%)に投入し、ハステロイ製圧力容器の中に封入し、200℃で12h保持した。
Example 2
2 g of 16 nm titanium oxide nanoparticles were put into a solution (NaOH concentration 28.6% by weight) mixed with 100 g of water and 40 g of NaOH, sealed in a Hastelloy pressure vessel, and held at 200 ° C. for 12 hours.

得られた物質を2000gの水に加えてろ過した。さらに、ろ過と1000gの水への分散を繰り返し、最終的に2.4gの白色物質を得た。   The resulting material was added to 2000 g of water and filtered. Further, filtration and dispersion in 1000 g of water were repeated to finally obtain 2.4 g of a white substance.

この物質を真空中200℃で3時間、空気中300℃で5時間加熱することにより、2.2gの白色物質を得た。   This material was heated in vacuum at 200 ° C. for 3 hours and in air at 300 ° C. for 5 hours to give 2.2 g of white material.

SEMにより観察したところ、平均幅70nm、長手方向の平均長さ2.5μmのベルト状の物質が観察された。また、BET比表面積を測定したところ、30m/gであった。また、蛍光X線(WDX)によりNa含有量を調べたところ4重量%であった。 When observed by SEM, a belt-like substance having an average width of 70 nm and an average length in the longitudinal direction of 2.5 μm was observed. Moreover, it was 30 m < 2 > / g when the BET specific surface area was measured. Further, when the Na content was examined by fluorescent X-ray (WDX), it was 4% by weight.

実施例3
16nmの酸化チタンナノ粒子5gを水100gとNaOH40gを混合した溶液(NaOH濃度28.6重量%)に投入し、ステンレス製容器の中で120℃で12h保持した。
Example 3
5 g of 16 nm titanium oxide nanoparticles were put into a solution in which 100 g of water and 40 g of NaOH were mixed (NaOH concentration 28.6% by weight), and kept at 120 ° C. for 12 hours in a stainless steel container.

得られた物質を2000gの水に加えてろ過した。ろ物に50gの酢酸と20gの水を加え、48時間撹拌した。その後、ろ過と1000gの水への分散を繰り返し、最終的に2.2gの白色物質を得た。   The resulting material was added to 2000 g of water and filtered. 50 g of acetic acid and 20 g of water were added to the filtrate and stirred for 48 hours. Thereafter, filtration and dispersion in 1000 g of water were repeated to finally obtain 2.2 g of a white substance.

この物質を真空中200℃で3時間、空気中300℃で5時間加熱することにより、2gの白色物質を得た。   This material was heated in vacuum at 200 ° C. for 3 hours and in air at 300 ° C. for 5 hours to give 2 g of white material.

TEMにより観察したところ、厚み1nm程度、幅200〜2000nmのシートが凝集した構造が観察された。また、BET比表面積を測定したところ、230m/gであった。また、蛍光X線(WDX)によりNa含有量を調べたところ0.3重量%であった。 When observed by TEM, a structure in which sheets having a thickness of about 1 nm and a width of 200 to 2000 nm were aggregated was observed. Moreover, it was 230 m < 2 > / g when the BET specific surface area was measured. Further, when the Na content was examined by fluorescent X-ray (WDX), it was 0.3% by weight.

実施例4
16nmの酸化チタンナノ粒子5gを水100gとNaOH40gを混合した溶液(NaOH濃度28.6重量%)に投入し、ステンレス製容器の中で120℃で12h保持した。
Example 4
5 g of 16 nm titanium oxide nanoparticles were put into a solution in which 100 g of water and 40 g of NaOH were mixed (NaOH concentration 28.6% by weight), and kept at 120 ° C. for 12 hours in a stainless steel container.

得られた物質を2000gの水に加えてろ過した。さらに、ろ過と1000gの水への分散を繰り返し、最終的に2.4gの白色物質を得た。   The resulting material was added to 2000 g of water and filtered. Further, filtration and dispersion in 1000 g of water were repeated to finally obtain 2.4 g of a white substance.

この物質を真空中200℃で3時間、空気中300℃で5時間加熱することにより、2gの白色物質を得た。   This material was heated in vacuum at 200 ° C. for 3 hours and in air at 300 ° C. for 5 hours to give 2 g of white material.

TEMにより観察したところ、厚み1nm程度、幅200〜2000nmのシートが凝集した構造が観察された。また、BET比表面積を測定したところ、195m/gであった。また、蛍光X線(WDX)によりNa含有量を調べたところ7.7重量%であった。 When observed by TEM, a structure in which sheets having a thickness of about 1 nm and a width of 200 to 2000 nm were aggregated was observed. Moreover, it was 195 m < 2 > / g when the BET specific surface area was measured. Further, when the Na content was examined by fluorescent X-ray (WDX), it was 7.7% by weight.

実験例1
実施例1で合成したチタン系材料4.5g、アセチレンブラック4.0g、PTFEパウダー1.5gにアセトンを加えて混練し、2軸ロールで成形し、真空中170℃で乾燥を行った。得られたシートをアルミ箔に接着し、電極を作製した。対極にNa金属、電解液1mol/LのNaPF(EC/DEC混合溶媒)を用いて、50mA/g、2.67V−0.1V(vs Na/Na+)の条件で充放電試験を行った。
Experimental example 1
Acetone was added to and kneaded with 4.5 g of the titanium-based material synthesized in Example 1, 4.0 g of acetylene black, and 1.5 g of PTFE powder, molded with a biaxial roll, and dried at 170 ° C. in a vacuum. The obtained sheet was bonded to an aluminum foil to produce an electrode. A charge / discharge test was conducted under the conditions of 50 mA / g, 2.67 V-0.1 V (vs Na / Na + ) using NaPF 6 (EC / DEC mixed solvent) with Na metal and 1 mol / L electrolyte as a counter electrode. It was.

その結果、
サイクル6 :充電容量169mAh/g、放電容量150mAh/g
サイクル11 :充電容量170mAh/g、放電容量159mAh/g
とサイクルを重ねるごとに放電容量の増加がみられた。
as a result,
Cycle 6: charge capacity 169 mAh / g, discharge capacity 150 mAh / g
Cycle 11: charge capacity 170 mAh / g, discharge capacity 159 mAh / g
With each cycle, the discharge capacity increased.

実験例2
実施例2で合成したチタン系材料を、実験例1と同様にセルを作製し、1〜10サイクルは2.67V−0.67V(vs Na/Na+)の条件で充放電を行った後、11サイクル目からは2.67V−0.1V(vs Na/Na+)の条件で充放電試験を行った。
Experimental example 2
A cell was prepared from the titanium-based material synthesized in Example 2 in the same manner as in Experimental Example 1, and 1 to 10 cycles were charged and discharged under the condition of 2.67 V-0.67 V (vs Na / Na + ). From the 11th cycle, a charge / discharge test was conducted under the condition of 2.67 V-0.1 V (vs Na / Na + ).

その結果、
サイクル11 :充電容量304mAh/g、放電容量216mAh/g
と高い放電容量が見られた。
as a result,
Cycle 11: charge capacity 304 mAh / g, discharge capacity 216 mAh / g
A high discharge capacity was observed.

実験例3
実施例3で合成したチタン系材料を、実験例1と同様に試験を行った。
Experimental example 3
The titanium-based material synthesized in Example 3 was tested in the same manner as in Experimental Example 1.

その結果、
サイクル1 :放電容量240mAh/g
サイクル5 :放電容量217mAh/g
と高い放電容量が見られた。
as a result,
Cycle 1: Discharge capacity 240 mAh / g
Cycle 5: discharge capacity 217 mAh / g
A high discharge capacity was observed.

実験例4
実施例4で合成したチタン系材料を、実験例1と同様に試験を行った。
Experimental Example 4
The titanium-based material synthesized in Example 4 was tested in the same manner as in Experimental Example 1.

その結果、
サイクル1 :放電容量185mAh/g
サイクル5 :放電容量189mAh/g
サイクル10 :放電容量198mAh/g
とサイクルを重ねるごとに放電容量の増加がみられた。
as a result,
Cycle 1: Discharge capacity 185 mAh / g
Cycle 5: discharge capacity 189 mAh / g
Cycle 10: Discharge capacity 198 mAh / g
With each cycle, the discharge capacity increased.

実験例5
実施例4で合成したチタン系材料を、充放電条件のみ12.5mA/gに変えて実験例4と同様に実験を行った。
Experimental Example 5
The experiment was performed in the same manner as in Experimental Example 4 except that the titanium-based material synthesized in Example 4 was changed to 12.5 mA / g only in the charge / discharge conditions.

その結果、
サイクル1 :放電容量208mAh/g
サイクル2 :放電容量204mAh/g
と高い放電容量が見られた。
as a result,
Cycle 1: Discharge capacity 208 mAh / g
Cycle 2: Discharge capacity 204 mAh / g
A high discharge capacity was observed.

比較例1
チタン系材料をチタン酸リチウム(LiTi12)に変更する以外は実験例1と同様に試験を行った。
Comparative Example 1
The test was performed in the same manner as in Experimental Example 1 except that the titanium-based material was changed to lithium titanate (Li 4 Ti 5 O 12 ).

その結果、
サイクル5 :放電容量130mAh/g
サイクル10 :放電容量125mAh/g
と実験例1〜5と比較して低い放電容量であった。
as a result,
Cycle 5: discharge capacity 130 mAh / g
Cycle 10: Discharge capacity 125 mAh / g
Compared with Experimental Examples 1 to 5, the discharge capacity was low.

Claims (20)

少なくとも周期表第1族原子、Ti原子及びO原子を含み、前記周期表第1族原子のTi原子に対する比(周期表第1族原子/Ti原子)が0.01〜0.5(モル比)であり、前記O原子のTi原子に対する比(O原子/Ti原子)が2.005〜2.25である、ナトリウムイオン二次電池用材料。   It contains at least periodic group 1 atom, Ti atom and O atom, and the ratio of periodic group 1 atom to Ti atom (periodic group 1 atom / Ti atom) is 0.01 to 0.5 (molar ratio). And the ratio of O atoms to Ti atoms (O atoms / Ti atoms) is 2.005 to 2.25. 平均最小サイズが1〜100nmであり、且つ、比表面積が10m/g以上である、請求項1に記載のナトリウムイオン二次電池用材料。 The material for sodium ion secondary batteries according to claim 1, wherein the average minimum size is 1 to 100 nm, and the specific surface area is 10 m 2 / g or more. 周期表第1族原子における、H原子、Li原子、Na原子、K原子の比率が99モル%以上である、請求項1又は2に記載のナトリウムイオン二次電池用材料。   The material for sodium ion secondary batteries according to claim 1 or 2, wherein a ratio of H atom, Li atom, Na atom, K atom in the group 1 atom of the periodic table is 99 mol% or more. 周期表第1族原子における、H原子の比率が、50モル%以上である請求項1〜3のいずれかに記載のナトリウムイオン二次電池用材料。   The material for a sodium ion secondary battery according to any one of claims 1 to 3, wherein a ratio of H atoms in Group 1 atoms of the periodic table is 50 mol% or more. 含有するNaとKの合計が5重量%以下である、請求項1〜4のいずれかに記載のナトリウムイオン二次電池用材料。   The material for sodium ion secondary batteries according to any one of claims 1 to 4, wherein the total of Na and K contained is 5% by weight or less. 形状が幅100nm以下の中実のファイバー状、ロッド状、ベルト状、中空のファイバー状、チューブ状、もしくは厚み10nm以下のシート状物質もしくはそのシート状物質が巻いたロール状である、請求項1〜5のいずれかに記載のナトリウムイオン二次電池用材料。   The shape is a solid fiber shape, rod shape, belt shape, hollow fiber shape, tube shape, or a sheet-like material having a thickness of 10 nm or less or a roll shape around which the sheet-like material is wound. The material for sodium ion secondary batteries in any one of -5. 請求項1〜6のいずれかに記載のナトリウムイオン二次電池用材料の製造方法であって、
(1)2〜20mol/Lのアルカリ水溶液中で、少なくともチタンを含む材料を、160〜450℃で1時間以上アルカリ処理する工程
を備える、製造方法。
It is a manufacturing method of the material for sodium ion secondary batteries in any one of Claims 1-6,
(1) A production method comprising a step of alkali-treating a material containing at least titanium at 160 to 450 ° C. for 1 hour or more in an alkaline aqueous solution of 2 to 20 mol / L.
前記少なくともチタンを含む材料が、金属チタン、酸化チタン、水酸化チタン、チタンアルコキシド、三塩化チタン、四塩化チタン、硫酸チタン、硫酸チタニル、及び硝酸チタンである、請求項7に記載の製造方法。   The manufacturing method according to claim 7, wherein the material containing at least titanium is metal titanium, titanium oxide, titanium hydroxide, titanium alkoxide, titanium trichloride, titanium tetrachloride, titanium sulfate, titanyl sulfate, and titanium nitrate. 前記少なくともチタンを含む材料が、酸化チタン、水酸化チタン、チタンテトラメトキシド、チタンテトラエトキシド、チタンテトラn−プロポキシド、チタンテトライソプロポキシド、チタンテトラn−ブトキシド、チタンテトラs−ブトキシド、チタンテトラt−ブトキシドよりなる群から選ばれる少なくとも1種であるである、請求項7又は8に記載の製造方法。   The material containing at least titanium is titanium oxide, titanium hydroxide, titanium tetramethoxide, titanium tetraethoxide, titanium tetra n-propoxide, titanium tetraisopropoxide, titanium tetra n-butoxide, titanium tetra s-butoxide, The production method according to claim 7 or 8, which is at least one selected from the group consisting of titanium tetra-t-butoxide. 前記少なくともチタンを含む材料が、50nm以下の酸化チタンもしくは水酸化チタンを含む、請求項7〜9のいずれかに記載の製造方法。   The manufacturing method according to claim 7, wherein the material containing at least titanium contains titanium oxide or titanium hydroxide having a thickness of 50 nm or less. 前記アルカリが、水酸化ナトリウム及び/又は水酸化カリウム及び/又は水酸化リチウムを含む、請求項7〜10のいずれかに記載の製造方法。   The manufacturing method in any one of Claims 7-10 in which the said alkali contains sodium hydroxide and / or potassium hydroxide, and / or lithium hydroxide. 前記アルカリが、少なくとも水酸化ナトリウムを50重量%以上含む、請求項7〜11のいずれかに記載の製造方法。   The manufacturing method in any one of Claims 7-11 in which the said alkali contains 50 weight% or more of sodium hydroxide at least. さらに、
(2)工程(1)で得られた材料中に存在する水素以外の周期表第1族原子を水素(H)に置換する工程
を備える、請求項7〜12のいずれかに記載の製造方法。
further,
(2) The production method according to any one of claims 7 to 12, comprising a step of substituting hydrogen (H) for Group 1 atoms of the periodic table other than hydrogen present in the material obtained in step (1). .
前記工程(2)が、酸性化合物を含む溶液と工程(1)で得られた材料を接触させる工程である、請求項13に記載の製造方法。   The manufacturing method according to claim 13, wherein the step (2) is a step of bringing a solution containing an acidic compound into contact with the material obtained in the step (1). 前記酸性化合物を含む溶液が、塩酸、硝酸、酢酸よりなる群から選ばれる少なくとも1種を含む水溶液である、請求項14に記載の製造方法。   The manufacturing method according to claim 14, wherein the solution containing the acidic compound is an aqueous solution containing at least one selected from the group consisting of hydrochloric acid, nitric acid, and acetic acid. さらに、
(3)工程(2)で得られたチタン系構造体を、200〜500℃で0.5〜24時間熱処理を行う工程
を備える、請求項13〜15のいずれかに記載の製造方法。
further,
(3) The manufacturing method in any one of Claims 13-15 provided with the process of heat-processing the titanium-type structure obtained at process (2) at 200-500 degreeC for 0.5 to 24 hours.
熱処理を250〜350℃で1時間〜15時間行う工程を備える、請求項16に記載の製造方法。   The manufacturing method of Claim 16 provided with the process of heat-processing at 250-350 degreeC for 1 hour-15 hours. 請求項1〜6のいずれかに記載のナトリウムイオン二次電池用材料、又は請求項7〜17のいずれかに記載の製造方法により得られたナトリウムイオン二次電池用材料を含有する、ナトリウムイオン二次電池用負極活物質層。   A sodium ion secondary battery material according to any one of claims 1 to 6, or a sodium ion secondary battery material obtained by the production method according to any one of claims 7 to 17. A negative electrode active material layer for a secondary battery. 負極集電体、及び、請求項18に記載のナトリウムイオン二次電池用負極活物質層を備える、ナトリウムイオン二次電池用負極。   A negative electrode for a sodium ion secondary battery, comprising the negative electrode current collector and the negative electrode active material layer for a sodium ion secondary battery according to claim 18. 請求項19に記載のナトリウムイオン二次電池用負極を備える、蓄電デバイス。   An electricity storage device comprising the negative electrode for a sodium ion secondary battery according to claim 19.
JP2015072260A 2015-03-31 2015-03-31 Titanium-based material for sodium ion secondary battery and method for producing the same, and electrode active material, electrode active material layer, electrode and sodium ion secondary battery using the titanium-based material Active JP6656816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015072260A JP6656816B2 (en) 2015-03-31 2015-03-31 Titanium-based material for sodium ion secondary battery and method for producing the same, and electrode active material, electrode active material layer, electrode and sodium ion secondary battery using the titanium-based material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015072260A JP6656816B2 (en) 2015-03-31 2015-03-31 Titanium-based material for sodium ion secondary battery and method for producing the same, and electrode active material, electrode active material layer, electrode and sodium ion secondary battery using the titanium-based material

Publications (2)

Publication Number Publication Date
JP2016192341A true JP2016192341A (en) 2016-11-10
JP6656816B2 JP6656816B2 (en) 2020-03-04

Family

ID=57246994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015072260A Active JP6656816B2 (en) 2015-03-31 2015-03-31 Titanium-based material for sodium ion secondary battery and method for producing the same, and electrode active material, electrode active material layer, electrode and sodium ion secondary battery using the titanium-based material

Country Status (1)

Country Link
JP (1) JP6656816B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110291667A (en) * 2017-03-13 2019-09-27 株式会社Lg化学 Negative electrode active material with high output characteristic and the lithium secondary battery comprising the material
CN110729475A (en) * 2019-10-22 2020-01-24 中国科学技术大学 Sodium-ion battery positive electrode material with layered and tunnel-shaped mixed structure, preparation method of sodium-ion battery positive electrode material and sodium-ion battery
CN116864321A (en) * 2023-09-04 2023-10-10 昆山美淼新材料科技有限公司 Titanium-doped hard carbon electrode material and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014186826A (en) * 2013-03-22 2014-10-02 Osaka Gas Co Ltd Rod-like titanium-based structure for electric power storage device, manufacturing method thereof, electrode active material arranged by use of titanium-based structure, electrode active material layer, electrode, and electric power storage device
WO2015025795A1 (en) * 2013-08-19 2015-02-26 独立行政法人産業技術総合研究所 Alkali metal titanium oxide having anisotropic structure, titanium oxide, electrode active material containing said oxides, and electricity storage device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014186826A (en) * 2013-03-22 2014-10-02 Osaka Gas Co Ltd Rod-like titanium-based structure for electric power storage device, manufacturing method thereof, electrode active material arranged by use of titanium-based structure, electrode active material layer, electrode, and electric power storage device
WO2015025795A1 (en) * 2013-08-19 2015-02-26 独立行政法人産業技術総合研究所 Alkali metal titanium oxide having anisotropic structure, titanium oxide, electrode active material containing said oxides, and electricity storage device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110291667A (en) * 2017-03-13 2019-09-27 株式会社Lg化学 Negative electrode active material with high output characteristic and the lithium secondary battery comprising the material
CN110729475A (en) * 2019-10-22 2020-01-24 中国科学技术大学 Sodium-ion battery positive electrode material with layered and tunnel-shaped mixed structure, preparation method of sodium-ion battery positive electrode material and sodium-ion battery
CN116864321A (en) * 2023-09-04 2023-10-10 昆山美淼新材料科技有限公司 Titanium-doped hard carbon electrode material and preparation method thereof
CN116864321B (en) * 2023-09-04 2023-11-07 昆山美淼新材料科技有限公司 Titanium-doped hard carbon electrode material and preparation method thereof

Also Published As

Publication number Publication date
JP6656816B2 (en) 2020-03-04

Similar Documents

Publication Publication Date Title
WO2019098384A1 (en) Positive-electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP4954865B2 (en) Negative electrode active material having improved electrochemical characteristics and electrochemical device including the same
JP4803486B2 (en) Non-aqueous electrolyte battery
JP5692535B2 (en) Porous silicon-based electrode active material, secondary battery including the same, and method for producing porous particulate silicon-based electrode active material
AU2008279196B2 (en) Porous network negative electrodes for non-aqueous electrolyte secondary battery
JP6242657B2 (en) Non-aqueous electrolyte for sodium secondary battery and sodium secondary battery
JP5201030B2 (en) Electrode and battery having the same
US20170077506A1 (en) Porous electrode active material and secondary battery including the same
JP2018006164A (en) Lithium titanate powder for power storage device electrode, active substance material, and power storage device using the active substance material
US10637054B2 (en) Positive electrode material for lithium ion secondary batteries, and method for producing same
JP6384596B2 (en) Anode materials for lithium-ion batteries
WO2013002369A1 (en) Non-aqueous electrolyte secondary cell, and method for producing same
JP6656816B2 (en) Titanium-based material for sodium ion secondary battery and method for producing the same, and electrode active material, electrode active material layer, electrode and sodium ion secondary battery using the titanium-based material
TWI465390B (en) Method of manufacturing a cathode active material for lithium secondary batteries
KR101907240B1 (en) Method for preparing electrode materials and electrode materials produce therefrom
WO2010137730A1 (en) Electrode mix, electrode, and non-aqueous electrolyte secondary battery
JP6636254B2 (en) Titanium-based structure for power storage device, method for manufacturing the same, and electrode active material, electrode active material layer, electrode, and power storage device using the titanium-based structure
JP2011071063A (en) Carbon-semimetal oxide composite material, method of manufacturing the same, and negative electrode for lithium ion battery using this
TWI602781B (en) Manufacturing method of silicon oxide
KR101796248B1 (en) Cathode active material for lithium secondary battery and method of preparing the same
WO2020066263A1 (en) Secondary battery positive electrode active material and secondary battery
JP6370531B2 (en) Rod-like titanium-based structure for power storage device, method for producing the same, and electrode active material, electrode active material layer, electrode, and power storage device using the titanium-based structure
JP6396550B2 (en) Rod-like titanium-based structure for power storage device, method for producing the same, and electrode active material, electrode active material layer, electrode, and power storage device using the titanium-based structure
JP2013140761A (en) Method for manufacturing active material for nonaqueous electrolyte secondary battery
JP5608856B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, positive electrode for lithium ion secondary battery, and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181016

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190716

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200205

R150 Certificate of patent or registration of utility model

Ref document number: 6656816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150