JP2016191907A - 基準位置取得方法、基準位置取得装置、パターン描画方法、パターン描画装置およびプログラム - Google Patents

基準位置取得方法、基準位置取得装置、パターン描画方法、パターン描画装置およびプログラム Download PDF

Info

Publication number
JP2016191907A
JP2016191907A JP2016021581A JP2016021581A JP2016191907A JP 2016191907 A JP2016191907 A JP 2016191907A JP 2016021581 A JP2016021581 A JP 2016021581A JP 2016021581 A JP2016021581 A JP 2016021581A JP 2016191907 A JP2016191907 A JP 2016191907A
Authority
JP
Japan
Prior art keywords
reference position
pattern
circuit board
positions
obtaining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016021581A
Other languages
English (en)
Other versions
JP6608299B2 (ja
Inventor
和隆 谷口
Kazutaka Taniguchi
和隆 谷口
中西 健二
Kenji Nakanishi
健二 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Original Assignee
Screen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd filed Critical Screen Holdings Co Ltd
Priority to CN201610183193.8A priority Critical patent/CN106019851B/zh
Priority to KR1020160037746A priority patent/KR20160117302A/ko
Priority to TW105109906A priority patent/TWI613527B/zh
Publication of JP2016191907A publication Critical patent/JP2016191907A/ja
Application granted granted Critical
Publication of JP6608299B2 publication Critical patent/JP6608299B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Image Processing (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

【課題】回路基板の歪みを検出するための複数の基準位置および対応する複数の基準位置画像を設計パターンから容易に取得する。【解決手段】設計上のパターンである設計パターンから抽出された複数の注目画像のそれぞれから、第1方向に平行な軸に対して対称な第1形状が取得される(ステップS22)。第1方向における第1形状の長さの合計である第1総長さが取得される(ステップS23)。第1方向に垂直な第2方向についても同様の処理が行われ、第2総長さが取得される(ステップS24,S25)。第1総長さおよび第2総長さから、注目画像が基準位置画像に適している度合いを示すスコアが取得される(ステップS26)。スコアに基づいて、複数の基準位置が決定され、対応する複数の基準位置画像が取得される。【選択図】図5A

Description

本発明は、設計上のパターンからの回路基板上の実際のパターンのずれ量を検出する技術に関連する。
従来より、回路基板の歪みの測定が行われた後に、回路基板上に高精細なパターンが描画される。歪みの測定では、回路基板上のマークが撮像される。設計データにおけるマークの位置と、回路基板におけるマークの位置とのずれ量が取得され、ずれ量に合わせて回路基板全体の歪みが取得される。その後、歪みに合わせて描画データは補正され、回路基板上にパターンが描画される。
マークとして使用される図形は、多くの場合、予めパターンの設計時に決められている。マークとしては単純な図形がパターンに含められる。最も簡便な手法として、回路基板の四隅にマークが配置される。プリント配線基板のようにパターン描画時の熱により回路基板が複雑に歪む場合は、例えば、特許文献1に開示されるように、四隅だけでなく内側にもマークが配置され、回路基板の内部における歪みも局所的に補正される。
特開2012−79739号公報
ところで、歪み検出用の機能しか持たないマークを回路基板のパターン内部に多数配置すると、回路パターンとして利用できるスペースが減少する。また、マークのエッジの長さが長いほど検出される位置の精度が向上するため、マークにはある程度の大きさが必要となる。
一方、回路パターンの一部を歪み検出用のマークとして利用することも考えられるが、高精細なパターンの場合、撮像範囲内に多数の図形が存在し、いずれの位置の図形をマークとして利用することが好ましいか作業者が判断することは容易ではない。
なお、回路基板上のマークは、他の要因による、設計上のパターンからの回路基板上の実際のパターンのずれ量を検出することにも利用可能である。例えば、ステッパによる記録位置のずれ量の確認にも利用することができる。
本発明は、上記課題に鑑みなされたものであり、設計上のパターンからの回路基板上の実際のパターンのずれ量を検出するためのマークとしての利用に適した画像を設計パターンから容易に取得することを目的としている。
請求項1に記載の発明は、設計上のパターンである設計パターンからの回路基板上の実際のパターンのずれ量を検出するための複数の基準位置および対応する複数の基準位置画像を設計パターンから取得する基準位置取得方法であって、a)設計パターンから注目位置を中心とする予め定められた範囲を注目画像として抽出する工程と、b)前記注目画像において、第1方向に平行な軸に対して対称な第1形状を取得する工程と、c)前記第1方向における前記第1形状の長さの合計である第1総長さを取得する工程と、d)前記注目画像において、前記第1方向に垂直な第2方向に平行な軸に対して対称な第2形状を取得する工程と、e)前記第2方向における前記第2形状の長さの合計である第2総長さを取得する工程と、f)少なくとも前記第1総長さおよび前記第2総長さを用いて、前記注目位置におけるスコアを求める工程と、g)前記a)ないしf)工程を繰り返すことにより、複数の注目位置に対応する複数のスコアを求める工程と、h)前記複数のスコアに基づいて複数の基準位置を決定し、対応する複数の基準位置画像を取得する工程とを備える。
請求項2に記載の発明は、請求項1に記載の基準位置取得方法であって、前記b)およびd)工程が、前記注目画像から円または矩形を取得する工程を含む。
請求項3に記載の発明は、請求項1または2に記載の基準位置取得方法であって、前記f)工程において、前記注目位置と前記設計パターンが存在する領域の外周との間の距離も用いて、前記注目位置におけるスコアが求められる。
請求項4に記載の発明は、請求項1ないし3のいずれかに記載の基準位置取得方法であって、前記h)工程において、前記複数のスコアに基づいて決定された複数の候補基準位置が表示され、前記複数の候補基準位置の一部の選択を操作者から受け付けることにより、前記複数の基準位置が決定される。
請求項5に記載の発明は、請求項1ないし4のいずれかに記載の基準位置取得方法であって、前記h)工程において、パターン描画装置が全ての基準位置にて撮像を行う際に要する時間も参照して、前記複数の基準位置が決定される。
請求項6に記載の発明は、請求項1ないし5のいずれかに記載の基準位置取得方法であって、前記第1方向および前記第2方向の一方が、パターン描画装置において複数の撮像部に対して回路基板が移動する基板移動方向に対応し、他方が、前記複数の撮像部の少なくとも一部が移動可能な撮像部移動方向に対応し、前記h)工程にて決定される複数の基準位置が、前記撮像部移動方向に対応する方向において、前記複数の撮像部の数以下、かつ、前記複数の撮像部が配置可能な位置のみに存在する。
請求項7に記載の発明は、請求項1ないし6のいずれかに記載の基準位置取得方法であって、前記b)およびd)工程において利用される前記設計パターンを示すデータが、ラスタデータである。
請求項8に記載の発明は、設計上のパターンである設計パターンからの回路基板上の実際のパターンのずれ量を検出するための複数の基準位置および対応する基準位置画像を設計パターンから取得する基準位置取得装置であって、前記設計パターンを示すデータを記憶する記憶部と、演算部とを備え、前記演算部が、前記設計パターンを示すデータに対して、請求項1ないし7のいずれかに記載の基準位置取得方法を実行する。
請求項9に記載の発明は、回路基板にパターンを描画するパターン描画方法であって、請求項1ないし7のいずれかに記載の基準位置取得方法により複数の基準位置および対応する複数の基準位置画像を準備する工程と、前記複数の基準位置にて前記回路基板を撮像し、複数の撮像画像を取得する工程と、前記複数の基準位置画像のそれぞれと、対応する撮像画像とを比較することにより、各撮像画像の基準位置からのずれ量を取得する工程と、前記ずれ量を参照して、前記回路基板上にパターンを描画する工程とを備える。
請求項10に記載の発明は、請求項9に記載のパターン描画方法であって、前記パターンを描画する工程が、前記各撮像画像の前記ずれ量から前記回路基板の歪み分布を求める工程を含む。
請求項11に記載の発明は、回路基板にパターンを描画するパターン描画装置であって、請求項1ないし7のいずれかに記載の基準位置取得方法により取得された複数の基準位置および対応する複数の基準位置画像を記憶する記憶部と、前記複数の基準位置にて前記回路基板を撮像し、複数の撮像画像を取得する少なくとも1つの撮像部と、前記複数の基準位置画像のそれぞれと、対応する撮像画像とを比較することにより、各撮像画像の基準位置からのずれ量を取得するずれ量取得部と、前記ずれ量を参照して、前記回路基板上にパターンを描画する描画部とを備える。
請求項12に記載の発明は、請求項11に記載のパターン描画装置であって、前記各撮像画像の前記ずれ量から前記回路基板の歪み分布を求める歪み算出部をさらに備え、前記描画部が、前記歪み分布を参照して前記回路基板上にパターンを描画する。
請求項13に記載の発明は、設計上のパターンである設計パターンからの回路基板上の実際のパターンのずれ量を検出するための複数の基準位置および対応する複数の基準位置画像を設計パターンからコンピュータに取得させるプログラムであって、前記プログラムの前記コンピュータによる実行は、前記コンピュータに、a)設計パターンから注目位置を中心とする予め定められた範囲を注目画像として抽出する工程と、b)前記注目画像において、第1方向に平行な軸に対して対称な第1形状を取得する工程と、c)前記第1方向における前記第1形状の長さの合計である第1総長さを取得する工程と、d)前記注目画像において、前記第1方向に垂直な第2方向に平行な軸に対して対称な第2形状を取得する工程と、e)前記第2方向における前記第2形状の長さの合計である第2総長さを取得する工程と、f)少なくとも前記第1総長さおよび前記第2総長さを用いて、前記注目位置におけるスコアを求める工程と、g)前記a)ないしf)工程を繰り返すことにより、複数の注目位置に対応する複数のスコアを求める工程と、h)前記複数のスコアに基づいて、複数の基準位置および対応する複数の基準位置画像を決定する工程とを実行させる。
本発明によれば、設計上のパターンからの回路基板上の実際のパターンのずれ量を検出するための複数の基準位置および対応する複数の基準位置画像を設計パターンから容易に取得することができる。
パターン描画装置の概略構成を示す図である。 パターン描画装置の描画動作の流れを示す図である。 コンピュータの構成を示す図である。 コンピュータの機能を示す図である。 コンピュータが基準位置および基準位置画像を取得する動作の流れを示す図である。 コンピュータが基準位置および基準位置画像を取得する動作の流れを示す図である。 回路基板における2つの注目画像を拡大して例示する図である。 注目画像を例示する図である。 注目画像から抽出された第1形状を示す図である。 第1形状を例示する図である。 注目画像から抽出された第2形状を示す図である。 スコアの分布を例示する図である。 基準位置を例示する図である。 スコアの分布および基準位置を例示する図である。 パターンが記録された基板を例示する図である。
図1は、本発明の一の実施の形態に係るパターン描画装置1の概略構成を示す平面図である。パターン描画装置1は、回路基板9を水平に保持するステージ11と、ステージ11を移動するステージ移動機構12と、描画部13と、描画部移動機構14と、複数の撮像部15と、撮像部移動機構16と、制御部17とを備える。回路基板9は、いわゆるプリント配線基板である。
ステージ移動機構12がステージ11を図1中に示すX方向に移動することにより、回路基板9が描画部13および撮像部15に対して相対的に移動する。描画部13は、複数の描画ヘッド131を含む。複数の描画ヘッド131は、ステージ11の上方に位置し、X方向に垂直なY方向に配列される。各描画ヘッド131は、描画部移動機構14によりY方向に移動可能である。各描画ヘッド131は、回路基板9に向けて空間変調された光を出射する。回路基板9がX方向に移動しつつ描画ヘッド131からの光が回路基板9に照射されることにより、回路基板9上の感光材料にパターンが描画される。
複数の撮像部15は、ステージ11の上方にてY方向に配列される。各撮像部15は、撮像部移動機構16により、個別にY方向に移動可能である。撮像部15は、描画前に回路基板9上に存在するパターンを撮像する。制御部17は、ステージ移動機構12、描画部13、描画部移動機構14、撮像部15、撮像部移動機構16等の動作を制御する。制御部17は、演算処理を行うコンピュータ171を含む。
図2は、パターン描画装置1による描画動作の流れを示す図である。まず、準備作業として、後述する手法により複数の基準位置およびこれらに対応する基準位置画像が、コンピュータ171の記憶部に記憶されて準備される(ステップS11)。正確には、基準位置画像のデータが記憶部に記憶される。基準位置とは、回路基板9の歪みを検出するためのマークとして機能する図形(すなわち、パターンの一部)の位置である。
基準位置画像は、マークとして機能する図形を示す画像である。マークとして機能する図形は「アライメントマーク」とも呼ばれる。本実施の形態では、基準位置は、設計上のパターン中の基準位置画像の中心位置である。以下、設計上のパターンを「設計パターン」と呼ぶ。基準位置および基準位置画像の準備は、1つの設計パターンに対して1回だけ行われる。
制御部17は、ステージ移動機構12および撮像部移動機構16を制御することにより、回路基板9の設計上の1つの基準位置の上方にいずれかの撮像部15を位置させる。撮像部15は回路基板9を撮像し、撮像画像を取得する。正確には、撮像部15により撮像画像のデータが取得され、当該データはコンピュータ171の記憶部に記憶される。パターン描画装置1は、各基準位置にて撮像を行うことにより、複数の基準位置にそれぞれ対応する複数の撮像画像を取得する(ステップS12)。
実際の回路基板9は歪んでいるため、撮像画像が示す図形と基準位置画像が示す図形との間にはずれが生じている。コンピュータ171は、複数の基準位置画像のそれぞれと、対応する撮像画像とを比較することにより、各撮像画像の基準位置からのずれ量を取得する(ステップS13)。具体的には、同一の基準位置の基準位置画像と撮像画像とが一致する相対位置を、パターンマッチング等の手法を用いて求め、このときの両画像の中心位置のX方向およびY方向の距離をずれ量として取得する。このように、コンピュータ171は、ずれ量取得部701としての機能を含む。
また、基準位置画像内には類似形状が多数存在し、誤った位置合わせにより誤ったずれ量が求められることを防止するために、まず、解像度を落とした基準位置画像と撮像画像とで仮のずれ量を求めて仮の位置合わせが行われる。解像度の低下量は、デザインルールによって決まる混同防止可能な距離が公差となるように定められる。すなわち、細部に捉われずに大まかな形状の相違が分かるように、解像度が落とされる。その後、高い解像度にて精度の高いずれ量が求められる。この処理により、ずれ量の算出時間を短縮することも実現される。
コンピュータ171はさらに、各撮像画像から得られたずれ量から、回路基板9全体における歪み分布を求める(ステップS14)。すなわち、コンピュータ171は、歪み算出部702としての機能を含む。歪み分布とは、回路基板9上の任意の位置での歪み量を示す情報である。歪み分布を求める手法としては、例えば、上述の特開2012−79739号公報に開示された手法が利用されてよいし、他の手法が用いられてもよい。
コンピュータ171は、歪み分布を参照して描画すべきパターンを歪ませる補正を行う。すなわち、コンピュータ171は補正部としても機能する。補正後のパターンのデータに基づいて、制御部17はステージ移動機構12、描画部13および描画部移動機構14を制御して回路基板9上の感光材料にパターンを描画する(ステップS15)。具体的には、回路基板9がステージ11と共にX方向に主走査されつつ各描画ヘッド131から空間変調された光が回路基板9に照射される。1回の主走査が完了すると、各描画ヘッド131の位置は描画部移動機構14によりY方向に移動する。その後、回路基板9が前回の移動とは逆方向に主走査されつつ各描画ヘッド131から空間変調された光が回路基板9に照射される。
主走査を繰り返して回路基板9の全体にパターンが描画されると、回路基板9は図示省略の搬送機構によりステージ11から取り出され、描画すべきパターンが同じである次の回路基板9がステージ11上に載置されてステップS12〜S15が繰り返される。
次に、ステップS11の処理について説明する。ステップS11は、コンピュータ171の演算処理により実行される。すなわち、コンピュータ171は、回路基板9の歪みを検出するための複数の基準位置および対応する基準位置画像を設計パターンから取得する基準位置取得装置として機能する。
図3はコンピュータ171の構成を示す図である。コンピュータ171は各種演算処理を行うCPU71、基本プログラムを記憶するROM72および各種情報を記憶するRAM73を含む一般的なコンピュータシステムの構成となっている。コンピュータ171は、情報記憶を行う固定ディスク74、画像等の各種情報の表示を行うディスプレイ75、操作者からの入力を受け付けるキーボード76aおよびマウス76b(以下、「入力部76」と総称する。)、光ディスク、磁気ディスク、光磁気ディスク等のコンピュータ読み取り可能な記録媒体8から情報の読み取りを行う読取装置77、並びに、パターン描画装置1の他の構成との間で信号を送受信する通信部78をさらに含む。
コンピュータ171では、事前に読取装置77を介して記録媒体8からプログラム80が読み出されて固定ディスク74に記憶される。CPU71は、プログラム80に従ってRAM73や固定ディスク74等を利用しつつ演算処理を実行する。CPU71は、コンピュータ171において演算部として機能する。CPU71以外に演算部として機能する他の構成が採用されてもよい。
コンピュータ171の記憶部として機能する固定ディスク74には、演算対象となる設計パターンを示す設計パターンデータ81が記憶される。本実施の形態では、設計パターンデータ81はラスタデータである。設計パターンデータ81は、例えば、ベクトルデータである設計データをラスタライズ処理することにより得られる。設計パターンデータ81が示す設計パターンは、回路基板9上に既に存在する回路パターンを描画する際に利用された設計パターンである。設計パターンには、例えば、配線、ランド、スルーホール、使用しないパターン等を含む。
図4は、コンピュータ171がプログラム80に従って演算処理を実行することにより実現される機能を示す図である。これらの機能には、注目画像抽出部51、対称形状取得部52、総長さ取得部53、スコア取得部54、組み合わせスコア取得部55、基準位置決定部56および基準位置画像取得部57、並びに、これらの機能を制御する演算制御部50が含まれる。これらの機能の全部または一部は専用の電気回路により実現されてもよい。また、複数のコンピュータによりこれらの機能が実現されてもよい。
図5Aおよび図5Bは、コンピュータ171が基準位置および基準位置画像を取得する動作の流れを示す図である。既述のように、基準位置画像とは、描画対象の回路基板9に既に存在するパターンに基づいて回路基板9上の特定の位置を取得するために利用される画像であり、基準位置は基準位置画像の設計上の位置である。本実施の形態では、基準位置は基準位置画像の中心位置である。
コンピュータ171に対する操作者の指定により、予め、設計パターンデータ81が示す設計パターン(正確には、設計パターンを示す画像)上に複数の注目位置が設定される。注目位置は、画像中の各画素であってもよいし、間隔をあけて存在してもよい。本実施の形態では、撮像部15の撮像範囲の幅よりも少し小さいピッチにて複数の注目位置が設計パターン画像上に設定される。
まず、注目画像抽出部51は、1つの注目位置を選択し、設計パターンから当該注目位置を中心とする予め定められた範囲の画像を注目画像として抽出する(ステップS21)。図6では、回路基板9における2つの注目画像91を拡大して例示している。1つの注目画像の大きさは、最終的に得られる基準位置画像の大きさに等しい。注目画像の大きさは、撮像部15の撮像範囲を、パターンの位置ずれ量を考慮して狭めた範囲に等しい。位置ずれ量の最大値は、回路基板9をステージ11上に載置する際の載置ずれの最大値と、回路基板9の歪みの最大値との和である。例えば、撮像範囲のX方向の画素数をCx、Y方向の画素数をCyとし、位置ずれ量のX方向の最大値の画素数をTx、Y方向の最大値の画素数をTyとすると、注目画像のX方向の画素数の最大値は、(Cx−2Tx)であり、Y方向の画素数の最大値は、(Cy−2Ty)である。
次に、対称形状取得部52は、注目画像において、第1方向であるY方向に平行な軸に対して対称な第1形状を取得する(ステップS22)。具体的には、注目画像のX方向に関する微分画像が求められ、エッジが抽出される。対称形状取得部52は、Y方向に向かってエッジのX方向位置がどのように変化するのかを取得し、Y方向の同じ範囲でエッジのX方向の変化が逆である1対の部分エッジを第1形状として取得する。図8は、図7に示す注目画像91から取得された第1形状を太線にて示す図である。
第1形状の取得は、注目画像91の全ての範囲において詳細に行われてもよく、処理速度を上げるために、明らかに第1形状と判定できるものだけが取得されてもよい。例えば、Y方向に直線状に延びる1対のエッジのみが微分画像から抽出され、Y方向に延びる直線状の配線図形のみが第1形状として取得されてもよい。図形の形状が矩形の場合も同様である。より時間を掛けて第1形状を取得してよい場合は、円やY方向を向く軸に関して対称な楕円や二等辺三角形が第1形状として取得されてもよい。
総長さ取得部53は、Y方向における第1形状の長さの合計である第1総長さを取得する(ステップS23)。例えば、図9に示す図形は、4つの第1形状921を含む。総長さ取得部53は、各第1形状921のY方向の長さ922を取得し、さらに、注目画像91内の全ての第1形状921のY方向の長さ922の合計を第1総長さとして求める。本実施の形態では、総長さは画素数を単位として取得される。
第1形状では、回路基板9上に既に存在するパターンを形成する際に、化学作用等によるパターンの太りや細りの変動がX方向に関して対称である。したがって、第1形状に基づいて注目画像91の中心に対応する回路基板9上のX方向の位置を求めることにより、パターンの太りや細りの影響を防止することができる。例えば、Y方向の1つの位置にてX方向に並ぶ画素の値から、当該Y方向位置における第1形状のX方向の中心を求めることができる。全てのY方向の位置にて第1形状のX方向の中心を求め、その平均を得ることにより、第1形状の最終的なX方向の中心が取得される。
第1形状のX方向の位置を求めるに際して、演算対象となる画素がY方向に多く並ぶほど演算に使用できる画素数が多くなり、精度が高くなる。したがって、第1総長さは、仮に、注目画像91を基準位置画像(すなわち、アライメントマーク)として利用する際のX方向の位置の検出精度の高さを示す。そこで、コンピュータ171では、第1総長さは、注目画像が特定のX方向の位置を検出するために適している度合いを示す「X方向スコア」として扱われる。
コンピュータ171は、X方向およびY方向を入れ替えてステップS22,S23と同様の処理を行うことにより、Y方向スコアも取得する。すなわち、対称形状取得部52は、注目画像91において、第2方向であるX方向に平行な軸に対して対称な第2形状を取得する(ステップS24)。図10は、図7に示す注目画像91から取得された第2形状を太線にて示す図である。
この場合においても、処理速度を上げるために、明らかに第2形状と判定できるものだけが取得されてもよい。例えば、X方向に延びる直線状の配線図形のみが第2形状として取得されてもよい。図形の形状が矩形の場合も同様である。より時間を掛けて第2形状を取得してよい場合は、円やX方向を向く軸に関して対称な楕円や二等辺三角形が第2形状として取得されてよい。
総長さ取得部53は、X方向における第2形状の長さの合計である第2総長さを取得する(ステップS25)。コンピュータ171では、第2総長さは、注目画像91が特定のY方向の位置を検出するために適している度合いを示す「Y方向スコア」として扱われる。
スコア取得部54は、X方向スコアとY方向スコアとの和を、当該注目位置のスコアとして取得する(ステップS26)。そして、注目位置を次の注目位置に変更してステップS21〜S26を繰り返す。全ての注目位置に対してステップS21〜S26を実行することにより、全ての注目位置におけるスコアが取得される(ステップS27)。スコアは、注目画像が基準位置画像に適している度合いを示す。
ところで、設計パターンには円や矩形等のX方向にもY方向にも対称な図形が多数存在する。注目画像91から円や矩形を抽出することにより、第1形状を取得する工程(ステップS22)および第2形状を取得する工程(ステップS24)の大部分を実質的に同時に行うことができる。すなわち、ステップS22およびステップS24が、設計パターンから円や矩形を取得する工程を共通の工程として含むことにより、これらの演算処理に要する時間を削減することができる。抽出される円や矩形は完全な円や矩形である必要はなく、細い配線が接続した円や矩形であってもよい。具体的には、様々な大きさの円や矩形とのパターンマッチングや、90度の角の検出が利用される。ハフ変換を利用して円や矩形が抽出されてもよい。
また、既述のようにY方向に延びる配線やX方向に延びる配線も第1形状および第2形状として容易に取得することができることから、円、矩形、配線の抽出により、ステップS22、S24を効率よく行うことができる。
注目画像91が回路基板9上の特定の位置を検出するための画像として適しているか否かは、位置検出精度以外の要素の影響も受ける。例えば、回路基板9の全体の歪みを検出するためには、基準位置は回路基板9の隅に存在することが好ましい。そこで、スコア取得部54のスコア修正部541は、注目位置と設計パターンが存在する領域の外周との間との距離を用いてスコアを修正する。具体的には、注目位置が設計パターンの隅に位置するほど大きくなる関数の値をスコアに乗算する。
また、X方向スコアとY方向スコアとの一方が極端に小さい、すなわち、悪いスコアである場合、X方向またはY方向の位置検出精度が低くなるため、当該注目画像91は基準位置画像には適さない。そこで、スコア修正部541は、このようなスコアを0に変更する。これにより、当該注目画像91は、基準位置画像の候補から実質的に外される。スコア修正部541によるスコアの修正として他の処理が行われてもよい。スコア修正部541によりスコアが修正されることにより、各注目位置に対応する最終的なスコアが取得される(ステップS31)。
図11は、スコアの分布を例示する図である。図11の各マス目の中心位置が注目位置に対応する。注目位置のスコアの大きさを、対応するマス目における平行斜線の密度により表現している。以上のように、スコア取得部54では、少なくとも第1総長さおよび第2総長さを用いて、注目位置におけるスコアが求められる。ステップS31は、ステップS26の直後に行われてもよい。
次に、組み合わせスコア取得部55は、複数の注目位置の組み合わせに関する組み合わせスコアを取得する(ステップS32)。注目位置のスコアが高くても、当該注目位置は基準位置として採用するには不適切な場合がある。例えば、スコアの高い注目位置同士が近接している場合、これらの注目位置の全てを基準位置として採用しても回路基板9の歪みの検出精度はあまり向上しない。また、近接している複数の位置で撮像を行うには、回路基板9の移動と撮像部15の移動とを複雑に行う必要があり、撮像に要する時間が長くなってしまう。組み合わせスコアは、複数の注目位置の配置条件等を考慮した上で複数の注目位置が複数の基準位置に適する度合いを示す値である。
撮像の際に撮像部15を撮像部移動方向であるY方向に移動すると、撮像部15の撮像方向が僅かに変化する虞がある。撮像方向は僅かに変化しても撮像位置は大きく変化するため、撮像位置のキャリブレーションが必要となる。その結果、撮像に要する時間が長くなる。そこで、組み合わせスコア取得部55では、まず、撮像部15を移動することなく全ての撮像を行うことができる場合を優先して組み合わせスコアを求める。
回路基板9の内部の歪みも検出する場合、Y方向における回路基板9の両端および中央近傍に基準位置が存在することが好ましい。したがって、撮像部15の数が2以下の場合は、回路基板9の基板移動方向であるX方向への移動は最低2回必要であり、回路基板9の移動の往路と復路との間で撮像部15のY方向への移動が行われる。
一方、本実施の形態のように、撮像部15の数が3以上の場合、回路基板9の移動を複数回行わなくても、撮像部15を静止させた状態で回路基板9のY方向の両側および内部で撮像することができる。そのため、撮像部15を移動することなく回路基板9を1回だけX方向に移動することにより必要な撮像を行うという設定が可能となる。
本実施の形態では、組み合わせスコア取得部55は、撮像部15が干渉しないという条件を満たしつつ、X方向に直線状に並ぶ注目位置の列を撮像部15の数だけ選択する。パターン描画装置1の場合、Y方向の任意の4つの位置においてX方向に並ぶ注目位置の列が選択される。これら4列の任意の2つの間のY方向の距離は、撮像部15が干渉しない距離である。さらに、注目位置の各列において、所望の数の注目位置が選択される。選択される注目位置の間の距離は、予め定められた距離以上である。例えば、各列において、間隔をあけて任意の5個の注目位置が選択され、合計20個の注目位置が選択される。
組み合わせスコア取得部55は、選択された注目位置のスコアの合計を組み合わせスコアとして取得する。組み合わせスコア取得部55は、選択される列を固定した状態で各列から選択される注目位置を変更しつつ組み合わせスコアを繰り返し求める。さらに、組み合わせスコア取得部55は、選択される列を変更して上記組み合わせスコアの算出を繰り返す。このような処理を繰り返すことにより、選択される注目位置を様々に変更した組み合わせスコアが取得される。
基準位置決定部56が基準位置を自動的に決定する場合は、基準位置決定部56は最も組み合わせスコアが高い注目位置の組み合わせを複数の基準位置として決定する(ステップS33)。しかし、実際には自動的には反映することができない条件もあり、好ましくは、基準位置決定部56は、組み合わせスコアが高い複数組の注目位置を候補基準位置としてディスプレイ75(図3参照)に順次表示し、操作者による候補基準位置の組合せの選択を入力部76を介して受け付ける。これにより、操作者が好ましいと考える候補基準位置の組合せが複数の基準位置として決定される(ステップS33)。
例えば、撮像画像と注目画像とのパターンマッチングにおいて複数の位置にて同程度の強度でマッチングが生じる虞がある場合、このような注目位置は基準位置の候補から除かれる。あるいは、候補基準位置が想定よりも偏って存在する場合、このような候補基準位置の組み合わせは候補から除外される。
本実施の形態の場合、候補基準位置の組合せは複数の撮像部15と同数の列上に存在する。図12は、以上のようにして決定された基準位置に対応するマス目を例示する図である。中心位置が基準位置であるマス目に符号93を付している。また、基準位置が存在する4つの列94を太線にて囲む。基準位置画像取得部57は、基準位置を中心とする注目画像を基準位置画像として取得する(ステップS34)。1つのマス目の大きさが注目画像に等しい場合は、符号93にて示すマス目は基準位置画像に相当する。
基準位置取得装置として機能するコンピュータ171の上記処理により、パターン描画装置1に適した複数の基準位置および対応する基準位置画像が容易に取得される。その結果、設計パターンに専用のアライメントマークを含める必要がなくなり、かつ、高精度の位置検出が可能となる。複数の基準位置が、撮像部移動方向に対応するY方向において、複数の撮像部15の数以下、かつ、複数の撮像部15が配置可能な位置のみに存在する場合は、撮像部15を移動することなく回路基板9を基板移動方向に1回移動するだけで適切な撮像画像が取得される。そして、回路基板9の精度の高い歪み分布が求められ、既存のパターン上に精度よく上層のパターンを描画することが実現される。
図11では、注目位置は離散的に存在するが、各画素が注目位置として扱われてもよい。スコアは画素毎に求められる。すなわち、スコアは2次的かつほぼ連続的に求められる。図13は、このようにして求められたスコアの分布の例を示す図である。上記説明と同様の処理により、スコアの分布に基づいて、撮像部15と同数の列に存在する注目位置の組合せが基準位置として決定される。図13では、注目位置の列94の位置を、図12と同様の幅を有する太線の矩形にて表現し、基準位置画像に符号93を付している。注目位置の数を増やすことにより、基準位置の決定に要する時間は増大するが、より適切な複数の基準位置を決定することができる。
以上に説明したように、コンピュータ171では、基準位置の決定に際して、基準位置が設計パターン内においてどれだけ隅に位置するか、基準位置が基板移動方向に並ぶか否か、基準位置が基板移動方向に並ぶ列の数が撮像部15の数を超えるか否か、基準位置にて撮像を行う際に撮像部15が干渉するか否か、全ての基準位置にて撮像を行う際にどれだけ時間を要するか等が参照される。そして、上記条件の範囲内で注目位置のスコアおよび組み合わせスコアを求めることにより、基準位置が決定される。
ステップS22,S24にて利用される設計パターンのデータは、ラスタデータには限定されない。例えば、ベクトルデータから対称図形を抽出し、さらにこれらの図形に重なる図形を検出して第1形状および第2形状が取得されてもよい。ただし、ラスタデータから第1形状および第2形状を取得する場合は図形の重なりを考慮する必要がないため、演算処理が容易となる。
上記説明では、撮像部15の数に等しい数の注目位置の列を選択した上で組み合わせスコアを求めるが、全ての列毎に注目位置のスコアの合計を求め、合計スコアに基づいて注目位置の列の選択が行われてもよい。特に、図13の場合のように注目位置の列の数が多数存在する場合は、この手法により演算時間を大幅に短縮することができる。また、スコアの高い注目位置を基準位置の候補としてある程度絞り込んだ後に、注目位置の列の選択が行われてもよい。
撮像に多くの時間を費やすことができる場合は、撮像部15を撮像部移動方向に多数回移動することが許容されるため、注目位置の列という概念を用いることなく基準位置の選択が行われてもよい。この場合、例えば、候補基準位置の組合せではなく、スコアに基づいて複数の候補基準位置が単純に決定される。そして、候補基準位置がディスプレイ75に表示され、入力部76が複数の候補基準位置の一部の選択を操作者から受け付けることにより、複数の基準位置が決定される。以上のように、スコアに基づいて様々な手法により複数の基準位置が決定され、対応する複数の基準位置画像が取得されてよい。
上記実施の形態にて説明した基準位置および基準位置画像を取得する技術は、回路基板の歪みの検出以外にも利用可能である。一般的に表現すれば、設計上のパターンである設計パターンからの回路基板上の実際のパターンのずれ量を検出することが求められる様々な技術に利用可能である。
例えば、他の好ましい利用分野として、ステッパにて、回路基板上に光を照射してパターンを記録する場合を挙げることができる。この場合、図14に示すように、回路基板90上に複数回、パターン901が記録された後に、基準位置および基準位置画像を取得する上記技術を利用することにより、パターン901の記録位置のずれ量、すなわち、パターン901の設計値からの回転および平行移動の量を容易に検出することができる。検出されたずれ量は、後工程のパターンの記録や品質管理に利用される。さらには、パターンの位置ずれの要因は、回路基板の歪みや記録位置のずれ等の1つの要因に限定される必要はなく、複数の要因の結果として現れるずれ量の検出に上記技術が利用されてもよい。
パターン描画装置1および基準位置取得装置として機能するコンピュータ171の構成および動作は、様々に変形されてよい。
例えば、コンピュータ171の動作順序は、可能な範囲内で様々に変更されてよい。パターン描画装置1の動作についても同様である。
撮像部15の数は1つでもよい。撮像部15が複数の場合、全ての撮像部15が撮像部移動方向に移動可能でなくてもよい。
図1のパターン描画装置1は、いわゆる枚葉式であるが、回路基板をロール状に保持して繰り出しながら連続的にパターンを描画する、いわゆるロール・トゥ・ロール方式であってもよい。この場合、回路基板は撮像部および描画部の下を1回だけ通過するワンパス方式が好ましい。また、ロール・トゥ・ロール方式の場合、撮像部15は、幅方向全体を撮像するラインセンサでもよい。回路基板9の材質も様々なものであってよい。
上記実施の形態および各変形例における構成は、相互に矛盾しない限り適宜組み合わされてよい。
1 パターン描画装置
9 回路基板
13 描画部
15 撮像部
71 CPU(演算部)
74 固定ディスク(記憶部)
80 プログラム
81 設計パターンデータ
91 注目画像
93 基準位置画像
171 コンピュータ(基準位置取得装置)
701 ずれ量取得部
702 歪み算出部
921 第1形状
S11〜S15,S21〜S27,S31〜S34 ステップ

Claims (13)

  1. 設計上のパターンである設計パターンからの回路基板上の実際のパターンのずれ量を検出するための複数の基準位置および対応する複数の基準位置画像を設計パターンから取得する基準位置取得方法であって、
    a)設計パターンから注目位置を中心とする予め定められた範囲を注目画像として抽出する工程と、
    b)前記注目画像において、第1方向に平行な軸に対して対称な第1形状を取得する工程と、
    c)前記第1方向における前記第1形状の長さの合計である第1総長さを取得する工程と、
    d)前記注目画像において、前記第1方向に垂直な第2方向に平行な軸に対して対称な第2形状を取得する工程と、
    e)前記第2方向における前記第2形状の長さの合計である第2総長さを取得する工程と、
    f)少なくとも前記第1総長さおよび前記第2総長さを用いて、前記注目位置におけるスコアを求める工程と、
    g)前記a)ないしf)工程を繰り返すことにより、複数の注目位置に対応する複数のスコアを求める工程と、
    h)前記複数のスコアに基づいて複数の基準位置を決定し、対応する複数の基準位置画像を取得する工程と、
    を備えることを特徴とする基準位置取得方法。
  2. 請求項1に記載の基準位置取得方法であって、
    前記b)およびd)工程が、前記注目画像から円または矩形を取得する工程を含むことを特徴とする基準位置取得方法。
  3. 請求項1または2に記載の基準位置取得方法であって、
    前記f)工程において、前記注目位置と前記設計パターンが存在する領域の外周との間の距離も用いて、前記注目位置におけるスコアが求められることを特徴とする基準位置取得方法。
  4. 請求項1ないし3のいずれかに記載の基準位置取得方法であって、
    前記h)工程において、前記複数のスコアに基づいて決定された複数の候補基準位置が表示され、前記複数の候補基準位置の一部の選択を操作者から受け付けることにより、前記複数の基準位置が決定されることを特徴とする基準位置取得方法。
  5. 請求項1ないし4のいずれかに記載の基準位置取得方法であって、
    前記h)工程において、パターン描画装置が全ての基準位置にて撮像を行う際に要する時間も参照して、前記複数の基準位置が決定されることを特徴とする基準位置取得方法。
  6. 請求項1ないし5のいずれかに記載の基準位置取得方法であって、
    前記第1方向および前記第2方向の一方が、パターン描画装置において複数の撮像部に対して回路基板が移動する基板移動方向に対応し、他方が、前記複数の撮像部の少なくとも一部が移動可能な撮像部移動方向に対応し、
    前記h)工程にて決定される複数の基準位置が、前記撮像部移動方向に対応する方向において、前記複数の撮像部の数以下、かつ、前記複数の撮像部が配置可能な位置のみに存在することを特徴とする基準位置取得方法。
  7. 請求項1ないし6のいずれかに記載の基準位置取得方法であって、
    前記b)およびd)工程において利用される前記設計パターンを示すデータが、ラスタデータであることを特徴とする基準位置取得方法。
  8. 設計上のパターンである設計パターンからの回路基板上の実際のパターンのずれ量を検出するための複数の基準位置および対応する基準位置画像を設計パターンから取得する基準位置取得装置であって、
    前記設計パターンを示すデータを記憶する記憶部と、
    演算部と、
    を備え、
    前記演算部が、前記設計パターンを示すデータに対して、請求項1ないし7のいずれかに記載の基準位置取得方法を実行することを特徴とする基準位置取得装置。
  9. 回路基板にパターンを描画するパターン描画方法であって、
    請求項1ないし7のいずれかに記載の基準位置取得方法により複数の基準位置および対応する複数の基準位置画像を準備する工程と、
    前記複数の基準位置にて前記回路基板を撮像し、複数の撮像画像を取得する工程と、
    前記複数の基準位置画像のそれぞれと、対応する撮像画像とを比較することにより、各撮像画像の基準位置からのずれ量を取得する工程と、
    前記ずれ量を参照して、前記回路基板上にパターンを描画する工程と、
    を備えることを特徴とするパターン描画方法。
  10. 請求項9に記載のパターン描画方法であって、
    前記パターンを描画する工程が、前記各撮像画像の前記ずれ量から前記回路基板の歪み分布を求める工程を含むことを特徴とするパターン描画方法。
  11. 回路基板にパターンを描画するパターン描画装置であって、
    請求項1ないし7のいずれかに記載の基準位置取得方法により取得された複数の基準位置および対応する複数の基準位置画像を記憶する記憶部と、
    前記複数の基準位置にて前記回路基板を撮像し、複数の撮像画像を取得する少なくとも1つの撮像部と、
    前記複数の基準位置画像のそれぞれと、対応する撮像画像とを比較することにより、各撮像画像の基準位置からのずれ量を取得するずれ量取得部と、
    前記ずれ量を参照して、前記回路基板上にパターンを描画する描画部と、
    を備えることを特徴とするパターン描画装置。
  12. 請求項11に記載のパターン描画装置であって、
    前記各撮像画像の前記ずれ量から前記回路基板の歪み分布を求める歪み算出部をさらに備え、
    前記描画部が、前記歪み分布を参照して前記回路基板上にパターンを描画することを特徴とするパターン描画装置。
  13. 設計上のパターンである設計パターンからの回路基板上の実際のパターンのずれ量を検出するための複数の基準位置および対応する複数の基準位置画像を設計パターンからコンピュータに取得させるプログラムであって、前記プログラムの前記コンピュータによる実行は、前記コンピュータに、
    a)設計パターンから注目位置を中心とする予め定められた範囲を注目画像として抽出する工程と、
    b)前記注目画像において、第1方向に平行な軸に対して対称な第1形状を取得する工程と、
    c)前記第1方向における前記第1形状の長さの合計である第1総長さを取得する工程と、
    d)前記注目画像において、前記第1方向に垂直な第2方向に平行な軸に対して対称な第2形状を取得する工程と、
    e)前記第2方向における前記第2形状の長さの合計である第2総長さを取得する工程と、
    f)少なくとも前記第1総長さおよび前記第2総長さを用いて、前記注目位置におけるスコアを求める工程と、
    g)前記a)ないしf)工程を繰り返すことにより、複数の注目位置に対応する複数のスコアを求める工程と、
    h)前記複数のスコアに基づいて、複数の基準位置および対応する複数の基準位置画像を決定する工程と、
    を実行させることを特徴とするプログラム。
JP2016021581A 2015-03-30 2016-02-08 基準位置取得方法、基準位置取得装置、パターン描画方法、パターン描画装置およびプログラム Active JP6608299B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201610183193.8A CN106019851B (zh) 2015-03-30 2016-03-28 基准位置获取方法、基准位置获取装置、图案描绘方法、图案描绘装置、以及记录程序的记录媒体
KR1020160037746A KR20160117302A (ko) 2015-03-30 2016-03-29 기준 위치 취득 방법, 기준 위치 취득 장치, 패턴 묘화 방법, 패턴 묘화 장치 및 기록 매체에 기록된 프로그램
TW105109906A TWI613527B (zh) 2015-03-30 2016-03-29 基準位置取得方法、基準位置取得裝置、圖案描繪方法、圖案描繪裝置及記錄程式之記錄媒體

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015068667 2015-03-30
JP2015068667 2015-03-30

Publications (2)

Publication Number Publication Date
JP2016191907A true JP2016191907A (ja) 2016-11-10
JP6608299B2 JP6608299B2 (ja) 2019-11-20

Family

ID=57246632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016021581A Active JP6608299B2 (ja) 2015-03-30 2016-02-08 基準位置取得方法、基準位置取得装置、パターン描画方法、パターン描画装置およびプログラム

Country Status (2)

Country Link
JP (1) JP6608299B2 (ja)
TW (1) TWI613527B (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653118A (ja) * 1992-07-29 1994-02-25 Nikon Corp 位置検出方法
JP2003037041A (ja) * 2001-07-23 2003-02-07 Fujitsu Ltd パターン検出方法、パターン検査方法およびパターン修正、加工方法
JP2007149055A (ja) * 2005-05-19 2007-06-14 Nano Geometry Kenkyusho:Kk パターン検査装置および方法
JP2007288098A (ja) * 2006-04-20 2007-11-01 Nikon Corp 試験システム、試験方法、及び試験プログラム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7420676B2 (en) * 2004-07-28 2008-09-02 Asml Netherlands B.V. Alignment method, method of measuring front to backside alignment error, method of detecting non-orthogonality, method of calibration, and lithographic apparatus
WO2006019166A1 (ja) * 2004-08-19 2006-02-23 Nikon Corporation アライメント情報表示方法とそのプログラム、アライメント方法、露光方法、デバイス製造方法、表示システム、表示装置、プログラム及び測定/検査装置
JP6360287B2 (ja) * 2013-08-13 2018-07-18 キヤノン株式会社 リソグラフィ装置、位置合わせ方法、および物品の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653118A (ja) * 1992-07-29 1994-02-25 Nikon Corp 位置検出方法
JP2003037041A (ja) * 2001-07-23 2003-02-07 Fujitsu Ltd パターン検出方法、パターン検査方法およびパターン修正、加工方法
JP2007149055A (ja) * 2005-05-19 2007-06-14 Nano Geometry Kenkyusho:Kk パターン検査装置および方法
JP2007288098A (ja) * 2006-04-20 2007-11-01 Nikon Corp 試験システム、試験方法、及び試験プログラム

Also Published As

Publication number Publication date
TWI613527B (zh) 2018-02-01
JP6608299B2 (ja) 2019-11-20
TW201702751A (zh) 2017-01-16

Similar Documents

Publication Publication Date Title
KR102569650B1 (ko) 결함 검사 장치, 결함 검사 프로그램
US10102631B2 (en) Edge detection bias correction value calculation method, edge detection bias correction method, and edge detection bias correcting program
US10540561B2 (en) Inspection method and inspection apparatus
WO2014045508A1 (ja) 検査装置、検査方法、および検査プログラム
KR20220031114A (ko) 결함 검사 방법, 결함 검사 장치
JP2010025938A (ja) 画像処理方法、コンピューター読み取り可能な媒体および画像取り込みシステム
JP6342304B2 (ja) データ補正装置、描画装置、検査装置、データ補正方法、描画方法、検査方法およびプログラム
KR101653861B1 (ko) 묘화 데이터 생성 방법, 묘화 방법, 묘화 데이터 생성 장치, 및 묘화 장치
JP2006214816A (ja) 半導体検査装置
KR20160117302A (ko) 기준 위치 취득 방법, 기준 위치 취득 장치, 패턴 묘화 방법, 패턴 묘화 장치 및 기록 매체에 기록된 프로그램
JP6608299B2 (ja) 基準位置取得方法、基準位置取得装置、パターン描画方法、パターン描画装置およびプログラム
CN110543798A (zh) 二维码的识别方法及装置
KR102227341B1 (ko) 위치 어긋남량 취득 장치, 검사 장치, 위치 어긋남량 취득 방법 및 검사 방법
JP6355544B2 (ja) 位置測定装置、データ補正装置、位置測定方法およびデータ補正方法
JP6018802B2 (ja) 寸法測定装置、及びコンピュータープログラム
TWI660856B (zh) 電腦化直接書寫之改良系統及方法
JP6580407B2 (ja) 位置計測装置、データ補正装置、位置計測方法、およびデータ補正方法
JP6595870B2 (ja) 補正情報生成装置、描画装置、補正情報生成方法および描画方法
TWI585547B (zh) 光學特性取得裝置、位置測定裝置、資料補正裝置、光學特性取得方法、位置測定方法及資料補正方法
KR20110007033A (ko) 묘화 장치, 기록 매체 및 묘화 방법
JP2009285997A (ja) 画像欠陥検査方法および画像形成装置
US20110262005A1 (en) Object detecting method and non-transitory computer-readable recording medium storing an object detection program
JP7265899B2 (ja) オーバーレイ計測装置およびオーバーレイ計測方法
JP7512701B2 (ja) 印刷システム及び画像処理方法
JP4882304B2 (ja) 座標補正装置、座標補正方法、および、これに用いられるプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191023

R150 Certificate of patent or registration of utility model

Ref document number: 6608299

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250