JP2016188774A - Magnetic field detection device - Google Patents

Magnetic field detection device Download PDF

Info

Publication number
JP2016188774A
JP2016188774A JP2015068109A JP2015068109A JP2016188774A JP 2016188774 A JP2016188774 A JP 2016188774A JP 2015068109 A JP2015068109 A JP 2015068109A JP 2015068109 A JP2015068109 A JP 2015068109A JP 2016188774 A JP2016188774 A JP 2016188774A
Authority
JP
Japan
Prior art keywords
magnetic field
resistance change
magnetic
detection device
guard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015068109A
Other languages
Japanese (ja)
Other versions
JP6423749B2 (en
Inventor
佑貴 今井
Yuki Imai
佑貴 今井
安藤 秀人
Hideto Ando
秀人 安藤
貴史 野口
Takashi Noguchi
貴史 野口
雅之 尾花
Masayuki Obana
雅之 尾花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2015068109A priority Critical patent/JP6423749B2/en
Publication of JP2016188774A publication Critical patent/JP2016188774A/en
Application granted granted Critical
Publication of JP6423749B2 publication Critical patent/JP6423749B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic field detection device with which a magnetic field induced in Z direction by a magnetic field inductive layer is detected by a magnetic detection element having a sensitivity axis in X direction orthogonal to the induction direction and which has a structure that makes it possible to reduce influences due to a disturbance magnetic field in other than the Z direction.SOLUTION: A magnetic field component in Z direction is induced by a magnetic field inductive layer 30 and given to a magnetic detection element 20 in X direction that is the same as the direction of its sensitivity axis, whereby a detection output is obtained. A bridge circuit is composed of a plurality of magnetic detection elements 20 and is configured so that no outputs are produced for a magnetic field component in the X direction. However, when the magnetic field component in the X direction acts upon the magnetic detection elements 20, a bias occurs in the resistance change of the magnetic detection elements 20 and the linearity of magnetic field detection operation in the Z direction declines. Thus, a guard layer 40 is formed, which makes it possible to reduce influences exerted by a disturbance magnetic field on the magnetic detection elements 20.SELECTED DRAWING: Figure 1A

Description

本発明は、X−Y平面に沿って配置されたGMR素子などの磁気検知素子を使用して、GMR素子の感度軸と直交する向きの磁界成分を検知することができる磁界検知装置に関する。   The present invention relates to a magnetic field detection apparatus capable of detecting a magnetic field component in a direction orthogonal to the sensitivity axis of a GMR element using a magnetic detection element such as a GMR element arranged along an XY plane.

特許文献1に記載された磁界検知装置は、感度軸が水平方向(X方向)に向けられた磁気抵抗効果素子でブリッジ回路が構成されており、磁気抵抗効果素子には、垂直方向(Z方向)に延びる軟磁性材料で形成された磁性体が対向して設けられている。垂直方向の磁界成分は、磁性体によって誘導され、磁性体の下端部からの漏れ磁束のうちの水平方向(X方向)の成分が磁気抵抗効果素子で検知される。これにより、垂直方向の磁界の強度を検知することが可能となっている。   In the magnetic field detection device described in Patent Document 1, a bridge circuit is configured by a magnetoresistive effect element having a sensitivity axis directed in the horizontal direction (X direction). The magnetoresistive effect element includes a vertical direction (Z direction). And a magnetic body formed of a soft magnetic material extending in the opposite direction. The magnetic field component in the vertical direction is induced by the magnetic material, and the horizontal component (X direction) of the leakage magnetic flux from the lower end of the magnetic material is detected by the magnetoresistive element. Thereby, it is possible to detect the intensity of the magnetic field in the vertical direction.

この磁界検知装置では、外乱磁界の水平方向成分(X方向成分)に基づく検知出力が本来の検知出力に重畳されないことが必要である。そのため、水平方向(X方向)の磁界成分で個々の磁気抵抗効果素子の抵抗値が変化しても、その変化を相殺できるようにブリッジ回路が構成されている。   In this magnetic field detection device, it is necessary that the detection output based on the horizontal direction component (X direction component) of the disturbance magnetic field is not superimposed on the original detection output. Therefore, even when the resistance value of each magnetoresistive effect element changes due to a magnetic field component in the horizontal direction (X direction), the bridge circuit is configured so that the change can be canceled out.

WO 2011/068146 A1WO 2011/068146 A1

図7と図8は、特許文献1に記載されているような従来の磁界検知装置の課題を説明するための説明図である。図7(A)は、磁性体101とその下に対向する磁気抵抗効果素子102を平面図で示しており、図7(B)は、図7(A)をB矢視方向から見た端面図である。磁気抵抗効果素子102の感度軸の方向はX方向である。   7 and 8 are explanatory diagrams for explaining the problem of the conventional magnetic field detection device as described in Patent Document 1. FIG. FIG. 7A shows the magnetic body 101 and the magnetoresistive effect element 102 opposed thereto in a plan view, and FIG. 7B shows an end face of FIG. 7A viewed from the direction of arrow B. FIG. The direction of the sensitivity axis of the magnetoresistive effect element 102 is the X direction.

図7(B)に示すように、測定しようとする垂直方向の磁界Hzは、磁性体101によってZ方向へ誘導され、磁性体101の下端部からの洩れ磁界Hz1が磁気抵抗効果素子102に与えられる。磁気抵抗効果素子102は、洩れ磁界Hz1のX方向成分の強度に応じて抵抗値が変化するため、ブリッジ回路の検知出力を得ることで、磁界成分Hzの強さを検知することができる。   As shown in FIG. 7B, the vertical magnetic field Hz to be measured is induced in the Z direction by the magnetic body 101, and the leakage magnetic field Hz 1 from the lower end of the magnetic body 101 is given to the magnetoresistive effect element 102. It is done. Since the resistance value of the magnetoresistive effect element 102 changes according to the strength of the X direction component of the leakage magnetic field Hz1, the strength of the magnetic field component Hz can be detected by obtaining the detection output of the bridge circuit.

磁界検知装置に外乱磁界である感度軸と同じ方向のX方向の磁界Hxが作用したときに、個々の磁気抵抗効果素子の抵抗値が変化する。同じく外乱磁界であるY方向の磁界Hyの場合は、磁界の向きが磁気抵抗効果素子の感度軸と直交しているために感度に影響を与えないように思えるが、実際には、図7(A)に示すように、Y方向の磁界Hyのうちの磁性体101に入り込む磁界Hy1と、磁性体101から出る磁界Hy2がX方向の磁界成分を含んでいるため、Y方向の磁界Hyによっても個々の磁気抵抗効果素子の抵抗値が変化する。   When a magnetic field Hx in the X direction in the same direction as the sensitivity axis that is a disturbance magnetic field acts on the magnetic field detection device, the resistance value of each magnetoresistive element changes. Similarly, in the case of the magnetic field Hy in the Y direction, which is a disturbance magnetic field, it seems that the direction of the magnetic field is orthogonal to the sensitivity axis of the magnetoresistive effect element, so that it does not affect the sensitivity. As shown in A), the magnetic field Hy1 entering the magnetic body 101 and the magnetic field Hy2 exiting the magnetic body 101 out of the magnetic field Hy in the Y direction include a magnetic field component in the X direction. The resistance value of each magnetoresistive element changes.

前述のとおり、磁気抵抗効果素子に対してX方向の磁界HxまたはY方向の磁界Hyが一律に作用したときには、磁気抵抗効果素子の抵抗値の変化を相殺できるようにブリッジ回路が構成されている。しかし、X方向の磁界HxまたはY方向の磁界Hyが大きくなると、図8に示すように、個々の磁気抵抗効果素子の感度のバランスが低下する新たな課題が生じる。   As described above, when the magnetic field Hx in the X direction or the magnetic field Hy in the Y direction acts uniformly on the magnetoresistive effect element, the bridge circuit is configured so as to cancel the change in the resistance value of the magnetoresistive effect element. . However, when the magnetic field Hx in the X direction or the magnetic field Hy in the Y direction is increased, as shown in FIG. 8, there is a new problem that the balance of sensitivity of the individual magnetoresistive elements is lowered.

図8は、横軸が磁気抵抗効果素子に作用するX方向の磁界の強度Hを示し、縦軸が個々の磁気抵抗効果素子の抵抗変化ΔRを示している。磁気抵抗効果素子の特性としては、磁界Hの原点(O)付近で、磁界強度Hの変化に対して抵抗変化ΔRのリニアリティが確保できているが、磁界強度が原点(O)よりもX方向の(+)側または(−)側にシフトすると、リニアリティが低下する特性を有している。外乱磁界である磁界HxまたはHyが作用し、磁気抵抗効果素子に感度軸方向であるX方向にバイアス磁界H01が作用すると、その時点で磁気抵抗効果素子の抵抗変化ΔRが既にバイアス値ΔR01となっている。その状態のまま、本来測定すべき垂直方向の磁界Hzが作用したときには、その磁界Hzの強度変化に対して抵抗変化ΔRのリニアリティを確保できなくなる。その結果、ブリッジ回路から得られる検知出力の感度が、外部磁界の(+)側と(−)側とで相違することになり、感度のバランスを確保することができなくなる。   In FIG. 8, the horizontal axis indicates the strength H of the magnetic field in the X direction acting on the magnetoresistive effect element, and the vertical axis indicates the resistance change ΔR of each magnetoresistive effect element. As a characteristic of the magnetoresistive effect element, the linearity of the resistance change ΔR can be secured with respect to the change of the magnetic field strength H near the origin (O) of the magnetic field H, but the magnetic field strength is X direction more than the origin (O). When shifting to the (+) side or the (−) side of this, the linearity is lowered. When a magnetic field Hx or Hy that is a disturbance magnetic field acts and a bias magnetic field H01 acts on the magnetoresistive effect element in the X direction that is the sensitivity axis direction, the resistance change ΔR of the magnetoresistive effect element at that time already becomes the bias value ΔR01. ing. When the vertical magnetic field Hz to be measured is applied in that state, the linearity of the resistance change ΔR cannot be ensured with respect to the intensity change of the magnetic field Hz. As a result, the sensitivity of the detection output obtained from the bridge circuit is different between the (+) side and the (−) side of the external magnetic field, and the balance of sensitivity cannot be ensured.

本発明は上記従来の課題を解決するものであり、外乱磁界による感度のバランスの低下を補償できる構造とした磁界検知装置を提供することを目的としている。   SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object thereof is to provide a magnetic field detection device having a structure capable of compensating for a reduction in sensitivity balance due to a disturbance magnetic field.

本発明は、3軸が直交するX−Y−Z座標のX−Y平面に沿って配置された磁気検知素子と、Z方向に高さを有してZ方向の磁界成分をX方向へ誘導して前記磁気検知素子に与える磁界誘導層と、を有する磁界検知装置において、
X方向に感度軸を有する前記磁気検知素子によって抵抗変化部が構成されて、複数の前記抵抗変化部が接続されてブリッジ回路が構成され、それぞれの抵抗変化部に前記磁界誘導層が対向しており、
磁性材料で形成されたガード層が設けられ、前記ガード層は、X方向に間隔を空けて配置された複数の前記抵抗変化部の前記間隔内を通過してY方向に延びる縦ガード部と、前記縦ガード部のY方向の両端部と連続してX方向に延びる一対の横ガード部とを有することを特徴とするものである。
The present invention relates to a magnetic sensing element arranged along an XY plane of an XYZ coordinate in which three axes are orthogonal to each other, and a magnetic field component in the Z direction having a height in the Z direction in the X direction. In the magnetic field detection device having a magnetic field induction layer applied to the magnetic detection element,
The magnetic sensing element having a sensitivity axis in the X direction forms a resistance change portion, and a plurality of the resistance change portions are connected to form a bridge circuit, and the magnetic field induction layer is opposed to each resistance change portion. And
A guard layer made of a magnetic material is provided, and the guard layer passes through the interval between the plurality of resistance change portions arranged at intervals in the X direction and extends in the Y direction; and It has a pair of horizontal guard part extended in the X direction continuously with the both ends of the Y direction of the said vertical guard part, It is characterized by the above-mentioned.

本発明の磁界検知装置は、同じ方向の外部磁界に対して相反する抵抗変化を示す第1の抵抗変化部と第3の抵抗変化部とがX方向の一方の側に配置され、同じ方向の外部磁界に対して相反する抵抗変化を示す第2の抵抗変化部と第4の抵抗変化部とがX方向の他方の側に配置されており、
第1の抵抗変化部ならびに第3の抵抗変化部と、第2の抵抗変化部ならびに第4の抵抗変化部との間の前記間隔内に前記縦ガード部が配置され、Y方向に間隔を空けて形成された一対の前記横ガード部の間に、第1の抵抗変化部ならびに第3の抵抗変化部と、第2の抵抗変化部ならびに第4の抵抗変化部とがそれぞれ配置されているものとして構成できる。
In the magnetic field detection device of the present invention, the first resistance change portion and the third resistance change portion showing resistance changes opposite to the external magnetic field in the same direction are arranged on one side in the X direction, A second resistance change section and a fourth resistance change section showing resistance changes opposite to the external magnetic field are arranged on the other side in the X direction;
The vertical guard portion is disposed within the space between the first resistance change portion and the third resistance change portion and the second resistance change portion and the fourth resistance change portion, and is spaced in the Y direction. A first resistance change portion and a third resistance change portion, and a second resistance change portion and a fourth resistance change portion are respectively disposed between the pair of lateral guard portions formed in this manner. Can be configured as

本発明の磁界検知装置では、前記ガード層は、前記磁界誘導層と同じ磁性材料で形成されていることが好ましい。   In the magnetic field detection apparatus of the present invention, it is preferable that the guard layer is formed of the same magnetic material as the magnetic field induction layer.

また、前記ガード層のZ方向の高さ寸法は、前記磁界誘導層の高さ寸法と同じかまたはそれよりも低いことが好ましい。   The height dimension of the guard layer in the Z direction is preferably equal to or lower than the height dimension of the magnetic field induction layer.

本発明の磁界検知装置は、前記抵抗変化部は、前記縦ガード部に対してX方向の両側に対称に配置されていることが好ましい。   In the magnetic field detection device of the present invention, it is preferable that the resistance change portion is disposed symmetrically on both sides in the X direction with respect to the vertical guard portion.

さらに、本発明の磁界検知装置は、前記抵抗変化部とX方向に並ぶ領域に、X方向またはY方向の磁界成分を検知する他方向磁界検知装置が配置されるものであってもよい。   Furthermore, in the magnetic field detection device of the present invention, an other-direction magnetic field detection device that detects a magnetic field component in the X direction or the Y direction may be disposed in a region aligned with the resistance change unit in the X direction.

この場合には、前記抵抗変化部と前記他方向磁界検知装置との隣接部に、Y方向に延びるガード部が存在していないことが好ましい。   In this case, it is preferable that a guard portion extending in the Y direction does not exist in an adjacent portion between the resistance change portion and the other-direction magnetic field detection device.

また、前記横ガード部の前記他方向磁界検知装置に向けられるX側の端部は、前記磁界誘導層よりも、前記他方向磁界検知装置に近づく方向へ突出していないことが好ましい。   Moreover, it is preferable that the X-side end portion of the lateral guard portion facing the other-direction magnetic field detection device does not protrude in a direction closer to the other-direction magnetic field detection device than the magnetic field induction layer.

さらに、前記抵抗変化部と、前記他方向磁界検知装置に設けられる他の抵抗変化部が、同じチップ内に設けられていることが好ましい。   Furthermore, it is preferable that the resistance change unit and the other resistance change unit provided in the other-direction magnetic field detection device are provided in the same chip.

本発明の磁界検知装置は、磁性材料で形成されたガード層の縦ガード部によって、Y方向の外乱磁界を誘導でき、一対の横ガード部によってX方向とY方向の外乱磁界を誘導できるため、測定しようとするZ方向の磁界以外の外乱磁界が磁気検知素子に大きく作用するのを防止でき、図8に示した感度のバランスの低下を低減することができる。   The magnetic field detection device of the present invention can induce a disturbance magnetic field in the Y direction by the vertical guard portion of the guard layer formed of a magnetic material, and can induce a disturbance magnetic field in the X direction and the Y direction by the pair of lateral guard portions. It is possible to prevent a disturbance magnetic field other than the magnetic field in the Z direction to be measured from acting on the magnetic sensing element, and to reduce the decrease in sensitivity balance shown in FIG.

また、前記ガード層は縦ガード部と横ガード部とから構成され、抵抗変化部のX方向の左右両側に、Y方向に延びるガード部が存在していないため、X方向に並ぶ位置にX方向またはY方向の磁界成分を検知する他の抵抗変化部を配置した構造を採用した場合に、ガード部に引き込まれる外乱磁界、またはガード部から出る外乱磁界が、他の抵抗変化部に対して感度軸方向のバイアス磁界を与えることを抑制できる。   The guard layer is composed of a vertical guard portion and a horizontal guard portion, and there are no guard portions extending in the Y direction on both the left and right sides of the resistance change portion in the X direction. Or, when adopting a structure in which another resistance change part that detects the magnetic field component in the Y direction is used, the disturbance magnetic field drawn into the guard part or the disturbance magnetic field coming out of the guard part is sensitive to other resistance change parts. Application of an axial bias magnetic field can be suppressed.

本発明の実施の形態の磁界検知装置の全体構造を示す平面図、The top view which shows the whole structure of the magnetic field detection apparatus of embodiment of this invention, 図1Aに示す磁気検知装置において、磁気誘導層とガード層を除去した状態を示す平面図、The top view which shows the state which removed the magnetic induction layer and the guard layer in the magnetic detection apparatus shown to FIG. 1A, 図1に示す磁界検知装置の等価回路図、1 is an equivalent circuit diagram of the magnetic field detection device shown in FIG. 磁界検知装置に設けられている磁気検知素子の拡大断面図、An enlarged sectional view of a magnetic sensing element provided in the magnetic field sensing device, (A)は、磁界誘導層で誘導された磁界成分が第1の抵抗変化部と第2の抵抗変化部で検知される動作を示す説明図、(B)は、磁界誘導層で誘導された磁界成分が第3の抵抗変化部と第4の抵抗変化部で検知される動作を示す説明図、(A) is explanatory drawing which shows the operation | movement by which the magnetic field component induced | guided | derived by the magnetic field induction layer is detected by the 1st resistance change part and the 2nd resistance change part, (B) was induced | guided | derived by the magnetic field induction layer Explanatory drawing which shows the operation | movement by which a magnetic field component is detected by the 3rd resistance change part and the 4th resistance change part, (A)は、第1の抵抗変化部と第2の抵抗変化部にX方向の外部磁界が印加された状態を示す説明図、(B)は、第3の抵抗変化部と第4の抵抗変化部にX方向の外部磁界が印加された状態を示す説明図、(A) is explanatory drawing which shows the state in which the external magnetic field of the X direction was applied to the 1st resistance change part and the 2nd resistance change part, (B) is the 3rd resistance change part and 4th resistance. Explanatory drawing which shows the state in which the external magnetic field of the X direction was applied to the change part, ガード層による磁界誘導効果を説明図する説明図、Explanatory drawing explaining the magnetic field induction effect by the guard layer, (A)は従来の課題を説明するための磁性体と磁気抵抗効果素子の配置の概略構造を示す平面図、(B)は(A)のB矢視の端面図、(A) is a top view which shows the schematic structure of arrangement | positioning of the magnetic body and magnetoresistive effect element for demonstrating the conventional subject, (B) is an end elevation view of the arrow B of (A), 従来の課題を説明するためのものであり、磁気抵抗効果素子の感度の特性を示す線図、For explaining the conventional problem, a diagram showing the sensitivity characteristics of the magnetoresistive effect element,

図1Aに示す磁界検知装置Szは外部磁界のうちのZ方向の成分を検知するものである。磁界検知装置Szは、外部磁界のうちのX方向の成分を検知する磁界検知装置SxならびにY方向の成分を検知する磁界検知装置Syと組み合わされて、直交する3方向の外部磁界を検知できるものとなる。この磁界検知装置は地磁気センサなどとして使用される。   A magnetic field detection device Sz shown in FIG. 1A detects a component in the Z direction of an external magnetic field. The magnetic field detection device Sz can detect an external magnetic field in three orthogonal directions in combination with a magnetic field detection device Sx that detects a component in the X direction of an external magnetic field and a magnetic field detection device Sy that detects a component in the Y direction. It becomes. This magnetic field detection device is used as a geomagnetic sensor.

図1Aでは、Z方向の磁界を検知する本発明の実施の形態の磁界検知装置SzのX1方向に隣接する位置に、Y方向の磁界を検知する磁界検知装置Syが並んで配置されている。   In FIG. 1A, a magnetic field detection device Sy that detects a magnetic field in the Y direction is arranged side by side at a position adjacent to the X1 direction of the magnetic field detection device Sz of the embodiment of the present invention that detects a magnetic field in the Z direction.

図1Bには、磁界検知装置Szの上部に位置する磁界誘導層30とガード層40が除去された状態が示されている。この図に示すように、磁界検知装置Szは、基板11上に、第1の抵抗変化部1と第2の抵抗変化部2ならびに第3の抵抗変化部3と第4の抵抗変化部4が、X−Y平面に沿って形成されている。抵抗変化部1,2,3,4はいずれもY方向に長く延びるように形成されている。   FIG. 1B shows a state in which the magnetic field induction layer 30 and the guard layer 40 located above the magnetic field detection device Sz are removed. As shown in this figure, the magnetic field detection device Sz includes a first resistance change unit 1 and a second resistance change unit 2 as well as a third resistance change unit 3 and a fourth resistance change unit 4 on a substrate 11. , Along the XY plane. Each of the resistance change portions 1, 2, 3, 4 is formed to extend long in the Y direction.

図2の等価回路図にも示されているように、第1の抵抗変化部1と第3の抵抗変化部3とが直列に接続され、第2の抵抗変化部2と第4の抵抗変化部4とが直列に接続されている。第3の抵抗変化部3と第2の抵抗変化部2は配線部5aを介して端子5に接続され、端子5に電源電圧Vccが印加される。第1の抵抗変化部1と第4の抵抗変化部4との接続部は、配線部6aを介して端子6に接続され、端子6は接地されている。第1の抵抗変化部1と第3の抵抗変化部3との接続中間部は、配線部7aを介して第1の検知端子7に接続され、第2の抵抗変化部2と第4の抵抗変化部4との接続中間点は、配線部8aを介して第2の検知端子8に接続されている。   As shown in the equivalent circuit diagram of FIG. 2, the first resistance change unit 1 and the third resistance change unit 3 are connected in series, and the second resistance change unit 2 and the fourth resistance change are connected. The unit 4 is connected in series. The third resistance change unit 3 and the second resistance change unit 2 are connected to the terminal 5 through the wiring unit 5a, and the power supply voltage Vcc is applied to the terminal 5. A connection portion between the first resistance change unit 1 and the fourth resistance change unit 4 is connected to a terminal 6 through a wiring portion 6a, and the terminal 6 is grounded. A connection intermediate portion between the first resistance change unit 1 and the third resistance change unit 3 is connected to the first detection terminal 7 via the wiring unit 7a, and the second resistance change unit 2 and the fourth resistance are connected. An intermediate point of connection with the changing unit 4 is connected to the second detection terminal 8 via the wiring unit 8a.

上記フルブリッジ回路の第1の検知端子7の出力と第2の検知端子8の出力との差動出力が磁界検知装置Szの検知出力となる。   A differential output between the output of the first detection terminal 7 and the output of the second detection terminal 8 of the full bridge circuit becomes the detection output of the magnetic field detection device Sz.

図1Bに示すように、第1の抵抗変化部1には、Y方向へ細長い2個の磁気検知素子20が直列に接続されたものが2列に配置されている。それぞれの列では、Y方向に並ぶ2つの磁気検知素子20が中間電極部20aによって直列に接続されている。第1の抵抗変化部1では、2列に配置された磁気検知素子20のそれぞれの列のY1側の端部が導通連結層9aによって接続され、第1の抵抗変化部1は、磁気検知素子20の列がいわゆるミアンダパターンで接続されている。第4の抵抗変化部4は第1の抵抗変化部1と同じ構造で同じ平面パターンとなるように構成されている。第4の抵抗変化部4では、2列に配置された磁気検知素子20のY1側の端部が導通連結層9bで接続されている。   As shown in FIG. 1B, in the first resistance change section 1, two magnetic detection elements 20 elongated in series in the Y direction are arranged in two rows. In each row, two magnetic sensing elements 20 arranged in the Y direction are connected in series by an intermediate electrode portion 20a. In the first resistance change unit 1, the end portions on the Y1 side of each column of the magnetic detection elements 20 arranged in two rows are connected by the conductive coupling layer 9 a, and the first resistance change unit 1 Twenty columns are connected in a so-called meander pattern. The fourth resistance change unit 4 has the same structure as that of the first resistance change unit 1 and is configured to have the same planar pattern. In the fourth resistance change unit 4, end portions on the Y1 side of the magnetic detection elements 20 arranged in two rows are connected by a conductive coupling layer 9 b.

第2の抵抗変化部2は、Y方向に細長い磁気検知素子20が2列に設けられ、それぞれの列では、Y方向に並ぶ2つの磁気検知素子20が中間電極部20aによって直列に接続されている。2列の磁気検知素子20のそれぞれのY1側の端部が導通連結層9cで互いに接続されている。第3の抵抗変化部3は、第2の抵抗変化部2と同じ構造で同じパターンで形成されており、2列に設けられた磁気検知素子20のそれぞれの列のY1側が導通連結層9dで互いに接続されている。   The second resistance change unit 2 includes magnetic detection elements 20 elongated in the Y direction in two rows. In each row, two magnetic detection elements 20 arranged in the Y direction are connected in series by the intermediate electrode portion 20a. Yes. The end portions on the Y1 side of the two rows of magnetic sensing elements 20 are connected to each other by the conductive coupling layer 9c. The third resistance change unit 3 has the same structure and the same pattern as the second resistance change unit 2, and the Y1 side of each column of the magnetic sensing elements 20 provided in two columns is a conductive coupling layer 9 d. Are connected to each other.

配線部5a,6a,7a,8a,と端子5,6,7,8、ならびに導通連結層9a,9b,9c,9dは、銅や銀などの低抵抗材料で形成されている。   The wiring portions 5a, 6a, 7a, 8a, the terminals 5, 6, 7, 8 and the conductive connection layers 9a, 9b, 9c, 9d are formed of a low resistance material such as copper or silver.

図3には、抵抗変化部1,2,3,4のそれぞれに設けられた磁気検知素子20をY−Z面と平行な切断面で切断した断面図が示されている。   FIG. 3 shows a cross-sectional view of the magnetic sensing element 20 provided in each of the resistance change portions 1, 2, 3, and 4, taken along a cutting plane parallel to the YZ plane.

基板11の表面に絶縁下地層12が形成され、その上に金属が多層に積層された磁気検知素子20が形成されている。磁気検知素子20を構成する金属層はスパッタ工程やCVD工程で成膜されている。   An insulating underlayer 12 is formed on the surface of the substrate 11, and a magnetic sensing element 20 in which metals are laminated in multiple layers is formed thereon. The metal layer constituting the magnetic sensing element 20 is formed by a sputtering process or a CVD process.

磁気検知素子20は、巨大磁気抵抗効果を発揮する磁気抵抗効果素子層(GMR層)であり、シード層21の上に、固定磁性層22と非磁性層23とフリー磁性層24が順に積層され、フリー磁性層24が保護層25で覆われている。   The magnetic sensing element 20 is a magnetoresistive effect element layer (GMR layer) that exhibits a giant magnetoresistive effect, and a fixed magnetic layer 22, a nonmagnetic layer 23, and a free magnetic layer 24 are sequentially stacked on the seed layer 21. The free magnetic layer 24 is covered with a protective layer 25.

固定磁性層22は、第1の固定層22aと第2の固定層22b、ならびに第1の固定層22aと第2の固定層22bとの間に位置する非磁性中間層22cを有する積層フェリ構造である。第1の固定層22aと第2の固定層22bは、CoFe合金(コバルト−鉄合金)などの軟磁性材料で形成されている。非磁性中間層22cはRu(ルテニウム)などである。   The pinned magnetic layer 22 has a laminated ferrimagnetic structure having a first pinned layer 22a and a second pinned layer 22b, and a nonmagnetic intermediate layer 22c located between the first pinned layer 22a and the second pinned layer 22b. It is. The first fixed layer 22a and the second fixed layer 22b are formed of a soft magnetic material such as a CoFe alloy (cobalt-iron alloy). The nonmagnetic intermediate layer 22c is made of Ru (ruthenium) or the like.

積層フェリ構造の固定磁性層22は、第1の固定層22aと第2の固定層22bの磁化が反平行に固定されたいわゆるセルフピン構造である。セルフピン構造は、固定磁性層22の磁化を固定するために反強磁性層を用いていない。積層フェリ構造の固定磁性層22では、第1の固定層22aと第2の固定層22bの反強磁性結合により、磁化の向きが固定されている。固定磁性層22の磁化の固定方向は第2の固定層22bの磁化方向であり、全ての抵抗変化部1,2,3,4に設けられた全ての磁気検知素子20において、固定磁性層22の固定磁化Pの方向がX2方向に向けられている。よって、磁気検知素子20の感度軸の方向はX方向である。   The pinned magnetic layer 22 having a laminated ferrimagnetic structure has a so-called self-pinned structure in which the magnetizations of the first pinned layer 22a and the second pinned layer 22b are pinned antiparallel. The self-pinned structure does not use an antiferromagnetic layer to pin the magnetization of the pinned magnetic layer 22. In the pinned magnetic layer 22 having the laminated ferrimagnetic structure, the magnetization direction is fixed by antiferromagnetic coupling between the first pinned layer 22a and the second pinned layer 22b. The magnetization direction of the pinned magnetic layer 22 is the magnetization direction of the second pinned layer 22b. In all the magnetic sensing elements 20 provided in all the resistance change portions 1, 2, 3, and 4, the pinned magnetic layer 22 is fixed. The direction of the fixed magnetization P is directed in the X2 direction. Therefore, the direction of the sensitivity axis of the magnetic detection element 20 is the X direction.

図3に示す非磁性層23はCu(銅)などの非磁性材料で形成されている。フリー磁性層24は、NiFe合金(ニッケル−鉄合金)などの軟磁性材料で形成されている。フリー磁性層24は、縦方向(Y方向)の長さ寸法が横方向(X方向)の幅寸法よりも十分に大きく、その形状異方性によって、磁化がX2方向へ向けて揃えられている。したがって、フリー磁性層24の磁化を縦方向へ揃えるための縦バイアス付与構造を備えていない。フリー磁性層24を覆う保護層25はTa(タンタル)などで形成されている。   The nonmagnetic layer 23 shown in FIG. 3 is formed of a nonmagnetic material such as Cu (copper). The free magnetic layer 24 is formed of a soft magnetic material such as a NiFe alloy (nickel-iron alloy). The free magnetic layer 24 has a length dimension in the longitudinal direction (Y direction) that is sufficiently larger than a width dimension in the lateral direction (X direction), and the magnetization is aligned in the X2 direction due to its shape anisotropy. . Therefore, there is no longitudinal biasing structure for aligning the magnetization of the free magnetic layer 24 in the longitudinal direction. The protective layer 25 covering the free magnetic layer 24 is formed of Ta (tantalum) or the like.

図1Aに示すように、全ての抵抗変化部1,2,3,4には、それぞれの磁気検知素子20に対してZ方向から対向する磁界誘導層30が設けられている。磁界誘導層30によって、Z方向の外部磁界をそれぞれの磁気検知素子20で検知できるようになる。   As shown in FIG. 1A, a magnetic field induction layer 30 facing each magnetic sensing element 20 from the Z direction is provided in all of the resistance change portions 1, 2, 3, and 4. The magnetic field induction layer 30 allows each magnetic sensing element 20 to detect an external magnetic field in the Z direction.

図1Aに示すように、磁界誘導層30は4か所に分割して形成されている。それぞれの磁界誘導層30は、Y方向に延びる4本の誘導部30aと1本の遮蔽部30dを有している。それぞれの誘導部30aおよび遮蔽部30dのY方向の両端部は、連結部30bによって連結されている。図3に示すように、磁気検知素子20はフリー磁性層24が保護層25で覆われているが、保護層25の上に図示しない絶縁層が形成されて、この絶縁層の上面が平坦面に加工され、その上に磁界誘導層30がめっき工程などによって形成されている。磁界誘導層30はNi−Fe合金などの軟磁性材料で形成されている。   As shown in FIG. 1A, the magnetic field induction layer 30 is formed by being divided into four locations. Each magnetic field guiding layer 30 has four guiding portions 30a and one shielding portion 30d extending in the Y direction. Both end portions in the Y direction of each guide portion 30a and shielding portion 30d are connected by a connecting portion 30b. As shown in FIG. 3, in the magnetic sensing element 20, the free magnetic layer 24 is covered with a protective layer 25, but an insulating layer (not shown) is formed on the protective layer 25, and the upper surface of the insulating layer is a flat surface. The magnetic field induction layer 30 is formed thereon by a plating process or the like. The magnetic field induction layer 30 is made of a soft magnetic material such as a Ni—Fe alloy.

図4(A)(B)に示すように、磁界誘導層30の誘導部30aは、Z方向へ立ち上がるように壁体状に形成されている。図4(A)に示すように、第1の抵抗変化部1と第2の抵抗変化部2では、それぞれの誘導部30aの下端面30cの下側に磁気検知素子20が配置されている。磁気検知素子20はX−Y平面と平行な面に形成されており、磁気検知素子20の中心は、下端面30cのX方向の幅中心に対してX1方向へ位置ずれして配置されている。図4(B)に示すように、第3の抵抗変化部3と第4の抵抗変化部4でも、誘導部30aの下端面30cの下側に磁気検知素子20が配置されている。磁気検知素子20は、X−Y平面と平行な面に形成されており、磁気検知素子20の中心は、下端面30cのX方向の幅中心に対してX2方向へ位置ずれして配置されている。   As shown in FIGS. 4A and 4B, the guiding portion 30a of the magnetic field guiding layer 30 is formed in a wall shape so as to rise in the Z direction. As shown in FIG. 4A, in the first resistance change unit 1 and the second resistance change unit 2, the magnetic sensing element 20 is disposed below the lower end surface 30c of each induction unit 30a. The magnetic sensing element 20 is formed in a plane parallel to the XY plane, and the center of the magnetic sensing element 20 is arranged so as to be displaced in the X1 direction with respect to the width center in the X direction of the lower end surface 30c. . As shown in FIG. 4B, in the third resistance change unit 3 and the fourth resistance change unit 4, the magnetic sensing element 20 is disposed below the lower end surface 30c of the induction unit 30a. The magnetic detection element 20 is formed in a plane parallel to the XY plane, and the center of the magnetic detection element 20 is arranged so as to be displaced in the X2 direction with respect to the width center in the X direction of the lower end surface 30c. Yes.

図4(A)(B)では、誘導部30aの下端面30cと磁気検知素子20の一部とがZ方向に重複しているが、第1の抵抗変化部1と第2の抵抗変化部2において、磁気検知素子20が誘導部30aの下端面30cとZ方向に重複しないように、磁気検知素子20が配置されていてもよい。これは、第3の抵抗変化部3と第4の抵抗変化部4においても同じである。   In FIGS. 4A and 4B, the lower end surface 30c of the guiding portion 30a and a part of the magnetic sensing element 20 overlap in the Z direction, but the first resistance changing portion 1 and the second resistance changing portion. 2, the magnetic sensing element 20 may be arranged so that the magnetic sensing element 20 does not overlap with the lower end surface 30c of the guiding portion 30a in the Z direction. The same applies to the third resistance change unit 3 and the fourth resistance change unit 4.

なお、第1の抵抗変化部1ならびに第2の抵抗変化部2において、磁気検知素子20が下端面30cの中心からX1方向へ位置ずれする位置ずれ距離と、第3の抵抗変化部3ならびに第4の抵抗変化部4において、磁気検知素子20が下端面30cの中心からX2方向へ位置ずれする位置ずれ距離とでは、絶対値が互いに等しく設定されている。   In the first resistance change unit 1 and the second resistance change unit 2, the misalignment distance in which the magnetic sensing element 20 is displaced in the X1 direction from the center of the lower end surface 30c, the third resistance change unit 3 and the second resistance change unit 2 In the resistance change section 4, the absolute value is set to be equal to the positional displacement distance at which the magnetic sensing element 20 is displaced in the X2 direction from the center of the lower end surface 30 c.

図1に示すように、それぞれの磁界誘導層30では、前記遮蔽部30dが、X1側の端部またはX2側の端部に形成されている。遮蔽部30dは、第1の抵抗変化部1よりもX2側に離れた位置と、第4の抵抗変化部4よりもX1側に離れた位置に形成されている。それぞれの遮蔽部30dはY方向に延びて形成されており、磁気検知素子20の上に対向していない。遮蔽部30dは、誘導部30aと同様に壁体状であり、Z方向へ立ち上がるように形成されている。   As shown in FIG. 1, in each magnetic field induction layer 30, the shielding portion 30d is formed at an end portion on the X1 side or an end portion on the X2 side. The shielding part 30d is formed at a position farther to the X2 side than the first resistance change part 1 and a position farther to the X1 side than the fourth resistance change part 4. Each shielding portion 30 d is formed to extend in the Y direction and does not face the magnetic sensing element 20. The shielding part 30d has a wall shape like the guiding part 30a, and is formed to rise in the Z direction.

図4には、磁界検知装置SzがZ1方向の磁界成分Hvを検知している状態が示されている。Z1方向の磁界成分Hvは磁界誘導層30の誘導部30aで誘導されるが、誘導部30aの下端面30cから出た磁界が平面的に分散される。図4(A)に示すように、第1の抵抗変化部1と第2の抵抗変化部2では、磁気検知素子20で、X1方向へ向かう磁界成分Hh1が検知される。図4(B)に示すように、第3の抵抗変化部3と第4の抵抗変化部4では、磁気検知素子20で、X2方向へ向かう磁界成分Hh2が検知される。   FIG. 4 shows a state in which the magnetic field detection device Sz detects a magnetic field component Hv in the Z1 direction. The magnetic field component Hv in the Z1 direction is induced by the guiding portion 30a of the magnetic field guiding layer 30, but the magnetic field emitted from the lower end surface 30c of the guiding portion 30a is planarly dispersed. As shown in FIG. 4A, in the first resistance change unit 1 and the second resistance change unit 2, the magnetic detection element 20 detects a magnetic field component Hh1 in the X1 direction. As shown in FIG. 4B, in the third resistance change unit 3 and the fourth resistance change unit 4, the magnetic detection element 20 detects the magnetic field component Hh <b> 2 directed in the X2 direction.

抵抗変化部1,2,3,4において、全ての磁気検知素子20は、固定磁性層22の固定磁化Pの方向がX2方向である。図4(A)に示す第1の抵抗変化部1と第2の抵抗変化部2では、Z1方向への磁界成分Hvの強度が高くなるにしたがって、磁気検知素子20の電気抵抗値が大きくなり、図4(B)に示す第3の抵抗変化部3と第4の抵抗変化部4では、Z1方向への磁界成分Hvの強度が高くなるにしたがって、磁気検知素子20の電気抵抗値が小さくなる。   In the resistance change portions 1, 2, 3, and 4, in all the magnetic sensing elements 20, the direction of the fixed magnetization P of the fixed magnetic layer 22 is the X2 direction. In the first resistance change unit 1 and the second resistance change unit 2 shown in FIG. 4A, the electric resistance value of the magnetic sensing element 20 increases as the strength of the magnetic field component Hv in the Z1 direction increases. In the third resistance change unit 3 and the fourth resistance change unit 4 shown in FIG. 4B, the electric resistance value of the magnetic sensing element 20 decreases as the strength of the magnetic field component Hv in the Z1 direction increases. Become.

その結果、図2の等価回路図に示すように、直列に接続された第1の抵抗変化部1と第3の抵抗変化部3との中間に位置する検知端子7の電圧が変動し、直列に接続された第2の抵抗変化部2と第4の抵抗変化部4の中間に位置する検知端子8の電圧が変動する。検知端子7と検知端子8とで電圧の変化が逆極性となるため、検知端子7と検知端子8との電圧の差動を取ることで、Z1方向の磁界成分Hvの強度を検知することができる。   As a result, as shown in the equivalent circuit diagram of FIG. 2, the voltage of the detection terminal 7 located in the middle between the first resistance change unit 1 and the third resistance change unit 3 connected in series fluctuates, and the series The voltage of the detection terminal 8 located in the middle of the second resistance change unit 2 and the fourth resistance change unit 4 connected to the fluctuates. Since the voltage change between the detection terminal 7 and the detection terminal 8 is opposite in polarity, the intensity of the magnetic field component Hv in the Z1 direction can be detected by taking the voltage difference between the detection terminal 7 and the detection terminal 8. it can.

また、Z2方向へ向かう磁界成分も磁界誘導層30に導かれ、このとき、それぞれの磁気検知素子20で、X方向の磁界成分が検知される。よって、Z2方向の磁界強度も検知することが可能である。   Further, the magnetic field component directed in the Z2 direction is also guided to the magnetic field induction layer 30, and at this time, the magnetic field component in the X direction is detected by each magnetic sensing element 20. Therefore, it is possible to detect the magnetic field intensity in the Z2 direction.

一方で、磁界検知装置Szは、図2に示すフルブリッジ回路を構成することで、X方向の磁界成分については基本的に感度を持たないように設計されている。   On the other hand, the magnetic field detection device Sz is designed to have basically no sensitivity with respect to the magnetic field component in the X direction by configuring the full bridge circuit shown in FIG.

図5(A)に示す第1の抵抗変化部1ならびに第2の抵抗変化部2と、図5(B)に示す第3の抵抗変化部3ならびに第4の抵抗変化部4とで、磁気検知素子10の固定磁性層22の固定磁化Pの向きが同じである。したがって、図5に示すように、磁界検知装置Szに対し、外乱磁界としてX2方向への磁界成分Hvxが与えられたときには、全ての抵抗変化部1,2,3,4において抵抗値が低下するため、第1の検知端子7と第2の検知端子8の電位は変化しない。よって磁界検知装置Szの検知出力は変化しない。これは、X1方向への磁界成分が作用したときも同じである。   The first resistance change unit 1 and the second resistance change unit 2 shown in FIG. 5A and the third resistance change unit 3 and the fourth resistance change unit 4 shown in FIG. The direction of the fixed magnetization P of the fixed magnetic layer 22 of the sensing element 10 is the same. Therefore, as shown in FIG. 5, when the magnetic field component Hvx in the X2 direction is given as the disturbance magnetic field to the magnetic field detection device Sz, the resistance value decreases in all the resistance change units 1, 2, 3, and 4. Therefore, the potentials of the first detection terminal 7 and the second detection terminal 8 do not change. Therefore, the detection output of the magnetic field detection device Sz does not change. This is the same when a magnetic field component in the X1 direction acts.

また、図7(A)に示すように、磁界検知装置Szに対し、外乱磁界としてY1方向またはY2方向の磁界が作用したときには、磁界誘導層30の誘導部30aに側方から引き付けられる磁界成分Hy1と誘導部30aから側方へ抜け出ていく磁界成分Hy2が存在し、磁界成分Hy1,Hy2のX方向の成分により各磁気検知素子20の抵抗値が変化する。ただし、この磁界に関しても、Y1方向またはY2方向の磁界が一律であれば、各抵抗変化部1,2,3,4に設けられた磁気検知素子20の抵抗値が同じ極性で変化するため、磁界検知装置Szの検知出力は変化しない。   Further, as shown in FIG. 7A, when a magnetic field in the Y1 direction or the Y2 direction acts on the magnetic field detection device Sz as a disturbance magnetic field, the magnetic field component attracted from the side to the guiding portion 30a of the magnetic field guiding layer 30. There is a magnetic field component Hy2 that escapes laterally from Hy1 and the guiding portion 30a, and the resistance value of each magnetic sensing element 20 varies depending on the X-direction component of the magnetic field components Hy1 and Hy2. However, also with respect to this magnetic field, if the magnetic field in the Y1 direction or the Y2 direction is uniform, the resistance values of the magnetic sensing elements 20 provided in the resistance change units 1, 2, 3, and 4 change with the same polarity. The detection output of the magnetic field detection device Sz does not change.

しかし、図8に示すように、X1方向とX2方向またはY1方向とY2方向の外乱磁界がGMR素子である磁気検知素子20に強い強度で作用すると、その磁界がX方向のバイアス磁界H01となり、抵抗変化ΔRがバイアス値ΔR1となる。この外乱磁界が作用しているときに、本来測定すべきZ方向の磁界成分Hvが現れると、外磁気検知素子20に作用する磁場の強度が、バイアス磁界H01に加算された値で変化する。このとき、磁気検知素子20の抵抗変化のリニアリティを確保できなくなり、抵抗変化部1,2,3,4で構成されるブリッジ回路において、それぞれの磁気検知素子20で検知された出力の差動出力を得たときに、磁界HzがZ1方向へ変化するときと、Z2方向へ変化するときとで、感度が相違することになる。   However, as shown in FIG. 8, when the disturbance magnetic field in the X1 direction and the X2 direction or the Y1 direction and the Y2 direction acts on the magnetic sensing element 20 which is a GMR element with a strong intensity, the magnetic field becomes a bias magnetic field H01 in the X direction. The resistance change ΔR becomes the bias value ΔR1. If a magnetic field component Hv in the Z direction that should be measured appears when the disturbance magnetic field is acting, the strength of the magnetic field acting on the external magnetic sensing element 20 changes with the value added to the bias magnetic field H01. At this time, the linearity of the resistance change of the magnetic sensing element 20 cannot be secured, and the differential output of the outputs detected by the respective magnetic sensing elements 20 in the bridge circuit composed of the resistance change portions 1, 2, 3, 4 When the magnetic field Hz changes in the Z1 direction, the sensitivity differs depending on whether the magnetic field Hz changes in the Z2 direction.

この課題を解消させるために、図1Aに示すように、磁界検知装置Szにガード層40が設けられている。   In order to solve this problem, a guard layer 40 is provided in the magnetic field detection device Sz as shown in FIG. 1A.

ガード層40は、磁界誘導層30と同じ軟磁性材料を用いてめっき工程で形成されている。ガード層40と磁界誘導層30とは、互いに連結されることなく分離して形成されている。ガード層40は、X方向やY方向への外乱磁界を吸収するものではあるが、Z方向の測定磁界をなるべく吸収しないことが必要である。そのために、ガード層40のZ方向の高さ寸法は、磁界誘導層30と同じが、それよりも低いことが好ましい。   The guard layer 40 is formed by a plating process using the same soft magnetic material as the magnetic field induction layer 30. The guard layer 40 and the magnetic field induction layer 30 are formed separately without being connected to each other. The guard layer 40 absorbs a disturbance magnetic field in the X direction and the Y direction, but needs to absorb as little as possible the measurement magnetic field in the Z direction. Therefore, the height dimension of the guard layer 40 in the Z direction is the same as that of the magnetic field induction layer 30, but is preferably lower than that.

ガード層40は、縦ガード部41と一対の横ガード部42,42とが一体に形成されている。縦ガード部41は、X2側の第1の抵抗変化部および第3の抵抗変化部3と、X1側の第2の抵抗変化部および第4の抵抗変化部4との中間に位置して、Y方向に直線的に延びるように形成されている。   In the guard layer 40, a vertical guard portion 41 and a pair of horizontal guard portions 42, 42 are integrally formed. The vertical guard part 41 is located in the middle of the first resistance change part and the third resistance change part 3 on the X2 side and the second resistance change part and the fourth resistance change part 4 on the X1 side, It is formed so as to extend linearly in the Y direction.

横ガード部42,42は、縦ガード部41のY1側の端部とY2側の端部と連続してX方向に直線的に延びている。第1の抵抗変化部1と第3の抵抗変化部3は、縦ガード部41よりもX2側に位置して、Y1側の横ガード部42とY2側の横ガード部42との間に位置している。第2の抵抗変化部2と第4の抵抗変化部4は、縦ガード部41よりもX1側に位置して、Y1側の横ガード部42とY2側の横ガード部42との間に位置している。   The lateral guard portions 42, 42 extend linearly in the X direction continuously to the Y1 side end portion and the Y2 side end portion of the vertical guard portion 41. The first resistance change unit 1 and the third resistance change unit 3 are located on the X2 side with respect to the vertical guard unit 41, and are positioned between the Y1 side horizontal guard unit 42 and the Y2 side horizontal guard unit 42. doing. The second resistance change unit 2 and the fourth resistance change unit 4 are located closer to the X1 side than the vertical guard unit 41, and are positioned between the Y1 side horizontal guard unit 42 and the Y2 side horizontal guard unit 42. doing.

Y1側の横ガード部42とY2側の横ガード部42は、共に第1の抵抗変化部1よりもX2側へ突出し、第4の抵抗変化部4よりもX1側へ突出している。   Both the Y1 side guard part 42 and the Y2 side guard part 42 protrude to the X2 side from the first resistance change part 1, and protrude from the fourth resistance change part 4 to the X1 side.

縦ガード部41と横ガード部42,42は、磁界誘導層30の誘導部30aおよび遮蔽部30dのいずれもよりも幅寸法が大きく形成されている。ガード層40の幅寸法を磁界誘導層30よりも大きくしておくことにより、X方向とY方向の外乱磁界をガード層40で吸収しやすくなる。   The vertical guard part 41 and the horizontal guard parts 42 and 42 are formed to have a larger width dimension than both the guiding part 30a and the shielding part 30d of the magnetic field guiding layer 30. By making the width dimension of the guard layer 40 larger than that of the magnetic field induction layer 30, disturbance magnetic fields in the X direction and the Y direction can be easily absorbed by the guard layer 40.

また、縦ガード部41のX方向での幅寸法は、横ガード部42,42のY方向の幅寸法よりも大きく形成されている。これにより、縦ガード部41の飽和磁束密度が横ガード部42,42よりも高くなり、大きな外乱磁界が作用しても磁界検知装置Szの感度のばらつきを低減できるようになる。また、横ガード部42,42の飽和磁束密度をやや低くすることで、隣接する磁界検知装置Syが検知しようとするY方向の磁界成分を、横ガード部42,42が吸収しすぎるのを抑制でき、磁界検知装置Syの感度のばらつきも低減できるようになる。   Further, the width dimension in the X direction of the vertical guard portion 41 is formed larger than the width dimension in the Y direction of the horizontal guard portions 42 and 42. As a result, the saturation magnetic flux density of the vertical guard unit 41 is higher than that of the horizontal guard units 42 and 42, and variations in sensitivity of the magnetic field detection device Sz can be reduced even when a large disturbance magnetic field acts. Further, by slightly lowering the saturation magnetic flux density of the lateral guard portions 42, 42, the lateral guard portions 42, 42 are prevented from excessively absorbing the magnetic field component in the Y direction that the adjacent magnetic field detection device Sy tries to detect. It is possible to reduce variations in sensitivity of the magnetic field detection device Sy.

また、図1Aに示すように、横ガード部42,42のX1側の端部は、縦ガード部41よりもX1側に位置する磁界誘導層30のX1側の側縁部と同一位置か、または前記側縁部よりも縦ガード部41に近い位置に形成されていることが好ましい。この構成によっても、隣接する磁界検知装置Syが検知しようとするY方向の磁界成分を、横ガード部42,42が吸収しすぎるのを抑制でき、磁界検知装置Syの感度のばらつきも低減できるようになる。   Further, as shown in FIG. 1A, the X1 side ends of the horizontal guard portions 42, 42 are at the same position as the X1 side edge of the magnetic field induction layer 30 positioned on the X1 side of the vertical guard portion 41, or Alternatively, it is preferably formed at a position closer to the vertical guard portion 41 than the side edge portion. Also with this configuration, it is possible to suppress the horizontal guard portions 42 and 42 from excessively absorbing the Y-direction magnetic field component that the adjacent magnetic field detection device Sy is to detect, and to reduce variations in sensitivity of the magnetic field detection device Sy. become.

図6は、磁界検知装置SzにY1方向の外乱磁界が作用したときの磁束密度の分布を示したシミュレーション結果を示している。   FIG. 6 shows a simulation result showing a distribution of magnetic flux density when a disturbance magnetic field in the Y1 direction acts on the magnetic field detection device Sz.

このシミュレーション結果では、Y1方向の外乱磁界が、ガード層40の横ガード部42で捕捉され、縦ガード部42に誘導されるため、それぞれの抵抗変化部1,2,3,4に作用する外乱磁界の磁束密度が低くなっている。   In this simulation result, since the disturbance magnetic field in the Y1 direction is captured by the lateral guard portion 42 of the guard layer 40 and guided to the longitudinal guard portion 42, the disturbance acting on the respective resistance change portions 1, 2, 3, 4 The magnetic flux density of the magnetic field is low.

さらに、それぞれの磁界誘導層30には、遮蔽部30dが設けられ、この遮蔽部30dは第1の抵抗変化部1よりもX2側に外れた位置、および第4の抵抗変化部4よりもX1側に外れた位置にそれぞれ設けられている。よって、外乱磁界の一部は遮蔽部30dによっても吸収され、それぞれの抵抗変化部1,2,3,4に作用する外乱磁界の磁束密度を低く抑えることが可能となっている。   Further, each magnetic field induction layer 30 is provided with a shielding part 30d, and this shielding part 30d is located on the X2 side away from the first resistance change part 1 and X1 more than the fourth resistance change part 4. Each is provided at a position off the side. Therefore, a part of the disturbance magnetic field is also absorbed by the shielding part 30d, and the magnetic flux density of the disturbance magnetic field acting on each resistance change part 1, 2, 3, 4 can be suppressed low.

そのため、各抵抗変化部1,2,3,4の磁気検知素子20に作用するY方向の外乱磁界のうちの感度軸方向(X方向)の磁束成分の密度を低下させることができ、図8に示すように各磁気検知素子20に大きなバイアス磁界H01が作用するのを防止できるようになる。よって、本来測定しようとするZ方向の磁界が作用したときに、図4に示す磁界成分Hh1,Hh2が図8に示す原点(O)付近を始点として作用するようになり、リニアリティを維持した状態で検知動作を行うことができるようになる。   Therefore, the density of the magnetic flux component in the sensitivity axis direction (X direction) of the disturbance magnetic field in the Y direction acting on the magnetic sensing elements 20 of the resistance change portions 1, 2, 3, 4 can be reduced. As shown in FIG. 5, it becomes possible to prevent a large bias magnetic field H01 from acting on each magnetic sensing element 20. Therefore, when a magnetic field in the Z direction to be measured is applied, the magnetic field components Hh1 and Hh2 shown in FIG. 4 start from the vicinity of the origin (O) shown in FIG. 8 and maintain linearity. The detection operation can be performed with.

ガード層40は縦ガード層41と横ガード部42,42とからなり、X1側の端部とX2側の端部には、Y方向に延びるガード部が存在していない。すなわち、図1と図6に示すL線上に沿ってY方向に延びるガード部が存在していない。   The guard layer 40 includes a vertical guard layer 41 and horizontal guard portions 42 and 42, and no guard portion extending in the Y direction exists at the end portion on the X1 side and the end portion on the X2 side. That is, there is no guard portion extending in the Y direction along the line L shown in FIGS.

ガード部は外部磁界を吸引し、吸引した磁界を放出するために、ガード部の近傍では、磁束がガード部に向けられるように乱されることになる。図1に示す例では、磁界検知装置SzのX1方向に隣接している位置にY方向の磁界成分を検知する磁界検知装置Syが設けられ、Y方向の磁界を検知するための抵抗変化部が隣接して存在している。仮に前記L線上にガード層が設けられていたとすると、Y方向の磁界成分の一部がガード層に吸引されて磁束の向きが乱れるため、隣接する磁界検知装置Syの抵抗変化部によって、Y方向の磁界成分を正確に検知することができなくなり、磁界検知装置Syの全体において検知出力のバランスが崩れることになる。   Since the guard part attracts the external magnetic field and releases the attracted magnetic field, the magnetic flux is disturbed so as to be directed to the guard part in the vicinity of the guard part. In the example shown in FIG. 1, a magnetic field detection device Sy that detects a magnetic field component in the Y direction is provided at a position adjacent to the X1 direction of the magnetic field detection device Sz, and a resistance change unit for detecting the magnetic field in the Y direction is provided. It exists adjacent. If a guard layer is provided on the L line, a part of the magnetic field component in the Y direction is attracted to the guard layer and the direction of the magnetic flux is disturbed. Thus, the magnetic field component of the magnetic field detector Sy cannot be accurately detected, and the balance of the detection output is lost in the entire magnetic field detection device Sy.

しかし、図1に示す実施の形態では、ガード層40が、中央部に位置する縦ガード部41およびY1側とY2側の端部に位置する横ガード部42,42とで構成され、L線上にガード層が設けられていない。そのため、L線上近傍で磁束密度に対する影響が少なくなっており、図6に示す境界線B−BよりもX1側では、Y1方向の磁束成分にほぼ乱れが生じなくなっている。そのため、図1に示すように、Z方向の磁界を検知するための磁界検知装置SzとX1方向で隣接する位置に、Y方向の磁界を検知するための磁界検知装置Syの抵抗変化部を接近して配置することが可能になる。そのため、3軸方向の磁界成分を検知する磁界検知装置Sx,Sy,Szを狭い面積で密集配置することが可能になる。   However, in the embodiment shown in FIG. 1, the guard layer 40 is composed of a vertical guard portion 41 located at the center and horizontal guard portions 42 and 42 located at the end portions on the Y1 side and the Y2 side. Is not provided with a guard layer. Therefore, the influence on the magnetic flux density is reduced in the vicinity of the L line, and the magnetic flux component in the Y1 direction is hardly disturbed on the X1 side from the boundary line BB shown in FIG. Therefore, as shown in FIG. 1, the resistance change part of the magnetic field detection device Sy for detecting the magnetic field in the Y direction is brought close to the magnetic field detection device Sz for detecting the magnetic field in the Z direction in the X1 direction. Can be arranged. Therefore, the magnetic field detection devices Sx, Sy, and Sz that detect magnetic field components in the three axial directions can be densely arranged in a small area.

次に、磁界検知装置SzにX方向の外乱磁界が作用したときは、外乱磁界がY1側とY2側に位置する横ガード部42,42に吸引されて誘導されるため、各抵抗変化部1,2,3,4に作用するX方向の外乱磁界の磁束密度を低下させることが可能になる。   Next, when a disturbance magnetic field in the X direction acts on the magnetic field detection device Sz, the disturbance magnetic field is attracted and guided to the lateral guard portions 42 and 42 located on the Y1 side and the Y2 side, so that each resistance changing unit 1 , 2, 3 and 4, the magnetic flux density of the disturbance magnetic field in the X direction can be reduced.

また、第1の抵抗変化部1よりもX2側に離れた位置に、磁界誘導層30の遮蔽部30dが存在し、第4の抵抗変化部4よりもX1側に離れた位置にも、磁界誘導層30の遮蔽部30dが存在しているため、この遮蔽部30dによっても、X方向の外乱磁界が、各抵抗変化部1,2,3,4の磁気検知素子20に直接に影響を与えるのを抑制することができる。   Further, the shielding portion 30d of the magnetic field induction layer 30 is present at a position further away from the first resistance change portion 1 toward the X2 side, and the magnetic field is also present at a location further away from the fourth resistance change portion 4 toward the X1 side. Since the shielding part 30d of the induction layer 30 exists, the disturbance magnetic field in the X direction also directly affects the magnetic sensing elements 20 of the resistance change parts 1, 2, 3, and 4 by this shielding part 30d. Can be suppressed.

本発明では、磁界検知装置Szと隣接して配置される磁界検知装置がX方向の磁界を検知するものであってもよい。本明細書では、磁界検知装置Szと隣接してX方向またはY方向の磁界を検知する磁界検知装置が他方向磁界検知部である。前記磁界検知装置Szを構成する抵抗変化部1,2,3,4と、前記他方向磁界検知部を構成する他の抵抗変化部とが同じ基板11上に形成されていることが好ましく、さらには同一チップ内に形成されていることが好ましい。   In the present invention, the magnetic field detection device arranged adjacent to the magnetic field detection device Sz may detect a magnetic field in the X direction. In this specification, the magnetic field detection device that detects a magnetic field in the X direction or the Y direction adjacent to the magnetic field detection device Sz is the other-direction magnetic field detection unit. It is preferable that the resistance change portions 1, 2, 3, and 4 constituting the magnetic field detection device Sz and the other resistance change portion constituting the other-direction magnetic field detection portion are formed on the same substrate 11. Are preferably formed in the same chip.

なお、縦ガード部41と、横ガード部42,42とが分離して形成されていてもよい。この場合には、外乱磁界をガード層40で優先して吸収できるように、縦ガード部41と横ガード部42,42との間隙部の距離が、それぞれのガード部41,42,42と磁界誘導層30との距離よりも短いことが好ましい。   In addition, the vertical guard part 41 and the horizontal guard parts 42 and 42 may be formed separately. In this case, the distance of the gap between the vertical guard part 41 and the horizontal guard parts 42 and 42 is set so that the disturbance magnetic field can be preferentially absorbed by the guard layer 40. It is preferable that the distance to the induction layer 30 is shorter.

また、本発明では、図1に示すガード層40のY1方向とY2方向の中間において、さらにX方向に延びる中間ガード部が縦ガード部41から連続して延びているものであってもよい。   In the present invention, an intermediate guard portion extending in the X direction may be continuously extended from the vertical guard portion 41 in the middle between the Y1 direction and the Y2 direction of the guard layer 40 shown in FIG.

Sz 磁気検知素子
1 第1の抵抗変化部
2 第2の抵抗変化部
3 第3の抵抗変化部
4 第4の抵抗変化部
11 基板
20 磁気検知素子
22 固定磁性層
23 非磁性層
24 フリー磁性層
30 磁界誘導層
30a 誘導部
30d 遮蔽部
40 ガード層
41 縦ガード部
42 横ガード部
Sz Magnetic sensing element 1 1st resistance change part 2 2nd resistance change part 3 3rd resistance change part 4 4th resistance change part 11 Substrate 20 Magnetic sensing element 22 Fixed magnetic layer 23 Nonmagnetic layer 24 Free magnetic layer 30 Magnetic field induction layer 30a Guide part 30d Shielding part 40 Guard layer 41 Vertical guard part 42 Horizontal guard part

Claims (9)

3軸が直交するX−Y−Z座標のX−Y平面に沿って配置された磁気検知素子と、Z方向に高さを有してZ方向の磁界成分をX方向へ誘導して前記磁気検知素子に与える磁界誘導層と、を有する磁界検知装置において、
X方向に感度軸を有する前記磁気検知素子によって抵抗変化部が構成されて、複数の前記抵抗変化部が接続されてブリッジ回路が構成され、それぞれの抵抗変化部に前記磁界誘導層が対向しており、
磁性材料で形成されたガード層が設けられ、前記ガード層は、X方向に間隔を空けて配置された複数の前記抵抗変化部の前記間隔内を通過してY方向に延びる縦ガード部と、前記縦ガード部のY方向の両端部と連続してX方向に延びる一対の横ガード部とを有することを特徴とする磁界検知装置。
A magnetic sensing element arranged along an XY plane of XYZ coordinates in which three axes are orthogonal to each other, and a magnetic field component having a height in the Z direction and guiding a magnetic field component in the Z direction in the X direction. In a magnetic field detection device having a magnetic field induction layer applied to a detection element,
The magnetic sensing element having a sensitivity axis in the X direction forms a resistance change portion, and a plurality of the resistance change portions are connected to form a bridge circuit, and the magnetic field induction layer is opposed to each resistance change portion. And
A guard layer made of a magnetic material is provided, and the guard layer passes through the interval between the plurality of resistance change portions arranged at intervals in the X direction and extends in the Y direction; and A magnetic field detection device comprising: a pair of horizontal guard portions extending in the X direction continuously with both ends of the vertical guard portion in the Y direction.
同じ方向の外部磁界に対して相反する抵抗変化を示す第1の抵抗変化部と第3の抵抗変化部とがX方向の一方の側に配置され、同じ方向の外部磁界に対して相反する抵抗変化を示す第2の抵抗変化部と第4の抵抗変化部とがX方向の他方の側に配置されており、
第1の抵抗変化部ならびに第3の抵抗変化部と、第2の抵抗変化部ならびに第4の抵抗変化部との間の前記間隔内に前記縦ガード部が配置され、Y方向に間隔を空けて形成された一対の前記横ガード部の間に、第1の抵抗変化部ならびに第3の抵抗変化部と、第2の抵抗変化部ならびに第4の抵抗変化部とがそれぞれ配置されている請求項1記載の磁界検知装置。
A first resistance change portion and a third resistance change portion that exhibit resistance changes opposite to an external magnetic field in the same direction are arranged on one side in the X direction, and resistances that oppose an external magnetic field in the same direction. The second resistance change portion and the fourth resistance change portion showing the change are arranged on the other side in the X direction,
The vertical guard portion is disposed within the space between the first resistance change portion and the third resistance change portion and the second resistance change portion and the fourth resistance change portion, and is spaced in the Y direction. A first resistance change portion and a third resistance change portion, and a second resistance change portion and a fourth resistance change portion are respectively disposed between the pair of lateral guard portions formed in this manner. Item 1. A magnetic field detection apparatus according to Item 1.
前記ガード層は、前記磁界誘導層と同じ磁性材料で形成されている請求項1または2記載の磁界検知装置。   The magnetic field detection device according to claim 1, wherein the guard layer is formed of the same magnetic material as the magnetic field induction layer. 前記ガード層のZ方向の高さ寸法は、前記磁界誘導層の高さ寸法と同じかまたはそれよりも低い請求項1ないし3のいずれかに記載の磁界検知装置。   4. The magnetic field detection device according to claim 1, wherein a height dimension of the guard layer in the Z direction is equal to or lower than a height dimension of the magnetic field induction layer. 5. 前記抵抗変化部は、前記縦ガード部に対してX方向の両側に対称に配置されている請求項1ないし4のいずれかに記載の磁界検知装置。   5. The magnetic field detection device according to claim 1, wherein the resistance change unit is arranged symmetrically on both sides in the X direction with respect to the vertical guard unit. 前記抵抗変化部とX方向に並ぶ領域に、X方向またはY方向の磁界成分を検知する他方向磁界検知装置が配置される請求項1ないし5のいずれかに記載の磁界検知装置。   6. The magnetic field detection device according to claim 1, wherein an omnidirectional magnetic field detection device that detects a magnetic field component in the X direction or the Y direction is arranged in a region aligned with the resistance change unit in the X direction. 前記抵抗変化部と前記他方向磁界検知装置との隣接部に、Y方向に延びるガード部が存在していない請求項6記載の磁界検知装置。   The magnetic field detection device according to claim 6, wherein a guard portion extending in the Y direction does not exist in an adjacent portion between the resistance change unit and the other-direction magnetic field detection device. 前記横ガード部の前記他方向磁界検知装置に向けられるX側の端部は、前記磁界誘導層よりも、前記他方向磁界検知装置に近づく方向へ突出していない請求項6または7記載の磁界検知装置。   8. The magnetic field detection according to claim 6, wherein an end portion on the X side of the lateral guard portion facing the other-direction magnetic field detection device does not protrude in a direction closer to the other-direction magnetic field detection device than the magnetic field induction layer. apparatus. 前記抵抗変化部と、前記他方向磁界検知装置に設けられる他の抵抗変化部が、同じチップ内に設けられている請求項6ないし8のいずれかに記載の磁界検知装置。   The magnetic field detection device according to claim 6, wherein the resistance change unit and the other resistance change unit provided in the other-direction magnetic field detection device are provided in the same chip.
JP2015068109A 2015-03-30 2015-03-30 Magnetic field detector Active JP6423749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015068109A JP6423749B2 (en) 2015-03-30 2015-03-30 Magnetic field detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015068109A JP6423749B2 (en) 2015-03-30 2015-03-30 Magnetic field detector

Publications (2)

Publication Number Publication Date
JP2016188774A true JP2016188774A (en) 2016-11-04
JP6423749B2 JP6423749B2 (en) 2018-11-14

Family

ID=57240588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015068109A Active JP6423749B2 (en) 2015-03-30 2015-03-30 Magnetic field detector

Country Status (1)

Country Link
JP (1) JP6423749B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021056170A (en) * 2019-10-01 2021-04-08 Tdk株式会社 Magnetic sensor device
JP2022105024A (en) * 2019-10-01 2022-07-12 Tdk株式会社 Magnetic sensor device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009084434A1 (en) * 2007-12-28 2009-07-09 Alps Electric Co., Ltd. Magnetic sensor and magnetic sensor module
JP2009175120A (en) * 2007-12-28 2009-08-06 Alps Electric Co Ltd Magnetic sensor and magnetic sensor module
JP2009300150A (en) * 2008-06-11 2009-12-24 Alps Electric Co Ltd Magnetic sensor and magnetic sensor module
WO2011068146A1 (en) * 2009-12-02 2011-06-09 アルプス電気株式会社 Magnetic sensor
US8451003B2 (en) * 2009-07-29 2013-05-28 Tdk Corporation Magnetic sensor having magneto-resistive elements on a substrate
JP2013190345A (en) * 2012-03-14 2013-09-26 Alps Electric Co Ltd Magnetic sensor
US20140266185A1 (en) * 2013-03-13 2014-09-18 Alan L. Sidman Magnetic field sensing apparatus and methods
WO2014156108A1 (en) * 2013-03-26 2014-10-02 旭化成エレクトロニクス株式会社 Magnetic sensor and method for detecting magnetism thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009084434A1 (en) * 2007-12-28 2009-07-09 Alps Electric Co., Ltd. Magnetic sensor and magnetic sensor module
JP2009175120A (en) * 2007-12-28 2009-08-06 Alps Electric Co Ltd Magnetic sensor and magnetic sensor module
JP2009300150A (en) * 2008-06-11 2009-12-24 Alps Electric Co Ltd Magnetic sensor and magnetic sensor module
US8451003B2 (en) * 2009-07-29 2013-05-28 Tdk Corporation Magnetic sensor having magneto-resistive elements on a substrate
WO2011068146A1 (en) * 2009-12-02 2011-06-09 アルプス電気株式会社 Magnetic sensor
JP2013190345A (en) * 2012-03-14 2013-09-26 Alps Electric Co Ltd Magnetic sensor
US20140266185A1 (en) * 2013-03-13 2014-09-18 Alan L. Sidman Magnetic field sensing apparatus and methods
WO2014156108A1 (en) * 2013-03-26 2014-10-02 旭化成エレクトロニクス株式会社 Magnetic sensor and method for detecting magnetism thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021056170A (en) * 2019-10-01 2021-04-08 Tdk株式会社 Magnetic sensor device
JP7058630B2 (en) 2019-10-01 2022-04-22 Tdk株式会社 Magnetic sensor device
JP2022105024A (en) * 2019-10-01 2022-07-12 Tdk株式会社 Magnetic sensor device
JP7279834B2 (en) 2019-10-01 2023-05-23 Tdk株式会社 Magnetic sensor device

Also Published As

Publication number Publication date
JP6423749B2 (en) 2018-11-14

Similar Documents

Publication Publication Date Title
US9530957B2 (en) Magnetic sensor
JP6526319B2 (en) Balanced magnetic field detector
JP5066579B2 (en) Magnetic sensor and magnetic sensor module
CN106291414B (en) Large-scale integrated AMR magnetic resistor
US20120217961A1 (en) Magnetic sensor
JP2015194472A (en) current detection system
CN104049129B (en) Sensor, system and method for residual current detection
JP5899012B2 (en) Magnetic sensor
JP5210983B2 (en) Geomagnetic sensor
JP2009175120A (en) Magnetic sensor and magnetic sensor module
JP2009300150A (en) Magnetic sensor and magnetic sensor module
JP2009162499A (en) Magnetometric sensor
KR101629818B1 (en) Magnetic detecting device
WO2009151024A1 (en) Magnetic sensor and magnetic sensor module
JP2013210335A (en) Magnetic sensor
JP5802565B2 (en) Magnetic sensor
JP5066581B2 (en) Magnetic sensor and magnetic sensor module
JP6423749B2 (en) Magnetic field detector
EP3130929B1 (en) Current detection device
US11035914B2 (en) Magnetic sensor
JP6725300B2 (en) Magnetic sensor and manufacturing method thereof
JP2018096895A (en) Magnetic field detection device
JP2016206006A (en) Magnetic sensor
JP2015169530A (en) magnetic sensor
JP6186252B2 (en) Magnetic sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181019

R150 Certificate of patent or registration of utility model

Ref document number: 6423749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350