JP2013210335A - Magnetic sensor - Google Patents

Magnetic sensor Download PDF

Info

Publication number
JP2013210335A
JP2013210335A JP2012081922A JP2012081922A JP2013210335A JP 2013210335 A JP2013210335 A JP 2013210335A JP 2012081922 A JP2012081922 A JP 2012081922A JP 2012081922 A JP2012081922 A JP 2012081922A JP 2013210335 A JP2013210335 A JP 2013210335A
Authority
JP
Japan
Prior art keywords
soft magnetic
magnetic member
magnetic field
soft
element portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012081922A
Other languages
Japanese (ja)
Inventor
Hideto Ando
秀人 安藤
Masayuki Obana
雅之 尾花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2012081922A priority Critical patent/JP2013210335A/en
Publication of JP2013210335A publication Critical patent/JP2013210335A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic sensor capable of controlling sensor sensitivity not to be too high and increasing resistance to an external disturbance magnetic field from a direction different fro a detected magnetic field.SOLUTION: A magnetic sensor includes a first soft magnetic member 12a and a second soft magnetic member 12b spaced from each other. A magneto-resistance effect element includes a first element part 11a partially facing the first soft magnetic member in a vertical direction (Z), and a second element part 11b partially facing the second soft magnetic member in the vertical direction. The first element part 11a is disposed on the X2 end 14 side of the first soft magnetic member, and the second element part 11b is disposed on the X1 end 15 side of the second soft magnetic member. The overlapping sizes of the element parts 11a and 11b are the same dimension W1. The sensitivity axis directions P of the element parts are identical, and sensitivity is provided with respect to a detected magnetic field H3. The first element part and the second element part are arranged in series.

Description

本発明は、磁気抵抗効果素子と、前記磁気抵抗効果素子と非接触の軟磁性体とを備える磁気センサに関する。   The present invention relates to a magnetic sensor including a magnetoresistive effect element and a soft magnetic material that is not in contact with the magnetoresistive effect element.

図9は、従来における磁気センサの一部を示す部分拡大平面図である。
符号1は磁気抵抗効果素子であり、図9(b)に示すように磁気抵抗効果素子1は基板2上に形成される。磁気抵抗効果素子1の表面は絶縁層3で覆われており、軟磁性体4が絶縁層3の表面に形成される。磁気抵抗効果素子1と軟磁性体4とは非接触である。
FIG. 9 is a partially enlarged plan view showing a part of a conventional magnetic sensor.
Reference numeral 1 denotes a magnetoresistive effect element, and the magnetoresistive effect element 1 is formed on a substrate 2 as shown in FIG. The surface of the magnetoresistive effect element 1 is covered with an insulating layer 3, and a soft magnetic material 4 is formed on the surface of the insulating layer 3. The magnetoresistive element 1 and the soft magnetic body 4 are not in contact with each other.

磁気抵抗効果素子1のY1−Y2方向の両端には電極5,5が接続されている。軟磁性体4は、X1−X2方向に間隔を空けて第1軟磁性部材4aと第2軟磁性部材4bとに分けられる。   Electrodes 5 and 5 are connected to both ends of the magnetoresistive element 1 in the Y1-Y2 direction. The soft magnetic body 4 is divided into a first soft magnetic member 4a and a second soft magnetic member 4b with an interval in the X1-X2 direction.

図9(a)に示す平面視(基板2のなす面(表面)に対して垂直方向(Z)からの矢視D)にて磁気抵抗効果素子1は、第1軟磁性部材4aと第2軟磁性部材4bとの間であってX1−X2方向の略中心に位置している。   In the plan view shown in FIG. 9A (the arrow D from the direction (Z) perpendicular to the surface (surface) formed by the substrate 2), the magnetoresistive element 1 includes the first soft magnetic member 4a and the second soft magnetic member 4a. It is located between the soft magnetic member 4b and substantially at the center in the X1-X2 direction.

磁気抵抗効果素子1の感度軸方向は、X1−X2方向と平行な方向である。したがって図9(a)(b)に示すように、磁気抵抗効果素子1はX1−X2方向に向く検知磁界H1に反応して電気抵抗が変化する。   The sensitivity axis direction of the magnetoresistive effect element 1 is a direction parallel to the X1-X2 direction. Therefore, as shown in FIGS. 9A and 9B, the magnetoresistive effect element 1 changes its electric resistance in response to the detection magnetic field H1 directed in the X1-X2 direction.

一方、図9(a)(b)に示すY1−Y2方向に向く外乱磁界H2は、軟磁性体4内を通り磁気抵抗効果素子1に対してシールドされる。   On the other hand, a disturbance magnetic field H2 directed in the Y1-Y2 direction shown in FIGS. 9A and 9B passes through the soft magnetic body 4 and is shielded against the magnetoresistive effect element 1.

特開2009−162499号公報JP 2009-162499 A 特開2003−294818号公報JP 2003-294818 A

図9に示す従来の磁気センサの構造では、地磁気のように検知磁界H1が微弱であっても図9(b)に示すように検知磁界H1は軟磁性体4内を通って磁気抵抗効果素子1に流入する磁路M1が構成される。このとき磁路M1は、各軟磁性部材4a,4bの端部間に生じており、磁気抵抗効果素子1に印加される磁界強度は見かけ上、増幅される。   In the structure of the conventional magnetic sensor shown in FIG. 9, even if the detection magnetic field H1 is weak as in the case of geomagnetism, the detection magnetic field H1 passes through the soft magnetic body 4 as shown in FIG. 1 is formed. At this time, the magnetic path M1 is generated between the ends of the soft magnetic members 4a and 4b, and the magnetic field strength applied to the magnetoresistive effect element 1 is apparently amplified.

これにより、センサ感度(出力)が高くなりすぎて、検知磁界H1に対する測定レンジが非常に小さくなってしまう問題があった。   As a result, the sensor sensitivity (output) becomes too high, and there is a problem that the measurement range for the detected magnetic field H1 becomes very small.

特許文献1,2の構成では、図9と同様に、磁気抵抗効果素子1に印加される検知磁界の磁界強度は増幅されることになり、上記した従来課題を解決できない。   In the configurations of Patent Documents 1 and 2, similarly to FIG. 9, the magnetic field intensity of the detection magnetic field applied to the magnetoresistive effect element 1 is amplified, and the above-described conventional problems cannot be solved.

そこで本発明は、上記従来の課題を解決するためのものであり、特に、センサ感度が高くなりすぎないように制御できるとともに、検知磁界とは異なる方向からの外乱磁界に対する外乱磁界耐性を向上させることが可能な磁気センサを提供することを目的とする。   Therefore, the present invention is for solving the above-described conventional problems, and in particular, it can be controlled so that the sensitivity of the sensor does not become too high, and improves the disturbance magnetic field resistance against a disturbance magnetic field from a direction different from the detected magnetic field. An object of the present invention is to provide a magnetic sensor that can perform the above-described operation.

本発明における磁気センサは、
基板上に磁性層と非磁性層とが積層されて成る磁気抵抗効果を発揮する磁気抵抗効果素子と、前記基板のなす面に対して垂直方向に前記磁気抵抗効果素子と間隔を空けて配置された軟磁性体と、を有し、
前記基板のなす面に水平な面内にて直交する2方向を、X1−X2方向とY1−Y2方向としたとき、
前記軟磁性体は、前記X1−X2方向に間隔を空けて配置された第1軟磁性部材と第2軟磁性部材とを備え、
前記磁気抵抗効果素子は、前記第1軟磁性部材と前記垂直方向にて少なくとも一部が対向する第1素子部と、前記第2軟磁性部材と前記垂直方向にて少なくとも一部が対向する第2素子部とを有し、
前記第1素子部は前記第1軟磁性部材のX2端部側にて配置され、前記第2素子部は前記第2軟磁性部材のX1端部側に配置されており、前記垂直方向からの矢視にて、前記第1軟磁性部材のX2端部から前記第1素子部のX1端部までの前記X1−X2方向への距離と、前記第2軟磁性部材のX1端部から前記第2素子部のX2端部までの前記X1−X2方向への距離とが同一寸法であり、
前記第1素子部と前記第2素子部の感度軸方向は前記X1−X2方向で且つ同一方向であり、前記第1素子部及び前記第2素子部は、前記X1−X2方向からの検知磁界に対して感度を備えており、
前記第1素子部と前記第2素子部とは直列に接続されていることを特徴とするものである。
The magnetic sensor in the present invention is
A magnetoresistive effect element that exhibits a magnetoresistive effect formed by laminating a magnetic layer and a nonmagnetic layer on a substrate, and is disposed at a distance from the magnetoresistive effect element in a direction perpendicular to a surface formed by the substrate. Soft magnetic material,
When the two directions perpendicular to the plane formed by the substrate are the X1-X2 direction and the Y1-Y2 direction,
The soft magnetic body includes a first soft magnetic member and a second soft magnetic member that are spaced apart in the X1-X2 direction.
The magnetoresistive element includes a first element portion that is at least partially opposed to the first soft magnetic member in the vertical direction, and a first element portion that is at least partially opposed to the second soft magnetic member in the vertical direction. Having two element parts,
The first element portion is disposed on the X2 end side of the first soft magnetic member, and the second element portion is disposed on the X1 end side of the second soft magnetic member, As viewed in the direction of the arrow, the distance in the X1-X2 direction from the X2 end of the first soft magnetic member to the X1 end of the first element portion, and the first soft magnetic member from the X1 end of the second soft magnetic member to the first The distance in the X1-X2 direction to the X2 end of the two element parts is the same dimension,
The sensitivity element directions of the first element part and the second element part are the same direction as the X1-X2 direction, and the first element part and the second element part are detected magnetic fields from the X1-X2 direction. Is sensitive to
The first element part and the second element part are connected in series.

本発明では、感度軸方向が同じ方向の第1素子部と第2素子部とを直列に接続しており、X1−X2方向からの検知磁界を検知することができる。このとき本発明では、少なくとも第1素子部の一部及び少なくとも第2素子部の一部を、夫々、第1軟磁性部材及び第2軟磁性部材と垂直方向にて対向させている。このような構成にすることで、各軟磁性部材の端部間で生じる強い磁界強度が各素子部に影響しにくくなり、第1素子部及び第2素子部に印加される磁界強度を従来よりも減衰できる。よって本発明では、磁気センサのセンサ感度(出力)が高くなりすぎないように制御でき、検知磁界の測定レンジを広げることができる。   In the present invention, the first element part and the second element part having the same sensitivity axis direction are connected in series, and the detection magnetic field from the X1-X2 direction can be detected. At this time, in the present invention, at least a part of the first element part and at least a part of the second element part are respectively opposed to the first soft magnetic member and the second soft magnetic member in the vertical direction. By adopting such a configuration, the strong magnetic field strength generated between the end portions of each soft magnetic member is less likely to affect each element portion, and the magnetic field strength applied to the first element portion and the second element portion is conventionally increased. Can also be attenuated. Therefore, in this invention, it can control so that the sensor sensitivity (output) of a magnetic sensor may not become high too much, and can extend the measurement range of a detection magnetic field.

加えて本発明では、Y1−Y2方向に作用する外乱磁界を第1軟磁性部材及び第2軟磁性部材によりシールドできる。しかも少なくとも第1素子部の一部及び少なくとも第2素子部の一部を、夫々、第1軟磁性部材及び第2軟磁性部材と垂直方向にて対向させることでシールド効果をより高めることができる。さらに本発明では、垂直方向からの矢視にて、第1軟磁性部材のX2端部から第1素子部のX1端部までの幅寸法と、第2軟磁性部材のX1端部から第2素子部のX2端部までの幅寸法とを同一寸法としている。このため、垂直方向からの外乱磁界を、第1素子部と第2素子部との間で適切にキャンセルすることができる。以上により、本発明ではセンサ感度が高くなり過ぎないように適度に制御でき、従来よりも広い測定レンジを得ることができるとともに、優れた外乱磁界耐性を備える磁気センサにできる。   In addition, in the present invention, the disturbance magnetic field acting in the Y1-Y2 direction can be shielded by the first soft magnetic member and the second soft magnetic member. Moreover, at least a part of the first element part and at least a part of the second element part are opposed to the first soft magnetic member and the second soft magnetic member in the vertical direction, respectively, so that the shielding effect can be further enhanced. . Furthermore, in the present invention, as viewed from the vertical direction, the width dimension from the X2 end of the first soft magnetic member to the X1 end of the first element portion, and the second dimension from the X1 end of the second soft magnetic member. The width dimension up to the X2 end of the element portion is the same dimension. For this reason, the disturbance magnetic field from a perpendicular direction can be canceled appropriately between the 1st element part and the 2nd element part. As described above, according to the present invention, the sensor sensitivity can be appropriately controlled so as not to be too high, a measurement range wider than that of the conventional sensor can be obtained, and a magnetic sensor having excellent disturbance magnetic field resistance can be obtained.

本発明では、前記第1素子部のX2端部と、前記第1軟磁性部材のX2端部とが前記垂直方向にて一致しているか、あるいは、前記第1素子部のX2端部は、前記第1軟磁性部材のX2端部よりもX2側にはみ出しており、
前記第2素子部のX1端部と、前記第2軟磁性部材のX1端部とが前記垂直方向にて一致しているか、あるいは、前記第2素子部のX1端部は、前記第2軟磁性部材のX1端部よりもX1側にはみ出していることが好ましい。これにより、センサ感度と検知磁界の測定レンジの双方を適度に制御できる。
In the present invention, the X2 end portion of the first element portion and the X2 end portion of the first soft magnetic member coincide with each other in the vertical direction, or the X2 end portion of the first element portion is: It protrudes to the X2 side from the X2 end of the first soft magnetic member,
The X1 end portion of the second element portion and the X1 end portion of the second soft magnetic member coincide with each other in the vertical direction, or the X1 end portion of the second element portion is the second soft portion. It is preferable that the magnetic member protrudes to the X1 side from the X1 end portion. Thereby, both the sensor sensitivity and the measurement range of the detected magnetic field can be appropriately controlled.

また本発明では、前記第1軟磁性部材及び前記第2軟磁性部材は、前記X1−X2方向への幅寸法に比べてY1−Y2方向の長さ寸法のほうが長く形成されており、
前記第1素子部及び前記第2素子部は、前記X1−X2方向への幅寸法に比べてY1−Y2方向の長さ寸法のほうが長く形成されていることが好ましい。Y1−Y2方向の外乱磁界に対するシールド効果を高めることができる。また第1素子部及び第2素子部に形状異方性を付与でき、ヒステリシス及びリニアリティを効果的に改善することができる。
In the present invention, the first soft magnetic member and the second soft magnetic member are formed so that the length dimension in the Y1-Y2 direction is longer than the width dimension in the X1-X2 direction.
The first element part and the second element part are preferably formed so that the length dimension in the Y1-Y2 direction is longer than the width dimension in the X1-X2 direction. The shielding effect against the disturbance magnetic field in the Y1-Y2 direction can be enhanced. Moreover, shape anisotropy can be imparted to the first element part and the second element part, and hysteresis and linearity can be effectively improved.

また本発明では、前記第1軟磁性部材及び前記第2軟磁性部材の前記Y1−Y2方向への長さ寸法は、前記第1素子部及び前記第2素子部の前記Y1−Y2方向への長さ寸法より長く、前記第1軟磁性部材及び前記第2軟磁性部材の各Y1側端部及び各Y2側端部は、夫々、前記第1素子部及び前記第2素子部の各Y1側端部及び各Y2側端部よりもY1−Y2方向にはみ出していることが好ましい。これにより、軟磁性体のシールド効果を高めることができる。   In the present invention, the length dimension of the first soft magnetic member and the second soft magnetic member in the Y1-Y2 direction is set so that the lengths of the first element portion and the second element portion in the Y1-Y2 direction are the same. Each Y1 side end and each Y2 side end of the first soft magnetic member and the second soft magnetic member are longer than the length dimension, and the Y1 side ends of the first element portion and the second element portion respectively. It is preferable to protrude in the Y1-Y2 direction from the end and each Y2-side end. Thereby, the shielding effect of a soft magnetic body can be improved.

また本発明では、前記磁気抵抗効果素子と固定抵抗素子とを組み合わせて、あるいは、前記感度軸方向が互いに異なる複数の前記磁気抵抗効果素子を組み合わせて、ブリッジ回路が構成されていることが好ましい。   In the present invention, it is preferable that a bridge circuit is configured by combining the magnetoresistive effect element and the fixed resistance element, or combining the plurality of magnetoresistive effect elements having different sensitivity axis directions.

また本発明では、前記第1素子部と前記第2素子部からなる組が複数、積層されており、前記第1軟磁性部材のX2端部から前記第1素子部のX1端部までの前記X1−X2方向への距離及び前記第2軟磁性部材のX1端部から前記第2素子部のX2端部までの前記X1−X2方向への距離が、各組で異なっている構成にもできる。   Further, in the present invention, a plurality of sets each including the first element portion and the second element portion are stacked, and the X2 end portion of the first soft magnetic member to the X1 end portion of the first element portion are stacked. The distance in the X1-X2 direction and the distance in the X1-X2 direction from the X1 end of the second soft magnetic member to the X2 end of the second element portion may be different for each set. .

本発明によれば、センサ感度が高くなり過ぎないように適度に制御でき、従来よりも検知磁界の測定レンジを広げることができるとともに、優れた外乱磁界耐性を備える磁気センサにできる。   ADVANTAGE OF THE INVENTION According to this invention, it can control moderately so that sensor sensitivity may not become high too much, and while being able to expand the measurement range of a detection magnetic field conventionally, it can be set as the magnetic sensor provided with the disturbance magnetic field outstanding.

図1(a)は、第1実施形態における磁気センサの部分平面図であり、図1(b)は、図1(a)に示す磁気センサをA−A線に沿って切断し矢印方向から見た部分縦断面図である。FIG. 1A is a partial plan view of the magnetic sensor according to the first embodiment, and FIG. 1B is a cross-sectional view of the magnetic sensor shown in FIG. FIG. 図2(a)(b)は、いずれも図1(b)と同じ部分縦断面を示し、特に、図2(a)は、検知磁界H3が印加されたときの磁気センサ内での磁路を説明するための説明図であり、図2(b)は、垂直方向からの外乱磁界H5が印加されたときの磁気センサ内での磁路を説明するための説明図である。2 (a) and 2 (b) show the same partial vertical cross section as FIG. 1 (b). In particular, FIG. 2 (a) shows a magnetic path in the magnetic sensor when the detection magnetic field H3 is applied. FIG. 2B is an explanatory diagram for explaining a magnetic path in the magnetic sensor when a disturbance magnetic field H5 from the vertical direction is applied. 図3は、第2実施形態における磁気センサの部分平面図である。FIG. 3 is a partial plan view of the magnetic sensor according to the second embodiment. 図4は、第3実施形態における磁気センサの部分縦断面図である。FIG. 4 is a partial longitudinal sectional view of a magnetic sensor according to the third embodiment. 図5(a)(b)は、本実施形態における磁気センサの回路図を示す。5A and 5B are circuit diagrams of the magnetic sensor according to the present embodiment. 図6は、磁気抵抗効果素子の部分拡大縦断面図を示す。FIG. 6 shows a partially enlarged longitudinal sectional view of the magnetoresistive effect element. 図7(a)〜図7(e)は、第1素子部及び第2素子部の軟磁性体に対するオーバーラップ寸法を変化させたときの検知磁界とセンサ出力との関係を示すグラフである。Fig.7 (a)-FIG.7 (e) are graphs which show the relationship between the detection magnetic field and sensor output when the overlap dimension with respect to the soft magnetic body of a 1st element part and a 2nd element part is changed. 図8は、オーバーラップ寸法とセンサ感度との関係を示すグラフである。FIG. 8 is a graph showing the relationship between the overlap dimension and the sensor sensitivity. 図9(a)は、従来における磁気センサの一部を示す部分平面図であり、図9(b)は、図9(a)に示す磁気センサをB−B線に沿って切断し矢印方向から見た部分縦断面図である。FIG. 9A is a partial plan view showing a part of a conventional magnetic sensor, and FIG. 9B is a sectional view of the magnetic sensor shown in FIG. It is the fragmentary longitudinal cross-section seen from.

図1(a)は、第1実施形態における磁気センサの部分平面図であり、図1(b)は、図1(a)に示す磁気センサをA−A線に沿って切断し矢印方向から見た部分縦断面図である。図2(a)(b)は、いずれも図1(b)と同じ部分縦断面を示し、特に、図2(a)は、検知磁界H3が印加されたときの磁気センサ内での磁路を説明するための説明図であり、図2(b)は、垂直方向からの外乱磁界H5が印加されたときの磁気センサ内での磁路を説明するための説明図である。図3は、第2実施形態における磁気センサの部分平面図である。図4は、第3実施形態における磁気センサの部分縦断面図である。図5(a)(b)は、本実施形態における磁気センサの回路図を示す。図6は、磁気抵抗効果素子の部分拡大縦断面図を示す。   FIG. 1A is a partial plan view of the magnetic sensor according to the first embodiment, and FIG. 1B is a cross-sectional view of the magnetic sensor shown in FIG. FIG. FIGS. 2 (a) and 2 (b) both show the same partial vertical cross section as FIG. 1 (b), and in particular, FIG. FIG. 2B is an explanatory diagram for explaining a magnetic path in the magnetic sensor when a disturbance magnetic field H5 from the vertical direction is applied. FIG. 3 is a partial plan view of the magnetic sensor according to the second embodiment. FIG. 4 is a partial longitudinal sectional view of a magnetic sensor according to the third embodiment. 5A and 5B are circuit diagrams of the magnetic sensor according to the present embodiment. FIG. 6 shows a partially enlarged longitudinal sectional view of the magnetoresistive effect element.

各図に示すX1−X2方向、及びY1−Y2方向は、基板10のなす面に水平な面内にて直交する2方向を示し、Z1−Z2方向は前記基板10のなす面に対して直交する方向を示している。   The X1-X2 direction and the Y1-Y2 direction shown in each figure indicate two directions orthogonal to the plane formed by the substrate 10, and the Z1-Z2 direction is orthogonal to the plane formed by the substrate 10. The direction to do is shown.

磁気センサSは、図1に示すように、シリコン等の基板10上に形成された磁気抵抗効果素子11と、軟磁性体12とを有して構成される。磁気抵抗効果素子11と軟磁性体12との間には絶縁層13が設けられ、磁気抵抗効果素子11と軟磁性体12とは基板10のなす面(表面)に垂直方向(高さ方向;Z1−Z2)にて間隔を空けて配置されている。   As shown in FIG. 1, the magnetic sensor S includes a magnetoresistive effect element 11 formed on a substrate 10 such as silicon and a soft magnetic body 12. An insulating layer 13 is provided between the magnetoresistive element 11 and the soft magnetic body 12, and the magnetoresistive element 11 and the soft magnetic body 12 are perpendicular to the surface (surface) formed by the substrate 10 (height direction; Z1-Z2) are spaced apart.

絶縁層13の膜厚は特に限定されるものでないが、例えば0.3μm以上である。磁気抵抗効果素子11と軟磁性体12間に絶縁層13を介することで磁気抵抗効果素子11と軟磁性体12間の電気的な絶縁性を向上させることができる。   Although the film thickness of the insulating layer 13 is not specifically limited, For example, it is 0.3 micrometer or more. By interposing the insulating layer 13 between the magnetoresistive effect element 11 and the soft magnetic body 12, electrical insulation between the magnetoresistive effect element 11 and the soft magnetic body 12 can be improved.

図1(a)(b)に示すように、磁気抵抗効果素子11は、第1素子部11aと第2素子部11bとを備える。第1素子部11a及び第2素子部11bは同形状であり、各素子部11a,11bの素子幅(X1−X2方向への幅寸法)はT1で、素子長さ(Y1−Y2方向への長さ寸法)はL1である。各素子部11a,11bは、素子長さL1のほうが素子幅T1よりも大きい帯状で形成される。   As shown in FIGS. 1A and 1B, the magnetoresistive effect element 11 includes a first element part 11a and a second element part 11b. The first element portion 11a and the second element portion 11b have the same shape, and the element width (width dimension in the X1-X2 direction) of each element portion 11a, 11b is T1, and the element length (in the Y1-Y2 direction). The length dimension) is L1. Each element part 11a, 11b is formed in a strip shape in which the element length L1 is larger than the element width T1.

図6を用いて磁気抵抗効果素子の積層構造について説明する。なお図6は、第1素子部11aおよび第2素子部11bの双方の積層構造に該当する。   The laminated structure of the magnetoresistive effect element will be described with reference to FIG. FIG. 6 corresponds to the laminated structure of both the first element part 11a and the second element part 11b.

図6に示すように、磁気抵抗効果素子11は、基板10上に、例えば下から非磁性下地層60、固定磁性層61、非磁性層62、フリー磁性層63及び保護層64の順に積層されて成膜される。磁気抵抗効果素子11を構成する各層は、例えばスパッタにて成膜される。   As shown in FIG. 6, the magnetoresistive effect element 11 is laminated on the substrate 10 in order of, for example, a nonmagnetic underlayer 60, a fixed magnetic layer 61, a nonmagnetic layer 62, a free magnetic layer 63, and a protective layer 64 from the bottom. To form a film. Each layer constituting the magnetoresistive element 11 is formed by sputtering, for example.

図6に示す実施形態では、固定磁性層61は第1磁性層61aと第2磁性層61bと、第1磁性層61a及び第2磁性層61b間に介在する非磁性中間層61cとの人工反強磁性構造(AAF;Artificial AntiFerro magnetic structure)である。各磁性層61a,61bはCoFe合金などの軟磁性材料で形成されている。非磁性中間層61cはRu等である。非磁性層62はCuなどの非磁性材料で形成される。フリー磁性層63は、NiFe合金などの軟磁性材料で形成されている。保護層64はTaなどである。   In the embodiment shown in FIG. 6, the pinned magnetic layer 61 has an artificial reaction between the first magnetic layer 61a, the second magnetic layer 61b, and the nonmagnetic intermediate layer 61c interposed between the first magnetic layer 61a and the second magnetic layer 61b. Ferromagnetic structure (AAF). Each of the magnetic layers 61a and 61b is formed of a soft magnetic material such as a CoFe alloy. The nonmagnetic intermediate layer 61c is made of Ru or the like. The nonmagnetic layer 62 is formed of a nonmagnetic material such as Cu. The free magnetic layer 63 is made of a soft magnetic material such as a NiFe alloy. The protective layer 64 is Ta or the like.

本実施形態では固定磁性層61を人工反強磁性構造として、第1磁性層61aと第2磁性層61bとが反平行に磁化固定されたセルフピン止め型である。図6に示すセルフピン止め型では、反強磁性層を用いず、よって磁場中熱処理を施すことなく固定磁性層61を構成する各磁性層61a,61bを磁化固定している。なお、各磁性層61a,61bの磁化固定力は、外部磁界が作用したときでも磁化揺らぎが生じない程度の大きさであれば足りる。   In the present embodiment, the pinned magnetic layer 61 has an artificial antiferromagnetic structure, and is a self-pinning type in which the first magnetic layer 61a and the second magnetic layer 61b are magnetization-fixed antiparallel. In the self-pinning type shown in FIG. 6, the magnetic layers 61a and 61b constituting the pinned magnetic layer 61 are fixed by magnetization without using an antiferromagnetic layer and thus without performing heat treatment in a magnetic field. The magnetization fixing force of each of the magnetic layers 61a and 61b only needs to be large enough to prevent magnetization fluctuation even when an external magnetic field is applied.

ただし図6の磁気抵抗効果素子11の積層構造は一例である。例えば下から反強磁性層、固定磁性層、非磁性層、フリー磁性層及び保護層の順に積層された積層構造を有する構成とすることもできる。かかる構成では、反強磁性層と固定磁性層との間で交換結合磁界(Hex)を生じさせて固定磁性層の磁化方向を固定することが可能である。また、下からフリー磁性層63、非磁性材料層62、固定磁性層61、及び保護層64の順に積層された積層構造とされてもよい。また固定磁性層61は、第1の磁性層61aと第2の磁性層61bとの磁化の大きさが同じで磁化方向が反平行である構成にできる。   However, the laminated structure of the magnetoresistive effect element 11 in FIG. 6 is an example. For example, a configuration in which an antiferromagnetic layer, a pinned magnetic layer, a nonmagnetic layer, a free magnetic layer, and a protective layer are stacked in this order from the bottom may be employed. In such a configuration, it is possible to fix the magnetization direction of the pinned magnetic layer by generating an exchange coupling magnetic field (Hex) between the antiferromagnetic layer and the pinned magnetic layer. Alternatively, a laminated structure in which the free magnetic layer 63, the nonmagnetic material layer 62, the pinned magnetic layer 61, and the protective layer 64 are laminated in that order from the bottom may be employed. The pinned magnetic layer 61 can be configured such that the first magnetic layer 61a and the second magnetic layer 61b have the same magnetization magnitude and the magnetization directions are antiparallel.

磁気抵抗効果素子11を構成する第2磁性層61bの固定磁化方向(P;感度軸方向)はX1方向である(図1(a)、図2、図6参照)。この固定磁化方向(P)が固定磁性層61の固定磁化方向である。図1(a)等に示すように、第1素子部11a及び第2素子部11bの感度軸方向Pは共に同じ方向である。なお第1素子部11aと第2素子部11bの感度軸方向PはX2方向であってもよい。   The fixed magnetization direction (P; sensitivity axis direction) of the second magnetic layer 61b constituting the magnetoresistive effect element 11 is the X1 direction (see FIGS. 1A, 2 and 6). This fixed magnetization direction (P) is the fixed magnetization direction of the fixed magnetic layer 61. As shown in FIG. 1A and the like, the sensitivity axis directions P of the first element portion 11a and the second element portion 11b are both the same direction. The sensitivity axis direction P of the first element unit 11a and the second element unit 11b may be the X2 direction.

図1(a)に示すように、軟磁性体12は、第1軟磁性部材12aと第2軟磁性部材12bとを有して構成される。第1軟磁性部材12a及び第2軟磁性部材12bは、同形状である。各軟磁性部材12a,12bは、X1−X2方向への幅寸法がT2で、Y1−Y2方向への長さ寸法がL2である。各軟磁性部材12a,12bは、長さ寸法L2のほうが幅寸法T2よりも大きい矩形状あるいは帯状で形成される。   As shown in FIG. 1A, the soft magnetic body 12 includes a first soft magnetic member 12a and a second soft magnetic member 12b. The first soft magnetic member 12a and the second soft magnetic member 12b have the same shape. Each of the soft magnetic members 12a and 12b has a width dimension T2 in the X1-X2 direction and a length dimension L2 in the Y1-Y2 direction. Each of the soft magnetic members 12a and 12b is formed in a rectangular shape or a strip shape in which the length dimension L2 is larger than the width dimension T2.

ここで、各素子部11a,11bの素子幅T1は、0.5〜8μm程度で、素子長さL1は、3〜300μm程度である。また、各軟磁性部材12a,12bの幅寸法T2は、10〜50μm程度で、長さ寸法L2は、センサ長さL1の1.3倍以上である。また、各素子部11a,11bの厚さ寸法は、20〜40nm程度であり、各軟磁性部材12a,12bの厚さ寸法は、0.5〜10μm程度である。   Here, the element width T1 of each element part 11a, 11b is about 0.5-8 micrometers, and element length L1 is about 3-300 micrometers. Moreover, the width dimension T2 of each soft magnetic member 12a, 12b is about 10-50 micrometers, and the length dimension L2 is 1.3 times or more of sensor length L1. Moreover, the thickness dimension of each element part 11a, 11b is about 20-40 nm, and the thickness dimension of each soft-magnetic member 12a, 12b is about 0.5-10 micrometers.

軟磁性体12は、NiFe、CoFe、CoFeSiBやCoZrNb等で形成される。軟磁性体12をスパッタ法、蒸着法、めっき法等で形成することができる。   The soft magnetic body 12 is made of NiFe, CoFe, CoFeSiB, CoZrNb, or the like. The soft magnetic body 12 can be formed by sputtering, vapor deposition, plating, or the like.

図1(a)(b)に示すように、第1軟磁性部材12aは、X1側に配置され、第2軟磁性部材12bはX2側に配置される。第1軟磁性部材12a及び第2軟磁性部材12bはY1−Y2方向に沿って平行に配置され、各軟磁性部材12a,12b間にはX1−X2方向への一定の間隔T3が空いている。   As shown in FIGS. 1A and 1B, the first soft magnetic member 12a is disposed on the X1 side, and the second soft magnetic member 12b is disposed on the X2 side. The first soft magnetic member 12a and the second soft magnetic member 12b are arranged in parallel along the Y1-Y2 direction, and a certain interval T3 in the X1-X2 direction is provided between the soft magnetic members 12a, 12b. .

図1(a)(b)に示すように第1素子部11aは、第1軟磁性部材12aの下方であって、第1軟磁性部材12aのX2端部14側に配置される。図1に示すように、第1素子部11aは、その一部11a1が第1軟磁性部材12aと垂直方向にて対向している(重なっている)。また第1素子部11aの残りの部分は第1軟磁性部材12aのX2端部14よりもX2側にはみ出しており、第1素子部11aのX2端部30は、第1軟磁性部材12aのX2端部14よりもX2側に位置している。   As shown in FIGS. 1A and 1B, the first element portion 11a is disposed below the first soft magnetic member 12a and on the X2 end portion 14 side of the first soft magnetic member 12a. As shown in FIG. 1, a part 11a1 of the first element portion 11a faces (overlaps) the first soft magnetic member 12a in the vertical direction. Further, the remaining portion of the first element portion 11a protrudes to the X2 side from the X2 end portion 14 of the first soft magnetic member 12a, and the X2 end portion 30 of the first element portion 11a extends to the first soft magnetic member 12a. It is located on the X2 side from the X2 end portion 14.

また図1(a)(b)に示すように第2素子部11bは、第2軟磁性部材12bの下方であって、第2軟磁性部材12bのX1端部15側に配置される。図1に示すように、第2素子部11bは、その一部11b1が第2軟磁性部材12bと垂直方向にて対向している(重なっている)。また第2素子部11bの残りの部分は第2軟磁性部材12bのX1端部15よりもX1側にはみ出しており、第2素子部11bのX1端部31は、第2軟磁性部材12bのX1端部15よりもX1側に位置している。   As shown in FIGS. 1A and 1B, the second element portion 11b is disposed below the second soft magnetic member 12b and on the X1 end portion 15 side of the second soft magnetic member 12b. As shown in FIG. 1, the second element portion 11b has a part 11b1 facing (overlapping) the second soft magnetic member 12b in the vertical direction. Further, the remaining portion of the second element portion 11b protrudes from the X1 end portion 15 of the second soft magnetic member 12b to the X1 side, and the X1 end portion 31 of the second element portion 11b extends from the second soft magnetic member 12b. It is located on the X1 side from the X1 end portion 15.

図1(a)に示すように、第1素子部11aと第2素子部11bは、Y1−Y2方向に沿って平行に配置される。   As shown to Fig.1 (a), the 1st element part 11a and the 2nd element part 11b are arrange | positioned in parallel along the Y1-Y2 direction.

図1(a)(b)に示すように、平面視(垂直方向(Z1−Z2)からの矢視C)にて、第1軟磁性部材12aのX2端部14から第1素子部11aのX1端部34までのX1−X2方向への距離と、第2軟磁性部材12bのX1端部15から第2素子部11bのX2端部35までのX1−X2方向への距離とは、共に同じ大きさW1である。なお、距離W1は、各素子部11a,11bの各軟磁性部材12a,12bに対するオーバーラップ寸法であり、特に断らない限り、オーバーラップ寸法W1として説明する。   As shown in FIGS. 1 (a) and 1 (b), the first element portion 11a is seen from the X2 end portion 14 of the first soft magnetic member 12a in plan view (arrow C from the vertical direction (Z1-Z2)). Both the distance in the X1-X2 direction to the X1 end portion 34 and the distance in the X1-X2 direction from the X1 end portion 15 of the second soft magnetic member 12b to the X2 end portion 35 of the second element portion 11b are both The same size W1. The distance W1 is an overlap dimension of the element portions 11a and 11b with respect to the soft magnetic members 12a and 12b, and will be described as an overlap dimension W1 unless otherwise specified.

図1(a)に示すように、第1素子部11aのY1端部16と第2素子部11bのY1端部16とが導電層17により電気的に接続される。これにより第1素子部11aと第2素子部11bとが直列に接続される。   As shown in FIG. 1A, the Y1 end portion 16 of the first element portion 11a and the Y1 end portion 16 of the second element portion 11b are electrically connected by a conductive layer 17. Thereby, the 1st element part 11a and the 2nd element part 11b are connected in series.

図1(a)に示すように第1素子部11aのY2端部18及び第2素子部11bのY2端部18には夫々、導電層19,20が電気的に接続されている。例えば、導電層19は、後述する出力端子に繋がっており、導電層20は、入力端子あるいはグランド端子に繋がっている。   As shown in FIG. 1A, conductive layers 19 and 20 are electrically connected to the Y2 end portion 18 of the first element portion 11a and the Y2 end portion 18 of the second element portion 11b, respectively. For example, the conductive layer 19 is connected to an output terminal described later, and the conductive layer 20 is connected to an input terminal or a ground terminal.

今、図2(a)に示すように検知磁界H3がX2方向に作用したとする。検知磁界H3は、第1軟磁性部材12aと第2軟磁性部材12bとの間に磁路M2を形成する。図2(a)には代表的な磁路M2を図示した。   Assume that the detection magnetic field H3 acts in the X2 direction as shown in FIG. The detection magnetic field H3 forms a magnetic path M2 between the first soft magnetic member 12a and the second soft magnetic member 12b. FIG. 2A shows a typical magnetic path M2.

図2(a)に示すように、磁路M2は、第1軟磁性部材12aのX2端部14と第2軟磁性部材12bのX1端部15間をほぼ直線状に進行する磁路M3のほかに第1軟磁性部材12aのX2端部14と第2軟磁性部材12bのX1端部15間にて垂直方向(Z1−Z2)に広がる磁路M4や、各軟磁性部材12a,12bの下面付近間にて漏れる磁路M5に分岐される。   As shown in FIG. 2A, the magnetic path M2 is a magnetic path M3 that travels substantially linearly between the X2 end 14 of the first soft magnetic member 12a and the X1 end 15 of the second soft magnetic member 12b. In addition, the magnetic path M4 extending in the vertical direction (Z1-Z2) between the X2 end portion 14 of the first soft magnetic member 12a and the X1 end portion 15 of the second soft magnetic member 12b, and the soft magnetic members 12a and 12b It is branched into a magnetic path M5 leaking between the vicinity of the lower surface.

本実施形態では、図2(a)に示すように、第1素子部11aの一部11a1は、第1軟磁性部材12aと垂直方向(Z1−X2)にて対向(平面視にて重なっている)しており、第2素子部11bの一部11b1は、第2軟磁性部材12bと垂直方向(Z1−Z2)にて対向している。すなわち、各素子部11a,11bの一部11a1,11b1は、各軟磁性部材12a,12bの下方に入り込んでいる。このため、図2(a)の部分拡大図に示すように、各素子部11a,11bには、磁路M5のX2方向に向く磁界H5が作用する。第1素子部11a及び第2素子部11bは、X1方向の感度軸方向Pを有し、X1−X2方向からの検知磁界に対して感度を備えている。ここで「感度」とは、磁界によってフリー磁性層63の磁化方向が変動し、フリー磁性層63の磁化方向と、感度軸方向P(固定磁性層61の固定磁化方向)との間の角度が変動することで、電気抵抗値が変動することを指す。換言すれば磁気抵抗効果が発揮される状態を指す。なお、フリー磁性層63の磁化方向は、外部磁界(検知磁界や外乱磁界)が作用しない無磁場状態では、Y1−Y2方向を向いている。特に本実施形態では、各素子部11a,11bをY1−Y2方向に細長い形状で形成しているため、形状異方性効果により、無磁場のときに、X1−X2方向を向く異方性をフリー磁性層63に付与できる。そして検知磁界が作用することで、フリー磁性層63の磁化方向が変動し電気抵抗値を変化させることができる。   In this embodiment, as shown in FIG. 2A, a part 11a1 of the first element portion 11a is opposed to the first soft magnetic member 12a in the vertical direction (Z1-X2) (overlapping in plan view). A portion 11b1 of the second element portion 11b is opposed to the second soft magnetic member 12b in the vertical direction (Z1-Z2). That is, part 11a1, 11b1 of each element part 11a, 11b has entered under each soft magnetic member 12a, 12b. For this reason, as shown in the partially enlarged view of FIG. 2A, a magnetic field H5 directed in the X2 direction of the magnetic path M5 acts on each of the element portions 11a and 11b. The first element unit 11a and the second element unit 11b have a sensitivity axis direction P in the X1 direction, and are sensitive to a detection magnetic field from the X1-X2 direction. Here, “sensitivity” means that the magnetization direction of the free magnetic layer 63 varies depending on the magnetic field, and the angle between the magnetization direction of the free magnetic layer 63 and the sensitivity axis direction P (the fixed magnetization direction of the fixed magnetic layer 61) is By fluctuating, it means that the electric resistance value fluctuates. In other words, it refers to a state where the magnetoresistive effect is exhibited. Note that the magnetization direction of the free magnetic layer 63 is in the Y1-Y2 direction in the absence of a magnetic field in which an external magnetic field (detection magnetic field or disturbance magnetic field) does not act. In particular, in the present embodiment, since the element portions 11a and 11b are formed in a shape elongated in the Y1-Y2 direction, anisotropy in the X1-X2 direction when no magnetic field is generated due to the shape anisotropy effect. It can be applied to the free magnetic layer 63. Then, by the action of the detection magnetic field, the magnetization direction of the free magnetic layer 63 varies and the electric resistance value can be changed.

図2(a)では、第1素子部11aと第2素子部11bとの電気抵抗値が共に大きくなり、第1素子部11aと第2素子部11bとを直列に接続してなる磁気抵抗効果素子11の電気抵抗値は大きくなる。   In FIG. 2A, the electric resistance values of the first element portion 11a and the second element portion 11b both increase, and the magnetoresistive effect formed by connecting the first element portion 11a and the second element portion 11b in series. The electric resistance value of the element 11 is increased.

例えば図5(a)に示すように、図1(a)と同様の構成による2つの磁気抵抗効果素子11と、2つの固定抵抗素子22とを用いてブリッジ回路を構成することができる。固定抵抗素子22は外部磁界の作用によって電気抵抗値が変動しない素子である。固定抵抗素子22の材質や構造を特に限定するものでない。図5(a)に示す符号23は入力端子、符号24、25は出力端子、符号26はグランド端子である。   For example, as shown in FIG. 5A, a bridge circuit can be configured using two magnetoresistive elements 11 and two fixed resistance elements 22 having the same configuration as in FIG. The fixed resistance element 22 is an element whose electric resistance value does not fluctuate due to the action of an external magnetic field. The material and structure of the fixed resistance element 22 are not particularly limited. Reference numeral 23 shown in FIG. 5A is an input terminal, reference numerals 24 and 25 are output terminals, and reference numeral 26 is a ground terminal.

図5(a)に示すブリッジ回路により、2つの磁気抵抗効果素子11の電気抵抗値が変動することで、センサ出力を得ることができる。   With the bridge circuit shown in FIG. 5A, the sensor output can be obtained by changing the electric resistance values of the two magnetoresistive elements 11.

このように本実施形態に示す磁気抵抗効果素子11によりX1−X2方向の検知磁界を検知することができる。   As described above, the detected magnetic field in the X1-X2 direction can be detected by the magnetoresistive effect element 11 shown in the present embodiment.

あるいは図5(b)に示すように、2つの磁気抵抗効果素子11と、2つの磁気抵抗効果素子27を用いてブリッジ回路を構成することができる。各磁気抵抗効果素子27も、各磁気抵抗効果素子11と同様に、第1素子部27aと第2素子部27bとを備え、これら素子部27a,27bが直列に接続した構成となっている。ただし、各磁気抵抗効果素子27の各素子部27a,27bの感度軸方向は、各磁気抵抗効果素子11の各素子部11a,11bの感度軸方向とは反対方向となっている。これは、磁気抵抗効果素子11と、磁気抵抗効果素子27における固定磁性層の第2磁性層の固定磁化方向を反対方向に向けることで実現できる。   Alternatively, as shown in FIG. 5B, a bridge circuit can be configured using two magnetoresistive elements 11 and two magnetoresistive elements 27. Each magnetoresistive effect element 27 is also provided with a first element portion 27a and a second element portion 27b as in the case of each magnetoresistive effect element 11, and the element portions 27a and 27b are connected in series. However, the sensitivity axis directions of the element portions 27 a and 27 b of the magnetoresistive effect elements 27 are opposite to the sensitivity axis directions of the element portions 11 a and 11 b of the magnetoresistive effect elements 11. This can be realized by turning the fixed magnetization directions of the magnetoresistive effect element 11 and the second magnetic layer of the fixed magnetic layer in the magnetoresistive effect element 27 in opposite directions.

ところで本実施形態では、第1素子部11aおよび第2素子部11bの一部11a1,11b1を夫々、第1軟磁性部材12a及び第2軟磁性部材12bと垂直方向(高さ方向;Z1−Z2)にて対向させている(重ねている)。このため図2(a)で示したように、検知磁界H3が第1軟磁性部材12aと第2軟磁性部材12b間に流入したことにより形成される磁路M2のうち、第1軟磁性部材12aのX2端部14側の下面付近、第2軟磁性部材12bのX1端部15側の下面付近に漏れる磁路M5のX2方向に向く磁界H5の影響を、第1素子部11a及び第2素子部11bが受ける。この磁界H5の磁界強度は、各軟磁性部材12a,12bの端部14,15間で生じる磁路M3,M4上の磁界よりも弱い。一方、従来では、磁路M4上のX2方向に向く磁界が作用する位置に磁気抵抗効果素子を配置していた。   In the present embodiment, the first element portion 11a and the portions 11a1 and 11b1 of the second element portion 11b are perpendicular to the first soft magnetic member 12a and the second soft magnetic member 12b (height direction; Z1-Z2), respectively. ). Therefore, as shown in FIG. 2A, the first soft magnetic member of the magnetic path M2 formed by the detection magnetic field H3 flowing between the first soft magnetic member 12a and the second soft magnetic member 12b. The influence of the magnetic field H5 in the X2 direction of the magnetic path M5 leaking near the lower surface on the X2 end portion 14 side of 12a and near the lower surface on the X1 end portion 15 side of the second soft magnetic member 12b is affected by the first element portion 11a and the second element. The element part 11b receives. The magnetic field intensity of the magnetic field H5 is weaker than the magnetic field on the magnetic paths M3 and M4 generated between the end portions 14 and 15 of the soft magnetic members 12a and 12b. On the other hand, conventionally, a magnetoresistive effect element is arranged at a position where a magnetic field directed in the X2 direction acts on the magnetic path M4.

このため、本実施形態では、X2方向に検知磁界H3が作用した際、第1素子部11aおよび第2素子部11bに印加される検知磁界H3の見かけ上の磁界強度(磁界H5の強度)を従来よりも低減でき、従来と比べて、磁気センサSのセンサ感度が高くなりすぎないように制御できる。ここで「センサ感度」とは、例えば1mT当たり1V印加したときの出力(mV)で規定される。   For this reason, in this embodiment, when the detection magnetic field H3 acts in the X2 direction, the apparent magnetic field strength (the strength of the magnetic field H5) of the detection magnetic field H3 applied to the first element portion 11a and the second element portion 11b is set. It can be reduced as compared with the prior art, and can be controlled so that the sensor sensitivity of the magnetic sensor S does not become too high as compared with the prior art. Here, “sensor sensitivity” is defined by, for example, an output (mV) when 1 V is applied per 1 mT.

検知磁界H3が作用した際、本実施形態のように各素子部11a,11bを磁路M5上の位置に配置した場合と、従来のように磁路M4上の位置に配置した場合とでは、各素子部11a,11bに作用するX2方向に向く磁界の強度は異なる。すなわち、各素子部11a,11bの配置により、各素子部11a,11bに作用する検知磁界H3の磁界強度が、見かけ上、変化する。従来の磁路M4の位置に磁気抵抗効果素子を配置すると、磁路M4は、各軟磁性部材12a,12bの端部14,15間で生じており、磁気抵抗効果素子に作用するX2方向を向く磁界の強度は非常に強くなる。つまり、従来では、磁気抵抗効果素子に作用する検知磁界H3の見かけ上の磁界強度が大きくなってしまう。一方、各素子部12a,12bの下面12a3,12b3間にも多少、磁界は漏れ出るが、その磁界の磁界強度は、端部14,15間での磁界強度に比べて十分に低い。したがって、磁路M5の位置に各素子部11a,11bを配置すると、X2方向に向く弱い磁界H5が各素子部11a,11bに作用する状態となり、したがって、本実施形態では、各素子部11a,11bに作用する検知磁界H3の見かけ上の磁界強度を小さくすることができる。   When the detection magnetic field H3 acts, when the element portions 11a and 11b are arranged at positions on the magnetic path M5 as in the present embodiment, and when they are arranged at positions on the magnetic path M4 as in the prior art, The intensity of the magnetic field directed to the X2 direction acting on each element part 11a, 11b is different. In other words, the magnetic field strength of the detection magnetic field H3 acting on the element portions 11a and 11b apparently changes depending on the arrangement of the element portions 11a and 11b. When the magnetoresistive element is disposed at the position of the conventional magnetic path M4, the magnetic path M4 is generated between the end portions 14 and 15 of the soft magnetic members 12a and 12b, and the X2 direction acting on the magnetoresistive element is defined. The strength of the magnetic field facing is very strong. That is, conventionally, the apparent magnetic field strength of the detection magnetic field H3 acting on the magnetoresistive effect element is increased. On the other hand, the magnetic field leaks somewhat between the lower surfaces 12a3 and 12b3 of the element portions 12a and 12b, but the magnetic field strength of the magnetic field is sufficiently lower than the magnetic field strength between the end portions 14 and 15. Therefore, when each element part 11a, 11b is arranged at the position of the magnetic path M5, a weak magnetic field H5 directed in the X2 direction is applied to each element part 11a, 11b. Therefore, in this embodiment, each element part 11a, The apparent magnetic field strength of the detection magnetic field H3 acting on 11b can be reduced.

このように、磁気抵抗効果素子の軟磁性部材12a,12bに対する配置を代えることで、従来では、磁気抵抗効果素子に作用する検知磁界H3の磁界強度が見かけ上強まり、したがって、出力が大きく出てしまい、センサ感度は高い状態になる。一方、本実施形態では、各素子部11a,11bに作用する検知磁界H3の磁界強度を従来よりも見かけ上小さくでき、したがって従来に比べて出力を小さくでき、センサ感度を低い状態にできる。   Thus, by changing the arrangement of the magnetoresistive effect element with respect to the soft magnetic members 12a and 12b, conventionally, the magnetic field strength of the detection magnetic field H3 acting on the magnetoresistive effect element is apparently increased, and thus the output is greatly increased. Thus, the sensor sensitivity is high. On the other hand, in the present embodiment, the magnetic field strength of the detection magnetic field H3 acting on each of the element portions 11a and 11b can be made apparently smaller than that of the prior art, so that the output can be reduced compared to the conventional case and the sensor sensitivity can be lowered.

ここで「見かけ上」という表現を使用したのは、素子部11a,11bに作用する検知磁界H3の磁界強度が、軟磁性部材12a、12bを介すことで、検知磁界H3そのものの磁界強度(軟磁性部材12a,12bに入る前の磁界強度)から変化してしまうことを意味する。   The expression “apparently” is used here because the magnetic field strength of the detection magnetic field H3 acting on the element portions 11a and 11b passes through the soft magnetic members 12a and 12b, so that the magnetic field strength of the detection magnetic field H3 itself ( This means that the magnetic field intensity is changed from that before entering the soft magnetic members 12a and 12b.

検知磁界の測定レンジ(検知範囲)は、磁気センサSの出力変動が生じる範囲である。出力は、磁界強度が大きくなればなるほど、いずれ磁気飽和に達して変動しなくなる。磁気センサSのセンサ感度が高ければ、同じ磁界強度の検知磁界H3が作用しても、出力が高くなってしまう。このためセンサ感度が高くなるほど、小さい磁界強度(ここでいう磁界強度とは、各素子部11a,11bに作用する見かけ上の磁界強度ではなく、検知磁界H3そのものの大きさである)で出力が変動しなくなる。よって測定レンジはセンサ感度が高いほど小さくなる。   The measurement range (detection range) of the detected magnetic field is a range where the output fluctuation of the magnetic sensor S occurs. As the magnetic field strength increases, the output eventually reaches magnetic saturation and does not fluctuate. If the sensor sensitivity of the magnetic sensor S is high, the output will be high even if the detection magnetic field H3 having the same magnetic field strength acts. For this reason, the higher the sensor sensitivity, the smaller the magnetic field intensity (here, the magnetic field intensity is not the apparent magnetic field intensity acting on each of the element portions 11a and 11b, but the magnitude of the detection magnetic field H3 itself). It will not fluctuate. Therefore, the measurement range becomes smaller as the sensor sensitivity is higher.

従来の磁気抵抗効果素子と軟磁性体との配置では、センサ感度が高くなりすぎて測定レンジが非常に狭くなった。   In the conventional arrangement of the magnetoresistive effect element and the soft magnetic material, the sensor sensitivity becomes too high and the measurement range becomes very narrow.

これに対し本実施形態では、各素子部11a,11bの各軟磁性部材12a,12bに対する配置を従来と変えて、磁気センサSのセンサ感度(出力)が高くなりすぎないように制御している。このため本実施形態では従来よりも検知磁界の測定レンジを広げることができる。   On the other hand, in this embodiment, the arrangement of the element portions 11a and 11b with respect to the soft magnetic members 12a and 12b is changed from the conventional one, and control is performed so that the sensor sensitivity (output) of the magnetic sensor S does not become too high. . For this reason, in this embodiment, the measurement range of a detection magnetic field can be expanded compared with the past.

なお、図2(a)では、X2方向への検知磁界H3について説明したが、X1方向への検知磁界H3が作用した場合も同様である。   In FIG. 2A, the detection magnetic field H3 in the X2 direction has been described, but the same applies when the detection magnetic field H3 in the X1 direction acts.

加えて本実施形態では、Y1−Y2方向に作用する外乱磁界H4(図1(a)参照)を第1軟磁性部材12a、及び第2軟磁性部材12bによりシールドできる。すなわち外乱磁界H4は、各軟磁性部材12a,12b内を通るため、各素子部11a,11bに対する外乱磁界H4の影響を小さくできる。特に図1(a)に示すように、各軟磁性部材12a,12bの長さ寸法L2を幅寸法T2よりも長くしており、外乱磁界H4が各軟磁性部材12a,12b内にてY1−Y2方向に平行に通り抜けやすくなっている。また、従来のように、第1軟磁性部材12aと第2軟磁性部材12bとの間の間隔T3内の略中心に磁気抵抗効果素子を配置するよりも、図1(a)(b)に示すように、各素子部11a,11bの一部11a1,11b1を、第1軟磁性部材12aおよび第2軟磁性部材12bと垂直方向(Z1−Z2;高さ方向)にて対向させることで、各軟磁性部材12a,12bのシールド効果を高めることができる。シールド効果をより高めるには、図1に示す第1軟磁性部材12aと第2軟磁性部材12b間のX1−X2方向への間隔T3を狭めることが好ましい。例えば、間隔T3は、1.5〜6.0μm程度である。   In addition, in this embodiment, the disturbance magnetic field H4 (see FIG. 1A) acting in the Y1-Y2 direction can be shielded by the first soft magnetic member 12a and the second soft magnetic member 12b. That is, since the disturbance magnetic field H4 passes through the soft magnetic members 12a and 12b, the influence of the disturbance magnetic field H4 on the element portions 11a and 11b can be reduced. In particular, as shown in FIG. 1A, the length dimension L2 of each soft magnetic member 12a, 12b is made longer than the width dimension T2, and a disturbance magnetic field H4 is generated in each soft magnetic member 12a, 12b as Y1- It is easy to pass through in parallel to the Y2 direction. 1A and 1B, rather than disposing the magnetoresistive element at the approximate center in the interval T3 between the first soft magnetic member 12a and the second soft magnetic member 12b as in the prior art. As shown, by making a part 11a1, 11b1 of each element part 11a, 11b face the first soft magnetic member 12a and the second soft magnetic member 12b in the vertical direction (Z1-Z2; height direction), The shielding effect of each soft magnetic member 12a, 12b can be enhanced. In order to further enhance the shielding effect, it is preferable to narrow the interval T3 in the X1-X2 direction between the first soft magnetic member 12a and the second soft magnetic member 12b shown in FIG. For example, the interval T3 is about 1.5 to 6.0 μm.

また本実施形態では、第1軟磁性部材12a及び第2軟磁性部材12bのY1−Y2方向への長さ寸法L2は、第1素子部11aおよび第2素子部11bのY1−Y2方向への長さ寸法L1よりも長い。そして第1軟磁性部材12aおよび第2軟磁性部材12bの各Y1端部12a1,12b1及び各Y2端部12a2,12b2は、夫々、第1素子部11aおよび第2素子部11bの各Y1側端部16,16および各Y2側端部18,18よりもY1−Y2方向にはみ出している。このように、各軟磁性部材12a,12bを、各素子部11a,11よりも長く形成することで、Y1−Y2方向への外乱磁界H4が各素子部11a,11bに作用するよりも先に効果的に各軟磁性部材12a,12b内を通過させることができ、より優れたシールド効果を得ることができる。   In the present embodiment, the length dimension L2 of the first soft magnetic member 12a and the second soft magnetic member 12b in the Y1-Y2 direction is equal to the length L2 of the first element portion 11a and the second element portion 11b in the Y1-Y2 direction. It is longer than the length dimension L1. The Y1 end portions 12a1 and 12b1 and the Y2 end portions 12a2 and 12b2 of the first soft magnetic member 12a and the second soft magnetic member 12b are the Y1 side ends of the first element portion 11a and the second element portion 11b, respectively. It protrudes in the Y1-Y2 direction from the portions 16 and 16 and the Y2 side end portions 18 and 18. Thus, by forming each soft magnetic member 12a, 12b longer than each element portion 11a, 11, the disturbance magnetic field H4 in the Y1-Y2 direction acts before each element portion 11a, 11b. The soft magnetic members 12a and 12b can be effectively passed through, and a better shielding effect can be obtained.

次に、垂直方向(高さ方向;Z1−Z2)からの外乱磁界H5について図2(b)を用いて説明する。   Next, the disturbance magnetic field H5 from the vertical direction (height direction; Z1-Z2) will be described with reference to FIG.

図2(b)に示すように垂直方向からの外乱磁界H5は、各軟磁性部材12a,12bを通り、各軟磁性部材12a,12bの下方に配置された各素子部11a,11bに作用する磁路M6,M7を形成する。図2(b)に示すように、磁路M6は、第1軟磁性部材12aの下面12a3から漏れ出て、第1軟磁性部材12aの下方であってX2端部14側に配置された第1素子部11aに対して略X2方向に作用する。一方、図2(b)に示すように、磁路M7は、第2軟磁性部材12bの下面12b3から漏れ出て、第2軟磁性部材12bの下方であってX1端部15側に配置された第2素子部11bに対して略X1方向に作用する。   As shown in FIG. 2B, the disturbance magnetic field H5 from the vertical direction passes through the soft magnetic members 12a and 12b and acts on the element portions 11a and 11b arranged below the soft magnetic members 12a and 12b. Magnetic paths M6 and M7 are formed. As shown in FIG. 2B, the magnetic path M6 leaks from the lower surface 12a3 of the first soft magnetic member 12a, and is disposed below the first soft magnetic member 12a and on the X2 end portion 14 side. It acts on the one element part 11a in the substantially X2 direction. On the other hand, as shown in FIG. 2B, the magnetic path M7 leaks from the lower surface 12b3 of the second soft magnetic member 12b, and is disposed below the second soft magnetic member 12b and on the X1 end 15 side. In addition, it acts in a substantially X1 direction with respect to the second element portion 11b.

図2(b)に示すように各素子部11a,11bの感度軸方向Pは共にX1方向である。よって垂直方向からの外乱磁界H5が作用したことで、第1素子部11aには感度軸方向Pと反対方向の磁界(磁路M6上を通るX2方向に向く磁界)が作用して第1素子部11aの電気抵抗値は大きくなる。一方、第2素子部11bには感度軸方向Pと同じ方向の磁界(磁路M7上を通るX1方向に向く磁界)が作用して第2素子部11bの電気抵抗値は小さくなる。   As shown in FIG. 2B, the sensitivity axis directions P of the element portions 11a and 11b are both X1 directions. Therefore, when the disturbance magnetic field H5 from the vertical direction acts, a magnetic field in the direction opposite to the sensitivity axis direction P (a magnetic field directed in the X2 direction passing through the magnetic path M6) acts on the first element portion 11a. The electric resistance value of the portion 11a is increased. On the other hand, a magnetic field in the same direction as the sensitivity axis direction P (a magnetic field directed in the X1 direction passing on the magnetic path M7) acts on the second element portion 11b, and the electric resistance value of the second element portion 11b becomes small.

ところで本実施形態では、図1(a)(b)に示すように、第1素子部11aの第1軟磁性部材12aに対するオーバーラップ寸法と、第2素子部11bの第2軟磁性部材12bに対するオーバーラップ寸法とが共に同じ大きさW1となっている。このため図2(b)に示すように、垂直方向(高さ方向;Z1−Z2)からの外乱磁界H5が作用した際、第1素子部11aにおける基準状態(検知磁界や外乱磁界が作用しない無磁場状態における素子部の電気抵抗値)からの電気抵抗値の上昇分と、第2素子部11bにおける基準状態(検知磁界や外乱磁界が作用しない無磁場状態における素子部の電気抵抗値)からの電気抵抗値の減少分とを略同一にできる。そして、第1素子部11aと第2素子部11bとを直列に接続しているため、垂直方向から外乱磁界H5が作用しても電気抵抗を、無磁場状態とほぼ同じにできる。このように本実施形態では、垂直方向からの外乱磁界H5を、第1素子部11aと第2素子部11bとの間でキャンセルできる。   By the way, in this embodiment, as shown to Fig.1 (a) (b), the overlap dimension with respect to the 1st soft magnetic member 12a of the 1st element part 11a and the 2nd soft magnetic member 12b with respect to the 2nd element part 11b are shown. The overlap dimension is the same size W1. Therefore, as shown in FIG. 2B, when the disturbance magnetic field H5 from the vertical direction (height direction; Z1-Z2) is applied, the reference state (the detection magnetic field and the disturbance magnetic field are not applied) in the first element unit 11a. From the increase in the electrical resistance value from the electrical resistance value of the element portion in the non-magnetic field state and the reference state in the second element portion 11b (the electrical resistance value of the element portion in the non-magnetic field state where no detection magnetic field or disturbance magnetic field acts) The decrease in the electrical resistance value can be made substantially the same. And since the 1st element part 11a and the 2nd element part 11b are connected in series, even if the disturbance magnetic field H5 acts from a perpendicular direction, electrical resistance can be made substantially the same as a no magnetic field state. Thus, in the present embodiment, the disturbance magnetic field H5 from the vertical direction can be canceled between the first element portion 11a and the second element portion 11b.

以上により、本実施形態では、センサ感度を適度に制御でき、検知磁界の測定レンジを広げることができると共に、優れた外乱磁場耐性を備える磁気センサSにできる。   As described above, in the present embodiment, the sensor sensitivity can be appropriately controlled, the measurement range of the detected magnetic field can be expanded, and the magnetic sensor S having excellent disturbance magnetic field resistance can be obtained.

また、第1素子部11a及び第2素子部11bは、X1−X2方向への幅寸法T1に比べてY1−Y2方向の長さ寸法L1のほうが長く形成されている。これにより第1素子部11a及び第2素子部11bに形状異方性を付与でき、無磁場のときに、X1−X2方向を向く異方性をフリー磁性層63に付与できる。これによりヒステリシス及びリニアリティを効果的に改善することができる。   The first element portion 11a and the second element portion 11b are formed such that the length dimension L1 in the Y1-Y2 direction is longer than the width dimension T1 in the X1-X2 direction. Thereby, shape anisotropy can be imparted to the first element portion 11a and the second element portion 11b, and anisotropy directed in the X1-X2 direction can be imparted to the free magnetic layer 63 when there is no magnetic field. Thereby, hysteresis and linearity can be effectively improved.

図1に示す第1素子部11aおよび第2素子部11bは、ハードバイアス層(永久磁石層)が設けられていない非バイアス構造であるが、ハードバイアス層を設けてもよい。   The first element portion 11a and the second element portion 11b shown in FIG. 1 have a non-bias structure in which a hard bias layer (permanent magnet layer) is not provided, but a hard bias layer may be provided.

図1に示す実施形態では、第1素子部11aのX2端部30は、第1軟磁性部材12aのX2端部14よりもX2側にはみ出している。また、第2素子部11bのX1端部31は、第2軟磁性部材12bのX1端部15よりもX1側にはみ出している。本実施形態では、第1素子部11aおよび第2素子部11bの一部11a1,11b1を、第1軟磁性部材12a及び第2軟磁性部材12bと垂直方向(高さ方向)にて対向させ、残り部分を第1軟磁性部材12a及び第2軟磁性部材12bからはみ出させている。これによりセンサ感度と検知磁界の測定レンジの双方を適度に制御することができる。   In the embodiment shown in FIG. 1, the X2 end portion 30 of the first element portion 11a protrudes further to the X2 side than the X2 end portion 14 of the first soft magnetic member 12a. Further, the X1 end portion 31 of the second element portion 11b protrudes further to the X1 side than the X1 end portion 15 of the second soft magnetic member 12b. In the present embodiment, the first element part 11a and the parts 11a1 and 11b1 of the second element part 11b are opposed to the first soft magnetic member 12a and the second soft magnetic member 12b in the vertical direction (height direction), The remaining portion protrudes from the first soft magnetic member 12a and the second soft magnetic member 12b. Thereby, both the sensor sensitivity and the measurement range of the detected magnetic field can be appropriately controlled.

図3では、第1素子部11aの全体および第2素子部11bの全体が、第1軟磁性部材12aおよび第2軟磁性部材12bと垂直方向(高さ方向)にて対向した状態となっている。また、図3では、第1素子部11aのX1−X2方向における素子幅の中心線O1を、第1軟磁性部材12aのX1−X2方向における磁性幅の中心線O2よりもX2側にずらしている。また、第2素子部11bのX1−X2方向における素子幅の中心線O3を、第2軟磁性部材12bのX1−X2方向における磁性幅の中心線O4よりもX1側にずらしている。これにより、第1素子部11aは第1軟磁性部材12aのX1端部32よりもX2端部14側に配置される。また、第2素子部11bは第2軟磁性部材12bのX2端部33よりもX1端部16側に配置される。   In FIG. 3, the entire first element portion 11a and the entire second element portion 11b are opposed to the first soft magnetic member 12a and the second soft magnetic member 12b in the vertical direction (height direction). Yes. In FIG. 3, the center line O1 of the element width in the X1-X2 direction of the first element part 11a is shifted to the X2 side from the center line O2 of the magnetic width in the X1-X2 direction of the first soft magnetic member 12a. Yes. Further, the center line O3 of the element width in the X1-X2 direction of the second element part 11b is shifted to the X1 side from the center line O4 of the magnetic width in the X1-X2 direction of the second soft magnetic member 12b. Thereby, the 1st element part 11a is arrange | positioned rather than the X1 end part 32 of the 1st soft-magnetic member 12a at the X2 end part 14 side. The second element portion 11b is disposed closer to the X1 end portion 16 than the X2 end portion 33 of the second soft magnetic member 12b.

また図3の実施形態においても、垂直方向からの矢視にて、第1軟磁性部材12aのX2端部14から第1素子部11aのX1端部34までのX1−X2方向の距離と、第2軟磁性部材12bのX1端部16から第2素子部11bのX2端部35までのX1−X2方向の距離とは同じ寸法W2である。   In the embodiment of FIG. 3 as well, the distance in the X1-X2 direction from the X2 end portion 14 of the first soft magnetic member 12a to the X1 end portion 34 of the first element portion 11a as viewed from the vertical direction, The distance in the X1-X2 direction from the X1 end portion 16 of the second soft magnetic member 12b to the X2 end portion 35 of the second element portion 11b is the same dimension W2.

図3に示すように、各素子部11a,11b全体を各軟磁性部材12a,12bの下方に対向させても、第1素子部11aの中心線O1を、第1軟磁性部材12aの中心線O2よりもX2側にずらし、第2素子部11bの中心線O3を、第2軟磁性部材12bの中心線O4よりもX1側にずらすことで、X1−X2方向からの検知磁界を適切に検知できる。本実施形態によれば、センサ感度を低減させ、検知磁界の測定レンジを広げることができる。   As shown in FIG. 3, even if each element part 11a, 11b is entirely opposed to the lower side of each soft magnetic member 12a, 12b, the center line O1 of the first element part 11a becomes the center line of the first soft magnetic member 12a. By shifting the center line O3 of the second element portion 11b to the X1 side with respect to the center line O4 of the second soft magnetic member 12b, the detection magnetic field from the X1-X2 direction is appropriately detected. it can. According to this embodiment, sensor sensitivity can be reduced and the measurement range of the detected magnetic field can be expanded.

また図3に示す実施形態においても、Y1−Y2方向への外乱磁界に対する外乱磁界耐性を備えるとともに、垂直方向(Z1−Z2方向)からの外乱磁界を、第1素子部11aと第2素子部11bとの間でキャンセルでき、垂直方向からの外乱磁界に対する外乱磁界耐性を適切に備える。   Also in the embodiment shown in FIG. 3, the disturbance magnetic field resistance to the disturbance magnetic field in the Y1-Y2 direction is provided, and the disturbance magnetic field from the vertical direction (Z1-Z2 direction) is changed to the first element unit 11a and the second element unit. 11b can be canceled with respect to the disturbance magnetic field from the vertical direction.

図3に示すように、素子部11a,11b全体を軟磁性部材12a,12bの下方に対向させると、検知磁界H3が作用したときの素子部11a,11bに作用する見かけ上の磁界強度を図1の構成よりも低減させることができる。ただし、素子部11a,11b全体を軟磁性部材12a,12bの下方に対向させるとともに、第1素子部11aのX2端部30を、第1軟磁性部材12aのX2端部14からX1方向にずらし、第2素子部11bのX1端部31を、第2軟磁性部材12bのX1端部16からX2方向にずらすと、見かけ上の磁界強度が低下しすぎて、適度なセンサ感度が得られず、逆に検出精度が低下する恐れがある。このため、第1素子部11aのX2端部30を、第1軟磁性部材12aのX2端部14と垂直方向(高さ方向;Z1−Z2)にて、一致させるか、あるいは、図1のように、第1素子部11aのX2端部30を、第1軟磁性部材12aのX2端部14よりもX2側にはみ出させ、第1素子部11aの一部11a1が第1軟磁性部材11aと垂直方向(高さ方向)にて対向した状態とすることが好ましい。同様に、、第2素子部11bのX1端部31を、第2軟磁性部材12bのX1端部16と垂直方向(高さ方向)にて一致させるか、あるいは、図1のように、第2素子部11bのX1端部31を、第2軟磁性部材12bのX1端部16よりもX1側にはみ出させ、第2素子部11bの一部11b1が第2軟磁性部材12bと垂直方向(高さ方向)にて対向した状態とすることが好ましい。これにより、センサ感度と測定レンジの双方を適度に調整でき、検知磁界に対する優れた検知精度及び外乱磁界耐性を備える磁気センサにできる。   As shown in FIG. 3, when the entire element portions 11a and 11b are opposed to the lower side of the soft magnetic members 12a and 12b, the apparent magnetic field strength acting on the element portions 11a and 11b when the detection magnetic field H3 acts is shown. It can be reduced more than the configuration of 1. However, the entire element portions 11a and 11b are opposed to the lower side of the soft magnetic members 12a and 12b, and the X2 end portion 30 of the first element portion 11a is shifted from the X2 end portion 14 of the first soft magnetic member 12a in the X1 direction. If the X1 end portion 31 of the second element portion 11b is shifted in the X2 direction from the X1 end portion 16 of the second soft magnetic member 12b, the apparent magnetic field strength is excessively lowered and appropriate sensor sensitivity cannot be obtained. Conversely, the detection accuracy may be reduced. Therefore, the X2 end portion 30 of the first element portion 11a is made to coincide with the X2 end portion 14 of the first soft magnetic member 12a in the vertical direction (height direction; Z1-Z2) or as shown in FIG. As described above, the X2 end portion 30 of the first element portion 11a protrudes to the X2 side from the X2 end portion 14 of the first soft magnetic member 12a, and a part 11a1 of the first element portion 11a is allowed to protrude from the first soft magnetic member 11a. It is preferable that they are opposed to each other in the vertical direction (height direction). Similarly, the X1 end portion 31 of the second element portion 11b is made to coincide with the X1 end portion 16 of the second soft magnetic member 12b in the vertical direction (height direction), or as shown in FIG. The X1 end portion 31 of the two element portion 11b protrudes to the X1 side from the X1 end portion 16 of the second soft magnetic member 12b, and a part 11b1 of the second element portion 11b is perpendicular to the second soft magnetic member 12b ( It is preferable that they face each other in the height direction). Thereby, both a sensor sensitivity and a measurement range can be adjusted moderately, and it can be set as the magnetic sensor provided with the outstanding detection accuracy with respect to a detection magnetic field, and disturbance magnetic field tolerance.

本実施形態では、距離(オーバーラップ寸法)(図1や図3に示す寸法W1,W2)/素子幅T1は0.25〜1.25の範囲内であることが好ましく、0.25〜1の範囲内であることがより好ましく、0.5〜1の範囲内であることが更に好ましい。本実施形態では、少なくとも第1素子部及び第2素子部の一部を軟磁性部材の下に配置することで、シールド効果を適切に得ることができる。   In the present embodiment, the distance (overlap dimension) (dimensions W1 and W2 shown in FIGS. 1 and 3) / element width T1 is preferably in the range of 0.25 to 1.25, and 0.25 to 1 Is more preferable, and it is still more preferable that it exists in the range of 0.5-1. In the present embodiment, a shielding effect can be appropriately obtained by disposing at least a part of the first element portion and the second element portion under the soft magnetic member.

また図4に示す実施形態では、二組の第1素子部及び第2素子部を絶縁層40を介して積層している。そして一組目の第1素子部41aと第2素子部41bとの各軟磁性部材12a,12bに対するオーバーラップ寸法W3と、二組目の第1素子部42aと第2素子部42bとの各軟磁性部材12a,12bに対するオーバーラップ寸法W4とは異なる寸法となっている。そして、一組目の第1素子部41aと第2素子部41bとは直列に接続されており、また二組目の第1素子部42aと第2素子部42bとは直列に接続されている。図4に示す、一組目の第1素子部41aと第2素子部41b、及び二組目の第1素子部42aと第2素子部42bの少なくともいずれか一方の各素子部の全部が、図3のように各軟磁性部材12a,12bと垂直方向(高さ方向)にて重ねられていてもよい。   Further, in the embodiment shown in FIG. 4, two sets of the first element part and the second element part are stacked via the insulating layer 40. And the overlap dimension W3 with respect to each soft magnetic member 12a, 12b of the first element part 41a and the second element part 41b of the first set, and each of the first element part 42a and the second element part 42b of the second set The overlap dimension W4 is different from the soft magnetic members 12a and 12b. The first set of first element part 41a and second element part 41b are connected in series, and the second set of first element part 42a and second element part 42b are connected in series. . The first element part 41a and the second element part 41b in the first set and the first element part 42a and the second element part 42b in the second set shown in FIG. As shown in FIG. 3, the soft magnetic members 12a and 12b may be overlapped in the vertical direction (height direction).

一組目の第1素子部41aと第2素子部41bからなる磁気抵抗効果素子41と、二組目の第1素子部42aと第2素子部42bからなる磁気抵抗効果素子42とでは、素子構造としては同じでありながら見かけ上、感度を異ならせることができる。一組目の第1素子部41aと第2素子部41bからなる磁気抵抗効果素子41と、二組目の第1素子部42aと第2素子部42bからなる磁気抵抗効果素子42とを、別々のセンサ回路に組み込んでもよいし、あるいは、同じセンサ回路に組み込むこともできる。なお、第1素子部と第2素子部との組は3組以上、積層されていてもよい。各組の見かけ上の感度は異なっている。   In the magnetoresistive effect element 41 including the first set of the first element portion 41a and the second element portion 41b, and the magnetoresistive effect element 42 including the second set of the first element portion 42a and the second element portion 42b, the elements Although the structure is the same, the sensitivity can be changed apparently. The magnetoresistive effect element 41 including the first set of the first element portion 41a and the second element portion 41b, and the magnetoresistive effect element 42 including the second set of the first element portion 42a and the second element portion 42b are separately provided. May be incorporated into the same sensor circuit, or may be incorporated into the same sensor circuit. Three or more sets of the first element unit and the second element unit may be stacked. The apparent sensitivity of each set is different.

本実施形態における磁気センサSは、例えば地磁気センサとして使用できる。かかる場合、検知磁界H3は地磁気である。また外乱磁界H4,H5は、地磁気センサを組み込んだ携帯機器内におけるスピーカ等からの外部磁界である。ただし本実施形態における磁気センサは地磁気センサ以外の用途にも適用可能である。   The magnetic sensor S in this embodiment can be used as a geomagnetic sensor, for example. In such a case, the detection magnetic field H3 is geomagnetism. The disturbance magnetic fields H4 and H5 are external magnetic fields from a speaker or the like in a portable device incorporating a geomagnetic sensor. However, the magnetic sensor in this embodiment can be applied to uses other than the geomagnetic sensor.

実験では、各素子部11a,11bのオーバーラップ寸法W1が異なる、図1に示す複数の磁気センサSを作製した。   In the experiment, a plurality of magnetic sensors S shown in FIG. 1 were produced in which the overlap dimensions W1 of the element portions 11a and 11b were different.

実験では、各素子部11a,11bの素子幅T1を2μmとした。また各軟磁性部材12a、12bの幅寸法T2を、24μmとした。   In the experiment, the element width T1 of each element part 11a, 11b was set to 2 μm. The width dimension T2 of each soft magnetic member 12a, 12b was 24 μm.

実験では、X1−X2方向からの検知磁界H3を作用させたときの磁気センサSの出力を測定した。   In the experiment, the output of the magnetic sensor S when the detection magnetic field H3 from the X1-X2 direction was applied was measured.

図7(a)では、オーバーラップ寸法を2.5μmとしているが、各素子部11a,11bの素子幅T1は2μmであるため、図7(a)の状態は、図3と同様に、各素子部11a,11bの全部が、各軟磁性部材12a,12bの下方に対向し、且つ第1素子部11aのX2端部30が、第1軟磁性部材12aのX2端部14よりもX1側に0.5μmだけ入りこみ、第2素子部11bのX1端部31が、第2軟磁性部材12bのX1端部15よりもX2側に0.5μmだけ入りこんだ状態である。   In FIG. 7A, the overlap dimension is 2.5 μm, but the element width T1 of each element portion 11a, 11b is 2 μm, so the state of FIG. All of the element portions 11a and 11b are opposed to the lower sides of the respective soft magnetic members 12a and 12b, and the X2 end portion 30 of the first element portion 11a is on the X1 side with respect to the X2 end portion 14 of the first soft magnetic member 12a. The X1 end portion 31 of the second element portion 11b is in a state of entering 0.5 μm closer to the X2 side than the X1 end portion 15 of the second soft magnetic member 12b.

図7(b)では、オーバーラップ寸法W1を2.0μmとしているが、各素子部11a,11bの素子幅T1は2μmであるため、各素子部11a、11bの端部30,31と、各軟磁性部材12a,12bの端部14,15とが垂直方向(高さ方向)にて一致した状態である。   In FIG. 7B, the overlap dimension W1 is set to 2.0 μm, but the element width T1 of each element portion 11a, 11b is 2 μm, so that the end portions 30, 31 of each element portion 11a, 11b, The end portions 14 and 15 of the soft magnetic members 12a and 12b are aligned in the vertical direction (height direction).

図7(c)から図7(d)の状態は、図1のように、各素子部11a,11bの一部11a1,11b1が、各軟磁性部材12a,12bと垂直方向(高さ方向)で対向し、第1素子部11aのX2端部30が、第1軟磁性部材12aのX2端部14よりもX2側にはみ出し、第2素子部11bのX1端部31が、第2軟磁性部材12bのX1端部15よりもX1側にはみ出した状態である。   7 (c) to 7 (d), as shown in FIG. 1, the portions 11a1 and 11b1 of the element portions 11a and 11b are perpendicular to the soft magnetic members 12a and 12b (height direction). The X2 end 30 of the first element portion 11a protrudes to the X2 side from the X2 end portion 14 of the first soft magnetic member 12a, and the X1 end portion 31 of the second element portion 11b extends to the second soft magnetic portion. It is in a state of protruding from the X1 end 15 of the member 12b to the X1 side.

図7(e)では、オーバーラップ寸法t1を0.0μmとしており、すなわち、第1素子部11aのX1端部34が、第1軟磁性部材12aのX2端部14と垂直方向(高さ方向)にて一致し、第2素子部11bのX2端部35が、第2軟磁性部材12bのX1端部15と垂直方向(高さ方向)にて一致している。このように図7(e)では、各素子部11a,11bの全体が、各軟磁性部材12a,12bと垂直方向(高さ方向)で重なっていない状態であり、比較例に該当する。   In FIG. 7E, the overlap dimension t1 is 0.0 μm, that is, the X1 end portion 34 of the first element portion 11a is perpendicular to the X2 end portion 14 of the first soft magnetic member 12a (height direction). ), And the X2 end portion 35 of the second element portion 11b matches the X1 end portion 15 of the second soft magnetic member 12b in the vertical direction (height direction). In this way, in FIG. 7E, the entire element portions 11a and 11b do not overlap the respective soft magnetic members 12a and 12b in the vertical direction (height direction), which corresponds to a comparative example.

図7(a)から図7(e)にかけて、徐々に出力曲線が急峻に変化していることがわかる。   It can be seen from FIG. 7A to FIG. 7E that the output curve gradually changes steeply.

図8は、図7の各図より求めた、オーバーラップ寸法とセンサ感度及び測定レンジとの関係を示すグラフである。
図8に示すようにセンサ感度が低下すると、測定レンジが大きくなることがわかった。
FIG. 8 is a graph showing the relationship between the overlap size, the sensor sensitivity, and the measurement range obtained from each diagram of FIG.
As shown in FIG. 8, it was found that when the sensor sensitivity is lowered, the measurement range is increased.

各素子部全体と各軟磁性部材とが垂直方向にて対向していない比較例(図7(e))よりも、センサ感度を落とし、且つ測定レンジを広げるには、少なくとも各素子部の一部を、各軟磁性部材と垂直方向にて対向させることが必要であるとわかった。   In order to reduce the sensor sensitivity and widen the measurement range as compared with the comparative example (FIG. 7 (e)) in which each element part and each soft magnetic member do not face each other in the vertical direction, at least one element part is required. It has been found that it is necessary to make the portion face each soft magnetic member in the vertical direction.

またオーバーラップ寸法を2.5μm(図7(a))とした場合、測定レンジは効果的に広くなるが、かなりセンサ感度が落ち込んでおり、逆に検知精度が悪化しやすくなる。よって、各素子部11a、11bの端部30,31と、各軟磁性部材12a,12bの端部14,15とを垂直方向(高さ方向)にて一致させるか(図7(b))、あるいは、各素子部の一部を各軟磁性部材と垂直方向で対向させることで、センサ感度と測定レンジの双方を適度に調整しやすくなる。   When the overlap dimension is 2.5 μm (FIG. 7A), the measurement range is effectively widened, but the sensor sensitivity is considerably lowered, and conversely, the detection accuracy is likely to deteriorate. Therefore, the end portions 30 and 31 of the element portions 11a and 11b and the end portions 14 and 15 of the soft magnetic members 12a and 12b are aligned in the vertical direction (height direction) (FIG. 7B). Alternatively, by making a part of each element portion face each soft magnetic member in the vertical direction, it becomes easy to appropriately adjust both the sensor sensitivity and the measurement range.

H1、H3 検知磁界
H2、H4、H5 外乱磁界
M1〜M7 磁路
P 感度軸方向
S 磁気センサ
W1〜W4 距離(オーバーラップ寸法)
1、11、27,41、42 磁気抵抗効果素子
4、12 軟磁性体
4a、12a、27a、41a、42a 第1軟磁性部材
4b、12b、27b、41b、42b 第2軟磁性部材
10 基板
11a 第1素子部
11b 第2素子部
14 (第1軟磁性部材の)X2端部
15 (第2軟磁性部材の)X1端部
19、20 導電層
22 固定抵抗素子
30 (第1素子部の)X2端部
31 (第2素子部の)X1端部
32 (第1軟磁性部材の)X1端部
33 (第2軟磁性部材の)X2端部
34 (第1素子部の)X1端部
35 (第2素子部の)X2端部
61 固定磁性層
62 非磁性層
63 フリー磁性層
H1, H3 Detecting magnetic field H2, H4, H5 Disturbing magnetic field M1-M7 Magnetic path P Sensitivity axial direction S Magnetic sensor W1-W4 Distance (overlap dimension)
1, 11, 27, 41, 42 Magnetoresistive elements 4, 12 Soft magnetic bodies 4a, 12a, 27a, 41a, 42a First soft magnetic members 4b, 12b, 27b, 41b, 42b Second soft magnetic member 10 Substrate 11a 1st element part 11b 2nd element part 14 (2nd soft magnetic member) X2 end part 15 (2nd soft magnetic member) X1 end part 19 and 20 Conductive layer 22 Fixed resistance element 30 (1st element part) X2 end portion 31 (of the second element portion) X1 end portion 32 (of the first soft magnetic member) X1 end portion 33 (of the second soft magnetic member) X2 end portion 34 (of the first element portion) X1 end portion 35 X2 end portion 61 (of the second element portion) pinned magnetic layer 62 nonmagnetic layer 63 free magnetic layer

Claims (6)

基板上に磁性層と非磁性層とが積層されて成る磁気抵抗効果を発揮する磁気抵抗効果素子と、前記基板のなす面に対して垂直方向に前記磁気抵抗効果素子と間隔を空けて配置された軟磁性体と、を有し、
前記基板のなす面に水平な面内にて直交する2方向を、X1−X2方向とY1−Y2方向としたとき、
前記軟磁性体は、前記X1−X2方向に間隔を空けて配置された第1軟磁性部材と第2軟磁性部材とを備え、
前記磁気抵抗効果素子は、前記第1軟磁性部材と前記垂直方向にて少なくとも一部が対向する第1素子部と、前記第2軟磁性部材と前記垂直方向にて少なくとも一部が対向する第2素子部とを有し、
前記第1素子部は前記第1軟磁性部材のX2端部側にて配置され、前記第2素子部は前記第2軟磁性部材のX1端部側に配置されており、前記垂直方向からの矢視にて、前記第1軟磁性部材のX2端部から前記第1素子部のX1端部までの前記X1−X2方向への距離と、前記第2軟磁性部材のX1端部から前記第2素子部のX2端部までの前記X1−X2方向への距離とが同一寸法であり、
前記第1素子部と前記第2素子部の感度軸方向は前記X1−X2方向で且つ同一方向であり、前記第1素子部及び前記第2素子部は、前記X1−X2方向からの検知磁界に対して感度を備えており、
前記第1素子部と前記第2素子部とは直列に接続されていることを特徴とする磁気センサ。
A magnetoresistive effect element that exhibits a magnetoresistive effect formed by laminating a magnetic layer and a nonmagnetic layer on a substrate, and is disposed at a distance from the magnetoresistive effect element in a direction perpendicular to a surface formed by the substrate. Soft magnetic material,
When the two directions perpendicular to the plane formed by the substrate are the X1-X2 direction and the Y1-Y2 direction,
The soft magnetic body includes a first soft magnetic member and a second soft magnetic member that are spaced apart in the X1-X2 direction.
The magnetoresistive element includes a first element portion that is at least partially opposed to the first soft magnetic member in the vertical direction, and a first element portion that is at least partially opposed to the second soft magnetic member in the vertical direction. Having two element parts,
The first element portion is disposed on the X2 end side of the first soft magnetic member, and the second element portion is disposed on the X1 end side of the second soft magnetic member, As viewed in the direction of the arrow, the distance in the X1-X2 direction from the X2 end of the first soft magnetic member to the X1 end of the first element portion, and the first soft magnetic member from the X1 end of the second soft magnetic member to the first The distance in the X1-X2 direction to the X2 end of the two element parts is the same dimension,
The sensitivity element directions of the first element part and the second element part are the same direction as the X1-X2 direction, and the first element part and the second element part are detected magnetic fields from the X1-X2 direction. Is sensitive to
The magnetic sensor, wherein the first element part and the second element part are connected in series.
前記第1素子部のX2端部と、前記第1軟磁性部材のX2端部とが前記垂直方向にて一致しているか、あるいは、前記第1素子部のX2端部は、前記第1軟磁性部材のX2端部よりもX2側にはみ出しており、
前記第2素子部のX1端部と、前記第2軟磁性部材のX1端部とが前記垂直方向にて一致しているか、あるいは、前記第2素子部のX1端部は、前記第2軟磁性部材のX1端部よりもX1側にはみ出している請求項1記載の磁気センサ。
The X2 end portion of the first element portion and the X2 end portion of the first soft magnetic member coincide with each other in the vertical direction, or the X2 end portion of the first element portion is the first soft portion. It protrudes to the X2 side from the X2 end of the magnetic member,
The X1 end portion of the second element portion and the X1 end portion of the second soft magnetic member coincide with each other in the vertical direction, or the X1 end portion of the second element portion is the second soft portion. The magnetic sensor according to claim 1, wherein the magnetic sensor protrudes from the X1 end of the magnetic member to the X1 side.
前記第1軟磁性部材及び前記第2軟磁性部材は、前記X1−X2方向への幅寸法に比べてY1−Y2方向の長さ寸法のほうが長く形成されており、
前記第1素子部及び前記第2素子部は、前記X1−X2方向への幅寸法に比べてY1−Y2方向の長さ寸法のほうが長く形成されている請求項1又は2に記載の磁気センサ。
The first soft magnetic member and the second soft magnetic member are formed such that the length dimension in the Y1-Y2 direction is longer than the width dimension in the X1-X2 direction.
3. The magnetic sensor according to claim 1, wherein the first element portion and the second element portion are formed such that the length dimension in the Y1-Y2 direction is longer than the width dimension in the X1-X2 direction. .
前記第1軟磁性部材及び前記第2軟磁性部材の前記Y1−Y2方向への長さ寸法は、前記第1素子部及び前記第2素子部の前記Y1−Y2方向への長さ寸法より長く、前記第1軟磁性部材及び前記第2軟磁性部材の各Y1側端部及び各Y2側端部は、夫々、前記第1素子部及び前記第2素子部の各Y1側端部及び各Y2側端部よりもY1−Y2方向にはみ出している請求項3記載の磁気センサ。   The length dimension in the Y1-Y2 direction of the first soft magnetic member and the second soft magnetic member is longer than the length dimension in the Y1-Y2 direction of the first element portion and the second element portion. The Y1 side end and the Y2 side end of the first soft magnetic member and the second soft magnetic member are respectively the Y1 side end and Y2 of the first element portion and the second element portion, respectively. The magnetic sensor according to claim 3, wherein the magnetic sensor protrudes in the Y1-Y2 direction from the side end. 前記磁気抵抗効果素子と固定抵抗素子とを組み合わせて、あるいは、前記感度軸方向が互いに異なる複数の前記磁気抵抗効果素子を組み合わせて、ブリッジ回路が構成されている請求項1ないし4のいずれか1項に記載の磁気センサ。   The bridge circuit is configured by combining the magnetoresistive effect element and the fixed resistance element, or combining a plurality of the magnetoresistive effect elements having different sensitivity axis directions. The magnetic sensor according to item. 前記第1素子部と前記第2素子部からなる組が複数、積層されており、前記第1軟磁性部材のX2端部から前記第1素子部のX1端部までの前記X1−X2方向への距離及び前記第2軟磁性部材のX1端部から前記第2素子部のX2端部までの前記X1−X2方向への距離が、各組で異なっている請求項1ないし5のいずれか1項に記載の磁気センサ。   A plurality of pairs of the first element part and the second element part are laminated, and the X1-X2 direction from the X2 end of the first soft magnetic member to the X1 end of the first element part is stacked. The distance in the X1-X2 direction from the X1 end portion of the second soft magnetic member to the X2 end portion of the second element portion is different in each group. The magnetic sensor according to item.
JP2012081922A 2012-03-30 2012-03-30 Magnetic sensor Pending JP2013210335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012081922A JP2013210335A (en) 2012-03-30 2012-03-30 Magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012081922A JP2013210335A (en) 2012-03-30 2012-03-30 Magnetic sensor

Publications (1)

Publication Number Publication Date
JP2013210335A true JP2013210335A (en) 2013-10-10

Family

ID=49528283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012081922A Pending JP2013210335A (en) 2012-03-30 2012-03-30 Magnetic sensor

Country Status (1)

Country Link
JP (1) JP2013210335A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016535845A (en) * 2013-10-21 2016-11-17 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. Push-pull bridge type magnetic sensor for high intensity magnetic field
JP2017502298A (en) * 2013-12-24 2017-01-19 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. Single-chip reference bridge magnetic sensor for strong magnetic fields
JP2017173118A (en) * 2016-03-23 2017-09-28 Tdk株式会社 Magnetic sensor
DE102017129042A1 (en) 2017-03-24 2018-09-27 Tdk Corporation MAGNETIC SENSOR
JP2018162993A (en) * 2017-03-24 2018-10-18 Tdk株式会社 Magnetic sensor
CN109764797A (en) * 2017-11-09 2019-05-17 Tdk株式会社 Magnetic Sensor
JP2019132719A (en) * 2018-01-31 2019-08-08 旭化成エレクトロニクス株式会社 Magnetic detector
JP2022123321A (en) * 2021-02-12 2022-08-24 Tdk株式会社 Magnetic sensor, position detection device, and electronic equipment

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016535845A (en) * 2013-10-21 2016-11-17 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. Push-pull bridge type magnetic sensor for high intensity magnetic field
JP2017502298A (en) * 2013-12-24 2017-01-19 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. Single-chip reference bridge magnetic sensor for strong magnetic fields
CN108780130A (en) * 2016-03-23 2018-11-09 Tdk株式会社 Magnetic sensor
JP2017173118A (en) * 2016-03-23 2017-09-28 Tdk株式会社 Magnetic sensor
WO2017163471A1 (en) * 2016-03-23 2017-09-28 Tdk株式会社 Magnetic sensor
US11022660B2 (en) 2016-03-23 2021-06-01 Tdk Corporation Magnetic sensor including a magnetic member offset from a magnetoresistive effect element
US10557896B2 (en) 2017-03-24 2020-02-11 Tdk Corporation Magnetic sensor
US11209503B2 (en) 2017-03-24 2021-12-28 Tdk Corporation Magnetic sensor
US11914008B2 (en) 2017-03-24 2024-02-27 Tdk Corporation Magnetic sensor
US11650270B2 (en) 2017-03-24 2023-05-16 Tdk Corporation Magnetic sensor
JP2018162993A (en) * 2017-03-24 2018-10-18 Tdk株式会社 Magnetic sensor
DE102017129042A1 (en) 2017-03-24 2018-09-27 Tdk Corporation MAGNETIC SENSOR
US10948316B2 (en) 2017-11-09 2021-03-16 Tdk Corporation Magnetic sensor with an elongated element for reducing hysteresis
CN109764797A (en) * 2017-11-09 2019-05-17 Tdk株式会社 Magnetic Sensor
US11506514B2 (en) 2017-11-09 2022-11-22 Tdk Corporation Magnetic sensor with an elongated element
JP2019087688A (en) * 2017-11-09 2019-06-06 Tdk株式会社 Magnetic sensor
US11940300B2 (en) 2017-11-09 2024-03-26 Tdk Corporation Magnetic sensor with an elongated element
JP2019132719A (en) * 2018-01-31 2019-08-08 旭化成エレクトロニクス株式会社 Magnetic detector
JP2022123321A (en) * 2021-02-12 2022-08-24 Tdk株式会社 Magnetic sensor, position detection device, and electronic equipment
JP7284201B2 (en) 2021-02-12 2023-05-30 Tdk株式会社 Magnetic sensors, position detectors and electronic devices

Similar Documents

Publication Publication Date Title
JP2013210335A (en) Magnetic sensor
JP5297539B2 (en) Magnetic sensor
JP5906488B2 (en) Current sensor
EP2664940B1 (en) Magnetic sensor
WO2015111408A1 (en) Electrical current detection system
JP2015129697A (en) Magnetometric sensor
JP5899012B2 (en) Magnetic sensor
JPWO2011111493A1 (en) Current sensor
CN109085404B (en) Current sensor
JP2015087228A (en) Magnetic field detection device
JP2013053903A (en) Current sensor
JP2015118067A (en) Magnetic detection device
JP2017072375A (en) Magnetic sensor
JP2009175120A (en) Magnetic sensor and magnetic sensor module
JP2015219227A (en) Magnetic sensor
JP2009300150A (en) Magnetic sensor and magnetic sensor module
JP6121311B2 (en) Magnetic detector
WO2017199519A1 (en) Equilibrium type magnetic detecting device
JP2015135267A (en) current sensor
JP2014182096A (en) Magnetic sensor
JP2014089088A (en) Magnetoresistive effect element
JP2019138807A (en) Magnetic sensor and current sensor
JP5413866B2 (en) Current sensor with magnetic sensing element
JP2017040628A (en) Magnetic sensor
JP2016223825A (en) Magnetic field detector