JP2014182096A - Magnetic sensor - Google Patents

Magnetic sensor Download PDF

Info

Publication number
JP2014182096A
JP2014182096A JP2013058199A JP2013058199A JP2014182096A JP 2014182096 A JP2014182096 A JP 2014182096A JP 2013058199 A JP2013058199 A JP 2013058199A JP 2013058199 A JP2013058199 A JP 2013058199A JP 2014182096 A JP2014182096 A JP 2014182096A
Authority
JP
Japan
Prior art keywords
magnetic
parts
converging
magnetic field
sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013058199A
Other languages
Japanese (ja)
Other versions
JP6321323B2 (en
Inventor
Takahisa Shikama
格久 四竈
Yoji Katagiri
洋次 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Electronics Co Ltd
Original Assignee
Asahi Kasei Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Electronics Co Ltd filed Critical Asahi Kasei Electronics Co Ltd
Priority to JP2013058199A priority Critical patent/JP6321323B2/en
Publication of JP2014182096A publication Critical patent/JP2014182096A/en
Application granted granted Critical
Publication of JP6321323B2 publication Critical patent/JP6321323B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a monopodial magnetic sensor which suppresses effects of surrounding temperature to a minimum and is capable of detecting a magnetic field in a direction other than a magnetic sensitive axis direction.SOLUTION: First and second magnetic sensitive parts 21 and 22 are arranged so that a median line in a shorter-side direction of magnetic convergence parts 31 and 32 intersect with a portion of the first and second magnetic sensitive parts 21 and 22, and a virtual line segment M connecting both centers of the first and second magnetic sensitive parts 21 and 22 and a virtual line segment N connecting both centers of the first and second magnetic convergence parts 31 and 32 are parallel to each other. According to this configuration, a signal is output in accordance with a magnetic field component of an axis direction which is a perpendicular direction relative to a substrate plane, or a magnetic field component of an axis direction which is parallel to the substrate plane and perpendicular to a magnetic sensitive axis of the magnetic sensitive part, from an output signal difference from the first and second magnetic sensitive parts 21 and 22.

Description

本発明は、磁気センサに関し、より詳細には、磁気抵抗素子を備え、消費電流の増大を招くことなく、また温度による影響を最小限に抑え任意の方向の磁場を検知できる磁気センサに関する。   The present invention relates to a magnetic sensor, and more particularly to a magnetic sensor that includes a magnetoresistive element and can detect a magnetic field in an arbitrary direction without causing an increase in current consumption and minimizing the influence of temperature.

一般的に磁気の有無を検出する巨大磁気抵抗(Giant Magnet Resistance;GMR)素子は広く知られている。磁場をかけると電気抵抗率が増加する現象を磁気抵抗効果というが、一般の物質では変化率は数%であるが、このGMR素子では数10%に達することから、ハードディスクのヘッドに広く用いられている。   In general, giant magnetoresistive (GMR) elements that detect the presence or absence of magnetism are widely known. The phenomenon in which the electrical resistivity increases when a magnetic field is applied is called the magnetoresistive effect. Although the rate of change is several percent for general substances, this GMR element reaches several tens percent, so it is widely used for hard disk heads. ing.

図1は、従来のGMR素子の動作原理を説明するための斜視図で、図2は、図1の部分断面図である。図中符号1は反強磁性層、2はピンド層(固定層)、3はCu層(スペーサ層)、4はフリー層(自由回転層)を示している。磁性材料の磁化の向きで電子のスピン散乱が変わり抵抗が変化する。つまり、ΔR=(RAP−R)R(RAP;上下の磁化の向きが反平行のとき、R;上下の磁化の向きが反平行のとき)で表される。
固定層2の磁気モーメントは、反強磁性層1との磁気結合により方向が固定されている。漏れ磁場により磁化自由回転層4の磁気モーメントの方向が変化すると、Cu層3を流れる電流が変化し、漏れ磁場の変化が読み取れる。
FIG. 1 is a perspective view for explaining the operation principle of a conventional GMR element, and FIG. 2 is a partial sectional view of FIG. In the figure, reference numeral 1 is an antiferromagnetic layer, 2 is a pinned layer (fixed layer), 3 is a Cu layer (spacer layer), and 4 is a free layer (free rotation layer). Depending on the magnetization direction of the magnetic material, the electron spin scattering changes and the resistance changes. That is, ΔR = (R AP −R P ) R P (R AP ; when the upper and lower magnetization directions are antiparallel, R P ; when the upper and lower magnetization directions are antiparallel).
The direction of the magnetic moment of the fixed layer 2 is fixed by magnetic coupling with the antiferromagnetic layer 1. When the direction of the magnetic moment of the magnetization free rotation layer 4 changes due to the leakage magnetic field, the current flowing through the Cu layer 3 changes and the change in the leakage magnetic field can be read.

図3は、従来のGMR素子の積層構造を説明するための構成図で、図中符号11は絶縁膜、12はフリー層(自由回転層)、13は導電層、14はピンド層(固定層)、15は反強磁性層、16は絶縁膜から構成され、フリー層(自由回転層)12は自由に磁化の向きが回転する層で、NiFe又はCoFe/NiFeから構成され、導電層13は電流を流し、スピン散乱が起きる層で、Cuから構成され、ピンド層(固定層)14は磁化の向きが一定方向に固定された層で、CoFe又はCoFe/Ru/CoFeから構成され、反強磁性層15はピンド層14の磁化の向きを固定するための層で、PtMn又はIrMnから構成され、層11,16はTaやCr、NiFeCr、AlOから構成されている。またピンド層は反強磁性層を用いずにセルフバイアス構造を用いても良い。   FIG. 3 is a configuration diagram for explaining a laminated structure of a conventional GMR element. In the figure, reference numeral 11 is an insulating film, 12 is a free layer (free rotating layer), 13 is a conductive layer, and 14 is a pinned layer (fixed layer). ), 15 is composed of an antiferromagnetic layer, 16 is composed of an insulating film, the free layer (free rotation layer) 12 is a layer whose direction of magnetization is freely rotated, composed of NiFe or CoFe / NiFe, and the conductive layer 13 is composed of A layer in which current is passed and spin scattering occurs and is made of Cu. A pinned layer (fixed layer) 14 is a layer in which the direction of magnetization is fixed in a certain direction, and is made of CoFe or CoFe / Ru / CoFe, The magnetic layer 15 is a layer for fixing the magnetization direction of the pinned layer 14, and is made of PtMn or IrMn. The layers 11 and 16 are made of Ta, Cr, NiFeCr, and AlO. The pinned layer may use a self-bias structure without using an antiferromagnetic layer.

例えば、特許文献1に記載のものは、GMR素子を用いた磁気記録システムに関するもので、自由強磁性体層の静磁気結合が最小となるよう改良された固定強磁性体層を有するスピン・バルブ磁気抵抗(MR)センサで、その図4には、自由強磁性体層と固定強磁性体層とを有する積層構造が記載されている。
また、例えば、特許文献2に記載のものは、磁界の方向の影響を受けることが少なく磁界の大きさを精度よく検出できる巨大磁気抵抗素子に関するもので、このGMR素子は、GMRチップ上に対してバイアス磁石とともに設置されている。
For example, the one described in Patent Document 1 relates to a magnetic recording system using a GMR element, and a spin valve having a fixed ferromagnetic layer improved so that the magnetostatic coupling of the free ferromagnetic layer is minimized. A magnetoresistive (MR) sensor, FIG. 4 shows a laminated structure having a free ferromagnetic layer and a fixed ferromagnetic layer.
Further, for example, the device described in Patent Document 2 relates to a giant magnetoresistive element that is less affected by the direction of the magnetic field and can detect the magnitude of the magnetic field with high accuracy. It is installed with a bias magnet.

また、例えば、特許文献3に記載のものは、方位検出に関して高い感度を有し、小型で量産性にも優れた3軸磁気センサに関するもので、基板表面に平行で互いに直交するように設定した2軸(X、Y軸)方向で地磁気成分を検知する2軸磁気センサ部と、2軸磁気センサ部上に配置され前記2軸を含む面に対して垂直方向(Z軸)の磁界を集める磁性部材とを備えており、磁気感知軸の異なる磁気抵抗素子でブリッジを形成することにより従来よりも少ない素子数で3軸検知センサが実現可能であると提案している。
また、例えば、特許文献4に記載のものは、温度の影響を受けることが少なく磁界の大きさを精度よく検出できるトンネル磁気抵抗素子に関するもので、このTMR素子は、チップ上に磁気遮蔽されているものと磁場に対して応答するものそれぞれを有している。
Further, for example, the one described in Patent Document 3 relates to a three-axis magnetic sensor that has high sensitivity with respect to orientation detection, is small, and has excellent mass productivity, and is set to be parallel to the substrate surface and orthogonal to each other. A two-axis magnetic sensor unit that detects geomagnetic components in two-axis (X, Y-axis) directions, and a magnetic field that is arranged on the two-axis magnetic sensor unit and that is perpendicular to the plane that includes the two axes (Z-axis) It has been proposed that a three-axis detection sensor can be realized with a smaller number of elements than before by forming a bridge with magnetoresistive elements having different magnetic sensing axes.
Further, for example, the device described in Patent Document 4 relates to a tunnel magnetoresistive element that is less affected by temperature and can accurately detect the magnitude of a magnetic field. This TMR element is magnetically shielded on a chip. Each of which is responsive to a magnetic field.

特開平7−169026号公報Japanese Patent Laid-Open No. 7-169026 特開2012−112689号公報JP 2012-112589 A 特開2012−127788号公報JP 2012-127788 A 特開2001−345498号公報JP 2001-345498 A

しかしながら、特許文献1に記載のものは、自由強磁性体層と固定強磁性体層とを有する積層構造を備えたGMR素子が開示されているものの、本発明の磁気センサのような磁気抵抗素子と磁気収束板とを組み合わせた配置パターンについては何ら開示されていない。
また、特許文献2及び3の磁気センサは、磁気抵抗素子を用いてブリッジを形成し、その中点電位を出力信号として取り出すため、磁気抵抗素子を形成する物質の抵抗値を出力に含んでしまうため外部の温度に対して出力信号が敏感に変動してしまう。
However, although the GMR element provided with the laminated structure which has a free ferromagnetic material layer and a fixed ferromagnetic material layer is disclosed in the patent document 1, a magnetoresistive element like the magnetic sensor of this invention is disclosed. There is no disclosure of an arrangement pattern in which the magnetic converging plate and the magnetic converging plate are combined.
Moreover, since the magnetic sensor of patent document 2 and 3 forms a bridge using a magnetoresistive element, and takes out the midpoint potential as an output signal, it includes the resistance value of the substance which forms a magnetoresistive element in an output. Therefore, the output signal fluctuates sensitively to the external temperature.

また、特許文献4に記載のGMR素子は、GMRチップ上に対して磁気遮蔽されている素子と磁場に対して応答する素子それぞれを有している単軸センサであるが、この構造では磁気抵抗素子の感磁軸方向の磁場のみしか検知することが出来ない。
本発明は、このような問題に鑑みてなされたもので、その目的とするところは、周囲の温度の影響を最小限に抑え、かつ、感磁軸方向以外の磁場を検知できる単軸の磁気センサを提供することにある。
The GMR element described in Patent Document 4 is a single-axis sensor having an element that is magnetically shielded on the GMR chip and an element that responds to a magnetic field. Only the magnetic field in the direction of the magnetosensitive axis of the element can be detected.
The present invention has been made in view of such a problem, and the object of the present invention is to reduce the influence of ambient temperature to a minimum and to detect a magnetic field other than the direction of the magnetosensitive axis. It is to provide a sensor.

本発明は、このような目的を達成するためになされたもので、請求項1に記載の発明は、基板平面に対して任意の軸方向の磁場を検知できるようにした磁気センサにおいて、前記基板平面に平行に配置された一方及び他方の感磁部(21,22,41,42,61,62,81,82)と、該感磁部の近傍に配置された磁気収束部(31,32,50,71,72,91,92)とを備え、前記一方及び他方の感磁部(21,22,41,42,61,62,81,82)が、前記磁気センサを平面視したときに、前記磁気収束部(31,32,50,71,72,91,92)の短手方向の中線(N2)が、前記一方及び他方の感磁部(21,22,41,42,61,62,81,82)の一部と交差するように配置され、前記一方及び他方の感磁部(21,22,41,42,61,62,81,82)の中心同士を結ぶ仮想線分(M)と、前記磁気収束部(31,32,71,72,91,92)の中心同士を結ぶ仮想線分(N)とが平行又は前記磁気収束部(50)の長手方向の中線(N1)が垂直で、前記一方及び他方の感磁部(21,22,41,42,61,62,81,82)からの出力信号の差分により、前記基板平面に対して垂直方向の軸方向の磁場成分、または、前記基板平面に対して平行かつ前記感磁部の感磁軸に垂直な軸方向の磁場成分に応じた信号を出力することを特徴とする磁気センサ。(図5乃至図9;全実施例)   The present invention has been made to achieve such an object, and the invention according to claim 1 is a magnetic sensor capable of detecting a magnetic field in an arbitrary axial direction with respect to a substrate plane. One and the other magnetic sensitive parts (21, 22, 41, 42, 61, 62, 81, 82) arranged in parallel to the plane and a magnetic converging part (31, 32) arranged in the vicinity of the magnetic sensitive parts , 50, 71, 72, 91, 92), and when the one and the other magnetic sensitive portions (21, 22, 41, 42, 61, 62, 81, 82) view the magnetic sensor in plan view. Further, the middle line (N2) in the short direction of the magnetic converging part (31, 32, 50, 71, 72, 91, 92) is connected to the one and the other magnetic sensitive parts (21, 22, 41, 42, 61, 62, 81, 82) are arranged so as to intersect with one part, Imaginary line segment (M) connecting the centers of the magnetic sensing parts (21, 22, 41, 42, 61, 62, 81, 82) and the magnetic converging parts (31, 32, 71, 72, 91, 92) is parallel to the imaginary line segment (N) connecting the centers of the two or the center line (N1) in the longitudinal direction of the magnetic converging portion (50) is vertical, and the one and the other magnetic sensitive portions (21, 22, 41, 42, 61, 62, 81, 82), the magnetic field component in the axial direction perpendicular to the substrate plane, or parallel to the substrate plane and A magnetic sensor that outputs a signal corresponding to a magnetic field component in an axial direction perpendicular to a magnetic sensitive axis. (FIGS. 5 to 9; all examples)

また、請求項2に記載の発明は、請求項1に記載の発明において、前記磁気収束部(31,32,71,72,91,92)が、前記磁気センサを平面視したとき、前記一方及び他方の感磁部(21,22,41,42,61,62,81,82)の長手方向に少なくとも一部が重なる位置に配置されていることを特徴とする。
また、請求項3に記載の発明は、請求項2に記載の発明において、前記磁気センサを平面視したとき、前記感磁部と前記磁気収束部の重なる面積が等しいことを特徴とする。
また、請求項4に記載の発明は、請求項1,2又は3に記載の発明において、前記一方及び他方の感磁部の出力が入力される差分回路を備えていることを特徴とする。
The invention according to claim 2 is the invention according to claim 1, wherein the magnetic converging portion (31, 32, 71, 72, 91, 92) The other magnetic sensitive part (21, 22, 41, 42, 61, 62, 81, 82) is arranged at a position where at least a part thereof overlaps in the longitudinal direction.
According to a third aspect of the present invention, in the second aspect of the present invention, when the magnetic sensor is viewed in plan, the overlapping area of the magnetic sensing portion and the magnetic converging portion is equal.
According to a fourth aspect of the present invention, in the first, second, or third aspect of the present invention, a differential circuit is provided in which outputs of the one and the other magnetic sensing units are input.

また、請求項5に記載の発明は、請求項1乃至4のいずれかに記載の発明において、前記一方及び他方の感磁部が、第1及び第2の感磁部(21,22)で、前記磁気収束部が、第1及び第2の磁気収束部(31,32)であり、該第1及び第2の磁気収束部が、対向面側において、前記第1及び第2の感磁部の長手方向に少なくとも一部が重なる位置に配置され、前記第1及び第2感磁部の中心同士を結ぶ仮想線分(M)と、前記第1及び第2の磁気収束部の中心同士を結ぶ仮想線分(N)とが平行であることを特徴とする。(図5;実施例1)   According to a fifth aspect of the present invention, in the invention according to any of the first to fourth aspects, the one and the other magnetic sensitive portions are first and second magnetic sensitive portions (21, 22). The magnetic converging portions are first and second magnetic converging portions (31, 32), and the first and second magnetic converging portions are arranged on the opposite surface side with the first and second magnetic sensitive portions. An imaginary line segment (M) that is arranged at a position where at least a part thereof overlaps in the longitudinal direction of the part and connects the centers of the first and second magnetic sensing parts, and the centers of the first and second magnetic convergence parts A virtual line segment (N) connecting the two is parallel. (FIG. 5; Example 1)

また、請求項6に記載の発明は、請求項1乃至4のいずれかに記載の発明において、前記第1の感磁部(21)の出力信号をS1、前記第2の感磁部(22)の出力信号をS2、前記第1及び第2感磁部(21,22)の抵抗をR、X方向の磁場をBx(磁場変換効率a)、Z方向の磁場をBz(磁場変換効率c)とした場合に、前記差分回路が、S1=R+aBx−cBz S2=R+aBx+cBz S2−S1=2cBzの演算をすることを特徴とする。   According to a sixth aspect of the present invention, in the invention according to any one of the first to fourth aspects, the output signal of the first magnetic sensitive part (21) is S1, and the second magnetic sensitive part (22 ) Output signal S2, resistance of the first and second magnetic sensing parts (21, 22) is R, magnetic field in the X direction is Bx (magnetic field conversion efficiency a), and magnetic field in the Z direction is Bz (magnetic field conversion efficiency c). ), The difference circuit calculates S1 = R + aBx−cBz S2 = R + aBx + cBz S2−S1 = 2cBz.

また、請求項7に記載の発明は、請求項1乃至4のいずれかに記載の発明において、前記一方及び他方の感磁部が、第3及び第4の感磁部(41,42)で、前記磁気収束部が、前記第3及び第4の感磁部に間に配置された単一の第3の磁気収束部(50)であり、該第3の磁気収束部が、両側部において、前記第3及び第4の感磁部の長手方向に少なくとも一部が重なる位置に配置され、前記第3及び第4の感磁部の中心同士を結ぶ仮想線分(M)と、前記第3の磁気収束部の長手方向の中線(N1)が垂直であることを特徴とする。(図7;実施例2)   The invention according to claim 7 is the invention according to any one of claims 1 to 4, wherein the one and the other magnetic sensitive portions are the third and fourth magnetic sensitive portions (41, 42). The magnetic converging unit is a single third magnetic converging unit (50) disposed between the third and fourth magnetic sensing units, and the third magnetic converging unit is disposed on both sides. An imaginary line segment (M) that is disposed at a position where at least a part of the third and fourth magnetic sensing parts overlaps in the longitudinal direction and connects the centers of the third and fourth magnetic sensing parts; The center line (N1) in the longitudinal direction of the magnetic converging part 3 is vertical. (FIG. 7; Example 2)

また、請求項8に記載の発明は、請求項7に記載の発明において、前記第3の感磁部(41)の出力信号をS3、前記第4の感磁部(42)の出力信号をS4、前記第3及び第4感磁部(41,42)の抵抗をR、X方向の磁場をBx(磁場変換効率a)、Z方向の磁場をBz(磁場変換効率c)とした場合に、前記差分回路が、S3=R+aBx+cBz S4=R+aBx−cBz S3−S4=2cBzの演算をすることを特徴とする。   According to an eighth aspect of the present invention, in the seventh aspect of the invention, the output signal of the third magnetic sensing portion (41) is S3, and the output signal of the fourth magnetic sensing portion (42) is the same. S4, when the resistance of the third and fourth magnetic sensing portions (41, 42) is R, the magnetic field in the X direction is Bx (magnetic field conversion efficiency a), and the magnetic field in the Z direction is Bz (magnetic field conversion efficiency c). The difference circuit calculates S3 = R + aBx + cBz S4 = R + aBx-cBz S3-S4 = 2cBz.

また、請求項9に記載の発明は、請求項1乃至4のいずれかに記載の発明において、前記一方及び他方の感磁部が、第5及び第6の感磁部(61,62)で、前記磁気収束部が、第5及び第6の磁気収束部(71,72)であり、該第5及び第6の磁気収束部が、対向面側と反対側において、前記第5及び第6の感磁部の長手方向に少なくとも一部が重なる位置に配置されていることを特徴とする。(図8;実施例3)   The invention according to claim 9 is the invention according to any one of claims 1 to 4, wherein the one and the other magnetic sensitive portions are fifth and sixth magnetic sensitive portions (61, 62). The magnetic converging portions are fifth and sixth magnetic converging portions (71, 72), and the fifth and sixth magnetic converging portions are located on the opposite side to the opposing surface side, and the fifth and sixth magnetic converging portions are provided. The magnetically sensitive portion is arranged at a position where at least a part thereof overlaps in the longitudinal direction. (FIG. 8; Example 3)

また、請求項10に記載の発明は、請求項9に記載の発明において、前記第5の感磁部(61)の出力信号をS5、前記第6の感磁部(62)の出力信号をS6、前記第5及び第6感磁部(61,62)の抵抗をR、X方向の磁場をBx(磁場変換効率a)、Z方向の磁場をBz(磁場変換効率c)とした場合に、前記差分回路が、S5=R+aBx+cBz S6=R+aBx−cBz S5−S6=2cBzの演算をすることを特徴とする。   According to a tenth aspect of the present invention, in the ninth aspect of the invention, the output signal of the fifth magnetic sensing portion (61) is S5, and the output signal of the sixth magnetic sensing portion (62) is the same. S6, when the resistance of the fifth and sixth magnetic sensing parts (61, 62) is R, the magnetic field in the X direction is Bx (magnetic field conversion efficiency a), and the magnetic field in the Z direction is Bz (magnetic field conversion efficiency c). The difference circuit calculates S5 = R + aBx + cBz S6 = R + aBx-cBz S5-S6 = 2cBz.

また、請求項11に記載の発明は、請求項1乃至4のいずれかに記載の発明において、前記一方及び他方の感磁部が、第7及び第8の感磁部(81,82)で、前記磁気収束部が、第6乃至第8の磁気収束部(91,92,93)であり、前記第6の磁気収束部(91)と前記第8の磁気収束部(93)とが、前記第7の磁気収束部(92)の長手方向の中線(N1)に対して線対称で、前記第6の磁気収束部(91)が、前記第7の感磁部(81)の長手方向に少なくとも一部が重なる位置に配置され、かつ前記第7の磁気収束部(92)が、前記第8の感磁部(82)の長手方向に少なくとも一部が重なる位置に配置され、前記第7及び第8の感磁部(81,82)からの出力信号の差分により、前記基板平面に対して平行、かつ前記第7及び第8の感磁部の感磁軸に垂直な軸方向の磁場成分に応じた信号を出力することを特徴とする。(図9;実施例4)   According to an eleventh aspect of the present invention, in the invention according to any one of the first to fourth aspects, the one and the other magnetic sensitive portions are seventh and eighth magnetic sensitive portions (81, 82). The magnetic converging units are sixth to eighth magnetic converging units (91, 92, 93), and the sixth magnetic converging unit (91) and the eighth magnetic converging unit (93) are: The sixth magnetic flux concentrating portion (91) is symmetrical with respect to the longitudinal middle line (N1) of the seventh magnetic converging portion (92), and the sixth magnetic converging portion (91) is the longitudinal direction of the seventh magnetic sensitive portion (81). The seventh magnetic flux concentrator (92) is disposed at a position at least partially overlapping in the longitudinal direction of the eighth magnetic sensing section (82), and Due to the difference between the output signals from the seventh and eighth magnetic sensing parts (81, 82), it is parallel to the substrate plane and the first And characterized by outputting a signal corresponding to the magnetic field component in the vertical axis direction to an eighth sense of magnetic sensitive sections magnetic axis. (FIG. 9; Example 4)

また、請求項12に記載の発明は、請求項11に記載の発明において、前記第6の磁気収束部と前記第7の感磁部とからなる配置パターンと、前記第7の磁気収束部と前記第8の感磁部とからなる配置パターンとが、前記第6の磁気収束部の短手方向の軸に対して線対称な構造関係にあることを特徴とする。
また、請求項13に記載の発明は、請求項11又は12に記載の発明において、前記第7の磁気収束部の短手方向の中線が前記第6及び第8の磁気収束部の中心同士を結ぶ仮想線分と平行で、かつ重ならないことを特徴とする。
The invention according to claim 12 is the invention according to claim 11, wherein an arrangement pattern composed of the sixth magnetic flux concentrating portion and the seventh magnetic sensitive portion, and the seventh magnetic converging portion; The arrangement pattern composed of the eighth magnetic sensing portion is in a line-symmetric structural relationship with respect to the axis in the short direction of the sixth magnetic converging portion.
According to a thirteenth aspect of the present invention, in the invention of the eleventh or twelfth aspect, the middle line in the short direction of the seventh magnetic converging part is located between the centers of the sixth and eighth magnetic converging parts. It is characterized by being parallel to the imaginary line segment that connects and not overlapping.

また、請求項14に記載の発明は、請求項11,12又は13に記載の発明において、前記第7の感磁部の出力信号をS7、前記第8の感磁部の出力信号をS8、前記第7及び第8感磁部の抵抗をR、X方向の磁場をBx(磁場変換効率a)、Y方向の磁場をBy(磁場変換効率b)、Z方向の磁場をBz(磁場変換効率c)とした場合に、前記差分回路が、S7=R+aBx+bBy−cBz S8=R+aBx−bBy−cBz S7−S8=2bByの演算をすることを特徴とする。
また、請求項15に記載の発明は、請求項1乃至14のいずれかに記載の発明において、前記仮想線分が、お互いに重なっていないことを特徴とする。
Further, the invention according to claim 14 is the invention according to claim 11, 12 or 13, wherein the output signal of the seventh magnetic sensing part is S7, the output signal of the eighth magnetic sensing part is S8, The resistance of the seventh and eighth magnetic sensing parts is R, the magnetic field in the X direction is Bx (magnetic field conversion efficiency a), the magnetic field in the Y direction is By (magnetic field conversion efficiency b), and the magnetic field in the Z direction is Bz (magnetic field conversion efficiency). In the case of c), the difference circuit calculates S7 = R + aBx + bBy-cBz S8 = R + aBx-bBy-cBz S7-S8 = 2bBy.
The invention according to claim 15 is the invention according to any one of claims 1 to 14, characterized in that the virtual line segments do not overlap each other.

本発明によれば、一方及び他方の感磁部からの出力信号の差分により、基板平面に対して垂直方向の軸方向の磁場成分、又は感磁部の感磁軸に対して垂直かつ基板平面に対して平行方向の軸方向の磁場成分に応じた信号を出力することができるので、周囲の温度の影響を最小限に抑え、かつ、感磁軸方向以外の磁場を検知できる単軸の磁気センサを実現することができる。   According to the present invention, the magnetic field component in the axial direction perpendicular to the substrate plane or the substrate plane perpendicular to the magnetosensitive axis of the magnetosensitive portion due to the difference between the output signals from the one and other magnetic sensitive portions. Can output a signal corresponding to the magnetic field component in the parallel axial direction, minimizing the influence of ambient temperature, and uniaxial magnetism that can detect magnetic fields other than the magnetic sensitive axis direction A sensor can be realized.

従来のGMR素子の動作原理を説明するための斜視図である。It is a perspective view for demonstrating the principle of operation of the conventional GMR element. 図1の部分断面図である。It is a fragmentary sectional view of FIG. 従来のGMR素子の積層構造を説明するための構成図である。It is a block diagram for demonstrating the laminated structure of the conventional GMR element. GMRのパターン形状を説明するための平面図である。It is a top view for demonstrating the pattern shape of GMR. (a),(b)は、本発明に係る磁気センサの実施例1を説明するための構成図である。(A), (b) is a block diagram for demonstrating Example 1 of the magnetic sensor which concerns on this invention. (a),(b)は、本実施例1における差分回路の演算について説明するための構成図である。(A), (b) is a block diagram for demonstrating the calculation of the difference circuit in the present Example 1. FIG. 本発明に係る磁気センサの実施例2を説明するための構成図である。It is a block diagram for demonstrating Example 2 of the magnetic sensor which concerns on this invention. 本発明に係る磁気センサの実施例3を説明するための構成図である。It is a block diagram for demonstrating Example 3 of the magnetic sensor which concerns on this invention. 本発明に係る磁気センサの実施例4を説明するための構成図である。It is a block diagram for demonstrating Example 4 of the magnetic sensor which concerns on this invention. 本発明における差分回路を示す図である。It is a figure which shows the difference circuit in this invention.

以下、本発明の実施形態について説明する。
本発明の磁気センサは、基板平面に対して任意の軸方向の磁場を検知できるようにした磁気センサである。各実施例で順次説明するように、基板平面に平行に配置された一方及び他方の感磁部21,22,41,42,61,62,81,82と、感磁部の近傍に配置された磁気収束部31,32,50,71,72,91,92とを備え、一方及び他方の感磁部21,22,41,42,61,62,81,82は、磁気センサを平面視したときに、磁気収束部31,32,50,71,72,91,92の短手方向の中線が一方及び他方の感磁部21,22,41,42,61,62,81,82の一部と交差するように配置されている。
Hereinafter, embodiments of the present invention will be described.
The magnetic sensor of the present invention is a magnetic sensor that can detect a magnetic field in an arbitrary axial direction with respect to a substrate plane. As will be sequentially described in each embodiment, one and the other magnetic sensitive portions 21, 22, 41, 42, 61, 62, 81, and 82 are arranged in parallel to the substrate plane, and are arranged in the vicinity of the magnetic sensitive portion. Magnetic converging parts 31, 32, 50, 71, 72, 91, 92, and one and the other magnetic sensitive parts 21, 22, 41, 42, 61, 62, 81, 82 are planar views of the magnetic sensor. When the center line in the short direction of the magnetic converging parts 31, 32, 50, 71, 72, 91, 92 is one and the other magnetic sensitive parts 21, 22, 41, 42, 61, 62, 81, 82 It is arranged to intersect with a part of.

また、一方及び他方の感磁部21,22,41,42,61,62,81,82の中心同士を結ぶ仮想線分Mと、磁気収束部31,32,71,72,91,92の中心同士を結ぶ仮想線分Nとが平行又は磁気収束部50の長手方向の中線N1が垂直である。
このような構成により、一方及び他方の感磁部21,22,41,42,61,62,81,82からの出力信号の差分により、基板平面に対して垂直方向の軸方向の磁場成分、または、前記基板平面に対して平行かつ感磁部の感磁軸に垂直な軸方向の磁場成分に応じた信号を出力することができる。
Further, the imaginary line segment M connecting the centers of the one and the other magnetic sensitive parts 21, 22, 41, 42, 61, 62, 81, 82 and the magnetic converging parts 31, 32, 71, 72, 91, 92 The imaginary line segment N connecting the centers is parallel or the middle line N1 in the longitudinal direction of the magnetic converging part 50 is vertical.
With such a configuration, the magnetic field component in the axial direction perpendicular to the substrate plane, due to the difference in the output signals from the one and the other magnetic sensitive parts 21, 22, 41, 42, 61, 62, 81, 82, Alternatively, a signal corresponding to the magnetic field component in the axial direction parallel to the substrate plane and perpendicular to the magnetic sensitive axis of the magnetic sensitive part can be output.

つまり、本発明は、2つのセンサの差分を取るだけで、温度特性による素子特性変化の影響がキャンセルされ、感磁部の感磁軸以外の方向の磁場を検出できる単軸磁気センサを実現することができる。
また、測定精度向上の観点から、磁気センサを平面視したとき、感磁部と磁気収束部が重なる面積が等しいことが好ましい。
以下に、図面を参照して具体的な各実施例について説明する。
That is, the present invention realizes a single-axis magnetic sensor that can detect a magnetic field in a direction other than the magnetosensitive axis of the magnetosensitive part by simply canceling the difference between the two sensors and canceling the influence of the element characteristic change due to the temperature characteristic. be able to.
Further, from the viewpoint of improving measurement accuracy, when the magnetic sensor is viewed in plan, it is preferable that the areas where the magnetically sensitive portion and the magnetic converging portion overlap are equal.
Hereinafter, specific embodiments will be described with reference to the drawings.

図5(a),(b)は、本発明に係る磁気センサの実施例1を説明するための構成図で、図5(a)は上面図、図5(b)は図5(a)の断面図である。図中符号21は第1の感磁部、22は第2の感磁部、31は第1の磁気収束部、32は第2の磁気収束部を示している。
本実施例1の磁気センサは、基板平面に対して任意の軸方向の磁場を検知できるようにした磁気センサである。
第1及び第2の感磁部21,22は、基板平面に平行に配置されている。また、第1及び第2の磁気収束部31,32は、第1及び第2の感磁部21,22の長手方向に少なくとも一部が重なる位置に配置されている。つまり、第1及び第2の磁気収束部31,32は、対向面側において、第1及び第2の感磁部21,22の長手方向に少なくとも一部が重なる位置に配置されている。
5A and 5B are configuration diagrams for explaining the first embodiment of the magnetic sensor according to the present invention, FIG. 5A is a top view, and FIG. 5B is FIG. 5A. FIG. In the figure, reference numeral 21 denotes a first magnetic sensing part, 22 denotes a second magnetic sensing part, 31 denotes a first magnetic convergence part, and 32 denotes a second magnetic convergence part.
The magnetic sensor according to the first embodiment is a magnetic sensor that can detect a magnetic field in an arbitrary axial direction with respect to a substrate plane.
The first and second magnetic sensitive portions 21 and 22 are arranged in parallel to the substrate plane. In addition, the first and second magnetic flux concentrators 31 and 32 are disposed at positions where at least part of the first and second magnetic sensitive units 21 and 22 overlaps in the longitudinal direction. That is, the first and second magnetic flux concentrators 31 and 32 are arranged at positions where at least a part thereof overlaps in the longitudinal direction of the first and second magnetic sensitive units 21 and 22 on the facing surface side.

また、磁気センサを平面視したとき、第1及び第2の感磁部21,22と磁気収束部31,32の重なる面積が等しくなるように配置されている。
また、第1及び第2の感磁部21,22の中心同士を結ぶ仮想線分Mと、第1及び第2の磁気収束部31,32の中心同士を結ぶ仮想線分Nとが平行である。
このような構成により、第1及び第2の感磁部21,22からの出力信号の差分により、基板平面に対して垂直方向の軸方向の磁場成分に応じた信号を出力することができる。
また、本実施例1の磁気センサは、第1及び第2の感磁部21,22の出力が入力される差分回路(図示せず)を備えている。
Further, when the magnetic sensor is viewed in plan, the first and second magnetic sensitive parts 21 and 22 and the magnetic converging parts 31 and 32 are arranged so that the overlapping areas are equal.
Further, a virtual line segment M connecting the centers of the first and second magnetic sensing units 21 and 22 and a virtual line segment N connecting the centers of the first and second magnetic convergence units 31 and 32 are parallel to each other. is there.
With such a configuration, a signal corresponding to the magnetic field component in the axial direction perpendicular to the substrate plane can be output based on the difference between the output signals from the first and second magnetic sensing units 21 and 22.
Further, the magnetic sensor of the first embodiment includes a differential circuit (not shown) to which the outputs of the first and second magnetic sensing units 21 and 22 are input.

また、図5に示す磁気センサでは、仮想線分(M,N)は、お互いに重なっていないように構成されているが、本発明はこれに限定されず、重なっていてもよい。また、感磁部は、特定の方向に感磁軸を持つ素子であれば特に制限されず、例えば、巨大磁気抵抗素子(GMR)又はトンネル磁気抵抗素子(TMR)、異方性磁気抵抗素子(AMR)等を用いる。また、感磁部の短手方向の幅は、0.1〜20ミクロンであることが好ましい。
また、磁気収束部は、NiFe、NiFeB、NiFeCo、CoFeのいずれかの軟磁性材料からなることが好ましい。また、磁気収束部の厚みは、1〜40ミクロンであることが好ましい。
In the magnetic sensor shown in FIG. 5, the virtual line segments (M, N) are configured not to overlap each other, but the present invention is not limited to this and may overlap. The magnetosensitive part is not particularly limited as long as it is an element having a magnetosensitive axis in a specific direction. For example, a giant magnetoresistive element (GMR), a tunnel magnetoresistive element (TMR), an anisotropic magnetoresistive element ( AMR) or the like is used. Moreover, it is preferable that the width | variety of the transversal direction of a magnetic sensitive part is 0.1-20 microns.
Moreover, it is preferable that a magnetic converging part consists of a soft magnetic material in any one of NiFe, NiFeB, NiFeCo, and CoFe. Moreover, it is preferable that the thickness of a magnetic convergence part is 1-40 microns.

図6(a),(b)は、本実施例1における差分回路の演算について説明するための構成図で、図6(a)は上面図、図6(b)は図6(a)の断面図である。図中符号21a,22aは感磁軸を示している。なお、図5(a),(b)と同じ機能を有する構成要素には同一の符号を付してある。
第1の感磁部21の出力信号をS1、第2の感磁部22の出力信号をS2、第1及び第2感磁部21,22の抵抗をR、X方向の磁場をBx(磁場変換効率a)、Z方向の磁場をBz(磁場変換効率c)とした場合に、差分回路は、
S1=R+aBx−cBz
S2=R+aBx+cBz
S2−S1=2cBz
の演算を行う。これにより、基板平面に対して垂直方向の軸方向の磁場成分(Z軸方向の磁場)を検出することができる。
6A and 6B are configuration diagrams for explaining the calculation of the difference circuit in the first embodiment. FIG. 6A is a top view and FIG. 6B is a diagram of FIG. It is sectional drawing. Reference numerals 21a and 22a in the figure indicate magnetosensitive axes. In addition, the same code | symbol is attached | subjected to the component which has the same function as Fig.5 (a), (b).
The output signal of the first magnetic sensing unit 21 is S1, the output signal of the second magnetic sensing unit 22 is S2, the resistance of the first and second magnetic sensing units 21 and 22 is R, and the magnetic field in the X direction is Bx (magnetic field). When the conversion efficiency a) and the magnetic field in the Z direction are set to Bz (magnetic field conversion efficiency c), the difference circuit is
S1 = R + aBx-cBz
S2 = R + aBx + cBz
S2-S1 = 2cBz
Perform the operation. Thereby, the magnetic field component in the axial direction perpendicular to the substrate plane (magnetic field in the Z-axis direction) can be detected.

図7は、本発明に係る磁気センサの実施例2を説明するための構成図で、図中符号41は第3の感磁部、42は第4の感磁部、50は第3の磁気収束部を示している。
第3の磁気収束部50は、第3及び第4の感磁部41,42との間に配置された単一の磁気収束部であり、この第3の磁気収束部50は、その両側部において、第3及び第4の感磁部41,42の長手方向に少なくとも一部が重なる位置に配置され、第3及び第4の感磁部41,42の中心同士を結ぶ仮想線分Mと、第3の磁気収束部50の長手方向の中線N1とが垂直である。
このような構成により、第3及び第4の感磁部41,42からの出力信号の差分により、基板平面に対して垂直方向の軸方向の磁場成分に応じた信号を出力することができる。
FIG. 7 is a block diagram for explaining a magnetic sensor according to a second embodiment of the present invention. In the figure, reference numeral 41 denotes a third magnetic sensing part, 42 denotes a fourth magnetic sensing part, and 50 denotes a third magnetic sensor. The convergence part is shown.
The third magnetic converging unit 50 is a single magnetic converging unit arranged between the third and fourth magnetic sensing units 41 and 42, and the third magnetic converging unit 50 includes both side portions thereof. , A virtual line segment M that is arranged at a position where at least part of the third and fourth magnetic sensing portions 41 and 42 overlaps in the longitudinal direction and connects the centers of the third and fourth magnetic sensing portions 41 and 42 to each other. The middle line N1 in the longitudinal direction of the third magnetic flux concentrator 50 is perpendicular.
With such a configuration, a signal corresponding to the magnetic field component in the axial direction perpendicular to the substrate plane can be output based on the difference between the output signals from the third and fourth magnetic sensing units 41 and 42.

第3の感磁部41の出力信号をS3、第4の感磁部42の出力信号をS4、第3及び第4感磁部41,42の抵抗をR、X方向の磁場をBx(磁場変換効率a)、Z方向の磁場をBz(磁場変換効率c)とした場合に、差分回路は、
S3=R+aBx+cBz
S4=R+aBx−cBz
S3−S4=2cBz
の演算を行う。これにより、基板平面に対して垂直方向の軸方向の磁場成分(Z軸方向の磁場)を検出することができる。
The output signal of the third magnetic sensing unit 41 is S3, the output signal of the fourth magnetic sensing unit 42 is S4, the resistance of the third and fourth magnetic sensing units 41 and 42 is R, and the magnetic field in the X direction is Bx (magnetic field). When the conversion efficiency a) and the magnetic field in the Z direction are set to Bz (magnetic field conversion efficiency c), the difference circuit is
S3 = R + aBx + cBz
S4 = R + aBx-cBz
S3-S4 = 2cBz
Perform the operation. Thereby, the magnetic field component in the axial direction perpendicular to the substrate plane (magnetic field in the Z-axis direction) can be detected.

図8は、本発明に係る磁気センサの実施例3を説明するための構成図で、図中符号61は第5の感磁部、62は第6の感磁部、71は第5の磁気収束部、72は第6の磁気収束部を示している。
第1及び第2の磁気収束部71,72は、対向面側と反対側において、第5及び第6の感磁部61,62の長手方向に少なくとも一部が重なる位置に配置されている。
このような構成により、第5及び第6の感磁部61,62からの出力信号の差分により、基板平面に対して垂直方向の軸方向の磁場成分に応じた信号を出力することができる。
FIG. 8 is a block diagram for explaining a magnetic sensor according to a third embodiment of the present invention. In the figure, reference numeral 61 denotes a fifth magnetic sensing part, 62 denotes a sixth magnetic sensing part, and 71 denotes a fifth magnetic sensor. A converging part 72 is a sixth magnetic converging part.
The first and second magnetic flux concentrators 71 and 72 are arranged at positions where at least a part of the first and second magnetic flux concentrators 71 and 72 overlaps in the longitudinal direction of the fifth and sixth magnetic sensitive portions 61 and 62 on the opposite side to the opposing surface side.
With such a configuration, a signal corresponding to an axial magnetic field component perpendicular to the substrate plane can be output based on the difference between the output signals from the fifth and sixth magnetic sensing units 61 and 62.

第5の感磁部61の出力信号をS5、第6の感磁部62の出力信号をS6、第5及び第6感磁部61,62の抵抗をR、X方向の磁場をBx(磁場変換効率a)、Z方向の磁場をBz(磁場変換効率c)とした場合に、差分回路は、
S5=R+aBx+cBz
S6=R+aBx−cBz
S5−S6=2cBz
の演算を行う。これにより、基板平面に対して垂直方向の軸方向の磁場成分(Z軸方向)の磁場を検出することができる。
The output signal of the fifth magnetic sensing unit 61 is S5, the output signal of the sixth magnetic sensing unit 62 is S6, the resistance of the fifth and sixth magnetic sensing units 61 and 62 is R, and the magnetic field in the X direction is Bx (magnetic field). When the conversion efficiency a) and the magnetic field in the Z direction are set to Bz (magnetic field conversion efficiency c), the difference circuit is
S5 = R + aBx + cBz
S6 = R + aBx-cBz
S5-S6 = 2cBz
Perform the operation. Thereby, the magnetic field of the axial magnetic field component (Z-axis direction) perpendicular to the substrate plane can be detected.

図9は、本発明に係る磁気センサの実施例4を説明するための構成図で、図中符号81は第7の感磁部、82は第8の感磁部、91は第6の磁気収束部、92は第7の磁気収束部、93は第8の磁気収束部を示している。
第6の磁気収束部91と第8の磁気収束部93とは、第7の磁気収束部92の長手方向の中線N1に対して線対称である。また、第6の磁気収束部91が、第7の感磁部81の長手方向に少なくとも一部が重なる位置に配置され、かつ第7の磁気収束部92が、第8の感磁部82の長手方向に少なくとも一部が重なる位置に配置されている。
FIG. 9 is a block diagram for explaining a magnetic sensor according to a fourth embodiment of the present invention. In the figure, reference numeral 81 denotes a seventh magnetic sensing part, 82 denotes an eighth magnetic sensing part, and 91 denotes a sixth magnetic sensor. A converging unit, 92 is a seventh magnetic converging unit, and 93 is an eighth magnetic converging unit.
The sixth magnetic converging part 91 and the eighth magnetic converging part 93 are line symmetric with respect to the middle line N <b> 1 in the longitudinal direction of the seventh magnetic converging part 92. In addition, the sixth magnetic flux concentrator 91 is disposed at a position at least partially overlapping in the longitudinal direction of the seventh magnetism sensitive portion 81, and the seventh magnetic flux concentrator 92 is arranged in the eighth magnetism sensitive portion 82. It arrange | positions in the position which at least one part overlaps in a longitudinal direction.

また、第6の磁気収束部91と第7の感磁部81とからなる配置パターンと、第7の磁気収束部92と第8の感磁部82とからなる配置パターンとが、前記第6の磁気収束部の短手方向の軸に対して線対称な構造関係にある。図9においては、また、第6の磁気収束部91と第7の感磁部81とからなる配置パターンを、前記第7の感磁部81の短手方向かつ該第7の感磁部81の中心を通る軸Pに対して線対称な仮想パターンを、X軸方向にシフトすると、第7の磁気収束部92と第8の感磁部82とからなる配置パターンと重なるように配置されている。   Further, the arrangement pattern composed of the sixth magnetic converging part 91 and the seventh magnetic sensing part 81 and the arrangement pattern consisting of the seventh magnetic converging part 92 and the eighth magnetic sensing part 82 are the sixth pattern. The magnetic converging part has a line-symmetric structural relationship with respect to the axis in the short direction. In FIG. 9, the arrangement pattern composed of the sixth magnetic converging portion 91 and the seventh magnetic sensing portion 81 is arranged in the short direction of the seventh magnetic sensing portion 81 and the seventh magnetic sensing portion 81. When an imaginary pattern that is line-symmetric with respect to the axis P passing through the center is shifted in the X-axis direction, the virtual pattern is arranged so as to overlap with the arrangement pattern composed of the seventh magnetic converging portion 92 and the eighth magnetic sensing portion 82. Yes.

また、第7の磁気収束部92の短手方向の中線N2が第6及び第8の磁気収束部91,93の中心同士を結ぶ仮想線分Nと平行で、かつ重ならないように構成されている。また、第7、第8の感磁部の中心を通る線Pは、第6及び第8の磁気収束部91,93の中心同士を結ぶ仮想線分Nと平行で、かつ重ならないように構成されている。
このような構成により、第7及び第8の感磁部81,82からの出力信号の差分により、基板平面に対して平行、かつ第7及び第8の感磁部81,82の感磁軸に垂直な軸方向の磁場成分に応じた信号を出力することができる。
Further, the middle line N2 in the short direction of the seventh magnetic converging part 92 is configured to be parallel to the virtual line segment N connecting the centers of the sixth and eighth magnetic converging parts 91 and 93 and not to overlap. ing. Further, the line P passing through the centers of the seventh and eighth magnetic sensing portions is configured to be parallel to the virtual line segment N connecting the centers of the sixth and eighth magnetic converging portions 91 and 93 and not to overlap. Has been.
With such a configuration, the magnetosensitive axes of the seventh and eighth magnetosensitive parts 81 and 82 are parallel to the substrate plane due to the difference between the output signals from the seventh and eighth magnetosensitive parts 81 and 82. A signal corresponding to the magnetic field component in the axial direction perpendicular to can be output.

第7の感磁部81の出力信号をS7、第8の感磁部82の出力信号をS8、第7及び第8感磁部81,82の抵抗をR、X方向の磁場をBx(磁場変換効率a)、Y方向の磁場をBy(磁場変換効率b)、Z方向の磁場をBz(磁場変換効率c)とした場合に、差分回路は、
S7=R+aBx+bBy−cBz
S8=R+aBx−bBy−cBz
S7−S8=2bBy
の演算を行う。これにより、前記基板平面に対して平行かつ感磁部の感磁軸に垂直な軸方向の磁場成分(Y軸方向の磁場)を検出することができる。
上述した各実施例における差分回路は、2つの入力の差に応じた信号を出力するものであればよく、アナログ回路で実現する場合は、例えば、図10に示す様な差動増幅回路(Vout=R2(V1−V2)/R1)を用いることが出来るが、本発明はこれに限定されない。
The output signal of the seventh magnetic sensing unit 81 is S7, the output signal of the eighth magnetic sensing unit 82 is S8, the resistance of the seventh and eighth magnetic sensing units 81 and 82 is R, and the magnetic field in the X direction is Bx (magnetic field). When the conversion efficiency a), the magnetic field in the Y direction is By (magnetic field conversion efficiency b), and the magnetic field in the Z direction is Bz (magnetic field conversion efficiency c), the difference circuit is
S7 = R + aBx + bBy-cBz
S8 = R + aBx-bBy-cBz
S7-S8 = 2bBy
Perform the operation. Thereby, the magnetic field component (magnetic field in the Y-axis direction) in the axial direction parallel to the substrate plane and perpendicular to the magnetic sensitive axis of the magnetic sensitive part can be detected.
The difference circuit in each of the embodiments described above may be any circuit that outputs a signal corresponding to the difference between two inputs. When the difference circuit is realized by an analog circuit, for example, a differential amplifier circuit (Vout as shown in FIG. = R2 (V1-V2) / R1) can be used, but the present invention is not limited to this.

以上のように、本発明の磁気センサによれば、一方及び他方の感磁部からの出力信号の差分により、基板平面に対して垂直方向の軸方向の磁場成分、又は感磁部の感磁軸に対して垂直かつ基板平面に対して平行方向の軸方向の磁場成分に応じた信号を出力することができるので、周囲の温度の影響を最小限に抑え、かつ、感磁軸方向以外の磁場を検知できる単軸の磁気センサを実現することができる。   As described above, according to the magnetic sensor of the present invention, the magnetic field component in the axial direction perpendicular to the substrate plane, or the magnetic sensing of the magnetic sensing unit, depending on the difference between the output signals from one and the other magnetic sensing units. A signal corresponding to the magnetic field component in the axial direction perpendicular to the axis and parallel to the substrate plane can be output, so that the influence of the ambient temperature is minimized and the direction other than the magnetic sensitive axis direction A single-axis magnetic sensor capable of detecting a magnetic field can be realized.

1 反強磁性層
2 ピンド層(固定層)
3 Cu層(スペーサ層)
4 フリー層(自由回転層)
11,16 層
12 フリー層(自由回転層)
13 導電層
14 ピンド層(固定層)
15 反強磁性層
21 第1の感磁部
22 第2の感磁部
31 第1の磁気収束部
32 第2の磁気収束部
21a,22a 感磁軸
41 第3の感磁部
42 第4の感磁部
50 第3の磁気収束部
61 第5の感磁部
62 第6の感磁部
71 第5の磁気収束部
72 第6の磁気収束部
81 第7の感磁部
82 第8の感磁部
91 第6の磁気収束部
92 第7の磁気収束部
93 第8の磁気収束部
1 Antiferromagnetic layer 2 Pinned layer (pinned layer)
3 Cu layer (spacer layer)
4 Free layer (free rotation layer)
11, 16 layers 12 free layers (free rotation layers)
13 Conductive layer 14 Pinned layer (fixed layer)
15 Antiferromagnetic layer 21 1st magnetosensitive part 22 2nd magnetosensitive part 31 1st magnetic converging part 32 2nd magnetic converging part 21a, 22a Magnetosensitive axis 41 3rd magnetosensitive part 42 4th Magnetic sensing unit 50 Third magnetic convergence unit 61 Fifth magnetic sensing unit 62 Sixth magnetic sensing unit 71 Fifth magnetic convergence unit 72 Sixth magnetic convergence unit 81 Seventh magnetic sensing unit 82 Eighth sensing unit Magnetic part 91 6th magnetic converging part 92 7th magnetic converging part 93 8th magnetic converging part

Claims (15)

基板平面に対して任意の軸方向の磁場を検知できるようにした磁気センサにおいて、
前記基板平面に平行に配置された一方及び他方の感磁部と、該感磁部の近傍に配置された磁気収束部とを備え、
前記一方及び他方の感磁部が、前記磁気センサを平面視したときに、前記磁気収束部の短手方向の中線が、前記一方及び他方の感磁部の一部と交差するように配置され、
前記一方及び他方の感磁部の中心同士を結ぶ仮想線分と、前記磁気収束部の中心同士を結ぶ仮想線分とが平行又は前記磁気収束部の長手方向の中線が垂直で、
前記一方及び他方の感磁部からの出力信号の差分により、前記基板平面に対して垂直方向の軸方向の磁場成分、または、前記基板平面に対して平行かつ前記感磁部の感磁軸に垂直な軸方向の磁場成分に応じた信号を出力することを特徴とする磁気センサ。
In a magnetic sensor capable of detecting a magnetic field in an arbitrary axial direction with respect to a substrate plane,
One and the other magnetic sensitive part arranged in parallel to the substrate plane, and a magnetic converging part arranged in the vicinity of the magnetic sensitive part,
The one and the other magnetic sensing parts are arranged so that the middle line in the short direction of the magnetic converging part intersects a part of the one and the other magnetic sensing parts when the magnetic sensor is viewed in plan. And
The imaginary line segment connecting the centers of the one and the other magnetic sensing parts and the imaginary line segment connecting the centers of the magnetic convergence parts are parallel or the longitudinal center line of the magnetic convergence part is vertical,
Depending on the difference between the output signals from the one and the other magnetic sensing units, the magnetic field component in the axial direction perpendicular to the substrate plane, or parallel to the substrate plane and the magnetic sensing axis of the magnetic sensing unit A magnetic sensor that outputs a signal corresponding to a magnetic field component in a vertical axial direction.
前記磁気収束部が、前記磁気センサを平面視したとき、前記一方及び他方の感磁部の長手方向に少なくとも一部が重なる位置に配置されていることを特徴とする請求項1に記載の磁気センサ。   2. The magnetism according to claim 1, wherein the magnetic converging part is arranged at a position where at least a part thereof overlaps with a longitudinal direction of the one and the other magnetic sensing parts when the magnetic sensor is viewed in plan. Sensor. 前記磁気センサを平面視したとき、前記感磁部と前記磁気収束部の重なる面積が等しいことを特徴とする請求項2に記載の磁気センサ。   3. The magnetic sensor according to claim 2, wherein when the magnetic sensor is viewed in plan, the overlapping area of the magnetically sensitive portion and the magnetic converging portion is equal. 前記一方及び他方の感磁部の出力が入力される差分回路を備えていることを特徴とする請求項1,2又は3に記載の磁気センサ。   The magnetic sensor according to claim 1, 2 or 3, further comprising a differential circuit to which outputs of the one and the other magnetic sensing units are input. 前記一方及び他方の感磁部が、第1及び第2の感磁部で、前記磁気収束部が、第1及び第2の磁気収束部であり、
該第1及び第2の磁気収束部が、対向面側において、前記第1及び第2の感磁部の長手方向に少なくとも一部が重なる位置に配置され、
前記第1及び第2感磁部の中心同士を結ぶ仮想線分と、前記第1及び第2の磁気収束部の中心同士を結ぶ仮想線分とが平行であることを特徴とする請求項1乃至4のいずれかに記載の磁気センサ。
The one and the other magnetic sensitive parts are first and second magnetic sensitive parts, and the magnetic converging part is a first and second magnetic converging part,
The first and second magnetic flux concentrators are arranged at positions where at least a portion thereof overlaps in the longitudinal direction of the first and second magnetic sensitive parts on the facing surface side;
The virtual line segment that connects the centers of the first and second magnetic sensing portions and the virtual line segment that connects the centers of the first and second magnetic convergence portions are parallel to each other. The magnetic sensor in any one of thru | or 4.
前記第1の感磁部の出力信号をS1、前記第2の感磁部の出力信号をS2、前記第1及び第2感磁部の抵抗をR、X方向の磁場をBx(磁場変換効率a)、Z方向の磁場をBz(磁場変換効率c)とした場合に、前記差分回路が、
S1=R+aBx−cBz
S2=R+aBx+cBz
S2−S1=2cBz
の演算をすることを特徴とする請求項5に記載の磁気センサ。
The output signal of the first magnetic sensing unit is S1, the output signal of the second magnetic sensing unit is S2, the resistance of the first and second magnetic sensing units is R, and the magnetic field in the X direction is Bx (magnetic field conversion efficiency). a) When the magnetic field in the Z direction is Bz (magnetic field conversion efficiency c), the difference circuit is
S1 = R + aBx-cBz
S2 = R + aBx + cBz
S2-S1 = 2cBz
The magnetic sensor according to claim 5, wherein the calculation is performed.
前記一方及び他方の感磁部が、第3及び第4の感磁部で、前記磁気収束部が、前記第3及び第4の感磁部に間に配置された単一の第3の磁気収束部であり、該第3の磁気収束部が、両側部において、前記第3及び第4の感磁部の長手方向に少なくとも一部が重なる位置に配置され、前記第3及び第4の感磁部の中心同士を結ぶ仮想線分と、前記第3の磁気収束部の長手方向の中線が垂直であることを特徴とする請求項1乃至4のいずれかに記載の磁気センサ。   The one and the other magnetic sensitive parts are third and fourth magnetic sensitive parts, and the magnetic converging part is a single third magnet arranged between the third and fourth magnetic sensitive parts. A converging portion, and the third magnetic converging portion is disposed at a position where at least part of the third magnetic converging portion overlaps in the longitudinal direction of the third and fourth magnetic sensitive portions on both sides, and the third and fourth sensitive portions are arranged. 5. The magnetic sensor according to claim 1, wherein an imaginary line segment connecting the centers of the magnetic parts and a middle line in a longitudinal direction of the third magnetic converging part are perpendicular to each other. 前記第3の感磁部の出力信号をS3、前記第4の感磁部の出力信号をS4、前記第3及び第4感磁部の抵抗をR、X方向の磁場をBx(磁場変換効率a)、Z方向の磁場をBz(磁場変換効率c)とした場合に、前記差分回路が、
S3=R+aBx+cBz
S4=R+aBx−cBz
S3−S4=2cBz
の演算をすることを特徴とする請求項7に記載の磁気センサ。
The output signal of the third magnetic sensing unit is S3, the output signal of the fourth magnetic sensing unit is S4, the resistance of the third and fourth magnetic sensing units is R, and the magnetic field in the X direction is Bx (magnetic field conversion efficiency). a) When the magnetic field in the Z direction is Bz (magnetic field conversion efficiency c), the difference circuit is
S3 = R + aBx + cBz
S4 = R + aBx-cBz
S3-S4 = 2cBz
The magnetic sensor according to claim 7, wherein the calculation is performed.
前記一方及び他方の感磁部が、第5及び第6の感磁部で、前記磁気収束部が、第5及び第6の磁気収束部であり、
該第5及び第6の磁気収束部が、対向面側と反対側において、前記第5及び第6の感磁部の長手方向に少なくとも一部が重なる位置に配置されていることを特徴とする請求項1乃至4のいずれかに記載の磁気センサ。
The one and the other magnetic sensitive parts are fifth and sixth magnetic sensitive parts, and the magnetic converging part is a fifth and sixth magnetic converging part,
The fifth and sixth magnetic flux concentrators are arranged at positions that at least partially overlap in the longitudinal direction of the fifth and sixth magnetic sensitive parts on the side opposite to the opposing surface side. The magnetic sensor according to claim 1.
前記第5の感磁部の出力信号をS5、前記第6の感磁部の出力信号をS6、前記第5及び第6感磁部の抵抗をR、X方向の磁場をBx(磁場変換効率a)、Z方向の磁場をBz(磁場変換効率c)とした場合に、前記差分回路が、
S5=R+aBx+cBz
S6=R+aBx−cBz
S5−S6=2cBz
の演算をすることを特徴とする請求項9に記載の磁気センサ。
The output signal of the fifth magnetosensitive part is S5, the output signal of the sixth magnetosensitive part is S6, the resistance of the fifth and sixth magnetosensitive parts is R, the magnetic field in the X direction is Bx (magnetic field conversion efficiency) a) When the magnetic field in the Z direction is Bz (magnetic field conversion efficiency c), the difference circuit is
S5 = R + aBx + cBz
S6 = R + aBx-cBz
S5-S6 = 2cBz
The magnetic sensor according to claim 9, wherein the calculation is performed.
前記一方及び他方の感磁部が、第7及び第8の感磁部で、前記磁気収束部が、第6乃至第8の磁気収束部であり、
前記第6の磁気収束部と前記第8の磁気収束部とが、前記第7の磁気収束部の長手方向の中線に対して線対称で、
前記第6の磁気収束部が、前記第7の感磁部の長手方向に少なくとも一部が重なる位置に配置され、かつ前記第7の磁気収束部が、前記第8の感磁部の長手方向に少なくとも一部が重なる位置に配置され、
前記第7及び第8の感磁部からの出力信号の差分により、前記基板平面に対して平行、かつ前記第7及び第8の感磁部の感磁軸に垂直な軸方向の磁場成分に応じた信号を出力することを特徴とする請求項1乃至4のいずれかに記載の磁気センサ。
The one and the other magnetic sensitive parts are seventh and eighth magnetic sensitive parts, and the magnetic converging parts are sixth to eighth magnetic converging parts,
The sixth magnetic converging part and the eighth magnetic converging part are axisymmetric with respect to a longitudinal middle line of the seventh magnetic converging part;
The sixth magnetic flux concentrator is disposed at a position at least partially overlapping with the longitudinal direction of the seventh magnetic sensitive portion, and the seventh magnetic convergent portion is longitudinal with respect to the eighth magnetic sensitive portion. Arranged at least partially overlapping
Due to the difference between the output signals from the seventh and eighth magnetic sensing parts, the magnetic field component in the axial direction is parallel to the substrate plane and perpendicular to the magnetic sensing axes of the seventh and eighth magnetic sensing parts. The magnetic sensor according to any one of claims 1 to 4, wherein a corresponding signal is output.
前記第6の磁気収束部と前記第7の感磁部とからなる配置パターンと、前記第7の磁気収束部と前記第8の感磁部とからなる配置パターンとが、前記第6の磁気収束部の短手方向の軸に対して線対称な構造関係にあることを特徴とする請求項11に記載の磁気センサ。   An arrangement pattern composed of the sixth magnetic converging portion and the seventh magnetic sensing portion and an arrangement pattern composed of the seventh magnetic converging portion and the eighth magnetic sensitive portion are the sixth magnetism. The magnetic sensor according to claim 11, wherein the magnetic sensor has a line-symmetric structural relationship with respect to an axis in a short direction of the converging portion. 前記第7の磁気収束部の短手方向の中線が前記第6及び第8の磁気収束部の中心同士を結ぶ仮想線分と平行で、かつ重ならないことを特徴とする請求項11又は12に記載の磁気センサ。   13. The center line in the short direction of the seventh magnetic converging part is parallel to and does not overlap with an imaginary line segment connecting the centers of the sixth and eighth magnetic converging parts. The magnetic sensor described in 1. 前記第7の感磁部の出力信号をS7、前記第8の感磁部の出力信号をS8、前記第7及び第8感磁部の抵抗をR、X方向の磁場をBx(磁場変換効率a)、Y方向の磁場をBy(磁場変換効率b)、Z方向の磁場をBz(磁場変換効率c)とした場合に、前記差分回路が、
S7=R+aBx+bBy−cBz
S8=R+aBx−bBy−cBz
S7−S8=2bBy
の演算をすることを特徴とする請求項11,12又は13に記載の磁気センサ。
The output signal of the seventh magnetic sensing unit is S7, the output signal of the eighth magnetic sensing unit is S8, the resistance of the seventh and eighth magnetic sensing units is R, the magnetic field in the X direction is Bx (magnetic field conversion efficiency) a) When the magnetic field in the Y direction is By (magnetic field conversion efficiency b) and the magnetic field in the Z direction is Bz (magnetic field conversion efficiency c), the difference circuit is
S7 = R + aBx + bBy-cBz
S8 = R + aBx-bBy-cBz
S7-S8 = 2bBy
The magnetic sensor according to claim 11, wherein the magnetic sensor performs the following calculation.
前記仮想線分が、お互いに重なっていないことを特徴とする請求項1乃至14のいずれかに記載の磁気センサ。   The magnetic sensor according to claim 1, wherein the virtual line segments do not overlap each other.
JP2013058199A 2013-03-21 2013-03-21 Magnetic sensor Active JP6321323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013058199A JP6321323B2 (en) 2013-03-21 2013-03-21 Magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013058199A JP6321323B2 (en) 2013-03-21 2013-03-21 Magnetic sensor

Publications (2)

Publication Number Publication Date
JP2014182096A true JP2014182096A (en) 2014-09-29
JP6321323B2 JP6321323B2 (en) 2018-05-09

Family

ID=51700935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013058199A Active JP6321323B2 (en) 2013-03-21 2013-03-21 Magnetic sensor

Country Status (1)

Country Link
JP (1) JP6321323B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017161519A (en) * 2016-03-03 2017-09-14 Tdk株式会社 Magnetic sensor
DE112016006607T5 (en) 2016-03-17 2018-11-22 Tdk Corporation Magnetic sensor
US10816615B2 (en) 2017-05-19 2020-10-27 Asahi Kasei Microdevices Corporation Magnetic sensor
CN112596007A (en) * 2019-10-01 2021-04-02 Tdk株式会社 Magnetic sensor device
CN113758623A (en) * 2021-09-06 2021-12-07 西红柿科技(武汉)有限公司 Adjustable steel structure stress monitoring sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040137275A1 (en) * 2002-11-15 2004-07-15 Nve Corporation Two-axis magnetic field sensor
US20060126229A1 (en) * 2004-12-15 2006-06-15 Hubert Grimm Magnetic sensor
JP2012112689A (en) * 2010-11-22 2012-06-14 Alps Electric Co Ltd Magnetic sensor
JP2012127788A (en) * 2010-12-15 2012-07-05 Alps Electric Co Ltd Magnetic sensor
JP2014070911A (en) * 2012-09-27 2014-04-21 Asahi Kasei Electronics Co Ltd Magnetic sensor, and magnetism detecting method of the same
JP2014081318A (en) * 2012-10-18 2014-05-08 Asahi Kasei Electronics Co Ltd Magnetic sensor and magnetic detection method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040137275A1 (en) * 2002-11-15 2004-07-15 Nve Corporation Two-axis magnetic field sensor
US20060126229A1 (en) * 2004-12-15 2006-06-15 Hubert Grimm Magnetic sensor
JP2012112689A (en) * 2010-11-22 2012-06-14 Alps Electric Co Ltd Magnetic sensor
JP2012127788A (en) * 2010-12-15 2012-07-05 Alps Electric Co Ltd Magnetic sensor
JP2014070911A (en) * 2012-09-27 2014-04-21 Asahi Kasei Electronics Co Ltd Magnetic sensor, and magnetism detecting method of the same
JP6126348B2 (en) * 2012-09-27 2017-05-10 旭化成エレクトロニクス株式会社 Magnetic sensor and magnetic detection method thereof
JP2014081318A (en) * 2012-10-18 2014-05-08 Asahi Kasei Electronics Co Ltd Magnetic sensor and magnetic detection method thereof
JP6226447B2 (en) * 2012-10-18 2017-11-08 旭化成エレクトロニクス株式会社 Magnetic sensor and magnetic detection method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017161519A (en) * 2016-03-03 2017-09-14 Tdk株式会社 Magnetic sensor
US10859642B2 (en) 2016-03-03 2020-12-08 Tdk Corporation Magnetic sensor
DE112016006607T5 (en) 2016-03-17 2018-11-22 Tdk Corporation Magnetic sensor
US11249149B2 (en) 2016-03-17 2022-02-15 Tdk Corporation Magnetic sensor
US10816615B2 (en) 2017-05-19 2020-10-27 Asahi Kasei Microdevices Corporation Magnetic sensor
CN112596007A (en) * 2019-10-01 2021-04-02 Tdk株式会社 Magnetic sensor device
CN112596007B (en) * 2019-10-01 2023-08-01 Tdk株式会社 Magnetic sensor device
CN113758623A (en) * 2021-09-06 2021-12-07 西红柿科技(武汉)有限公司 Adjustable steel structure stress monitoring sensor

Also Published As

Publication number Publication date
JP6321323B2 (en) 2018-05-09

Similar Documents

Publication Publication Date Title
JP5876583B2 (en) Magnetic sensor and magnetic detection method thereof
JP5152495B2 (en) Magnetic sensor and portable information terminal device
US9116198B2 (en) Planar three-axis magnetometer
US9964601B2 (en) Magnetic sensor
EP2664940B1 (en) Magnetic sensor
JP5297442B2 (en) Magnetic sensor
US20120217961A1 (en) Magnetic sensor
US9810748B2 (en) Tunneling magneto-resistor device for sensing a magnetic field
JP5532166B1 (en) Magnetic sensor and magnetic sensor system
JP6427588B2 (en) Magnetic sensor
TWI747285B (en) Magnetic field sensing apparatus
KR20150102053A (en) Magnetic Sensing Device and Magnetic Sensing Method Therefor
JP6321323B2 (en) Magnetic sensor
US11009562B2 (en) Magnetic field sensing apparatus
KR20150102052A (en) Magnetic Sensing Apparatus, Magnetic Induction Method and Preparation Technique Therefor
JP6185298B2 (en) Magnetic sensor
JP6226447B2 (en) Magnetic sensor and magnetic detection method thereof
JP2015133377A (en) Magnetic detection element and rotation detection device
JP6701047B2 (en) Magnetic sensor and method of manufacturing magnetic sensor
JPWO2016047783A1 (en) Magnetic sensor
JP6285641B2 (en) Magnetic sensor and magnetic field component calculation method
TWI703337B (en) Magnetic field sensing apparatus
JP5432082B2 (en) Semiconductor device with current detector
JP2017191014A (en) Magnetic sensor
JP2018165703A (en) Magnetic sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170920

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180405

R150 Certificate of patent or registration of utility model

Ref document number: 6321323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350