JP2009300150A - Magnetic sensor and magnetic sensor module - Google Patents

Magnetic sensor and magnetic sensor module Download PDF

Info

Publication number
JP2009300150A
JP2009300150A JP2008152726A JP2008152726A JP2009300150A JP 2009300150 A JP2009300150 A JP 2009300150A JP 2008152726 A JP2008152726 A JP 2008152726A JP 2008152726 A JP2008152726 A JP 2008152726A JP 2009300150 A JP2009300150 A JP 2009300150A
Authority
JP
Japan
Prior art keywords
soft magnetic
magnetic body
width
magnetic
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008152726A
Other languages
Japanese (ja)
Inventor
Hiromitsu Sasaki
寛充 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2008152726A priority Critical patent/JP2009300150A/en
Publication of JP2009300150A publication Critical patent/JP2009300150A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic sensor and a magnetic sensor module, for efficiently improving a magnetic shield effect in a direction perpendicular to its sensitive axis especially. <P>SOLUTION: The magnetic sensor includes magnetoresistive effective elements 2, 3, and the magnetoresistive effective elements 2, 3 have an element part 12 which brings out the magnetoresistive effect, and a soft magnetic material 18 is disposed on both sides of the element part 12 in the sensitive axis direction (Y-direction). Both the side ends 18b of the soft magnetic material 18 in the direction (X-direction) perpendicular to the sensitive axis direction, are positioned so as to elongate rather than the element part 12 in the perpendicular direction. The width dimension of both the side ends 18b is large in comparison with the width dimension of the soft magnetic material 18 except both of the side ends. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えば地磁気センサとして使用される磁気抵抗効果素子を用いた磁気センサ及び磁気センサモジュールに関する。   The present invention relates to a magnetic sensor and a magnetic sensor module using a magnetoresistive effect element used as, for example, a geomagnetic sensor.

磁気抵抗効果素子を用いた磁気センサは例えば、携帯電話等の携帯機器に組み込まれる地磁気を検知する地磁気センサとして使用できる。磁気抵抗効果素子は感度軸方向からの磁場に対して電気抵抗値が変動する。   A magnetic sensor using a magnetoresistive effect element can be used as a geomagnetic sensor that detects geomagnetism incorporated in a portable device such as a mobile phone. The magnetoresistive element varies in electric resistance value with respect to the magnetic field from the sensitivity axis direction.

下記の特許文献1に記載された発明では、複数の帯状の磁気抵抗効果膜を互いに平行に配置し、各磁気抵抗効果素子の端部間を永久磁石膜で接続して、つづら折り形状とした磁気センサが開示されている。   In the invention described in the following Patent Document 1, a plurality of strip-like magnetoresistive films are arranged in parallel to each other, and end portions of each magnetoresistive element are connected by a permanent magnet film to form a zigzag folded shape. A sensor is disclosed.

地磁気センサでは、2軸または3軸に分解して磁気を検知する必要があるため、それぞれの軸の磁場の強さを検知する磁気センサは、他の軸に対しては感度を持たないようにする必要がある。   The geomagnetic sensor needs to detect magnetism by splitting it into two or three axes, so the magnetic sensor that detects the strength of the magnetic field of each axis is not sensitive to the other axes. There is a need to.

しかしながら特許文献1には、上記した地磁気センサに対する従来の課題についての認識がなく当然にそれを解決する手段は示されていない。
特開2005−183614号公報
However, Patent Document 1 does not recognize the conventional problem with respect to the above-described geomagnetic sensor, and naturally does not show means for solving it.
JP 2005-183614 A

そこで本発明は、上記従来の課題を解決するためのものであり、特に感度軸方向に対して直交する方向への磁気シールド効果を効果的に向上させることが可能な磁気センサ及び磁気センサモジュールを提供することを目的とする。   Therefore, the present invention is for solving the above-described conventional problems, and in particular, a magnetic sensor and a magnetic sensor module capable of effectively improving the magnetic shield effect in a direction orthogonal to the sensitivity axis direction. The purpose is to provide.

本発明は、所定の感度軸を有する磁気抵抗効果素子を備えた磁気センサであって、
前記磁気抵抗効果素子は、磁気抵抗効果を発揮する素子部と、軟磁性体とを備え、
前記素子部と前記軟磁性体とが、前記感度軸の方向に前記軟磁性体、前記素子部、前記軟磁性体の順で並ぶように非接触で配置されており、
前記軟磁性体の両端部は、前記素子部よりも前記直交方向に延出した位置にあり、前記両端部の幅寸法は、前記両端部を除く前記軟磁性体の幅寸法に比べて大きいことを特徴とするものである。
The present invention is a magnetic sensor comprising a magnetoresistive effect element having a predetermined sensitivity axis,
The magnetoresistive effect element includes an element portion that exhibits a magnetoresistive effect, and a soft magnetic material,
The element part and the soft magnetic body are arranged in a non-contact manner in the order of the soft magnetic body, the element part, and the soft magnetic body in the direction of the sensitivity axis,
Both end portions of the soft magnetic body are at positions extending in the orthogonal direction from the element portion, and the width dimension of the both end portions is larger than the width dimension of the soft magnetic body excluding the both end portions. It is characterized by.

これにより感度軸と直交する方向からの外乱磁場を、両側端部から軟磁性体の内部へ引き込みやすくなり、磁気シールド効果を効果的に向上させることが可能である。   As a result, a disturbance magnetic field from the direction orthogonal to the sensitivity axis can be easily drawn into the inside of the soft magnetic body from both end portions, and the magnetic shield effect can be effectively improved.

本発明では、前記軟磁性体の前記両側端部には、前記素子部から離れる方向に向けて、前記幅寸法が徐々に大きくなるテーパ面が形成されていることが好ましい。これにより、より効果的に磁気シールド効果を向上させることができる。   In the present invention, it is preferable that a tapered surface in which the width dimension is gradually increased is formed in the both end portions of the soft magnetic body in a direction away from the element portion. Thereby, the magnetic shielding effect can be improved more effectively.

また本発明では、前記軟磁性体の前記両側端部は、前記テーパ面で形成された幅遷移領域と、前記幅遷移領域の前記直交方向の外側に前記幅遷移領域の最大幅を保って形成された幅一定領域とで構成されることが好ましい。これにより、より効果的に磁気シールド効果を向上させることができる。   Further, in the present invention, the both side end portions of the soft magnetic material are formed with a width transition region formed by the tapered surface and a maximum width of the width transition region outside the width transition region in the orthogonal direction. It is preferable that the fixed width region is formed. Thereby, the magnetic shielding effect can be improved more effectively.

本発明では、前記素子部が複数、感度軸方向に間隔を空けて配置され、各素子部の端部間が電気的に接続されてミアンダ形状で形成されており、
各素子部間及びミアンダ形状の外側に前記軟磁性体が設けられることにより前記各素子部の感度軸方向の両側方に前記軟磁性体が配置されている構造であることが好適である。
In the present invention, a plurality of the element portions are arranged at intervals in the sensitivity axis direction, and the end portions of each element portion are electrically connected and formed in a meander shape,
It is preferable that the soft magnetic body is disposed on both sides in the sensitivity axis direction of each element portion by providing the soft magnetic body between the element portions and outside the meander shape.

また本発明では、前記軟磁性体を両側に備えた素子部から形成された磁気抵抗効果素子を感度軸直交方向に複数配置することで、それぞれの磁気抵抗効果素子自身が自身以外の磁気抵抗効果素子に影響を及ぼすことなく磁気センサを形成できる。   Further, in the present invention, a plurality of magnetoresistive effect elements formed from the element portions provided with the soft magnetic material on both sides are arranged in the direction perpendicular to the sensitivity axis so that each magnetoresistive effect element itself has a magnetoresistive effect other than itself. A magnetic sensor can be formed without affecting the element.

また本発明における磁気センサモジュールは、上記のいずれかに記載の磁気センサを複数有し、少なくとも前記複数の磁気センサのうち一組の磁気抵抗効果素子の感度軸が直交するように各磁気抵抗効果素子が配置されていることを特徴とするものである。例えば本発明の磁気センサモジュールは地磁気センサである。   A magnetic sensor module according to the present invention includes a plurality of magnetic sensors according to any one of the above, and each magnetoresistive effect is set so that sensitivity axes of a pair of magnetoresistive effect elements are orthogonal to each other. An element is arranged. For example, the magnetic sensor module of the present invention is a geomagnetic sensor.

本発明の磁気センサによれば、感度軸と直交する方向からの外乱磁場を、両側端部から軟磁性体の内部へ引き込みやすくなり、磁気シールド効果を効果的に向上させることが可能である。   According to the magnetic sensor of the present invention, the disturbance magnetic field from the direction orthogonal to the sensitivity axis can be easily drawn into the inside of the soft magnetic body from both end portions, and the magnetic shield effect can be effectively improved.

図1は、本実施形態における磁気センサの特に磁気抵抗効果素子の部分を示す図((a)は部分平面図、(b)は、(a)のA−A線に沿って高さ方向(図示Z方向)に切断し矢印方向から見た部分拡大断面図、図2は、本実施形態における磁気センサの特に磁気抵抗効果素子の部分の拡大平面図と、本実施形態の軟磁性体に引き込まれる直交方向からの外乱磁場のイメージ図、図3は、比較例における磁気センサの特に磁気抵抗効果素子の部分の部分拡大平面図と、比較例の軟磁性体に引き込まれる直交方向からの外乱磁場のイメージ図、図4は、本実施形態の好ましい軟磁性体の側端部の形状を示す部分拡大平面図、図5は、別の実施形態における軟磁性体の側端部の形状を示す部分拡大平面図、図6は他の実施形態における磁気センサの特に磁気抵抗効果素子の部分を示す平面図、図7は、図6に示すB−B線に沿って高さ方向(図示Z方向)に切断し矢印方向から見た部分拡大断面図、図8は、磁気抵抗効果素子(素子部)を構成する固定磁性層の固定磁化方向及びフリー磁性層の磁化方向と、電気抵抗値との関係を説明するための図、図9は、磁気抵抗効果素子(素子部)を構成する素子部を膜厚方向から切断した際の切断面を示す部分断面図、図10は本実施形態の磁気センサの回路構成図、図11は図7と同じ位置での断面を示し、図7と異なる形状の部分拡大断面図、図12は、好ましい磁気抵抗効果素子の形態の特に素子部の部分を示す部分拡大平面図、図13は本実施形態における地磁気センサ(磁気センサモジュール)の斜視図、である。   1A and 1B are diagrams showing a part of a magnetoresistive element, in particular, a magnetoresistive effect element according to this embodiment (FIG. 1A is a partial plan view, and FIG. 1B is a height direction along the line A-A in FIG. FIG. 2 is an enlarged plan view of a part of the magnetic sensor in the present embodiment, particularly the magnetoresistive effect element part, and is drawn into the soft magnetic body of the present embodiment. FIG. 3 is a partial enlarged plan view of the magnetoresistive effect element portion of the magnetic sensor in the comparative example, and FIG. 3 shows the disturbance magnetic field from the orthogonal direction drawn into the soft magnetic body of the comparative example. FIG. 4 is a partially enlarged plan view showing the shape of the side end portion of the preferred soft magnetic body of the present embodiment, and FIG. 5 is a partially enlarged plan view showing the shape of the side end portion of the soft magnetic body in another embodiment. FIG. 6 and FIG. 6 show magnetic sensors in other embodiments. In particular, FIG. 7 is a plan view showing a portion of the magnetoresistive effect element, FIG. 7 is a partially enlarged cross-sectional view taken along the line BB shown in FIG. FIG. 9 is a diagram for explaining the relationship between the fixed magnetization direction of the fixed magnetic layer and the magnetization direction of the free magnetic layer that constitute the magnetoresistive effect element (element part), and the electric resistance value, and FIG. 9 shows the magnetoresistive effect element. FIG. 10 is a circuit configuration diagram of the magnetic sensor according to the present embodiment, and FIG. 11 is the same position as FIG. 7. FIG. 12 is a partial enlarged cross-sectional view showing a cross-section and a shape different from that in FIG. 7, FIG. 12 is a partial enlarged plan view showing a part of a preferred magnetoresistive effect element, particularly an element part, and FIG. It is a perspective view of a sensor module.

以下、Y方向を感度軸方向、Y方向に直交するX方向を直交方向という。
本実施形態における磁気抵抗効果素子を備えた磁気センサ1を用いた磁気センサモジュールは例えば携帯電話等の携帯機器に搭載される地磁気センサとして使用される。
Hereinafter, the Y direction is referred to as a sensitivity axis direction, and the X direction orthogonal to the Y direction is referred to as an orthogonal direction.
The magnetic sensor module using the magnetic sensor 1 provided with the magnetoresistive effect element in the present embodiment is used as a geomagnetic sensor mounted on a portable device such as a cellular phone.

地磁気センサ1は、図10に示すように、磁気抵抗効果素子2,3と固定抵抗素子4,5とがブリッジ接続されてなるセンサ部6と、センサ部6と電気接続された入力端子7、グランド端子8、差動増幅器9及び外部出力端子10等を備えた集積回路(IC)11とで構成される。   As shown in FIG. 10, the geomagnetic sensor 1 includes a sensor unit 6 in which magnetoresistive effect elements 2 and 3 and fixed resistance elements 4 and 5 are bridge-connected, an input terminal 7 electrically connected to the sensor unit 6, The integrated circuit (IC) 11 includes a ground terminal 8, a differential amplifier 9, an external output terminal 10, and the like.

磁気抵抗効果素子2,3は、図1(a)(b)に示すように、素子幅W1に比べて素子長さL1が長く形成された直交方向(X方向)に細長い形状の複数の素子部12が感度軸方向(Y方向)に所定の間隔を空けて並設され、各素子部12の端部間が接続電極部13により電気的に接続されてミアンダ形状となっている。ミアンダ形状に形成された両端にある素子部12の一方には入力端子7、グランド端子8、出力取出し部14(図10参照)に接続される電極部15が接続されている。接続電極部13及び電極部15は、Al、Ta、Au等の非磁性導電材料である。接続電極部13及び電極部15はスパッタやメッキで形成される。   As shown in FIGS. 1A and 1B, the magnetoresistive effect elements 2 and 3 are a plurality of elements that are elongated in the orthogonal direction (X direction) in which the element length L1 is formed longer than the element width W1. The parts 12 are arranged in parallel in the sensitivity axis direction (Y direction) at a predetermined interval, and the end parts of the element parts 12 are electrically connected by the connection electrode part 13 to form a meander shape. An electrode portion 15 connected to the input terminal 7, the ground terminal 8, and the output extraction portion 14 (see FIG. 10) is connected to one of the element portions 12 at both ends formed in a meander shape. The connection electrode part 13 and the electrode part 15 are nonmagnetic conductive materials, such as Al, Ta, Au. The connection electrode portion 13 and the electrode portion 15 are formed by sputtering or plating.

磁気抵抗効果素子2,3を構成する各素子部12は、全て図9に示す同じ積層構造で構成される。なお図9は、素子幅W1と平行な方向から膜厚方向に切断した切断面を示している。   Each element part 12 which comprises the magnetoresistive effect elements 2 and 3 is comprised by the same laminated structure shown in FIG. FIG. 9 shows a cut surface cut in the film thickness direction from the direction parallel to the element width W1.

素子部12は、例えば下から反強磁性層33、固定磁性層34、非磁性層35、およびフリー磁性層36の順に積層されて成膜され、フリー磁性層36の表面が保護層37で覆われている。素子部12は例えばスパッタにて形成される。   The element unit 12 is formed by stacking, for example, an antiferromagnetic layer 33, a pinned magnetic layer 34, a nonmagnetic layer 35, and a free magnetic layer 36 in this order from below, and the surface of the free magnetic layer 36 is covered with a protective layer 37. It has been broken. The element part 12 is formed by sputtering, for example.

反強磁性層33は、Ir−Mn合金(イリジウム−マンガン合金)などの反強磁性材料で形成されている。固定磁性層34はCo−Fe合金(コバルト−鉄合金)などの軟磁性材料で形成されている。非磁性層35はCu(銅)などである。フリー磁性層36は、Ni−Fe合金(ニッケル−鉄合金)などの軟磁性材料で形成されている。保護層37はTa(タンタル)などである。上記構成では非磁性層35がCu等の非磁性導電材料で形成された巨大磁気抵抗効果素子(GMR素子)であるが、Al23等の絶縁材料で形成されたトンネル型磁気抵抗効果素子(TMR素子)であってもよい。また図9に示す素子部12の積層構成は一例であって他の積層構成であってもよい。例えば、下からフリー磁性層36、非磁性層35、固定磁性層34、反強磁性層33及び保護層37の順に積層されてもよい。 The antiferromagnetic layer 33 is made of an antiferromagnetic material such as an Ir—Mn alloy (iridium-manganese alloy). The pinned magnetic layer 34 is formed of a soft magnetic material such as a Co—Fe alloy (cobalt-iron alloy). The nonmagnetic layer 35 is made of Cu (copper) or the like. The free magnetic layer 36 is made of a soft magnetic material such as a Ni—Fe alloy (nickel-iron alloy). The protective layer 37 is made of Ta (tantalum) or the like. In the above configuration, the nonmagnetic layer 35 is a giant magnetoresistive effect element (GMR element) formed of a nonmagnetic conductive material such as Cu, but a tunnel type magnetoresistive effect element formed of an insulating material such as Al 2 O 3. (TMR element) may be used. Further, the stacked configuration of the element unit 12 illustrated in FIG. 9 is an example, and another stacked configuration may be used. For example, the free magnetic layer 36, the nonmagnetic layer 35, the pinned magnetic layer 34, the antiferromagnetic layer 33, and the protective layer 37 may be stacked in this order from the bottom.

素子部12では、反強磁性層33と固定磁性層34との反強磁性結合により、固定磁性層34の磁化方向が固定されている。図1及び図9に示すように、固定磁性層34の固定磁化方向(P方向)は、感度軸方向(Y方向)に向いている。   In the element unit 12, the magnetization direction of the pinned magnetic layer 34 is fixed by antiferromagnetic coupling between the antiferromagnetic layer 33 and the pinned magnetic layer 34. As shown in FIGS. 1 and 9, the pinned magnetization direction (P direction) of the pinned magnetic layer 34 faces the sensitivity axis direction (Y direction).

一方、フリー磁性層36の磁化方向(F方向)は、外部磁場により変動する。
図8に示すように、固定磁性層34の固定磁化方向(P方向)と同一方向から外部磁場Y1が作用してフリー磁性層36の磁化方向(F方向)が外部磁場Y1方向に向くと、固定磁性層34の固定磁化方向(P方向)とフリー磁性層36の磁化方向(F方向)とが平行に近づき電気抵抗値が低下する。
On the other hand, the magnetization direction (F direction) of the free magnetic layer 36 varies depending on the external magnetic field.
As shown in FIG. 8, when the external magnetic field Y1 acts from the same direction as the fixed magnetization direction (P direction) of the fixed magnetic layer 34 and the magnetization direction (F direction) of the free magnetic layer 36 faces the external magnetic field Y1 direction, The fixed magnetization direction (P direction) of the fixed magnetic layer 34 and the magnetization direction (F direction) of the free magnetic layer 36 approach parallel to each other, and the electric resistance value decreases.

一方、図8に示すように、固定磁性層34の固定磁化方向(P方向)と反対方向から外部磁場Y2が作用してフリー磁性層36の磁化方向(F方向)が外部磁場Y2方向に向くと、固定磁性層34の固定磁化方向(P方向)とフリー磁性層36の磁化方向(F方向)とが反平行に近づき電気抵抗値が増大する。   On the other hand, as shown in FIG. 8, the external magnetic field Y2 acts from the direction opposite to the fixed magnetization direction (P direction) of the fixed magnetic layer 34, and the magnetization direction (F direction) of the free magnetic layer 36 faces the external magnetic field Y2. Then, the fixed magnetization direction (P direction) of the fixed magnetic layer 34 and the magnetization direction (F direction) of the free magnetic layer 36 approach antiparallel, and the electrical resistance value increases.

なお磁気抵抗効果素子2,3を構成する素子部12は異方性磁気抵抗効果素子(AMR素子)であってもよい。ただし磁気抵抗効果素子2,3を構成する素子部12をGMRやTMRとしたほうが、外部磁場に対する抵抗変化率(MR比)を大きくでき、また抵抗変化率(MR比)の直線性を得ることができ、高精度な外部磁場検知を行うことが可能である。   In addition, the element part 12 which comprises the magnetoresistive effect elements 2 and 3 may be an anisotropic magnetoresistive effect element (AMR element). However, the resistance change rate (MR ratio) with respect to the external magnetic field can be increased and the linearity of the resistance change rate (MR ratio) can be obtained when the element portion 12 constituting the magnetoresistive effect elements 2 and 3 is GMR or TMR. It is possible to detect the external magnetic field with high accuracy.

図1(b)に示すように素子部12は基板16上に形成される。素子部12上はAl23やSiO2等の絶縁層17に覆われる。また素子部12間も絶縁層17で埋められる。絶縁層17は例えばスパッタにて形成される。 As shown in FIG. 1B, the element unit 12 is formed on the substrate 16. The element portion 12 is covered with an insulating layer 17 such as Al 2 O 3 or SiO 2 . The space between the element portions 12 is also filled with the insulating layer 17. The insulating layer 17 is formed by sputtering, for example.

図1(b)のように絶縁層17の上面は、例えばCMP技術を用いて平坦面に形成されている。ただし、絶縁層17の上面は、素子部12と基板16間の段差に倣って、凹凸面で形成されていてもよい。   As shown in FIG. 1B, the upper surface of the insulating layer 17 is formed on a flat surface by using, for example, a CMP technique. However, the upper surface of the insulating layer 17 may be formed as an uneven surface following the step between the element portion 12 and the substrate 16.

図1(a)(b)に示すように、磁気抵抗効果素子2,3を構成する各素子部12の間、及び最も外側に位置する素子部12の外側に軟磁性体18が設けられている。軟磁性体18は例えばスパッタやメッキにて薄膜形成される。軟磁性体18は、NiFe、CoFe、CoFeSiBやCoZrNb等で形成される。図1(a)(b)では軟磁性体18の幅寸法W2は素子部12の素子幅W1より大きくなっているが特に限定されるものではない。   As shown in FIGS. 1 (a) and 1 (b), a soft magnetic body 18 is provided between the element portions 12 constituting the magnetoresistive effect elements 2 and 3 and outside the element portion 12 located on the outermost side. Yes. The soft magnetic body 18 is formed into a thin film by, for example, sputtering or plating. The soft magnetic body 18 is made of NiFe, CoFe, CoFeSiB, CoZrNb, or the like. In FIGS. 1A and 1B, the width dimension W2 of the soft magnetic body 18 is larger than the element width W1 of the element portion 12, but it is not particularly limited.

また、軟磁性体18の長さ寸法L2は素子部12の素子長さL1よりも長く、図1(a)に示すように、軟磁性体18は、素子部12の直交方向(X方向)の両側から直交方向(X方向)に延出する延出部18aを備える。   Further, the length L2 of the soft magnetic body 18 is longer than the element length L1 of the element portion 12, and as shown in FIG. 1A, the soft magnetic body 18 is in the orthogonal direction (X direction) of the element portion 12. An extending portion 18a extending in the orthogonal direction (X direction) is provided from both sides.

図1(b)に示すように、軟磁性体18は、素子部12間にある絶縁層17上に形成される。また図示しないが軟磁性体18上及び軟磁性体18間は絶縁性の保護層にて覆われている。   As shown in FIG. 1B, the soft magnetic body 18 is formed on the insulating layer 17 between the element portions 12. Although not shown, the soft magnetic bodies 18 and between the soft magnetic bodies 18 are covered with an insulating protective layer.

図1に示す磁気センサ1は、感度軸方向(Y方向)と平行な方向からの地磁気を検知するためのものである。素子部12と軟磁性体18は、感度軸方向に軟磁性体18、素子部12、軟磁性体18の順で並ぶように非接触で配置されている。   The magnetic sensor 1 shown in FIG. 1 is for detecting geomagnetism from a direction parallel to the sensitivity axis direction (Y direction). The element section 12 and the soft magnetic body 18 are arranged in a non-contact manner so that the soft magnetic body 18, the element section 12, and the soft magnetic body 18 are arranged in this order in the sensitivity axis direction.

固定磁性層34の固定磁化方向(P方向)は感度軸方向である図示Y方向に向けられている。   The fixed magnetization direction (P direction) of the fixed magnetic layer 34 is directed to the Y direction in the figure, which is the sensitivity axis direction.

磁気抵抗効果素子2,3を構成する素子部12の素子幅W1は、地磁気センサとして使用する場合は形状異方性を利用するため、2〜6μmの範囲内であることが好適である(図1(b)参照)。また素子部12の素子長さL1は、60〜100μmの範囲内であることが好適であることが好適である(図1(a)参照)。また、素子部12の膜厚T1は、200〜300Åの範囲内であることが好適である(図1(b)参照)。また軟磁性体18の幅寸法W2は、この実施形態では、地磁気センサとして使用する場合、1〜6μmの範囲内であることが好適である(図1(b)参照)。また軟磁性体18の長さ寸法L2は、80〜200μmの範囲内であることが好適である(図1(a)参照)。また、軟磁性体18の膜厚T2は、0.2〜1μmの範囲内であることが好適である(図1(b)参照)。素子部12のアスペクト比(素子長さL1/素子幅W1)は、地磁気センサとして使用する場合は10以上であることが好適である。また軟磁性体18のアスペクト比(長さ寸法L2/幅寸法W2)は、素子部12のアスペクト比以上であると好適である。また軟磁性体18の延出部18aの長さ寸法T8は、20μm以上であることが好適である(図1(a)参照)。   The element width W1 of the element portion 12 constituting the magnetoresistive effect elements 2 and 3 is preferably in the range of 2 to 6 μm in order to use shape anisotropy when used as a geomagnetic sensor (see FIG. 1 (b)). Moreover, it is suitable for the element length L1 of the element part 12 to be in the range of 60-100 micrometers (refer Fig.1 (a)). The film thickness T1 of the element portion 12 is preferably in the range of 200 to 300 mm (see FIG. 1B). In this embodiment, the width W2 of the soft magnetic body 18 is preferably in the range of 1 to 6 μm when used as a geomagnetic sensor (see FIG. 1B). The length L2 of the soft magnetic body 18 is preferably in the range of 80 to 200 μm (see FIG. 1A). The film thickness T2 of the soft magnetic body 18 is preferably in the range of 0.2 to 1 μm (see FIG. 1B). The aspect ratio (element length L1 / element width W1) of the element portion 12 is preferably 10 or more when used as a geomagnetic sensor. The aspect ratio (length dimension L2 / width dimension W2) of the soft magnetic material 18 is preferably equal to or greater than the aspect ratio of the element portion 12. Further, the length T8 of the extending portion 18a of the soft magnetic body 18 is preferably 20 μm or more (see FIG. 1A).

また各軟磁性体18間の間隔(Y方向への距離)T3は、軟磁性体の幅寸法W2以上で2〜8μmであることが好適である(図1(b)参照)。また、素子部12と隣接した位置にある軟磁性体18とのY方向への間隔T4は、0〜3μmであることが好適である(図1(b)参照)。また、軟磁性体18と素子部12間の高さ方向(Z方向)への間隔T5は、0.1〜1μmであることが好適である(図1(b)参照)。   Further, the interval (distance in the Y direction) T3 between the soft magnetic bodies 18 is preferably 2 to 8 μm in the width dimension W2 or more of the soft magnetic bodies (see FIG. 1B). The distance T4 in the Y direction between the element portion 12 and the soft magnetic body 18 located adjacent to the element portion 12 is preferably 0 to 3 μm (see FIG. 1B). The distance T5 in the height direction (Z direction) between the soft magnetic body 18 and the element portion 12 is preferably 0.1 to 1 μm (see FIG. 1B).

本実施形態では、感度軸方向(Y方向)の素子部12の両側方には、素子部12と非接触の軟磁性体18が設けられている。軟磁性体18は、素子部12と同様に、直交方向(X方向)に細長い形状である。   In the present embodiment, soft magnetic bodies 18 that are not in contact with the element portion 12 are provided on both sides of the element portion 12 in the sensitivity axis direction (Y direction). The soft magnetic body 18 has an elongated shape in the orthogonal direction (X direction), like the element portion 12.

図1の実施形態では、軟磁性体18が素子部12の上方に設けられている。
上記したように軟磁性体18には、素子部12よりも直交方向(X方向)の両側に延出する延出部18aが形成され、図1(a)、図2及び図4に示すように、各延出部18aの各側端部18bの(最大)幅寸法W3は、側端部18bを除く軟磁性体18の幅寸法W2よりも大きく形成されている。
In the embodiment of FIG. 1, the soft magnetic body 18 is provided above the element portion 12.
As described above, the soft magnetic body 18 is formed with the extending portions 18a extending on both sides in the orthogonal direction (X direction) with respect to the element portion 12, as shown in FIGS. 1 (a), 2 and 4. Furthermore, the (maximum) width dimension W3 of each side end 18b of each extension 18a is formed larger than the width dimension W2 of the soft magnetic body 18 excluding the side end 18b.

図1(a)、図2、図4に示すように、側端部18bは素子部12から離れる方向に向けて、側端部18bの幅寸法が徐々に大きくなるテーパ面18c,18cで形成された幅遷移領域18dと、幅遷移領域18dの直交方向(X方向)の外側に幅遷移領域の最大幅(=W3)を保って形成された幅一定領域18eとで構成される。   As shown in FIG. 1A, FIG. 2, and FIG. 4, the side end 18b is formed with tapered surfaces 18c and 18c in which the width of the side end 18b gradually increases in the direction away from the element portion 12. The width transition region 18d thus formed and the constant width region 18e formed by maintaining the maximum width (= W3) of the width transition region outside the orthogonal direction (X direction) of the width transition region 18d.

図2に示すように、直交方向(X方向)から外乱磁場が作用したとき、外乱磁場を幅広で形成された側端部18bから軟磁性体18の内部へ引き込みやすくなり(軟磁性体18へ吸収される外乱磁場の磁束量を多くでき)、よって素子部12に作用する直交方向(X方向)からの外乱磁場を効果的に減少させることができるので、磁気シールド効果を効果的に向上させることができる。   As shown in FIG. 2, when a disturbance magnetic field is applied from the orthogonal direction (X direction), the disturbance magnetic field is easily drawn into the soft magnetic body 18 from the side end portion 18 b formed wide (to the soft magnetic body 18). The amount of magnetic flux of the disturbance magnetic field absorbed can be increased), and therefore the disturbance magnetic field from the orthogonal direction (X direction) acting on the element unit 12 can be effectively reduced, so that the magnetic shield effect is effectively improved. be able to.

図3は比較例である。比較例の軟磁性体18には、本実施形態のように幅広の側端部18bが形成されておらず、軟磁性体18は一定の幅寸法W2で形成される。図3に示す比較例では、本実施形態に比べて、軟磁性体18に吸収される外乱磁場の磁束量が少なく、素子部12に作用する直交方向(X方向)からの外乱磁場を、実施形態ほど効果的に減少させることができない。よって、本実施形態に比べて比較例の軟磁性体18の構成では、磁気シールド効果に劣る。   FIG. 3 is a comparative example. The soft magnetic body 18 of the comparative example is not formed with the wide side end portion 18b as in this embodiment, and the soft magnetic body 18 is formed with a constant width dimension W2. In the comparative example shown in FIG. 3, the amount of magnetic flux of the disturbance magnetic field absorbed by the soft magnetic body 18 is smaller than that of the present embodiment, and the disturbance magnetic field from the orthogonal direction (X direction) acting on the element unit 12 is implemented. It cannot be reduced as effectively as the form. Therefore, the configuration of the soft magnetic body 18 of the comparative example is inferior to the magnetic shield effect as compared with the present embodiment.

図2に示すように、側端部18bの幅一定領域18eの感度軸方向(Y方向)における外面18fが素子部12と直交方向(X方向)にて対向するように側端部18bが感度軸方向(Y方向)に張り出して形成されていることが好ましい。素子部12間の感度軸方向(Y方向)における間隔T9(図1(b)、図2参照)を狭く形成し、且つ軟磁性体18と素子部12間の感度軸方向(Y方向)における間隔T4を保って形成することで、素子部12の側方に形成される軟磁性体18の幅寸法W2も小さくなるが、上記した構成とすることで、側端部18bをできる限り幅広の形態で形成でき、磁気シールド効果を向上させることが可能になる。   As shown in FIG. 2, the side end 18b has a sensitivity such that the outer surface 18f in the sensitivity axis direction (Y direction) of the constant width region 18e of the side end 18b faces the element unit 12 in the orthogonal direction (X direction). It is preferable that it is formed so as to protrude in the axial direction (Y direction). An interval T9 (see FIG. 1B and FIG. 2) in the sensitivity axis direction (Y direction) between the element parts 12 is formed to be narrow, and the sensitivity axis direction (Y direction) between the soft magnetic body 18 and the element part 12 is formed. Although the width W2 of the soft magnetic body 18 formed on the side of the element portion 12 is reduced by forming the gap T4, the side end portion 18b is made as wide as possible. The magnetic shield effect can be improved.

また本実施形態では、図4に示すように側端部18bにはテーパ面18cで形成された幅遷移領域18dが設けられているが、これにより、例えばテーパ面18cでなく感度軸方向(Y方向)に向く垂直面で形成した場合に比べて、磁気シールド効果をより効果的に向上させることが可能である。   In the present embodiment, as shown in FIG. 4, the side end portion 18b is provided with a width transition region 18d formed by a tapered surface 18c. Thus, for example, not the tapered surface 18c but the sensitivity axis direction (Y The magnetic shield effect can be improved more effectively than in the case where the magnetic shield effect is formed with a vertical surface facing (direction).

すなわち垂直面で形成すると、側端部18bから吸収した直交方向(X方向)からの外乱磁場が垂直面の部分から外部へ漏れ出しやすくなる。一方、本実施形態のようにテーパ面18cで形成すると、側端部18bから吸収した直交方向(X方向)からの外乱磁場がテーパ面18cの傾斜に倣って幅寸法がW2で形成された幅細の軟磁性体18の内部へ向けて集束しやすく、外乱磁場が外部へ漏れにくくなる。よって、本実施形態のように、幅遷移領域18dを設けることで、磁気シールド効果をより効果的に向上させることが可能である。幅遷移領域18dの形状は、延出部18aの延長線とテーパ面18cとのなす角θが、20〜70度の範囲内であり(図4参照)、素子部12の端部から、延出部18aとテーパ面18cとの接続点までの距離L5が素子幅W1の3倍以上、素子部12の端部から、テーパ面18cと外面18fとの接続点までの距離L6までの距離が素子幅W1の5倍以上あることが好ましい(図2参照)。   That is, when formed on the vertical plane, the disturbance magnetic field from the orthogonal direction (X direction) absorbed from the side end 18b is likely to leak out from the vertical plane portion. On the other hand, when formed with the tapered surface 18c as in the present embodiment, the disturbance magnetic field from the orthogonal direction (X direction) absorbed from the side end portion 18b follows the inclination of the tapered surface 18c and the width dimension is formed with W2. It is easy to focus toward the inside of the thin soft magnetic body 18, and the disturbance magnetic field is difficult to leak to the outside. Therefore, the magnetic shield effect can be more effectively improved by providing the width transition region 18d as in the present embodiment. The shape of the width transition region 18d is such that the angle θ formed by the extension line of the extending portion 18a and the tapered surface 18c is within a range of 20 to 70 degrees (see FIG. 4), and extends from the end portion of the element portion 12. The distance L5 to the connection point between the protruding portion 18a and the tapered surface 18c is three times or more of the element width W1, and the distance from the end of the element portion 12 to the distance L6 from the connection point between the tapered surface 18c and the outer surface 18f is It is preferably 5 times or more the element width W1 (see FIG. 2).

また本実施形態では、図4に示すように、軟磁性体18の側端部18bには幅遷移領域18dの直交方向(X方向)の外側に幅遷移領域18dの最大幅(=W3)を保って形成された幅一定領域18eが設けられているが、これにより、一方の側端部18bから吸収した直交方向(X方向)からの外乱磁場が他方の側端部18bから外部へ放出されるときに、外乱磁場が拡散して外部へ放出されるのを抑制できる。   In the present embodiment, as shown in FIG. 4, the maximum width (= W3) of the width transition region 18d is set outside the width transition region 18d in the orthogonal direction (X direction) at the side end portion 18b of the soft magnetic body 18. A constant-width region 18e formed to be maintained is provided, whereby a disturbance magnetic field from the orthogonal direction (X direction) absorbed from one side end portion 18b is released to the outside from the other side end portion 18b. The disturbance magnetic field can be prevented from being diffused and released to the outside.

また、延出部18aとテーパ面18cとの接続点、テーパ面18cと外面18fとの接続点は角形状ではなく、R形状で形成されることが望ましい。これにより、輪郭部のパターン角度が急激に変化することによる磁束の漏れを抑制することが出来る。   In addition, it is preferable that the connection point between the extending portion 18a and the tapered surface 18c and the connection point between the tapered surface 18c and the outer surface 18f are formed in an R shape instead of a square shape. Thereby, the leakage of the magnetic flux by the pattern angle of an outline part changing rapidly can be suppressed.

図5の側端部18bは本実施形態の一形態であるが図5の側端部18bは幅遷移領域18dでのみ形成され図4に示す幅一定領域18eが形成されていない。このような形態の場合、軟磁性体18の内部を通って側端部18bから外部へ放出される直交方向(X方向)からの外乱磁場が図5のように拡散されやすい。   The side end portion 18b in FIG. 5 is an embodiment of the present embodiment, but the side end portion 18b in FIG. 5 is formed only in the width transition region 18d, and the constant width region 18e shown in FIG. 4 is not formed. In the case of such a configuration, the disturbance magnetic field from the orthogonal direction (X direction) emitted from the side end 18b to the outside through the inside of the soft magnetic body 18 is easily diffused as shown in FIG.

このとき、特に図1(a)に示すように各磁気抵抗効果素子2,3が、直交方向(X方向)に並設されていると、一方の磁気抵抗効果素子2側から他方の磁気抵抗効果素子3側に向けて拡散した外乱磁場がベクトルとしては直交成分+感度軸成分の形で作用するため、図4の実施形態の軟磁性体18を使用する場合に比べて、磁気シールド効果が低下しノイズが乗りやすくなる。よって磁場の拡散を抑制するために、図4に示すように、一定幅で形成された幅一定領域18eを設けることが、磁気シールド効果をより効果的に向上させることができ好適である。   At this time, in particular, as shown in FIG. 1A, when the magnetoresistive effect elements 2 and 3 are arranged in parallel in the orthogonal direction (X direction), the magnetoresistive effect element 2 side is connected to the other magnetoresistive effect side. Since the disturbance magnetic field diffused toward the effect element 3 acts as a vector in the form of a quadrature component + sensitivity axis component, the magnetic shield effect is improved as compared with the case where the soft magnetic body 18 of the embodiment of FIG. 4 is used. Decreases and makes noise easier to ride. Therefore, in order to suppress the diffusion of the magnetic field, as shown in FIG. 4, it is preferable to provide the constant width region 18e formed with a constant width because the magnetic shield effect can be improved more effectively.

図4のような軟磁性体18の側端部18bの形状とすることで、図10に示す磁気センサを形成する際、同センサ内にすくなくとも磁気抵抗効果素子2,3が必要だが、図1のように感度軸直交方向に複数個磁気抵抗効果素子2,3を配置してもそれぞれの磁気抵抗効果素子の軟磁性体による他磁気抵抗効果素子への影響を小さく出来、磁気抵抗効果素子の配置の自由度を向上させることができ好ましい。   By forming the side end portion 18b of the soft magnetic body 18 as shown in FIG. 4, when forming the magnetic sensor shown in FIG. 10, at least the magnetoresistive elements 2 and 3 are required in the sensor. Thus, even if a plurality of magnetoresistive elements 2 and 3 are arranged in the direction perpendicular to the sensitivity axis, the influence of the soft magnetic material of each magnetoresistive element on other magnetoresistive elements can be reduced. The degree of freedom of arrangement can be improved, which is preferable.

また、図1のような磁気抵抗効果素子2,3が直近に配置される場合だけではなく固定抵抗素子4,5を含む場合でも、同様の効果を得ることが出来る。   Further, the same effect can be obtained not only when the magnetoresistive effect elements 2 and 3 as shown in FIG.

幅一定領域18eの直交方向(X方向)の長さ寸法T11は、T11/(T10+T11)×100(%)としたとき、20〜80%の範囲内であることが好ましい(図2参照)。また幅一定領域18e,18e間の感度軸方向(Y方向)における間隔T12は、1〜素子幅W1までの範囲内であることが好ましい(図2参照)。   The length dimension T11 in the orthogonal direction (X direction) of the constant width region 18e is preferably in the range of 20 to 80% when T11 / (T10 + T11) × 100 (%) (see FIG. 2). Further, the interval T12 in the sensitivity axis direction (Y direction) between the constant width regions 18e and 18e is preferably in the range of 1 to the element width W1 (see FIG. 2).

図1に示す実施形態では、軟磁性体18が素子部12の上方に形成されているが、限定されない。すなわち軟磁性体18が素子部12の下方に形成されても真横に形成されてもよい。   In the embodiment shown in FIG. 1, the soft magnetic body 18 is formed above the element portion 12, but is not limited thereto. That is, the soft magnetic body 18 may be formed below the element portion 12 or may be formed beside it.

図1(a)に示すように、感度軸方向の両側に設けられた軟磁性体18の両側には、さらに点線で示された軟磁性体25が設けられていてもよい。これにより、より磁気シールド効果を高めることができる。なお軟磁性体25に対しても本実施形態の適用が可能である。すなわち軟磁性体25の直交方向(X方向)の両側端部25b,25bを、軟磁性体18の両側端部18b,18bと同様に幅広で形成する。なお図1(a)では、磁気抵抗効果素子3側にのみ軟磁性体25が図示されているが、軟磁性体25は、磁気抵抗効果素子2,3の双方に設けられることが好適である。   As shown in FIG. 1A, soft magnetic bodies 25 indicated by dotted lines may be further provided on both sides of the soft magnetic body 18 provided on both sides in the sensitivity axis direction. Thereby, the magnetic shielding effect can be further enhanced. Note that this embodiment can also be applied to the soft magnetic body 25. That is, both the side end portions 25 b and 25 b in the orthogonal direction (X direction) of the soft magnetic body 25 are formed wide like the side end portions 18 b and 18 b of the soft magnetic body 18. In FIG. 1A, the soft magnetic body 25 is shown only on the magnetoresistive effect element 3 side, but the soft magnetic body 25 is preferably provided on both the magnetoresistive effect elements 2 and 3. .

図6に示す他の実施形態では、磁気抵抗効果素子2,3は、素子部12と、中間永久磁石層21と、外側永久磁石層23とを備えて構成される。中間永久磁石層21及び外側永久磁石層23はCoPtやCoPtCr等であり例えばスパッタ成膜されたものである。   In another embodiment shown in FIG. 6, the magnetoresistive effect elements 2 and 3 are configured to include an element portion 12, an intermediate permanent magnet layer 21, and an outer permanent magnet layer 23. The intermediate permanent magnet layer 21 and the outer permanent magnet layer 23 are made of CoPt, CoPtCr, or the like, for example, formed by sputtering.

図6に示すように、直交方向(X方向)に複数の素子部12が直交方向(X方向)に間隔を空けて並設され、各素子部12の間に空けられた間隔内に中間永久磁石層21が介在している。これにより各素子部12が中間永久磁石層21を介して連結された直交方向(X方向)に帯状に延びる素子連結体22が構成される。素子連結体22は、感度軸方向(Y方向)に間隔を空けて複数本並設され、各素子連結体22の端部に外側永久磁石層23が形成されている。   As shown in FIG. 6, a plurality of element parts 12 are arranged side by side in the orthogonal direction (X direction) with an interval in the orthogonal direction (X direction), and the intermediate permanent part is within the interval between the element parts 12. A magnet layer 21 is interposed. Thereby, the element coupling body 22 extending in a band shape in the orthogonal direction (X direction) in which the element portions 12 are coupled via the intermediate permanent magnet layer 21 is configured. A plurality of element coupling bodies 22 are arranged in parallel at intervals in the sensitivity axis direction (Y direction), and an outer permanent magnet layer 23 is formed at the end of each element coupling body 22.

図6に示すように、素子連結体22の直交方向(X方向)の両側に設けられた外側永久磁石層23間が、Al、Au、あるいはCu等の良導体で形成された電極層19により接続されている。電極層19は、感度軸方向(Y方向)に直線状(帯状)で形成される。   As shown in FIG. 6, the outer permanent magnet layers 23 provided on both sides in the orthogonal direction (X direction) of the element coupling body 22 are connected by an electrode layer 19 formed of a good conductor such as Al, Au, or Cu. Has been. The electrode layer 19 is formed in a straight line shape (band shape) in the sensitivity axis direction (Y direction).

図6に示す構成にて磁気抵抗効果素子2,3をミアンダ形状にすることが可能である。
図6に示すように、素子連結体22の間の領域、及び素子連結体22の感度軸方向(Y方向)の両側に位置する素子連結体22の外側に、夫々、素子連結体22の直交方向(X方向)に延びる軟磁性体18が配置されている。そして、図6に示すように、軟磁性体18の下側に電極層19が位置している。
The magnetoresistive effect elements 2 and 3 can be formed in a meander shape with the configuration shown in FIG.
As shown in FIG. 6, the region between the element coupling bodies 22 and the outside of the element coupling bodies 22 located on both sides of the sensitivity axis direction (Y direction) of the element coupling bodies 22 are orthogonal to the element coupling bodies 22, respectively. A soft magnetic body 18 extending in the direction (X direction) is disposed. As shown in FIG. 6, the electrode layer 19 is located below the soft magnetic body 18.

また図7に示すように、中間永久磁石層21上には中間永久磁石層21よりも抵抗値が小さい低抵抗層20が重ねて形成されていることが好ましい。低抵抗層20はAu、Al、Cu等の非磁性導電材料で形成されることが好適である。低抵抗層20は、中間永久磁石層21上にスパッタやメッキ等で形成される。素子抵抗を大きくするために複数の素子部12を連結してミアンダ形状としているが、中間永久磁石層21の抵抗は磁気抵抗変化に寄与しない寄生抵抗であるため、本実施形態のように中間永久磁石層21上に低抵抗層20を重ねて形成することで、寄生抵抗を低減できる。外側永久磁石層23も寄生抵抗になるが、図6で示すように外側永久磁石層23上には電極層19が重ねられているので、寄生抵抗を効果的に低減できる。   Further, as shown in FIG. 7, it is preferable that a low resistance layer 20 having a resistance value smaller than that of the intermediate permanent magnet layer 21 is formed on the intermediate permanent magnet layer 21 in an overlapping manner. The low resistance layer 20 is preferably formed of a nonmagnetic conductive material such as Au, Al, or Cu. The low resistance layer 20 is formed on the intermediate permanent magnet layer 21 by sputtering or plating. In order to increase the element resistance, a plurality of element portions 12 are connected to form a meander shape. However, since the resistance of the intermediate permanent magnet layer 21 is a parasitic resistance that does not contribute to a change in magnetoresistance, the intermediate permanent magnet layer 21 has an intermediate permanent shape as in this embodiment. By forming the low resistance layer 20 so as to overlap the magnet layer 21, the parasitic resistance can be reduced. The outer permanent magnet layer 23 also has a parasitic resistance. However, since the electrode layer 19 is overlaid on the outer permanent magnet layer 23 as shown in FIG. 6, the parasitic resistance can be effectively reduced.

図6に示す実施形態でも図1(a)で示す実施形態と同様に軟磁性体18の両側端部18bを幅広で形成することで磁気シールド効果を効果的に向上させることができる。   In the embodiment shown in FIG. 6, similarly to the embodiment shown in FIG. 1A, the magnetic shield effect can be effectively improved by forming the both side end portions 18b of the soft magnetic body 18 wide.

図6では電極部19は軟磁性体18と交差しているが、電極部19と軟磁性体18間は絶縁層が形成されている。また、交差せず、電極部19が軟磁性体18の外側を迂回する形でもよい。電極層19は軟磁性体18と電気的に絶縁されていれば、軟磁性体18の下部、上部どちらに形成されてもよい。   In FIG. 6, the electrode portion 19 intersects the soft magnetic body 18, but an insulating layer is formed between the electrode portion 19 and the soft magnetic body 18. Alternatively, the electrode part 19 may bypass the outside of the soft magnetic body 18 without intersecting. The electrode layer 19 may be formed on either the lower part or the upper part of the soft magnetic body 18 as long as it is electrically insulated from the soft magnetic body 18.

また、図7では素子部12を完全に除去し、中間永久磁石層21、低抵抗層20を形成しているが、図11のように、保護層37及びフリー磁性層36を完全に除去し、非磁性層35を介して中間永久磁石層21とで接続することで、端面での接触から、面接触となることで寄生抵抗成分を減らし、固定磁性層34を切断することによる固定磁性層の磁区の乱れをなくなることにより、固定磁性層の磁化方向が一様となるため、フリー磁性層との磁化角度差による磁気抵抗変化を効果的に発生させることが出来る。また固定磁性層34及び反強磁性層33まで分断して各素子部12間に中間永久磁石層21を設けた構成では、中間永久磁石層21と素子部12との電気的コンタクトは各部の側面接触となるため寄生抵抗のひとつであるコンタクト抵抗が大きくなりやすいが、図11のように中間永久磁石層21と素子部12との電気的コンタクトが平面接触とすることで寄生抵抗を低減させることが出来、好ましい。   In FIG. 7, the element portion 12 is completely removed and the intermediate permanent magnet layer 21 and the low resistance layer 20 are formed. However, as shown in FIG. 11, the protective layer 37 and the free magnetic layer 36 are completely removed. By connecting with the intermediate permanent magnet layer 21 via the nonmagnetic layer 35, the parasitic resistance component is reduced by changing from the contact at the end face to the surface contact, and the fixed magnetic layer 34 is cut by cutting the fixed magnetic layer 34. By eliminating the magnetic domain disturbance, the magnetization direction of the pinned magnetic layer becomes uniform, so that a change in magnetoresistance due to a difference in magnetization angle with the free magnetic layer can be effectively generated. Further, in the configuration in which the intermediate permanent magnet layer 21 is provided between the element portions 12 by dividing the pinned magnetic layer 34 and the antiferromagnetic layer 33, the electrical contact between the intermediate permanent magnet layer 21 and the element portion 12 is on the side surface of each portion. The contact resistance, which is one of the parasitic resistances, is likely to increase because of contact, but the parasitic resistance can be reduced by making the electrical contact between the intermediate permanent magnet layer 21 and the element portion 12 planar as shown in FIG. Is preferable.

また図12に示すように、永久磁石層21間に挟まれた部分の素子部12のアスペクト比(素子長さL3/素子幅W1)が大きくなると、永久磁石層21からのバイアス磁界が素子部12の全体に適切に供給されなくなる。このため感度軸方向に対して直交方向(X方向)から磁界を作用させ、磁界強度を徐々に強くしていったときの抵抗変化領域にヒステリシスが生じやすくなる。よって直交方向からの磁界(外乱磁場)に対する抵抗変化領域が広がることで、外乱磁場耐性が低下しやすくなる。また感度磁場に対してもヒステリシスは生じやすくなり、感度磁場に対する磁場応答性が低下する。したがって、素子部12の全体に適切にバイアス磁界を供給するため素子部12のアスペクト比は小さいことが好ましい。具体的には素子部12のアスペクト比は3以下が好適であり、1より小さいことがより好ましい。これにより素子部12に適切にバイアス磁界を供給するための永久磁性層膜厚も薄くすることができる。   As shown in FIG. 12, when the aspect ratio (element length L3 / element width W1) of the element part 12 sandwiched between the permanent magnet layers 21 is increased, the bias magnetic field from the permanent magnet layer 21 is changed to the element part. 12 is not properly supplied. For this reason, hysteresis tends to occur in the resistance change region when the magnetic field is applied from the direction orthogonal to the sensitivity axis direction (X direction) and the magnetic field strength is gradually increased. Therefore, the resistance change area with respect to the magnetic field (disturbance magnetic field) from the orthogonal direction is widened, so that the disturbance magnetic field resistance is easily lowered. Also, hysteresis is likely to occur even with a sensitive magnetic field, and the magnetic field response to the sensitive magnetic field is reduced. Therefore, it is preferable that the aspect ratio of the element unit 12 is small in order to appropriately supply a bias magnetic field to the entire element unit 12. Specifically, the aspect ratio of the element portion 12 is preferably 3 or less, and more preferably less than 1. As a result, the thickness of the permanent magnetic layer for appropriately supplying a bias magnetic field to the element portion 12 can also be reduced.

本実施形態における磁気センサ1は例えば、図13に示す地磁気センサ(磁気センサモジュール)として使用される。X軸磁場検知部50、Y軸磁場検知部51、Z軸磁場検知部52では、いずれも図10に示すブリッジ回路のセンサ部が設けられている。X軸磁場検知部50では磁気抵抗効果素子2,3の素子部12の固定磁性層34の固定磁化方向(P方向)が感度軸であるX方向を向いており、また、Y軸磁場検知部51では磁気抵抗効果素子2,3の素子部12の固定磁性層34の固定磁化方向(P方向)が感度軸であるY方向を向いており、さらに、Z軸磁場検知部52では磁気抵抗効果素子2,3の素子部12の固定磁性層34の固定磁化方向(P方向)が感度軸であるZ方向を向いている。   The magnetic sensor 1 in this embodiment is used as a geomagnetic sensor (magnetic sensor module) shown in FIG. 13, for example. In each of the X-axis magnetic field detection unit 50, the Y-axis magnetic field detection unit 51, and the Z-axis magnetic field detection unit 52, a sensor unit of a bridge circuit shown in FIG. 10 is provided. In the X-axis magnetic field detection unit 50, the fixed magnetization direction (P direction) of the fixed magnetic layer 34 of the element unit 12 of the magnetoresistive effect elements 2 and 3 faces the X direction that is the sensitivity axis, and the Y-axis magnetic field detection unit In 51, the fixed magnetization direction (P direction) of the pinned magnetic layer 34 of the element portion 12 of the magnetoresistive effect elements 2 and 3 faces the Y direction which is the sensitivity axis, and in the Z-axis magnetic field detector 52, the magnetoresistive effect The pinned magnetization direction (P direction) of the pinned magnetic layer 34 of the element portion 12 of the elements 2 and 3 faces the Z direction that is the sensitivity axis.

X軸磁場検知部50、Y軸磁場検知部51、Z軸磁場検知部52、及び集積回路(ASIC)54はいずれも基台53上に設けられる。X軸磁場検知部50、及びY軸磁場検知部51の磁気抵抗効果素子2,3の形成面はいずれもX−Y平面であるが、Z軸磁場検知部52の磁気抵抗効果素子2,3の形成面はX−Z平面であり、Z軸磁場検知部52の磁気抵抗効果素子2,3の形成面は、X軸磁場検知部50、及びY軸磁場検知部51の磁気抵抗効果素子2,3の形成面に対して直交した関係にある。   The X-axis magnetic field detection unit 50, the Y-axis magnetic field detection unit 51, the Z-axis magnetic field detection unit 52, and the integrated circuit (ASIC) 54 are all provided on the base 53. The formation surfaces of the magnetoresistive elements 2 and 3 of the X-axis magnetic field detector 50 and the Y-axis magnetic field detector 51 are both XY planes. Is formed on the X-Z plane, and the formation surface of the magnetoresistive effect elements 2 and 3 of the Z-axis magnetic field detection unit 52 is the magnetoresistive effect element 2 of the X-axis magnetic field detection unit 50 and the Y-axis magnetic field detection unit 51. , 3 are orthogonal to the formation surface.

本実施形態では感度軸方向と直交する方向に対して磁気シールド効果があり、また感度軸方向に対しては適切な感度を備える。したがって、X軸磁場検知部50、Y軸磁場検知部51、及びZ軸磁場検知部52のうち2以上の検知部を基台53上に設けても、各検知部において、感度軸方向と直交方向からの磁場を適切に磁気シールドできるとともに、各検知部の感度軸方向からの地磁気を適切に検知できる。   In the present embodiment, there is a magnetic shielding effect with respect to a direction orthogonal to the sensitivity axis direction, and appropriate sensitivity is provided with respect to the sensitivity axis direction. Therefore, even if two or more detection units among the X-axis magnetic field detection unit 50, the Y-axis magnetic field detection unit 51, and the Z-axis magnetic field detection unit 52 are provided on the base 53, each detection unit is orthogonal to the sensitivity axis direction. The magnetic field from the direction can be properly magnetically shielded, and the geomagnetism from the direction of the sensitivity axis of each detector can be detected appropriately.

図13の構成以外に、図13に示す地磁気センサと加速度センサ等を組み合わせたモジュールとすることもできる。   In addition to the configuration of FIG. 13, a module in which the geomagnetic sensor and the acceleration sensor shown in FIG. 13 are combined may be used.

(実施例)
図1に示す磁気抵抗効果素子2を形成した。素子部12の素子幅W1を3μm(図1(b)参照)、軟磁性体18の幅寸法W2を4μm(図1(b)参照)、軟磁性体18の延出部18aの長さ寸法T8を30μm(図1(a)参照)、幅遷移領域18dの直交方向(X方向)の長さ寸法T10を5μm(図2参照)、幅一定領域18eの直交方向(X方向)の長さ寸法T11を5μm(図2参照)、幅一定領域18e,18e間の感度軸方向(Y方向)における間隔T12を3μm(図2参照)、軟磁性体18間の感度軸方向(Y方向)における間隔T3を7μmとした。
(Example)
The magnetoresistive effect element 2 shown in FIG. 1 was formed. The element width W1 of the element portion 12 is 3 μm (see FIG. 1B), the width dimension W2 of the soft magnetic body 18 is 4 μm (see FIG. 1B), and the length dimension of the extending portion 18a of the soft magnetic body 18 is. T8 is 30 μm (see FIG. 1A), the length dimension T10 in the orthogonal direction (X direction) of the width transition region 18d is 5 μm (see FIG. 2), and the length in the orthogonal direction (X direction) of the constant width region 18e. The dimension T11 is 5 μm (see FIG. 2), the distance T12 in the sensitivity axis direction (Y direction) between the constant width regions 18e and 18e is 3 μm (see FIG. 2), and the sensitivity axis direction between the soft magnetic bodies 18 (Y direction). The interval T3 was set to 7 μm.

実験では、感度軸方向に直交する方向(X方向)に±5Oeの範囲内の磁場をかけた状態で、磁気抵抗効果素子2,3の抵抗変化率(MR比)を調べた。その実験結果が図14に示されている。   In the experiment, the resistance change rate (MR ratio) of the magnetoresistive effect elements 2 and 3 was examined in a state where a magnetic field within a range of ± 5 Oe was applied in the direction orthogonal to the sensitivity axis direction (X direction). The experimental results are shown in FIG.

図14に示すように、直交方向の磁場に対してほぼ磁気感度を持たない(−0.006%/Oe)ことがわかった。   As shown in FIG. 14, it was found that there was almost no magnetic sensitivity (−0.006% / Oe) with respect to the magnetic field in the orthogonal direction.

次に、直交方向(X方向)に0Oe、+5Oe、あるいは−5Oeの磁場をかけつつ感度軸方向に±5Oeの範囲内の磁場をかけた状態の夫々について、磁気抵抗効果素子2,3の抵抗変化率(MR比)を調べた。その実験結果が図15に示されている。   Next, the resistance of the magnetoresistive effect elements 2 and 3 in the state where a magnetic field within a range of ± 5 Oe is applied in the sensitivity axis direction while applying a magnetic field of 0 Oe, +5 Oe, or −5 Oe in the orthogonal direction (X direction). The rate of change (MR ratio) was examined. The experimental results are shown in FIG.

図15に示すように、外部磁場に対する抵抗変化率(MR比)の挙動がほぼ一致しており、これにより直交方向(X方向)から作用する外部磁場を適切にシールドされていることがわかった。図15の実験結果より実施例でのSN比は8.5dBであった。   As shown in FIG. 15, the behavior of the resistance change rate (MR ratio) with respect to the external magnetic field is almost the same, and it has been found that the external magnetic field acting from the orthogonal direction (X direction) is appropriately shielded. . From the experimental results shown in FIG. 15, the SN ratio in the example was 8.5 dB.

(比較例)
上記の実施例の軟磁性体18に形成した幅遷移領域18d及び幅一定領域18eを形成せず、一定幅の軟磁性体(図3参照)とした。なお軟磁性体の素子部に対する延出部18aの長さ寸法を実施例と同様に30μmとした。その他の寸法も全て実施例と同じにした。
(Comparative example)
The width transition region 18d and the constant width region 18e formed in the soft magnetic body 18 of the above embodiment were not formed, and a soft magnetic body having a constant width (see FIG. 3) was obtained. The length of the extended portion 18a with respect to the element portion of the soft magnetic material was set to 30 μm as in the example. All other dimensions were the same as in the examples.

実験では、感度軸方向に直交する方向(X方向)に±5Oeの範囲内の磁場をかけた状態で、磁気抵抗効果素子2,3の抵抗変化率(MR比)を調べた。その実験結果が図16に示されている。   In the experiment, the resistance change rate (MR ratio) of the magnetoresistive effect elements 2 and 3 was examined in a state where a magnetic field within a range of ± 5 Oe was applied in the direction orthogonal to the sensitivity axis direction (X direction). The experimental results are shown in FIG.

図16に示すように、実施例(図14)よりも直交方向の磁場に対して磁気感度を持つ(−0.037%/Oe)ことがわかった。   As shown in FIG. 16, it was found that the magnetic sensitivity (−0.037% / Oe) with respect to the magnetic field in the orthogonal direction was higher than that in the example (FIG. 14).

次に、直交方向(X方向)に0Oe、+5Oe、あるいは−5Oeの磁場をかけつつ感度軸方向に±5Oeの範囲内の磁場をかけた状態の夫々について、磁気抵抗効果素子2,3の抵抗変化率(MR比)を調べた。その実験結果が図17に示されている。   Next, the resistance of the magnetoresistive effect elements 2 and 3 in the state where a magnetic field within a range of ± 5 Oe is applied in the sensitivity axis direction while applying a magnetic field of 0 Oe, +5 Oe, or −5 Oe in the orthogonal direction (X direction) The rate of change (MR ratio) was examined. The experimental results are shown in FIG.

図17に示すように、外部磁場に対する抵抗変化率(MR比)の挙動が実施例(図15)のように一致せず、挙動にばらつきが見られ、これにより直交方向(X方向)から作用する外部磁場を適切にシールドできていないことがわかった。図17の実験結果より比較例でのSN比は2.7dBであった。   As shown in FIG. 17, the behavior of the resistance change rate (MR ratio) with respect to the external magnetic field does not match as in the embodiment (FIG. 15), and the behavior is not uniform, thereby acting from the orthogonal direction (X direction). It was found that the external magnetic field to be shielded was not properly shielded. From the experimental results shown in FIG. 17, the SN ratio in the comparative example was 2.7 dB.

本実施形態における磁気センサの特に磁気抵抗効果素子の部分を示す図((a)は部分平面図、(b)は、(a)のA−A線に沿って高さ方向(図示Z方向)に切断し矢印方向から見た部分拡大断面図、The figure which shows the part of the magnetoresistive effect element especially of the magnetic sensor in this embodiment ((a) is a partial top view, (b) is a height direction (Z direction shown in the figure) along the AA line of (a). Partially enlarged cross-sectional view as seen from the direction of the arrow 本実施形態における磁気センサの特に磁気抵抗効果素子の部分の拡大平面図と、本実施形態の軟磁性体に引き込まれる直交方向からの外乱磁場のイメージ図、An enlarged plan view of a part of the magnetoresistive effect element of the magnetic sensor in the present embodiment, and an image diagram of a disturbance magnetic field from an orthogonal direction drawn into the soft magnetic body of the present embodiment, 比較例における磁気センサの特に磁気抵抗効果素子の部分の部分拡大平面図と、比較例の軟磁性体に引き込まれる直交方向からの外乱磁場のイメージ図、A partially enlarged plan view of a portion of the magnetoresistive effect element of the magnetic sensor in the comparative example, and an image diagram of the disturbance magnetic field from the orthogonal direction drawn into the soft magnetic body of the comparative example, 本実施形態の好ましい軟磁性体の側端部の形状を示す部分拡大平面図、The partial enlarged plan view which shows the shape of the side edge part of the preferable soft-magnetic body of this embodiment, 別の実施形態における軟磁性体の側端部の形状を示す部分拡大平面図、The partially expanded plan view which shows the shape of the side edge part of the soft-magnetic body in another embodiment, 他の実施形態における磁気センサの特に磁気抵抗効果素子の部分を示す平面図、The top view which shows the part of the magnetoresistive effect element especially of the magnetic sensor in other embodiment, 図6に示すB−B線に沿って高さ方向(図示Z方向)に切断し矢印方向から見た部分拡大断面図、The partial expanded sectional view which cut | disconnected in the height direction (Z direction shown in figure) along the BB line shown in FIG. 6, and was seen from the arrow direction, 磁気抵抗効果素子(素子部)を構成する固定磁性層の固定磁化方向及びフリー磁性層の磁化方向と、電気抵抗値との関係を説明するための図、The figure for demonstrating the relationship between the fixed magnetization direction of the fixed magnetic layer which comprises a magnetoresistive effect element (element part), the magnetization direction of a free magnetic layer, and an electrical resistance value, 磁気抵抗効果素子(素子部)を構成する素子部を膜厚方向から切断した際の切断面を示す部分断面図、A partial cross-sectional view showing a cut surface when the element part constituting the magnetoresistive effect element (element part) is cut from the film thickness direction; 本実施形態の磁気センサの回路構成図、The circuit configuration diagram of the magnetic sensor of the present embodiment, 図7と同じ位置での断面を示し、図7と異なる形状の部分拡大断面図、7 shows a cross-section at the same position as FIG. 7, and is a partially enlarged cross-sectional view of a shape different from FIG. 好ましい磁気抵抗効果素子の形態の特に素子部の部分を示す部分拡大平面図、A partially enlarged plan view showing a part of the element part in the form of a preferable magnetoresistive element, 本実施形態における地磁気センサ(磁気センサモジュール)の斜視図、The perspective view of the geomagnetic sensor (magnetic sensor module) in this embodiment, 図1、図2、図4に示す軟磁性体を備える実施例の磁気抵抗効果素子を用いて、直交方向に±5Oeの範囲内の磁場をかけた状態で、磁気抵抗効果素子の抵抗変化率(MR比)の測定結果を示すグラフ、Using the magnetoresistive effect element of the embodiment having the soft magnetic material shown in FIGS. 1, 2, and 4, the resistance change rate of the magnetoresistive effect element in a state where a magnetic field within a range of ± 5 Oe is applied in the orthogonal direction. A graph showing measurement results of (MR ratio), 実施例の磁気抵抗効果素子を用い、直交方向(X方向)に0Oe、+5Oe、あるいは−5Oeの磁場をかけつつ感度軸方向に±5Oeの範囲内の磁場をかけた状態の夫々について、磁気抵抗効果素子の抵抗変化率(MR比)の測定結果を示すグラフ、Using the magnetoresistive effect element of the example, the magnetoresistance was applied to each of the states in which a magnetic field within a range of ± 5 Oe was applied in the sensitivity axis direction while applying a magnetic field of 0 Oe, +5 Oe, or −5 Oe in the orthogonal direction (X direction). A graph showing a measurement result of a resistance change rate (MR ratio) of the effect element; 図3に示す軟磁性体を備える比較例の磁気抵抗効果素子を用いて、直交方向に±5Oeの範囲内の磁場をかけた状態で、磁気抵抗効果素子の抵抗変化率(MR比)の測定結果を示すグラフ、Using the magnetoresistive effect element of the comparative example provided with the soft magnetic material shown in FIG. 3, the resistance change rate (MR ratio) of the magnetoresistive effect element is measured in a state where a magnetic field within a range of ± 5 Oe is applied in the orthogonal direction. A graph showing the results, 比較例の磁気抵抗効果素子を用い、直交方向(X方向)に0Oe、+5Oe、あるいは−5Oeの磁場をかけつつ感度軸方向に±5Oeの範囲内の磁場をかけた状態の夫々について、磁気抵抗効果素子の抵抗変化率(MR比)の測定結果を示すグラフ、Using the magnetoresistive effect element of the comparative example and applying a magnetic field in the range of ± 5 Oe in the sensitivity axis direction while applying a magnetic field of 0 Oe, +5 Oe, or −5 Oe in the orthogonal direction (X direction), the magnetoresistance A graph showing a measurement result of a resistance change rate (MR ratio) of the effect element;

符号の説明Explanation of symbols

1 磁気センサ
2、3 磁気抵抗効果素子
4、5 固定抵抗素子
6 ブリッジ回路
7 入力端子
8 グランド端子
9 差動増幅器
10 外部出力端子
11 集積回路
12 素子部
13 接続電極部
14 出力取出し部
15 電極部
16 基板
17 絶縁層
18 軟磁性体
18a 延出部
18b 側端部
18c テーパ面
18d 幅遷移領域
18e 幅一定領域
19 電極
20 低抵抗層
21 中間永久磁石層
22 素子連結体
23 外側永久磁石層
33 反強磁性層
34 固定磁性層
36 フリー磁性層
50 X軸磁場検知部
51 Y軸磁場検知部
52 Z軸磁場検知部
DESCRIPTION OF SYMBOLS 1 Magnetic sensor 2, 3 Magnetoresistance effect element 4, 5 Fixed resistance element 6 Bridge circuit 7 Input terminal 8 Ground terminal 9 Differential amplifier 10 External output terminal 11 Integrated circuit 12 Element part 13 Connection electrode part 14 Output extraction part 15 Electrode part 16 Substrate 17 Insulating layer 18 Soft magnetic material 18a Extension portion 18b Side end 18c Tapered surface 18d Width transition region 18e Constant width region 19 Electrode 20 Low resistance layer 21 Intermediate permanent magnet layer 22 Element coupling body 23 Outer permanent magnet layer 33 Anti Ferromagnetic layer 34 Fixed magnetic layer 36 Free magnetic layer 50 X-axis magnetic field detector 51 Y-axis magnetic field detector 52 Z-axis magnetic field detector

Claims (6)

所定の感度軸を有する磁気抵抗効果素子を備えた磁気センサであって、
前記磁気抵抗効果素子は、磁気抵抗効果を発揮する素子部と、軟磁性体とを備え、
前記素子部と前記軟磁性体とが、前記感度軸の方向に前記軟磁性体、前記素子部、前記軟磁性体の順で並ぶように非接触で配置されており、
前記軟磁性体の両端部は、前記素子部よりも前記直交方向に延出した位置にあり、前記両端部の幅寸法は、前記両端部を除く前記軟磁性体の幅寸法に比べて大きいことを特徴とする磁気センサ。
A magnetic sensor including a magnetoresistive element having a predetermined sensitivity axis,
The magnetoresistive effect element includes an element portion that exhibits a magnetoresistive effect, and a soft magnetic material,
The element part and the soft magnetic body are arranged in a non-contact manner in the order of the soft magnetic body, the element part, and the soft magnetic body in the direction of the sensitivity axis,
Both end portions of the soft magnetic body are at positions extending in the orthogonal direction from the element portion, and the width dimension of the both end portions is larger than the width dimension of the soft magnetic body excluding the both end portions. Magnetic sensor characterized by.
前記軟磁性体の前記両端部には、前記素子部から離れる方向に向けて、前記幅寸法が徐々に大きくなるテーパ面が形成されている請求項1記載の磁気センサ。   2. The magnetic sensor according to claim 1, wherein taper surfaces having the width dimension gradually increased toward the direction away from the element portion are formed at both end portions of the soft magnetic body. 前記軟磁性体の前記両端部は、前記テーパ面で形成された幅遷移領域と、前記幅遷移領域の前記直交方向の外側に前記幅遷移領域の最大幅を保って形成された幅一定領域とで構成される請求項2記載の磁気センサ。   The both end portions of the soft magnetic material are a width transition region formed by the tapered surface, and a constant width region formed by maintaining the maximum width of the width transition region outside the width transition region in the orthogonal direction. The magnetic sensor of Claim 2 comprised by these. 前記素子部が複数、感度軸方向に間隔を空けて配置され、各素子部の端部間が電気的に接続されてミアンダ形状で形成されており、
各素子部間に前記軟磁性体が設けられることにより前記各素子部の感度軸方向の両側方に前記軟磁性体が配置されている請求項1ないし3のいずれかに記載の磁気センサ。
A plurality of the element portions are arranged at intervals in the sensitivity axis direction, and the end portions of each element portion are electrically connected and formed in a meander shape,
4. The magnetic sensor according to claim 1, wherein the soft magnetic body is disposed on both sides of each element portion in the sensitivity axis direction by providing the soft magnetic body between the element portions. 5.
前記ミアンダ形状に形成された素子部および前記軟磁性体が、前記感度軸と直交する方向に複数配置され、前記複数の素子部がブリッジ回路の一部を構成している請求項4記載の磁気センサ。   5. The magnetism according to claim 4, wherein a plurality of element portions and soft magnetic bodies formed in the meander shape are arranged in a direction orthogonal to the sensitivity axis, and the plurality of element portions constitute a part of a bridge circuit. Sensor. 請求項1ないし5のいずれかに記載の磁気センサを複数有し、少なくとも前記複数の磁気センサのうち一組の磁気抵抗効果素子の感度軸が直交するように各磁気抵抗効果素子が配置されていることを特徴とする磁気センサモジュール。   6. A plurality of magnetic sensors according to claim 1, wherein each magnetoresistive element is arranged so that sensitivity axes of at least one set of the magnetoresistive elements are orthogonal to each other. A magnetic sensor module.
JP2008152726A 2008-06-11 2008-06-11 Magnetic sensor and magnetic sensor module Withdrawn JP2009300150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008152726A JP2009300150A (en) 2008-06-11 2008-06-11 Magnetic sensor and magnetic sensor module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008152726A JP2009300150A (en) 2008-06-11 2008-06-11 Magnetic sensor and magnetic sensor module

Publications (1)

Publication Number Publication Date
JP2009300150A true JP2009300150A (en) 2009-12-24

Family

ID=41547219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008152726A Withdrawn JP2009300150A (en) 2008-06-11 2008-06-11 Magnetic sensor and magnetic sensor module

Country Status (1)

Country Link
JP (1) JP2009300150A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013108923A (en) * 2011-11-24 2013-06-06 Tdk Corp Three-dimensional magnetic field sensor and method for manufacturing the same
CN104105978A (en) * 2012-02-07 2014-10-15 旭化成微电子株式会社 Magnetic sensor and magnetic detection method thereof
JP2016188774A (en) * 2015-03-30 2016-11-04 アルプス電気株式会社 Magnetic field detection device
CN109254252A (en) * 2017-07-12 2019-01-22 恩智浦有限公司 The system of magnetic field sensor and combined magnetic field sensor with magnetic field shielding structure
DE102018127118A1 (en) 2017-10-31 2019-05-02 Tdk Corporation magnetic sensor
CN109764796A (en) * 2017-11-09 2019-05-17 Tdk株式会社 Magnetic Sensor
CN109764797A (en) * 2017-11-09 2019-05-17 Tdk株式会社 Magnetic Sensor
JP2019117087A (en) * 2017-12-27 2019-07-18 Tdk株式会社 Magnetic sensor
CN111198341A (en) * 2018-11-16 2020-05-26 Tdk株式会社 Magnetic sensor and position detection device
US10718825B2 (en) 2017-09-13 2020-07-21 Nxp B.V. Stray magnetic field robust magnetic field sensor and system

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013108923A (en) * 2011-11-24 2013-06-06 Tdk Corp Three-dimensional magnetic field sensor and method for manufacturing the same
US8786278B2 (en) 2011-11-24 2014-07-22 Tdk Corporation Three-dimensional magnetic field sensor and method of producing same
CN104105978A (en) * 2012-02-07 2014-10-15 旭化成微电子株式会社 Magnetic sensor and magnetic detection method thereof
CN104105978B (en) * 2012-02-07 2016-07-06 旭化成微电子株式会社 Magnetic Sensor and magnetic detection method thereof
JP2016188774A (en) * 2015-03-30 2016-11-04 アルプス電気株式会社 Magnetic field detection device
CN109254252A (en) * 2017-07-12 2019-01-22 恩智浦有限公司 The system of magnetic field sensor and combined magnetic field sensor with magnetic field shielding structure
US10261138B2 (en) 2017-07-12 2019-04-16 Nxp B.V. Magnetic field sensor with magnetic field shield structure and systems incorporating same
EP3447513A3 (en) * 2017-07-12 2019-07-24 Nxp B.V. Magnetic field sensor with magnetic field shield structure and systems incorporating same
US10718825B2 (en) 2017-09-13 2020-07-21 Nxp B.V. Stray magnetic field robust magnetic field sensor and system
DE102018127118A1 (en) 2017-10-31 2019-05-02 Tdk Corporation magnetic sensor
CN109724507A (en) * 2017-10-31 2019-05-07 Tdk株式会社 Magnetic Sensor
JP2019082429A (en) * 2017-10-31 2019-05-30 Tdk株式会社 Magnetic sensor
JP2019086463A (en) * 2017-11-09 2019-06-06 Tdk株式会社 Magnetic sensor
CN109764797A (en) * 2017-11-09 2019-05-17 Tdk株式会社 Magnetic Sensor
CN109764796A (en) * 2017-11-09 2019-05-17 Tdk株式会社 Magnetic Sensor
US11054283B2 (en) 2017-11-09 2021-07-06 Tdk Corporation Magnetic sensor
JP2019117087A (en) * 2017-12-27 2019-07-18 Tdk株式会社 Magnetic sensor
US11237228B2 (en) 2017-12-27 2022-02-01 Tdk Corporation Magnetic sensor
US11754645B2 (en) 2017-12-27 2023-09-12 Tdk Corporation Magnetic sensor
CN111198341A (en) * 2018-11-16 2020-05-26 Tdk株式会社 Magnetic sensor and position detection device
JP2020085480A (en) * 2018-11-16 2020-06-04 Tdk株式会社 Magnetic sensor and position detecting device
US11125839B2 (en) 2018-11-16 2021-09-21 Tdk Corporation Magnetic sensor and position detection device
JP6996478B2 (en) 2018-11-16 2022-02-04 Tdk株式会社 Magnetic sensor and position detector
US11555869B2 (en) 2018-11-16 2023-01-17 Tdk Corporation Magnetic sensor and position detection device

Similar Documents

Publication Publication Date Title
JP5066580B2 (en) Magnetic sensor and magnetic sensor module
JP2009300150A (en) Magnetic sensor and magnetic sensor module
JP5066579B2 (en) Magnetic sensor and magnetic sensor module
JP5174911B2 (en) Magnetic sensor and magnetic sensor module
JP5210983B2 (en) Geomagnetic sensor
US8593134B2 (en) Current sensor
JP5152495B2 (en) Magnetic sensor and portable information terminal device
JP5597206B2 (en) Magnetic sensor
JP5297539B2 (en) Magnetic sensor
JP5297442B2 (en) Magnetic sensor
JP5149964B2 (en) Magnetic sensor and magnetic sensor module
US8941378B2 (en) Magnetic sensor
JP5066581B2 (en) Magnetic sensor and magnetic sensor module
JP2009175120A (en) Magnetic sensor and magnetic sensor module
WO2009151024A1 (en) Magnetic sensor and magnetic sensor module
JP2009162499A (en) Magnetometric sensor
JP2009162540A (en) Magnetometric sensor and its manufacturing method
JP5171933B2 (en) Magnetic sensor
JP5802565B2 (en) Magnetic sensor
JP6121311B2 (en) Magnetic detector
JP7057680B2 (en) Magnetic sensor and current sensor
US20150198430A1 (en) Magnetism detection element and rotation detector
JP7096349B2 (en) Magnetic sensor and current sensor
JP7122836B2 (en) Magnetic and current sensors
CN109974569A (en) Magnetic Sensor

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110906