JP2016184981A - 移動体通信システム、基地局装置および通信端末装置 - Google Patents

移動体通信システム、基地局装置および通信端末装置 Download PDF

Info

Publication number
JP2016184981A
JP2016184981A JP2016145988A JP2016145988A JP2016184981A JP 2016184981 A JP2016184981 A JP 2016184981A JP 2016145988 A JP2016145988 A JP 2016145988A JP 2016145988 A JP2016145988 A JP 2016145988A JP 2016184981 A JP2016184981 A JP 2016184981A
Authority
JP
Japan
Prior art keywords
cell
information
communication
uplink
frequency band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016145988A
Other languages
English (en)
Other versions
JP6312753B2 (ja
Inventor
望月 満
Mitsuru Mochizuki
満 望月
前田 美保
Miho Maeda
美保 前田
靖 岩根
Yasushi Iwane
靖 岩根
隆之 野並
Takayuki Nonami
隆之 野並
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46457442&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2016184981(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JP2016184981A publication Critical patent/JP2016184981A/ja
Application granted granted Critical
Publication of JP6312753B2 publication Critical patent/JP6312753B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】通信速度の向上を実現しつつ、柔軟な周波数リソースの利用を可能とし、周波数リソースの利用効率を向上させることが可能な移動体通信システム、基地局装置および通信端末装置を提供する。
【解決手段】下りリンク用リソースであるDL CC2を含み、上りリンク用リソースであるDL CC2を含まないセル2(Cell 2)を非関連セルとして構成する。この非関連セルであるセル2に関するリンク情報を、基地局装置から通信端末装置に通知しない。またDL CC1とUL CC1とを含むセル1(Cell 1)を関連セルとして構成し、関連セルであるセル1に関するリンク情報を、基地局装置から通信端末装置に通知する。セル1とセル2とを用いて下り通信を行い、セル1を用いて上り通信を行う。
【選択図】図28

Description

本発明は、通信端末装置および前記通信端末装置との間で無線通信を行う基地局装置を含む移動体通信システム、ならびに前記移動体通信システムに含まれる基地局装置および通信端末装置に関する。
第3世代と呼ばれる通信方式のうち、W−CDMA(Wideband Code division Multiple Access)方式が2001年から日本で商用サービスが開始されている。また、下りリンク(個別データチャネル、個別制御チャネル)にパケット伝送用のチャネル(High Speed-Downlink Shared Channel:HS−DSCH)を追加することにより、下りリンクを用いたデータ送信の更なる高速化を実現するHSDPA(High Speed Downlink Packet Access)のサービスが開始されている。さらに、上り方向のデータ送信をより高速化するために、HSUPA(High Speed Uplink Packet Access)方式についてもサービスが開始されている。W−CDMAは、移動体通信システムの規格化団体である3GPP(3rd Generation Partnership Project)により定められた通信方式であり、リリース8版の規格書がとりまとめられている。
また、3GPPにおいて、W−CDMAとは別の通信方式として、無線区間についてはロングタームエボリューション(Long Term Evolution:LTE)、コアネットワーク(単にネットワークとも称する)を含めたシステム全体構成については、システムアーキテクチャエボリューション(System Architecture Evolution:SAE)と称される新たな通信方式が検討されている。この通信方式は3.9G(3.9 Generation)システムとも呼ばれる。
LTEでは、アクセス方式、無線のチャネル構成やプロトコルが、現在のW−CDMA(HSDPA/HSUPA)とは全く異なるものになる。例えば、アクセス方式は、W−CDMAが符号分割多元接続(Code Division Multiple Access)を用いているのに対して、LTEは下り方向はOFDM(Orthogonal Frequency Division Multiplexing)、上り方向はSC−FDMA(Single Career Frequency Division Multiple Access)を用いる。また、帯域幅は、W−CDMAが5MHzであるのに対し、LTEでは1.4MHz,3MHz,5MHz,10MHz,15MHz,20MHzの中で基地局毎に選択可能となっている。また、LTEでは、W−CDMAのように回線交換を含まず、パケット通信方式のみになる。
LTEは、W−CDMAのコアネットワーク(General Packet Radio Service:GPRS)とは異なる新たなコアネットワークを用いて通信システムが構成されるため、W−CDMA網とは別の独立した無線アクセス網として定義される。したがって、W−CDMAの通信システムと区別するため、LTEの通信システムでは、移動端末(User Equipment:UE)と通信を行う基地局(Base station)はeNB(E-UTRAN NodeB)と称され、複数の基地局と制御データやユーザデータのやり取りを行う基地局制御装置(Radio Network Controller)は、EPC(Evolved Packet Core)またはaGW(Access Gateway)と称される。
このLTEの通信システムでは、ユニキャスト(Unicast)サービスとE-MBMSサービス(Evolved Multimedia Broadcast Multicast Service)とが提供される。E−MBMSサービスとは、放送型マルチメディアサービスであり、単にMBMSと称される場合もある。複数の移動端末に対してニュースや天気予報、モバイル放送などの大容量放送コンテンツが送信される。これを1対多(Point to Multipoint)サービスともいう。
3GPPでの、LTEシステムにおける全体的なアーキテクチャ(Architecture)に関する現在の決定事項が、非特許文献1(4章)に記載されている。全体的なアーキテクチャについて図1を用いて説明する。図1は、LTE方式の通信システムの構成を示す説明図である。図1において、移動端末101に対する制御プロトコル、例えばRRC(Radio Resource Control)と、ユーザプレイン、例えばPDCP(Packet Data Convergence Protocol)、RLC(Radio Link Control)、MAC(Medium Access Control)、PHY(Physical layer)とが基地局102で終端するならば、E−UTRAN(Evolved Universal Terrestrial Radio Access)は1つあるいは複数の基地局102によって構成される。
基地局102は、MME(Mobility Management Entity)103から通知されるページング信号(Paging Signal、ページングメッセージ(paging messages)とも称される)のスケジューリング(Scheduling)および送信を行う。基地局102は、X2インタフェースにより、互いに接続される。また基地局102は、S1インタフェースによりEPC(Evolved Packet Core)に接続される。より明確には、基地局102は、S1_MMEインタフェースによりMME(Mobility Management Entity)103に接続され、S1_UインタフェースによりS−GW(Serving Gateway)104に接続される。
MME103は、複数あるいは単数の基地局102へのページング信号の分配を行う。また、MME103は待受け状態(Idle State)のモビリティ制御(Mobility control)を行う。MME103は、移動端末が待ち受け状態および、アクティブ状態(Active State)の際に、トラッキングエリア(Tracking Area)リストの管理を行う。
S−GW104は、ひとつまたは複数の基地局102とユーザデータの送受信を行う。S−GW104は、基地局間のハンドオーバの際、ローカルな移動性のアンカーポイント(Mobility Anchor Point)となる。EPCには、さらにP−GW(PDN Gateway)が存在し、ユーザ毎のパケットフィルタリングやUE−IDアドレスの割当などを行う。
移動端末101と基地局102との間の制御プロトコルRRCは、報知(Broadcast)、ページング(paging)、RRC接続マネージメント(RRC connection management)などを行う。RRCにおける基地局と移動端末の状態として、RRC_Idle、RRC_CONNECTEDがある。RRC_IDLEでは、PLMN(Public Land Mobile Network)選択、システム情報(System Information:SI)の報知、ページング(paging)、セル再選択(cell re-selection)、モビリティ等が行われる。RRC_CONNECTEDでは、移動端末はRRC接続(connection)を有し、ネットワークとのデータの送受信を行うことができ、また、ハンドオーバ(Handover:HO)、隣接セル(Neighbour cell)のメジャメント等が行われる。
非特許文献1(5章)に記載される3GPPでの、LTEシステムにおけるフレーム構成に関する現在の決定事項について、図2を用いて説明する。図2は、LTE方式の通信システムで使用される無線フレームの構成を示す説明図である。図2において、1つの無線フレーム(Radio frame)は10msである。無線フレームは10個の等しい大きさのサブフレーム(Subframe)に分割される。サブフレームは、2個の等しい大きさのスロット(slot)に分割される。無線フレーム毎に1番目と6番目のサブフレームに下り同期信号(Downlink Synchronization Signal:SS)が含まれる。同期信号には、第一同期信号(Primary Synchronization Signal:P−SS)と、第二同期信号(Secondary Synchronization Signal:S−SS)とがある。
サブフレーム単位にてMBSFN(Multimedia Broadcast multicast service Single Frequency Network)用とMBSFN以外のチャネルの多重が行われる。MBSFN送信(MBSFN Transmission)とは、同時に複数のセルから同じ波形の送信により実現される同時放送送信技術(simulcast transmission technique)である。MBSFN領域(MBSFN Area)の複数のセルからのMBSFN送信は、移動端末によって1つの送信であると見える。MBSFNとは、このようなMBSFN送信をサポートするネットワークである。以降、MBSFN送信用のサブフレームをMBSFNサブフレーム(MBSFN subframe)と称する。
非特許文献2に、MBSFNサブフレームの割り当て時のシグナリング例が記載されている。図3は、MBSFNフレームの構成を示す説明図である。図3において、割当周期(radio Frame Allocation Period)毎にMBSFNサブフレームを含む無線フレームが割り当てられる。MBSFNサブフレームは、割当周期と割当オフセット(radio Frame Allocation Offset)によって定義された無線フレームにてMBSFNのために割り当てられるサブフレームであり、マルチメディアデータを伝送するためのサブフレームである。以下の式(1)を満たす無線フレームが、MBSFNサブフレームを含む無線フレームである。
SFN mod radioFrameAllocationPeriod=radioFrameAllocationOffset …(1)
MBSFNサブフレームの割当は6ビットにて行われる。1番左のビットは、サブフレーム2番目(#1)のMBSFN割当を定義する。2番目のビットはサブフレーム3番目(#2)、3番目のビットはサブフレーム4番目(#3)、4番目のビットはサブフレーム7番目(#6)、5番目のビットはサブフレーム8番目(#7)、6番目のビットはサブフレーム9番目(#8)のMBSFN割当を定義する。該ビットが「1」を示す場合、対応するサブフレームがMBSFNのために割当てられることを示す。
3GPPでの、LTEシステムにおけるチャネル構成に関する現在の決定事項が、非特許文献1(5章)に記載されている。CSG(Closed Subscriber Group cell)セルにおいてもnon−CSGセルと同じチャネル構成が用いられると想定されている。物理チャネル(Physical channel)について、図4を用いて説明する。図4は、LTE方式の通信システムで使用される物理チャネルを説明する説明図である。
図4において、物理報知チャネル(Physical Broadcast channel:PBCH)401は、基地局102から移動端末101へ送信される下りチャネルである。BCHトランスポートブロック(transport block)は、40ms間隔中の4個のサブフレームにマッピングされる。40msタイミングの明白なシグナリングはない。物理制御チャネルフォーマットインジケータチャネル(Physical Control Format Indicator Channel:PCFICH)402は、基地局102から移動端末101へ送信される。PCFICHは、PDCCHsのために用いるOFDMシンボルの数について基地局102から移動端末101へ通知する。PCFICHは、サブフレーム毎に送信される。
物理下り制御チャネル(Physical Downlink Control Channel:PDCCH)403は、基地局102から移動端末101へ送信される下りチャネルである。PDCCHは、DL−SCH(後述の図5に示されるトランスポートチャネルの1つである下り共有チャネル)とPCH(図5に示されるトランスポートチャネルの1つであるページングチャネル)のリソース割り当て(allocation)、DL−SCHに関するHARQ情報を通知する。PDCCHは、上りスケジューリンググラント(Uplink Scheduling Grant)を運ぶ。PDCCHは、上り送信に対する応答信号であるAck(Acknowledgement)/Nack(Negative Acknowledgement)を運ぶ。PDCCHは、L1/L2制御信号とも呼ばれる。
物理下り共有チャネル(Physical Downlink Shared Channel:PDSCH)404は、基地局102から移動端末101へ送信される下りチャネルである。PDSCHは、トランスポートチャネルであるDL-SCH(下り共有チャネル)やトランスポートチャネルであるPCHがマッピングされている。物理マルチキャストチャネル(Physical Multicast Channel:PMCH)405は、基地局102から移動端末101へ送信される下りチャネルである。PMCHは、トランスポートチャネルであるMCH(マルチキャストチャネル)がマッピングされている。
物理上り制御チャネル(Physical Uplink Control Channel:PUCCH)406は、移動端末101から基地局102へ送信される上りチャネルである。PUCCHは、下り送信に対する応答信号(response)であるAck/Nackを運ぶ。PUCCHは、CQI(Channel Quality Indicator)レポートを運ぶ。CQIとは、受信したデータの品質、もしくは通信路品質を示す品質情報である。またPUCCHは、スケジューリングリクエスト(Scheduling Request:SR)を運ぶ。物理上り共有チャネル(Physical Uplink Shared Channel:PUSCH)407は、移動端末101から基地局102へ送信される上りチャネルである。PUSCHには、UL−SCH(図5に示されるトランスポートチャネルの1つである上り共有チャネル)がマッピングされている。
物理HARQインジケータチャネル(Physical Hybrid ARQ Indicator Channel:PHICH)408は、基地局102から移動端末101へ送信される下りチャネルである。PHICHは、上り送信に対する応答であるAck/Nackを運ぶ。物理ランダムアクセスチャネル(Physical Random Access Channel:PRACH)409は、移動端末101から基地局102へ送信される上りチャネルである。PRACHは、ランダムアクセスプリアンブル(random access preamble)を運ぶ。
下りリファレンスシグナル(Reference signal)は、移動体通信システムとして既知のシンボルである。移動端末の物理レイヤの測定として、リファレンスシンボルの受信電力(Reference Symbol Received Power:RSRP)測定がある。
非特許文献1(5章)に記載されるトランスポートチャネル(Transport channel)について、図5を用いて説明する。図5は、LTE方式の通信システムで使用されるトランスポートチャネルを説明する説明図である。図5(A)には、下りトランスポートチャネルと下り物理チャネルとの間のマッピングを示す。図5(B)には、上りトランスポートチャネルと上り物理チャネルとの間のマッピングを示す。
下りトランスポートチャネルについて報知チャネル(Broadcast Channel:BCH)は、その基地局(セル)のカバレッジ全体に報知される。BCHは、物理報知チャネル(PBCH)にマッピングされる。
下り共有チャネル(Downlink Shared Channel:DL−SCH)には、HARQ(Hybrid ARQ)による再送制御が適用される。DL−SCHは、基地局(セル)のカバレッジ全体への報知が可能である。DL−SCHは、ダイナミックあるいは準静的(Semi-static)なリソース割り当てをサポートする。準静的なリソース割り当ては、パーシステントスケジューリング(Persistent Scheduling)とも言われる。DL−SCHは、移動端末の低消費電力化のために移動端末のDRX(Discontinuous reception)をサポートする。DL−SCHは、物理下り共有チャネル(PDSCH)へマッピングされる。
ページングチャネル(Paging Channel:PCH)は、移動端末の低消費電力を可能とするために移動端末のDRXをサポートする。PCHは、基地局(セル)のカバレッジ全体への報知が要求される。PCHは、動的にトラフィックに利用できる物理下り共有チャネル(PDSCH)のような物理リソースへマッピングされる。
マルチキャストチャネル(Multicast Channel:MCH)は、基地局(セル)のカバレッジ全体への報知に使用される。MCHは、マルチセル送信におけるMBMSサービス(MTCHとMCCH)のSFN合成をサポートする。MCHは、準静的なリソース割り当てをサポートする。MCHは、PMCHへマッピングされる。
上り共有チャネル(Uplink Shared Channel:UL−SCH)には、HARQ(Hybrid ARQ)による再送制御が適用される。UL−SCHは、ダイナミックあるいは準静的(Semi-static)なリソース割り当てをサポートする。UL−SCHは、物理上り共有チャネル(PUSCH)へマッピングされる。
図5(B)に示されるランダムアクセスチャネル(Random Access Channel:RACH)は、制御情報に限られている。RACHは、衝突のリスクがある。RACHは、物理ランダムアクセスチャネル(PRACH)へマッピングされる。
HARQについて説明する。HARQとは、自動再送(Automatic Repeat reQuest)と誤り訂正(Forward Error Correction)との組み合わせにより、伝送路の通信品質を向上させる技術である。通信品質が変化する伝送路に対しても、再送により誤り訂正が有効に機能するという利点がある。特に、再送にあたって初送の受信結果と再送の受信結果との合成をすることで、更なる品質向上を得ることも可能である。
再送の方法の一例を説明する。受信側にて、受信データが正しくデコードできなかった場合、換言すればCRC(Cyclic Redundancy Check)エラーが発生した場合(CRC=NG)、受信側から送信側へ「Nack」を送信する。「Nack」を受信した送信側は、データを再送する。受信側にて、受信データが正しくデコードできた場合、換言すればCRCエラーが発生しない場合(CRC=OK)、受信側から送信側へ「Ack」を送信する。「Ack」を受信した送信側は次のデータを送信する。
HARQ方式の一例として、チェースコンバイニング(Chase Combining)がある。チェースコンバイニングとは、初送と再送とにおいて、同じデータを送信するものであり、再送において初送のデータと再送のデータとの合成を行うことで、利得を向上させる方式である。これは、初送データに誤りがあったとしても、部分的に正確なものも含まれており、正確な部分の初送データと再送データとを合成することで、より高精度にデータを送信できるという考え方に基づいている。また、HARQ方式の別の例として、IR(Incremental Redundancy)がある。IRとは、冗長度を増加させるものであり、再送においてパリティビットを送信することで、初送と組み合わせて冗長度を増加させ、誤り訂正機能により品質を向上させるものである。
非特許文献1(6章)に記載される論理チャネル(Logical channel、以下「ロジカルチャネル」という場合がある)について、図6を用いて説明する。図6は、LTE方式の通信システムで使用される論理チャネルを説明する説明図である。図6(A)には、下りロジカルチャネルと下りトランスポートチャネルとの間のマッピングを示す。図6(B)には、上りロジカルチャネルと上りトランスポートチャネルとの間のマッピングを示す。
報知制御チャネル(Broadcast Control Channel:BCCH)は、報知システム制御情報のための下りチャネルである。論理チャネルであるBCCHは、トランスポートチャネルである報知チャネル(BCH)、あるいは下り共有チャネル(DL−SCH)へマッピングされる。
ページング制御チャネル(Paging Control Channel:PCCH)は、ページング情報(Paging Information)およびシステム情報(System Information)の変更を送信するための下りチャネルである。PCCHは、移動端末のセルロケーションをネットワークが知らない場合に用いられる。論理チャネルであるPCCHは、トランスポートチャネルであるページングチャネル(PCH)へマッピングされる。
共有制御チャネル(Common Control Channel:CCCH)は、移動端末と基地局との間の送信制御情報のためのチャネルである。CCCHは、移動端末がネットワークとの間でRRC接続(connection)を持っていない場合に用いられる。下り方向では、CCCHは、トランスポートチャネルである下り共有チャネル(DL−SCH)へマッピングされる。上り方向では、CCCHは、トランスポートチャネルである上り共有チャネル(UL−SCH)へマッピングされる。
マルチキャスト制御チャネル(Multicast Control Channel:MCCH)は、1対多の送信のための下りチャネルである。MCCHは、ネットワークから移動端末への1つあるいはいくつかのMTCH用のMBMS制御情報の送信のために用いられる。MCCHは、MBMS受信中の移動端末のみに用いられる。MCCHは、トランスポートチャネルであるマルチキャストチャネル(MCH)へマッピングされる。
個別制御チャネル(Dedicated Control Channel:DCCH)は、1対1にて、移動端末とネットワークとの間の個別制御情報を送信するチャネルである。DCCHは、移動端末がRRC接続(connection)である場合に用いられる。DCCHは、上りでは上り共有チャネル(UL−SCH)へマッピングされ、下りでは下り共有チャネル(DL−SCH)にマッピングされる。
個別トラフィックチャネル(Dedicated Traffic Channel:DTCH)は、ユーザ情報の送信のための個別移動端末への1対1通信のチャネルである。DTCHは、上りおよび下りともに存在する。DTCHは、上りでは上り共有チャネル(UL−SCH)へマッピングされ、下りでは下り共有チャネル(DL−SCH)へマッピングされる。
マルチキャストトラフィックチャネル(Multicast Traffic channel:MTCH)は、ネットワークから移動端末へのトラフィックデータ送信のための下りチャネルである。MTCHは、MBMS受信中の移動端末のみに用いられるチャネルである。MTCHは、マルチキャストチャネル(MCH)へマッピングされる。
GCIとは、グローバルセル識別子(Global Cell Identity)のことである。LTE、後述のLTE−A(Long Term Evolution Advanced)およびUMTS(Universal Mobile Telecommunication System)において、CSGセル(Closed Subscriber Group cell)が導入される。CSGについて以下に説明する(非特許文献3 3.1章参照)。CSG(Closed Subscriber Group)セルとは、利用可能な加入者をオペレータが特定しているセル(以下「特定加入者用セル」という場合がある)である。
特定された加入者は、PLMN(Public Land Mobile Network)の1つ以上のセルにアクセスすることが許可される。特定された加入者がアクセスを許可されている1つ以上のセルを「CSGセル(cell(s))」と呼ぶ。ただし、PLMNにはアクセス制限がある。CSGセルとは、固有のCSGアイデンティティ(CSG identity:CSG ID;CSG−ID)を報知し、CSGインジケーション(CSG Indication)にて「TRUE」を報知するPLMNの一部である。予め利用登録し、許可された加入者グループのメンバーは、アクセス許可情報であるところのCSG−IDを用いてCSGセルにアクセスする。
CSG−IDは、CSGセルまたはセルによって報知される。移動体通信システムにCSG−IDは複数存在する。そして、CSG−IDは、CSG関連のメンバーのアクセスを容易にするために、移動端末(UE)によって使用される。
移動端末の位置追跡は、1つ以上のセルからなる区域を単位に行われる。位置追跡は、待受け状態であっても移動端末の位置を追跡し、呼び出す(移動端末が着呼する)ことを可能にするためである。この移動端末の位置追跡のための区域をトラッキングエリアと呼ぶ。
CSGホワイトリスト(CSG White List)とは、加入者が属するCSGセルのすべてのCSG IDが記録されている、USIM(Universal Subscriber Identity Module)に格納されることもあるリストである。CSGホワイトリストは、許可CSGリスト(Allowed CSG List)と呼ばれることもある。
待受け状態の移動端末のサービスタイプについて以下に説明する(非特許文献3 4.3章参照)。待受け状態の移動端末のサービスタイプとしては、制限されたサービス(Limited service、限られたサービスとも称される)、標準サービス(Normal service)、オペレータサービス(Operator service)がある。制限されたサービスとは、後述のアクセプタブルセル上の緊急呼(Emergency calls)、ETWS(Earthquake and Tsunami Warning System)、CMAS(Commercial Mobile Alert System)である。標準サービス(通常サービス、ノーマルサービスとも称される)とは、後述の適切なセル上の公共のサービスである。オペレータサービスとは、後述のリザーブセル上のオペレータのためのみのサービスである。
「適切なセル」(Suitable cell)について以下に説明する。「適切なセル」(Suitable cell)とは、UEが通常(normal)サービスを受けるためにキャンプオン(Camp ON)するかもしれないセルである。そのようなセルは、以下の(1),(2)の条件を満たすものとする。
(1)セルは、選択されたPLMNもしくは登録されたPLMN、または「Equivalent PLMNリスト」のPLMNの一部であること。
(2)NAS(Non-Access Stratum)によって提供された最新情報にて、さらに以下の(a)〜(d)の条件を満たすこと
(a)そのセルが禁じられた(barred)セルでないこと
(b)そのセルが「ローミングのための禁止されたLAs」リストの一部でないトラッキングエリア(Tracking Area:TA)の一部であること。その場合、そのセルは前記(1)を満たす必要がある
(c)そのセルが、セル選択評価基準を満たしていること
(d)そのセルが、CSGセルとしてシステム情報(System Information:SI)によって特定されたセルに関しては、CSG−IDはUEの「CSGホワイトリスト」(CSG WhiteList)の一部であること(UEのCSG WhiteList中に含まれること)。
「アクセプタブルセル」(Acceptable cell)について以下に説明する。これは、UEが制限されたサービスを受けるためにキャンプオンするかもしれないセルである。そのようなセルは、以下のすべての要件を充足するものとする。
(1)そのセルが禁じられたセル(Barred cell、バードセルとも称される)でないこと。
(2)そのセルが、セル選択評価基準を満たしていること。
「バードセル」(Barred cell)とは、システム情報で指示がある。「リザーブセル」(Reserved cell)とは、システム情報で指示がある。
「セルにキャンプオン(camp on)する」とは、UEがセル選択(cell selection)またはセル再選択(cell reselection)の処理を完了し、UEがシステム情報とページング情報をモニタするセルを選択した状態である。
3GPPにおいて、Home−NodeB(Home−NB;HNB)、Home−eNodeB(Home−eNB;HeNB)と称される基地局が検討されている。UTRANにおけるHNB、またはE-UTRANにおけるHeNBは、例えば家庭、法人、商業用のアクセスサービス向けの基地局である。非特許文献4には、HeNBおよびHNBへのアクセスの3つの異なるモードが開示されている。具体的には、オープンアクセスモード(Open access mode)と、クローズドアクセスモード(Closed access mode)と、ハイブリッドアクセスモード(Hybrid access mode)である。
各々のモードは、以下のような特徴を有する。オープンアクセスモードでは、HeNBやHNBは通常のオペレータのノーマルセルとして操作される。クローズドアクセスモードでは、HeNBやHNBがCSGセルとして操作される。これはCSGメンバーのみアクセス可能なCSGセルである。ハイブリッドアクセスモードでは、非CSGメンバーも同時にアクセス許可されているCSGセルである。ハイブリッドアクセスモードのセル(ハイブリッドセルとも称する)は、言い換えれば、オープンアクセスモードとクローズドアクセスモードの両方をサポートするセルである。
3GPPでは、全PCI(Physical Cell Identity)のうち、CSGセルによって使用するためにネットワークによって予約されたPCI範囲がある(非特許文献1 10.5.1.1章参照)。PCI範囲を分割することをPCIスプリットと称することがある。PCIスプリット情報は、システム情報にて基地局から傘下の移動端末に対して報知される。非特許文献5は、PCIスプリットを用いた移動端末の基本動作を開示する。PCIスプリット情報を有していない移動端末は、全PCIを用いて(例えば504コード全てを用いて)セルサーチを行う必要がある。これに対して、PCIスプリット情報を有する移動端末は、当該PCIスプリット情報を用いてセルサーチを行うことが可能である。
また3GPPでは、リリース10として、ロングタームエボリューションアドヴァンスド(Long Term Evolution Advanced:LTE−A)の規格策定が進められている(非特許文献6、非特許文献7参照)。
LTE−Aシステムでは、高い通信速度、セルエッジでの高いスループット、新たなカバレッジエリアなどを得るために、リレー(Relay:リレーノード(RN))をサポートすることが検討されている。リレーノードは、ドナーセル(Donor cell;Donor eNB;DeNB)を介して無線アクセスネットワークに無線で接続される。ドナーセルの範囲内で、ネットワーク(Network:NW)からリレーへのリンクは、ネットワークからUEへのリンクと同じ周波数帯域(以下「周波数バンド」という場合がある)を共用する。この場合、リリース8のUEも該ドナーセルに接続することを可能とする。ドナーセルとリレーノードとの間のリンクをバックホールリンク(backhaul link)と称し、リレーノードとUEとの間のリンクをアクセスリンク(access link)と称する。
FDD(Frequency Division Duplex)におけるバックホールリンクの多重方法として、DeNBからRNへの送信は下り(DL)周波数バンドで行われ、RNからDeNBへの送信は上り(UL)周波数バンドで行われる。リレーにおけるリソースの分割方法として、DeNBからRNへのリンクおよびRNからUEへのリンクが一つの周波数バンドで時分割多重され、RNからDeNBへのリンクおよびUEからRNへのリンクも一つの周波数バンドで時分割多重される。こうすることで、リレーにおいて、リレーの送信が自リレーの受信へ干渉することを防ぐことができる。
3GPPでは、通常のeNB(マクロセル)だけでなく、ピコeNB(ピコセル(pico cell))、HeNB/HNB/CSGセル、ホットゾーンセル用のノード、リレーノード、リモートラジオヘッド(Remote Radio Head:RRH)などのいわゆるローカルノードが検討されている。
LTEでは、通信に使用可能な周波数バンド(以下「オペレーティングバンド」という場合がある)が予め決められている。非特許文献8には、該周波数バンドが記載されている。FDD(Frequency Division Duplex)による通信においては、下りリンクの周波数バンド(以下「下り周波数バンド」という場合がある)と、それと対をなす上りリンクの周波数バンド(以下「上り周波数バンド」という場合がある)とが予め決められており、上り周波数バンドは下り周波数バンドと異なっている。これは、従来の音声のような通信においては必ず下りリンクと上りリンクとが必要であり、FDDにおいては下りと上りとで周波数を分割することによって、送信と受信とを同時に行えるようにしているためである。
FDDにおいて、下りリンクに用いるリソースのキャリア周波数(以下「下りキャリア周波数」という場合がある)と、上りリンクに用いるリソースのキャリア周波数(以下「上りキャリア周波数」という場合がある)との間隔(TX-RX frequency separation:TX−RX周波数間隔)のデフォルト値が、周波数バンド毎に決められている。非特許文献8には、該TX−RX周波数間隔のデフォルト値が記載されている。
LTEにおいて、セルは、自セルが運用している周波数バンド情報と上りキャリア周波数とを報知情報として、傘下のUEに対して報知する。具体的には、周波数バンド情報は、SIB1に含まれる。上りキャリア周波数は、SIB2に含まれる。上りキャリア周波数がSIB2に含まれない場合、上りキャリア周波数は、TX−RX周波数間隔のデフォルト値を用いて下りキャリア周波数から導出される。UEは、セル選択あるいは再選択をすることによって、下りキャリア周波数を認識し、セルからの報知情報を受信することによって、セルが運用している周波数バンドと上りキャリア周波数とを得ることが可能となる。
非特許文献1に開示されているとおり、3GPPでは、リリース10として「ロングタームエボリューション アドヴァンスド」(Long Term Evolution Advanced:LTE−A)の規格策定が進められている。
LTE−Aシステムでは、100MHzまでのより広い周波数帯域幅(transmission bandwidths)をサポートするため、二つ以上のコンポーネントキャリア(Component Carrier:CC)をアグリゲーション(aggregation)すなわち集約する、キャリアアグリゲーション(Carrier Aggregation:CA)が検討されている。
LTE対応であるリリース8または9対応のUEが、一つのサービングセルに相当するCC上のみで送受信可能であるのに対して、リリース10対応のUEは、同時に複数のサービングセルに相当するCC上で送受信、あるいは受信のみ、あるいは送信のみをするための能力(ケーパビリティ、capability)を持つことが考えられている。
各CCは、リリース8または9の構成を用いており、CAは、連続CC、非連続CC、異なる周波数帯域幅のCCをサポートする。UEが下りリンクのCC(DL CC)数以上の上りリンクのCC(UL CC)数を構成することは不可能である。同一eNBから構成されるCCは、同じカバレッジを提供する必要は無い。CCは、リリース8または9と互換性を有する。
CAにおいて、上りリンク、下りリンクともに、サービングセル毎に一つの独立したHARQエンティティがある。トランスポートブロックは、サービングセル毎にTTI毎に生成される。各トランスポートブロックとHARQ再送とは、シングルサービングセルにマッピングされる。
CAが構成される場合、UEはNWと唯一つのRRC接続(RRC connection)を有する。RRC接続において、一つのサービングセルがNASモビリティ情報とセキュリティ入力を与える。このセルをプライマリセル(Primary Cell:PCell)と呼ぶ。下りリンクで、PCellに対応するキャリアは、下りプライマリコンポーネントキャリア(Downlink Primary Component Carrier:DL PCC)である。上りリンクで、PCellに対応するキャリアは、上りプライマリコンポーネントキャリア(Uplink Primary Component Carrier:UL PCC)である。UEケーパビリティに応じて、セカンダリセル(Secondary Cell:SCell)が、PCellとサービングセルとの組を形成するために構成される。下りリンクで、SCellに対応するキャリアは、下りセカンダリコンポーネントキャリア(Downlink Secondary Component Carrier:DL SCC)である。上りリンクで、SCellに対応するキャリアは、上りセカンダリコンポーネントキャリア(Uplink Secondary Component Carrier:UL SCC)である。
一つのUEに対して、一つのPCellと、一つ以上のSCellからなるサービングセルとの組が構成される。
各SCellにおいて、下りリンク(DL)用リソースに加えて、UEによる上りリンク(UL)用リソースの利用が可能である。DL SCCの数は、UL SCCの数以上となる。UL用リソースのみに使用されるSCellは無い。一つのUEにとって、各UL用リソースは、一つのサービングセルのみに属する。サービングセルの数は、UEのケーパビリティによる。
PCellは、HOプロシージャのみで変更される。PCellは、PUCCHの送信に用いられる。なお、UL−SCHの無いDL−SCHのHARQのためのPUCCHは、UL PCCのみで送信される。PCellは、SCellsとは異なり、デアクティベート(de-activate)されない。
PCellがRLF(Radio link failure)となったとき、リエスタブリッシュメント(Re-establishment)がトリガされる。SCellsではトリガされない。NAS情報は、PCellから得られる。
SCellsの再構成(reconfiguration)、追加(addition)、削除(removal)は、RRCによってなされる。LTE内のハンドオーバでもまた、RRCは、ターゲットPCellとともに使用されるSCellsを追加(addition)、削除(removal)、再構成(reconfiguration)する。
SCell追加の際、そのSCellの必要な全システム情報(SI)を送信するため、個別RRCシグナリング(dedicated RRC signalling)が用いられる。すなわち、コネクテッドモードで行われ、UEは、SCellから報知されるSIを受信する必要は無い。
また、各セルにおいて、SIB2は上りリンク用リソースのキャリア周波数を示す。
3GPP TS36.300 V10.1.0 3GPP TS36.331 V9.4.0 3GPP TS36.304 V9.4.0 3.1章、4.3章、5.2.4章 3GPP S1−083461 3GPP R2−082899 3GPP TR 36.814 V9.0.0 3GPP TR 36.912 V9.3.0 3GPP TS 36.101 V10.0.0
LTE−Aシステムでは、通信速度を向上するために、LTEシステムの周波数帯域幅よりも大きい周波数帯域幅、具体的には100MHzまでの周波数帯域幅をサポートすることが考えられている。各地域の周波数資源(リソース)の利用状況は様々である。したがって、周波数帯域幅を連続して100MHz確保できない地域も考えられる。すなわち、離散的で狭帯域な周波数リソースしか確保できない場合もある。このような場合でも、周波数リソースの有効活用を図るため、柔軟な周波数バンドの割当ての要求が高い。他方、従来の音声通信サービスと異なり、DLとULとで異なる周波数帯域幅を必要とするサービスの要求も高くなっている。
しかし、従来の通信システムにおいては、DL用リソースと同一の周波数バンド内にUL用リソースを必ず確保しておく必要があり、周波数リソースの効率的な利用の妨げとなっている。また、下りリンク用の周波数バンドには、必ず対となる上りリンク用の周波数バンドを確保する必要がある。したがって、例えば、狭帯域の離散的な空き周波数バンドが多数存在するような場合、それらを利用することは困難であり、周波数リソースの利用効率を低下させるという問題が生じる。
本発明の目的は、通信速度の向上を実現しつつ、柔軟な周波数リソースの利用を可能とし、周波数リソースの利用効率を向上させることが可能な移動体通信システム、基地局装置および通信端末装置を提供することである。
本発明の移動体通信システムは、通信端末装置および前記通信端末装置との間で無線通信を行う基地局装置を含む移動体通信システムであって、前記基地局装置から前記通信端末装置への下り通信に割当てられる下りリンク用リソースを含み、前記通信端末装置から前記基地局装置への上り通信に割当てられる上りリンク用リソースを含まない非関連セルを構成し、前記下りリンク用リソースと前記上りリンク用リソースとの間の前記非関連セルに関するリンク情報を、前記基地局装置から前記通信端末装置に通知せず、前記基地局装置から前記通信端末装置への下り通信に割当てられる他の下りリンク用リソースと、前記通信端末装置から前記基地局装置への上り通信に割当てられる上りリンク用リソースとを含む関連セルを構成し、前記下りリンク用リソースと前記上りリンク用リソースとの間の前記関連セルに関するリンク情報を、前記基地局装置から前記通信端末装置に通知し、前記非関連セルと前記関連セルとを用いて前記下り通信を行い、前記関連セルを用いて前記上り通信を行うことを特徴とする。
本発明の基地局装置は、通信端末装置との間で無線通信を行う基地局装置であって、前記通信端末装置への下り通信に割当てられる下りリンク用リソースを含み、前記通信端末装置からの上り通信に割当てられる上りリンク用リソースを含まない非関連セルを構成し、前記下りリンク用リソースと前記上りリンク用リソースとの間の前記非関連セルに関するリンク情報を前記通信端末装置に通知せず、前記通信端末装置への下り通信に割当てられる他の下りリンク用リソースと、前記通信端末装置からの上り通信に割当てられる上りリンク用リソースとを含む関連セルを構成し、前記下りリンク用リソースと前記上りリンク用リソースとの間の前記関連セルに関するリンク情報を前記通信端末装置に通知し、前記非関連セルと前記関連セルとを用いて前記下り通信を行い、前記関連セルを用いて前記上り通信を行うことを特徴とする。
本発明の通信端末装置は、基地局装置との間で無線通信を行う通信端末装置であって、前記基地局装置からの下り通信に割当てられる下りリンク用リソースを含み、前記基地局装置への上り通信に割当てられる上りリンク用リソースを含まない非関連セルを構成し、前記下りリンク用リソースと前記上りリンク用リソースとの間の前記非関連セルに関するリンク情報を受信せず、前記基地局装置からの下り通信に割当てられる他の下りリンク用リソースと、前記基地局装置への上り通信に割当てられる上りリンク用リソースとを含む関連セルを構成し、前記下りリンク用リソースと前記上りリンク用リソースとの間の前記関連セルに関するリンク情報を前記基地局装置から受信し、前記非関連セルと前記関連セルとを用いて前記下り通信を行い、前記関連セルを用いて前記上り通信を行うことを特徴とする。
本発明の移動体通信システムによれば、通信速度の向上を実現しつつ、柔軟な周波数リソースの利用を可能とし、周波数リソースの利用効率を向上させることができる。
本発明の基地局装置によれば、通信速度の向上を実現しつつ、柔軟な周波数リソースの利用を可能とし、周波数リソースの利用効率を向上させることができる。
本発明の通信端末装置によれば、通信速度の向上を実現しつつ、柔軟な周波数リソースの利用を可能とし、周波数リソースの利用効率を向上させることができる。
この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
LTE方式の通信システムの構成を示す説明図である。 LTE方式の通信システムで使用される無線フレームの構成を示す説明図である。 MBSFNフレームの構成を示す説明図である。 LTE方式の通信システムで使用される物理チャネルを説明する説明図である。 LTE方式の通信システムで使用されるトランスポートチャネルを説明する説明図である。 LTE方式の通信システムで使用される論理チャネルを説明する説明図である。 現在3GPPにおいて議論されているLTE方式の移動体通信システムの全体的な構成を示すブロック図である。 本発明に係る移動端末(図7の移動端末71)の構成を示すブロック図である。 本発明に係る基地局(図7の基地局72)の構成を示すブロック図である。 本発明に係るMME(図7のMME部73)の構成を示すブロック図である。 本発明に係るHeNBGWである図7に示すHeNBGW74の構成を示すブロック図である。 LTE方式の通信システムにおいて移動端末(UE)が行うセルサーチから待ち受け動作までの概略を示すフローチャートである。 CAの概念を示す図である。 一つのDL CCに対して一つのUL CCが関連付けられた構成を示す図である。 二つの異なるDL CCに対して同一のUL CCが関連付けられた構成を示す図である。 ある下りリンクの周波数バンド内のDL CCに対して、予め決められた対応する上りリンクの周波数バンドとは異なる周波数バンド内のUL CCが関連付けられた構成を示す図である。 DL CCに対してUL CCが関連付けられていない構成を示す図である。 SIB2によるDL/ULリンクで構成したセルの概念を示す図である。 DL CCに関連付けるUL CCを有さないDL CCのみで構成するセルを示す図である。 セルのDL/ULリンク情報を用いる場合におけるセルのシステム情報(SI)の設定処理に関するeNBの処理手順を示すフローチャートである。 セルのDL/ULリンク情報を用いる場合におけるUEによるUL CCを構成しないセルの選択または再選択あるいはキャンプオンを禁止する処理に関するUEの処理手順を示すフローチャートである。 セルのバード情報を用いる場合におけるセルのシステム情報(SI)の設定処理に関するeNBの処理手順を示すフローチャートである。 セルのバード情報を用いる場合におけるUEによるUL CCを構成しないセルの選択または再選択あるいはキャンプオンを禁止する処理に関するUEの処理手順を示すフローチャートである。 DL/ULリンク情報を用いて上りアクセスを禁止する場合におけるセルのシステム情報(SI)の設定処理に関するeNBの処理手順を示すフローチャートである。 セルのDL/ULリンク情報を用いてUEによるUL CCを構成しないセルでの上りアクセスを禁止する処理に関するUEの処理手順を示すフローチャートである。 アクセスを確率的に禁止する情報を用いる場合におけるセルのシステム情報(SI)の設定処理に関するeNBの処理手順を示すフローチャートである。 アクセスを確率的に禁止する情報を用いる場合におけるUEによるUL CCを構成しないセルでの上りアクセスを禁止する処理に関するUEの処理手順を示すフローチャートである。 本発明の実施の形態1におけるCAに使用するセルを説明するための図である。 UL CCを構成しないセルを用いた場合のCAのシーケンスの一例を示す図である。 DL CCと関連付けるUL CCを異なる周波数バンド内に構成したセルを示す図である。 セルのシステム情報(SI)の設定処理に関するeNBの処理手順を示すフローチャートである。 DL CCとUL CCとが異なる周波数バンド内に構成されたセルをセル選択した場合のUEの処理手順を示すフローチャートである。 セルのバード情報を用いる場合におけるセルのシステム情報(SI)の設定処理に関するeNBの処理手順を示すフローチャートである。 セルのバード情報を用いる場合におけるUEによるDL CCと異なる周波数バンドにUL CCが構成されたセルの選択または再選択あるいはキャンプオンを禁止する処理に関するUEの処理手順を示すフローチャートである。 本発明の実施の形態2におけるCAに使用するセルを説明するための図である。 DL CCとUL CCとが異なる周波数バンドで構成されるセルを用いた場合のCAのシーケンスの一例を示す図である。 異なる周波数バンドの二つのDL CCに同一のUL CCを関連付けて構成した二つのセルの概念を示す図である。 異なる周波数バンドの二つのDL CCに同一のUL CCを関連付けて二つのセルを構成した場合のCAのシーケンスの一例を示す図である。 異なる周波数バンドの二つのDL CCに同一のUL CCを関連付けて二つのセルを構成した場合のCAのシーケンスの他の例を示す図である。 関連付けるUL用リソースの無い一つ以上のDL用リソースからなる周波数バンドの概念を示す図である。 関連付けるUL用リソースの無い一つ以上のDL用リソースからなる周波数バンドの設定例を示す図である。 UL CCに関連付けるDL CCを有さないUL CCのみで構成するセルの概念を示す図である。 本発明の実施の形態4におけるCAに使用するセルを説明するための図である。 DL CCを構成しないセルを用いた場合のCAのシーケンスの一例を示す図である。 関連付けるDL用リソースの無い一つ以上のUL用リソースからなる周波数バンドの概念を示す図である。 関連付けるDL用リソースの無い一つ以上のUL用リソースからなる周波数バンドの設定例を示す図である。
実施の形態1.
図7は、現在3GPPにおいて議論されているLTE方式の移動体通信システムの全体的な構成を示すブロック図である。現在3GPPにおいては、CSG(Closed Subscriber Group)セル(E−UTRANのHome−eNodeB(Home−eNB;HeNB)、UTRANのHome−NB(HNB))と、non−CSGセル(E−UTRANのeNodeB(eNB)、UTRANのNodeB(NB)、GERANのBSS)とを含めたシステムの全体的な構成が検討されており、E−UTRANについては、図7のような構成が提案されている(非特許文献1 4.6.1.章参照)。
図7について説明する。移動端末装置(以下「移動端末」または「UE」という)71は、基地局装置(以下「基地局」という)72と無線通信可能であり、無線通信で信号の送受信を行う。移動端末装置は、通信端末装置に相当する。基地局72は、マクロセルであるeNB72−1と、ローカルノードであるHome−eNB72−2とに分類される。eNB72−1は、大規模基地局装置に相当し、移動端末UE71と通信可能な範囲であるカバレッジとして、比較的大きい大規模カバレッジを有する。Home−eNB72−2は、小規模基地局装置に相当し、カバレッジとして、比較的小さい小規模カバレッジを有する。
eNB72−1は、MME、あるいはS−GW、あるいはMMEおよびS−GWを含むMME/S−GW部(以下「MME部」という場合がある)73とS1インタフェースにより接続され、eNB72−1とMME部73との間で制御情報が通信される。ひとつのeNB72−1に対して、複数のMME部73が接続されてもよい。eNB72−1間は、X2インタフェースにより接続され、eNB72−1間で制御情報が通信される。
Home−eNB72−2は、MME部73とS1インタフェースにより接続され、Home−eNB72−2とMME部73との間で制御情報が通信される。ひとつのMME部73に対して、複数のHome−eNB72−2が接続される。あるいは、Home−eNB72−2は、HeNBGW(Home-eNB GateWay)74を介してMME部73と接続される。Home−eNB72−2とHeNBGW74とは、S1インタフェースにより接続され、HeNBGW74とMME部73とはS1インタフェースを介して接続される。ひとつまたは複数のHome−eNB72−2がひとつのHeNBGW74と接続され、S1インタフェースを通して情報が通信される。HeNBGW74は、ひとつまたは複数のMME部73と接続され、S1インタフェースを通して情報が通信される。
さらに現在3GPPでは、以下のような構成が検討されている。Home−eNB72−2間のX2インタフェースはサポートされない。MME部73からは、HeNBGW74はeNB72−1として見える。Home−eNB72−2からは、HeNBGW74はMME部73として見える。Home−eNB72−2が、HeNBGW74を介してMME部73に接続されるか否かに関係なく、Home−eNB72−2とMME部73との間のインタフェースは、S1インタフェースで同じである。HeNBGW74は、複数のMME部73にまたがるような、Home−eNB72−2へのモビリティ、あるいはHome−eNB72−2からのモビリティはサポートしない。Home−eNB72−2は、唯一のセルをサポートする。
図8は、本発明に係る移動端末(図7の移動端末71)の構成を示すブロック図である。図8に示す移動端末71の送信処理を説明する。まず、プロトコル処理部801からの制御データ、およびアプリケーション部802からのユーザデータが、送信データバッファ部803へ保存される。送信データバッファ部803に保存されたデータは、エンコーダー部804へ渡され、誤り訂正などのエンコード処理が施される。エンコード処理を施さずに、送信データバッファ部803から変調部805へ直接出力されるデータが存在してもよい。エンコーダー部804でエンコード処理されたデータは、変調部805にて変調処理が行われる。変調されたデータは、ベースバンド信号に変換された後、周波数変換部806へ出力され、無線送信周波数に変換される。その後、アンテナ807から基地局72に送信信号が送信される。
また、移動端末71の受信処理は、以下のとおりに実行される。基地局72からの無線信号がアンテナ807により受信される。受信信号は、周波数変換部806にて無線受信周波数からベースバンド信号に変換され、復調部808において復調処理が行われる。復調後のデータは、デコーダー部809へ渡され、誤り訂正などのデコード処理が行われる。デコードされたデータのうち、制御データはプロトコル処理部801へ渡され、ユーザデータはアプリケーション部802へ渡される。移動端末71の一連の処理は、制御部810によって制御される。よって制御部810は、図8では省略しているが、各部801〜809と接続している。
図9は、本発明に係る基地局(図7の基地局72)の構成を示すブロック図である。図9に示す基地局72の送信処理を説明する。EPC通信部901は、基地局72とEPC(MME部73、HeNBGW74など)との間のデータの送受信を行う。他基地局通信部902は、他の基地局との間のデータの送受信を行う。Home−eNB72−2間のX2インタフェースはサポートされない方向であるため、Home−eNB72−2では、他基地局通信部902が存在しないことも考えられる。EPC通信部901および他基地局通信部902は、それぞれプロトコル処理部903と情報の受け渡しを行う。プロトコル処理部903からの制御データ、ならびにEPC通信部901および他基地局通信部902からのユーザデータおよび制御データは、送信データバッファ部904へ保存される。
送信データバッファ部904に保存されたデータは、エンコーダー部905へ渡され、誤り訂正などのエンコード処理が施される。エンコード処理を施さずに、送信データバッファ部904から変調部906へ直接出力されるデータが存在してもよい。エンコードされたデータは、変調部906にて変調処理が行われる。変調されたデータは、ベースバンド信号に変換された後、周波数変換部907へ出力され、無線送信周波数に変換される。その後、アンテナ908より一つもしくは複数の移動端末71に対して送信信号が送信される。
また、基地局72の受信処理は以下のとおりに実行される。ひとつもしくは複数の移動端末71からの無線信号が、アンテナ908により受信される。受信信号は、周波数変換部907にて無線受信周波数からベースバンド信号に変換され、復調部909で復調処理が行われる。復調されたデータは、デコーダー部910へ渡され、誤り訂正などのデコード処理が行われる。デコードされたデータのうち、制御データはプロトコル処理部903あるいはEPC通信部901、他基地局通信部902へ渡され、ユーザデータはEPC通信部901および他基地局通信部902へ渡される。基地局72の一連の処理は、制御部911によって制御される。よって制御部911は、図9では省略しているが、各部901〜910と接続している。
現在3GPPにおいて議論されているHome−eNB72−2の機能を以下に示す(非特許文献1 4.6.2章参照)。Home−eNB72−2は、eNB72−1と同じ機能を有する。加えて、HeNBGW74と接続する場合、Home−eNB72−2は、適当なサービングHeNBGW74を発見する機能を有する。Home−eNB72−2は、1つのHeNBGW74に唯一接続する。つまり、HeNBGW74との接続の場合は、Home−eNB72−2は、S1インタフェースにおけるFlex機能を使用しない。Home−eNB72−2は、1つのHeNBGW74に接続されると、同時に別のHeNBGW74や別のMME部73に接続しない。
Home−eNB72−2のTACとPLMN IDは、HeNBGW74によってサポートされる。Home−eNB72−2をHeNBGW74に接続すると、「UE attachment」でのMME部73の選択は、Home−eNB72−2の代わりに、HeNBGW74によって行われる。Home−eNB72−2は、ネットワーク計画なしで配備される可能性がある。この場合、Home−eNB72−2は、1つの地理的な領域から別の地理的な領域へ移される。したがって、この場合のHome−eNB72−2は、位置によって、異なったHeNBGW74に接続する必要がある。
図10は、本発明に係るMMEの構成を示すブロック図である。図10では、前述の図7に示すMME部73に含まれるMME73aの構成を示す。PDN GW通信部1001は、MME73aとPDN GWとの間のデータの送受信を行う。基地局通信部1002は、MME73aと基地局72との間のS1インタフェースによるデータの送受信を行う。PDN GWから受信したデータがユーザデータであった場合、ユーザデータは、PDN GW通信部1001から、ユーザプレイン通信部1003経由で基地局通信部1002に渡され、1つあるいは複数の基地局72へ送信される。基地局72から受信したデータがユーザデータであった場合、ユーザデータは、基地局通信部1002から、ユーザプレイン通信部1003経由でPDN GW通信部1001に渡され、PDN GWへ送信される。
PDN GWから受信したデータが制御データであった場合、制御データは、PDN GW通信部1001から制御プレイン制御部1005へ渡される。基地局72から受信したデータが制御データであった場合、制御データは、基地局通信部1002から制御プレイン制御部1005へ渡される。
HeNBGW通信部1004は、HeNBGW74が存在する場合に設けられ、情報種別によって、MME73aとHeNBGW74との間のインタフェース(IF)によるデータの送受信を行う。HeNBGW通信部1004から受信した制御データは、HeNBGW通信部1004から制御プレイン制御部1005へ渡される。制御プレイン制御部1005での処理の結果は、PDN GW通信部1001経由でPDN GWへ送信される。また、制御プレイン制御部1005で処理された結果は、基地局通信部1002経由でS1インタフェースにより1つあるいは複数の基地局72へ送信され、またHeNBGW通信部1004経由で1つあるいは複数のHeNBGW74へ送信される。
制御プレイン制御部1005には、NASセキュリティ部1005−1、SAEベアラコントロール部1005−2、アイドルステート(Idle State)モビリティ管理部1005―3などが含まれ、制御プレインに対する処理全般を行う。NASセキュリティ部1005―1は、NAS(Non-Access Stratum)メッセージのセキュリティなどを行う。SAEベアラコントロール部1005―2は、SAE(System Architecture Evolution)のベアラの管理などを行う。アイドルステートモビリティ管理部1005―3は、待受け状態(LTE−IDLE状態、単にアイドルとも称される)のモビリティ管理、待受け状態時のページング信号の生成および制御、傘下の1つあるいは複数の移動端末71のトラッキングエリア(TA)の追加、削除、更新、検索、トラッキングエリアリスト(TA List)管理などを行う。
MME73aは、UEが登録されている(registered)追跡領域(トラッキングエリア:Tracking Area:TA)に属するセルへ、ページングメッセージを送信することで、ページングプロトコルに着手する。MME73aに接続されるHome−eNB72−2のCSGの管理やCSG−IDの管理、そしてホワイトリスト管理は、アイドルステートモビリティ管理部1005―3で行ってもよい。
CSG−IDの管理では、CSG−IDに対応する移動端末とCSGセルとの関係が管理(追加、削除、更新、検索)される。例えば、あるCSG−IDにユーザアクセス登録された一つまたは複数の移動端末と該CSG−IDに属するCSGセルとの関係であってもよい。ホワイトリスト管理では、移動端末とCSG−IDとの関係が管理(追加、削除、更新、検索)される。例えば、ホワイトリストには、ある移動端末がユーザ登録した一つまたは複数のCSG−IDが記憶されてもよい。これらのCSGに関する管理は、MME73aの中の他の部分で行われてもよい。MME73aの一連の処理は、制御部1006によって制御される。よって制御部1006は、図10では省略しているが、各部1001〜1005と接続している。
現在3GPPにおいて議論されているMME73aの機能を以下に示す(非特許文献1 4.6.2章参照)。MME73aは、CSG(Closed Subscriber Groups)のメンバーの1つ、あるいは複数の移動端末のアクセスコントロールを行う。MME73aは、ページングの最適化(Paging optimization)の実行をオプションとして認める。
図11は、本発明に係るHeNBGWである図7に示すHeNBGW74の構成を示すブロック図である。EPC通信部1101は、HeNBGW74とMME73aとの間のS1インタフェースによるデータの送受信を行う。基地局通信部1102は、HeNBGW74とHome−eNB72−2との間のS1インタフェースによるデータの送受信を行う。ロケーション処理部1103は、EPC通信部1101経由で渡されたMME73aからのデータのうちレジストレーション情報などを、複数のHome−eNB72−2に送信する処理を行う。ロケーション処理部1103で処理されたデータは、基地局通信部1102に渡され、ひとつまたは複数のHome−eNB72−2にS1インタフェースを介して送信される。
ロケーション処理部1103での処理を必要とせず通過(透過)させるだけのデータは、EPC通信部1101から基地局通信部1102に渡され、ひとつまたは複数のHome−eNB72−2にS1インタフェースを介して送信される。HeNBGW74の一連の処理は、制御部1104によって制御される。よって制御部1104は、図11では省略しているが、各部1101〜1103と接続している。
現在3GPPにおいて議論されているHeNBGW74の機能を以下に示す(非特許文献1 4.6.2章参照)。HeNBGW74は、S1アプリケーションについてリレーする。Home−eNB72−2へのMME73aの手順の一部分であるが、HeNBGW74は、移動端末71に関係しないS1アプリケーションについて終端する。HeNBGW74が配置されるとき、移動端末71に無関係な手順がHome−eNB72−2とHeNBGW74との間、そしてHeNBGW74とMME73aとの間を通信される。HeNBGW74と他のノードとの間でX2インタフェースは設定されない。HeNBGW74は、ページングの最適化(Paging optimization)の実行をオプションとして認める。
次に移動体通信システムにおける一般的なセルサーチ方法の一例を示す。図12は、LTE方式の通信システムにおいて移動端末(UE)が行うセルサーチから待ち受け動作までの概略を示すフローチャートである。移動端末は、セルサーチを開始すると、ステップST1201で、周辺の基地局から送信される第一同期信号(P−SS)、および第二同期信号(S−SS)を用いて、スロットタイミング、フレームタイミングの同期をとる。P−SSとS−SSとを合わせて、同期信号(SS)には、セル毎に割り当てられたPCI(Physical Cell Identity)に1対1に対応するシンクロナイゼーションコードが割り当てられている。PCIの数は現在504通りが検討されており、この504通りのPCIを用いて同期をとるとともに、同期がとれたセルのPCIを検出(特定)する。
次に同期がとれたセルに対して、ステップST1202で、基地局からセル毎に送信される参照信号RS(cell-specific Reference Signal:CRS)を検出し受信電力(RSRPとも称される。)の測定を行う。参照信号RSには、PCIと1対1に対応したコードが用いられており、そのコードで相関をとることによって他セルと分離できる。ステップST1201で特定したPCIから、該セルのRS用のコードを導出することによって、RSを検出し、RS受信電力を測定することが可能となる。
次にステップST1203で、ステップST1202までで検出されたひとつ以上のセルの中から、RSの受信品質が最もよいセル(例えば、RSの受信電力が最も高いセル、つまりベストセル)を選択する。
次にステップST1204で、ベストセルのPBCHを受信して、報知情報であるBCCHを得る。PBCH上のBCCHには、セル構成情報が含まれるMIB(Master Information Block)がのる。したがってPBCHを受信してBCCHを得ることで、MIBが得られる。MIBの情報としては、例えば、DL(ダウンリンク)システム帯域幅(送信帯域幅設定(transmission bandwidth configuration:dl-bandwidth)とも呼ばれる)、送信アンテナ数、SFN(System Frame Number)などがある。
次にステップST1205で、MIBのセル構成情報をもとに該セルのDL−SCHを受信して、報知情報BCCHの中のSIB(System Information Block)1を得る。SIB1には、該セルへのアクセスに関する情報や、セルセレクションに関する情報、他のSIB(SIBk;k≧2の整数)のスケジューリング情報が含まれる。また、SIB1には、TAC(Tracking Area Code)が含まれる。
次にステップST1206で、移動端末は、ステップST1205で受信したSIB1のTACと、移動端末が既に保有しているTA(Tracking Area)リスト内のTACとを比較する。比較した結果、ステップST1205で受信したTACがTAリスト内に含まれるTACと同じならば、該セルで待ち受け動作に入る。比較して、ステップST1205で受信したTACがTAリスト内に含まれなければ、移動端末は該セルを通してコアネットワーク(Core Network,EPC)(MMEなどが含まれる)へ、TAU(Tracking Area Update)を行うためにTAの変更を要求する。コアネットワークは、TAU要求信号とともに移動端末から送られてくる該移動端末の識別番号(UE−IDなど)をもとに、TAリストの更新を行う。コアネットワークは、移動端末に更新後のTAリストを送信する。移動端末は、受信したTAリストにて移動端末が保有するTACリストを書き換える(更新する)。その後、移動端末は、該セルで待ち受け動作に入る。
LTE、LTE−AおよびUMTS(Universal Mobile Telecommunication System)においては、CSG(Closed Subscriber Group)セルの導入が検討されている。前述したように、CSGセルに登録したひとつまたは複数の移動端末のみにアクセスが許される。CSGセルと登録されたひとつまたは複数の移動端末とがひとつのCSGを構成する。このように構成されたCSGには、CSG−IDと呼ばれる固有の識別番号が付される。なお、ひとつのCSGには、複数のCSGセルがあってもよい。移動端末は、どれかひとつのCSGセルに登録すれば、そのCSGセルが属するCSGの他のCSGセルにはアクセス可能となる。
また、LTEおよびLTE−AでのHome−eNBやUMTSでのHome−NBが、CSGセルとして使われることがある。CSGセルに登録した移動端末は、ホワイトリストを有する。具体的には、ホワイトリストはSIM(Subscriber Identity Module)/USIMに記憶される。ホワイトリストには、移動端末が登録したCSGセルのCSG情報が格納される。CSG情報として具体的には、CSG−ID、TAI(Tracking Area Identity)、TACなどが考えられる。CSG−IDとTACとが対応付けられていれば、どちらか一方でよい。また、CSG−IDおよびTACと、GCI(Global Cell Identity)とが対応付けられていればGCIでもよい。
以上から、ホワイトリストを有しない(本発明においては、ホワイトリストが空(empty)の場合も含める)移動端末は、CSGセルにアクセスすることは不可能であり、non−CSGセルのみにしかアクセスできない。一方、ホワイトリストを有する移動端末は、登録したCSG−IDのCSGセルにも、non−CSGセルにもアクセスすることが可能となる。
3GPPでは、全PCI(Physical Cell Identity)を、CSGセル用とnon−CSGセル用とに分割することが議論されている(非特許文献1参照)。全PCIのうち、CSGセルによって使用するためにネットワークによって予約されたPCI範囲がある(非特許文献1 10.5.1.1章参照)。PCI範囲を分割することをPCIスプリットと称することがある。PCIスプリット情報は、システム情報にて基地局から傘下の移動端末に対して報知される。非特許文献5は、PCIスプリットを用いた移動端末の基本動作を開示する。PCIスプリット情報を有していない移動端末は、全PCIを用いて(例えば504コード全てを用いて)セルサーチを行う必要がある。これに対して、PCIスプリット情報を有する移動端末は、当該PCIスプリット情報を用いてセルサーチを行うことが可能である。
また3GPPでは、ハイブリッドセルのためのPCIは、CSGセル用のPCI範囲の中には含まれないことが決定されている(非特許文献1 10.7章参照)。
3GPPでは、移動端末がCSGセルをセレクション、あるいはリセレクションする方法について2つのモードが存在する。1つ目は、自動(Automatic)モードである。自動モードの特徴を以下に示す。移動端末内の許可CSGリスト(Allowed CSG ID List)を利用して、セレクション、あるいはリセレクションを行う。PLMNの選択が完了した後、non−CSGセル、あるいは許可CSGリストに存在するCSG IDを伴うCSGセルである場合にのみ、選択している該PLMN中の1つのセルにキャンプオンする。移動端末の許可CSGリストが空であるならば、移動端末は、CSGセルの自立(autonomous)サーチ機能を停止する(非特許文献3 5.2.4.8.1章参照)。
2つ目は、手動(Manual)モードである。手動モードの特徴を以下に示す。移動端末は、現在選択されているPLMNで利用可能なCSGのリストを、ユーザに示す。移動端末がユーザに提供するCSGのリストは、移動端末に保存されている許可CSGリストに含まれるCSGに限られない。ユーザが該CSGのリストに基づいてCSGを選定した後、移動端末は、選択されたCSG IDを伴うセルへキャンプオンし、登録(register)を試みる(非特許文献3参照)。
HeNBおよびHNBに対しては、様々なサービスへの対応が求められている。例えば、オペレータは、ある決められたHeNBおよびHNBに移動端末を登録させ、登録した移動端末のみにHeNBおよびHNBのセルへのアクセスを許可することで、該移動端末が使用できる無線リソースを増大させて、高速に通信を行えるようにする。その分、オペレータは、課金料を通常よりも高く設定する、といったサービスである。
このようなサービスを実現するため、登録した(加入した、メンバーとなった)移動端末のみがアクセスできるCSGセル(Closed Subscriber Group cell)が導入されている。CSGセル(Closed Subscriber Group cell)は、商店街やマンション、学校、会社などへ数多く設置されることが要求される。例えば、商店街では店舗毎、マンションでは部屋毎、学校では教室毎、会社ではセクション毎にCSGセルを設置し、各CSGセルに登録したユーザのみが該CSGセルを使用可能とするような使用方法が要求されている。HeNB/HNBは、マクロセルのカバレッジ外での通信を補完するため(エリア補完型HeNB/HNB)だけでなく、上述したような様々なサービスへの対応(サービス提供型HeNB/HNB)が求められている。このため、HeNB/HNBがマクロセルのカバレッジ内に設置される場合も生じる。
前述のように、LTE−Aシステムでは、LTEシステムの周波数帯域幅よりも広い100MHzまでの周波数帯域幅をサポートするために、二つ以上のCCをアグリゲーション、すなわち集約する、CAが検討されている。
図13は、CAの概念を示す図である。図13に示すeNBは、DL CCnと、SIB2によるDL/ULリンクによってDL−CCnとそれぞれ関連付けられたUL CCnとからなるセルnを構成する。DL CCnのキャリア周波数をFn(DL)で示し、UL CCnのキャリア周波数をFn(UL)で示す。ここで、nは1〜5の整数である。
UEは、セル1にキャンプオンし、矢符1301で示されるRRC接続を行う。これによって、セル1がPCellとなる。
その後、eNBは、該UEに対して、矢符1302で示される個別RRCシグナリングによって、アグリゲーションするCCに関する情報を通知する。CCに関する情報としては、DL CCmとUL CCmとからなるセルmに関する情報、例えばシステム情報を通知する。ここで、mは2〜5の整数である。このように、eNBがUEに対して前記CCに関する情報を通知することによって、セル2〜セル5がSCellとなる。
以上のようにして、eNBは、UEに対して、セル1〜セル5によってCAを行う。そして、UEは、セル1〜セル5との間で、CAに基づいて、矢符1303で示されるように通信を行う。
CAをサポートするUEの構成例を示す。前述の図8で示した構成で、変調部805、周波数変換部806、アンテナ807および復調部808の一部あるいは全部を広帯域化すればよい。送信側においては、変調部805、周波数変換部806およびアンテナ807の一部あるいは全部を所定の数の連続したUL CCを含む帯域で動作するようにすればよい。受信側においては、アンテナ807、周波数変換部806および復調部808の一部あるいは全部を所定の数の連続したDL CCを含む帯域で動作するようにすればよい。このようにすることによって、所定の数の連続したUL CCあるいはDL CCによるCAをサポートすることが可能となる。
また、別の方法として、変調部805、周波数変換部806、アンテナ807および復調部808の一部あるいは全部を複数並列に設けて、所定の数の複数の非連続なUL CCあるいはDL CCを含む帯域で動作するようにすればよい。送信側においては、変調部805、周波数変換部806およびアンテナ807の一部あるいは全部を複数並列に設けて、所定の数の非連続なUL CCを含む帯域で動作するようにすればよい。受信側においては、アンテナ807、周波数変換部806および復調部808の一部あるいは全部を複数並列に設けて、所定の数の非連続なDL CCを含む帯域で動作するようにすればよい。このようにすることによって、所定の数の非連続なUL CCあるいはDL CCによるCAをサポートすることが可能となる。また、前記二つの構成を適宜組み合わせてもよい。
CAをサポートするeNBの構成例を示す。前述の図9で示した構成において、プロトコル処理部903で、eNBが構成するセル毎のCAを行うUEに対する処理を行い、送信データバッファ部904、エンコーダー部905、変調部906、周波数変換部907、アンテナ908、復調部909およびデコーダー部910をセル毎に構成すればよい。このようにすることによって、eNBが構成するセルにより、UEに対してCAを行うことが可能となる。
CAでアグリゲーションする各DL CCと、各DL CCと対をなすUL CCとの関連付け(以下「DL/ULリンク」という場合がある)を行う方法としては、2種類の方法がある。一つはSIB2によるDL/ULリンクである。他の一つは個別RRCシグナリングによるSCellの構成時に行われるDL/ULリンクである。
3GPPにおいては、個別RRCシグナリングによるDL/ULリンクは、SIB2によるDL/ULリンクと異なっていてもよいことが議論されている。例えば3GPP R2−104480(以下「非特許文献9」という)には、セルのDL/ULについての3GPPにおける議論が示されている。
SIB2によるDL/ULリンクは、従来のLTEにおけるSIB2によるDL/ULリンクと同じで、各セルのDL CCのSIB2でUL CCのキャリア周波数が傘下のUEに対して報知される。これは、セルのDL用リソースと、それと対をなすUL用リソースとを構成するためのものであるので、セル固有のDL/ULリンク(Cell specific link)あるいはセルのDL/ULリンク(Cell DL/UL link)と称される。
下りリンクの周波数バンドと、それと対をなす上りリンクの周波数バンドとは、予め決められているので、SIB2によるDL/ULリンクは、それらの対をなす周波数バンドの中で行われる。
なお、以下の説明では、CAの場合に限定せず、DL用リソースを「DL CC」、UL用リソースを「UL CC」と称す。
次に、図14および図15に、SIB2によるDL/ULリンクの構成例を示す。
図14は、一つのDL CCに対して一つのUL CCが関連付けられた構成を示す図である。DL CC1のSIB2で、UL CC1のキャリア周波数が示され、DL CC2のSIB2で、UL CC2のキャリア周波数が示される。
図15は、二つの異なるDL CCに対して同一のUL CCが関連付けられた構成を示す図である。DL CC1のSIB2で、UL CC1のキャリア周波数が示され、DL CC2のSIB2でも、UL CC1のキャリア周波数が示される。
次に、図16および図17に、SIB2によるDL/ULリンクで構成不可能な例を示す。
図16は、ある下りリンクの周波数バンド内のDL CCに対して、予め決められた対応する上りリンクの周波数バンドとは異なる周波数バンド内のUL CCが関連付けられた構成を示す図である。従来の音声のような通信においては、必ずDL CCと関連付けられるUL CCの存在が必要とされる。したがって、そのようなDL CCとUL CCとの構成を確保するために、FDDにおいては下りリンクの周波数バンドと対となる上りリンクの周波数バンドが予め決められている。従来のSIB2によるDL/ULのリンクでは、この予め決められた対となる周波数バンドの中で行われることを前提としているので、図16に示すような構成、すなわち予め決められた対となる周波数バンドと異なる周波数バンドへのリンクを行うことは不可能である。図16中の「×」印は、SIB2によるDL/ULのリンクで構成不可能なことを示している。
図17は、DL CCに対してUL CCが関連付けられていない構成を示す図である。従来の音声のような通信においては、必ずDL CCと関連付けられるUL CCの存在が必要とされる。このため、従来のSIB2によるDL/ULのリンクでは、図17に示すような構成、すなわちDL CCと関連付けるUL CCを無くすことも不可能である。図17中の「×」印は、SIB2によるDL/ULのリンクで構成不可能なことを示している。
一方、個別RRCシグナリングによるSCellの構成時に行われるDL/ULリンクは、キャリアアグリゲーション(CA)のために導入された。SCellが、CAを行うUE毎に個別RRCシグナリングで通知される。システムとしてセル毎に決められるSIB2によるDL/ULリンクが存在することが前提となっており、その上でUE特有のリンク(UE specific link)を構成する。3GPPでは、SIB2によるDL/ULリンクと個別RRCシグナリングによるDL/ULリンクとが異なる構成であってもよいことが議論されている。
個別RRCシグナリングによって構成されるDL/ULリンクの例として、SIB2によるDL/ULリンクと同じDL/ULリンク構成、DL CCに関連付けられるUL CCが構成されない構成、DL CCと関連付けられるUL CCが、SIB2によるDL/ULリンクのUL CCと異なる構成が存在する。
UL CCのみで、UL CCに関連付けられるDL CCの無いSCellの構成は無い。また、一つのUL CCに対して複数のDL CCが関連付けられるSCellの構成も無い。さらに、DL CCの存在する下りリンクの周波数バンドと、予め決められた対応する上りリンクの周波数バンドとは異なる周波数バンド内のUL CCとが関連付けられる構成も無い。
通信システムにおいては、周波数リソースの有効活用を図るために、柔軟な周波数バンドを割当てる要求が高い。また、従来の音声通信サービスと異なり、DLとULとで異なる周波数帯域幅を必要とするサービスの要求が高くなっている。これらの要求に対応するために、3GPPにおいては、DL CCの数とUL CCの数とが異なるCA(以下「非対称CA」という場合がある)が検討されている。
非対称CAを可能にする方法として、UE特有のリンク(UE specific link)がある。UE毎に、SIB2によるリンクとは異なるSCellを構成して、個別RRCシグナリングでUEに通知する方法である。この方法においては、例えば、CAを構成するSCellとして、DL CCに関連付けられるUL CCが構成されない構成とすることが可能である。言い換えると、DL CCのみのSCellを構成することが可能となる。したがって、非対称CAを可能とする。
しかし、たとえ個別RRCシグナリングによるDL/ULリンクを用いて非対称CAを可能としたとしても、個別RRCシグナリングによるDL/ULリンクは、SIB2によるDL/ULリンクが存在することを前提としているので、セル毎に、DL用リソースと関連付けられるUL用リソースが必ず存在する構成となってしまう。このことは、ひいては、システムとして、対をなす上りリンクの周波数バンドの無い下りリンクの周波数バンドを構成することを不可能にする。
一方、同一周波数バンド内では、SIB2によるDL/ULリンクで複数の異なるDL用リソースに対して同一のUL用リソースのリンクも可能であるが、異周波数バンド間のSIB2によるDL/ULリンクは許されていない。
図18は、SIB2によるDL/ULリンクで構成したセルの概念を示す図である。DL CC1とUL CC1とは、周波数バンドA(Band A)内に構成される。DL CC2は周波数バンドB(Band B)内に構成される。この場合、同一周波数バンド、具体的には周波数バンドA内にあるDL CC1とUL CC1とからなるセルは、構成可能である。しかし、異周波数バンド内にあるDL CC2とUL CC1、具体的には周波数バンドA内にあるUL CC1と周波数バンドB内にあるDL CC2とからなるセルは、構成不可能である。図18中の「×」印は、SIB2によるDL/ULのリンクで構成不可能なことを示している。したがって、DL CC2に関連付けられるUL CC(UL CC2)は、周波数バンドB内に構成されなければならない。つまり、DL CCと同じ周波数バンド内に、必ずUL CCを設ける必要がある。
したがって、たとえ個別RRCシグナリングによるDL/ULリンクによって非対称CAを行ったとしても、通信システムにおいて、DL用リソースと同一周波数バンド内にUL用リソースを必ず確保しておく必要があり、周波数リソースの効率的な利用を妨げる。また、下りリンク用の周波数バンドには、必ず対となる上りリンク用の周波数バンドを確保する必要があり、例えば狭帯域の離散的な空き周波数バンドが多数存在するような場合、それらを利用することを困難とし、周波数リソースの利用効率を低下させるという問題が生じる。
以下の実施の形態では、前述のような問題を解消する方法について開示する。本実施の形態では、DL用リソースに関連付けるUL用リソースを有さないDL用リソースのみで構成するセルを設け、該セルのDL/ULリンク情報として、UL用リソースを構成しない旨を示す情報、すなわち該セルがUL用リソースを含まないことを示す情報を設ける。該セルのDL/ULリンク情報は、リンク情報に相当する。
図19は、DL CCに関連付けるUL CCを有さないDL CCのみで構成するセルを示す図である。図19に示すセルは、DL CC1と関連付けられるUL CCが無く、DL CCのみのセルとなる。すなわち、DL用リソースのみが確保されたセルである。図19に示すセルは、非関連セルに相当する。
本実施の形態における、DL用リソースとUL用リソースとを関連付ける方法について開示する。セルのDL/ULリンク情報として、UL CCを構成しない旨を示す情報をシステム情報に含める。システム情報としては、MIB、SIBなどの情報としてもよい。セルは、傘下のUEに対して該情報を報知する。
セルのDL/ULリンク情報をMIBに含めた場合、UEは、セルのDL用リソースに構成されるPBCHにマッピングされるMIB内のUL CCを構成しない旨を示す情報を受信することによって、DL CCに関連付けられるUL CCが構成されていないことを認識することが可能となる。これによって、UEは、セル選択およびセル再選択の際に、DL CCに関連付けられるUL CCが構成されていないことを早期に認識することが可能となる。
セルのDL/ULリンク情報をSIBに含めた場合、UEは、セルのDL CCに構成されるPDSCHにマッピングされるSIB内のUL CCを構成しない旨を示す情報を受信することによって、DL CCに関連付けられるUL CCが構成されていないことを認識することが可能となる。これによって、UEは、SIBに含まれる他のシステム情報とともに、UL CCを構成しない旨を示す情報を受信することができる。
UL CCを構成しない旨を示す情報をSIBに含める場合、SIB1あるいはSIB2に含めるとよい。
SIB1には、セルの周波数バンド情報が含まれる。この周波数バンド情報とともに、UL CCを構成しない旨を示す情報をSIB1に含めることによって、UEは、SIB1を受信することで、周波数バンド情報とUL CCを構成しない旨を示す情報とを認識することが可能となる。これによって、UEは、自装置のケーパビリティすなわち能力に応じて、該セルにキャンプオン可能か否かを早期に判断することができる。
SIB2には、従来のセルのDL/ULリンク情報が含まれる。したがって、UL CCを構成しない旨を示す情報をSIB2に含めた場合、該情報を得るためにSIB2を受信するというUEの動作を変更することなく、UL CCを構成しない旨を示す情報を受信することができる。
SIB2内のDL CCに関連付けられるUL CCのキャリア周波数を示すパラメータである「ul-CarrierFreq」を用いてもよい。パラメータとして「ul-CarrierFreq」を用いる場合、パラメータに値を何も入れない、あるいはパラメータ自体をSIB2に入れない方法と、UL CCを構成しない旨を示す特定の値を設けてその値を入れる方法とがある。
パラメータに値を入れない、あるいはパラメータ自体をSIB2に入れない方法の場合、前述した、上りキャリア周波数がSIB2に含まれない場合はTX−RX周波数間隔のデフォルト値を用いる、という制限を変更する必要がある。該変更を行わなければ、下りキャリア周波数から、デフォルト値離れた周波数に上りキャリア周波数が存在することを示すこととなるからである。上りキャリア周波数がSIB2に含まれない場合は、関連付けられるUL CCが無い、またはUL CCを構成しないようにすればよい。
UL CCを構成しない旨を示す特定の値を設けてその値を入れる方法の場合は、静的に特定の値を予め決めておくとよい。例えば、パラメータ「ul-CarrierFreq」の値がナンバリングされている場合は、99999とし、パラメータ「ul-CarrierFreq」の値が99999であれば、関連付けられるUL CCが無い、またはUL CCを構成しないとすればよい。この場合は、前述した、上りキャリア中心周波数がSIB2に含まれない場合はTX−RX周波数間隔のデフォルト値を用いる、という制限を変更する必要はない。
UL CCを構成しない旨を示す情報としては、UL CCの構成の有無を示す情報であってもよい。例えば、UL CCの構成の有無を示すパラメータを「ULCCconfig」とし、「1」および「0」の2値の情報とする。パラメータ「ULCCconfig」の値が「1」の場合は、UL CCの構成が有るものとし、パラメータ「ULCCconfig」の値が「0」の場合は、UL CCの構成が無いものとする。これによって、UL CCの構成の有無が、UEに明示的に与えられる。
また、UL CCを構成しない旨を示す情報として、従来のDL CCに関連付けられるUL CCのキャリア周波数を示すパラメータを用いずに、新たにパラメータを設けてもよい。また、どちらのパラメータの内容を優先するかを予め決めておくとよい。このようにすることで、UEの誤動作を低減することが可能となる。
UL CCを構成しないセルで、上りアクセスはできない。それにもかかわらず、UEがUL CCを構成しないセルを選択あるいは再選択した場合、該セルで上りアクセスをしてしまう可能性がある。この無駄な上りアクセスによるUEの消費電力の増大、および他のシステムなどへの干渉の増大を抑制するために、UL CCを構成しないセルを選択または再選択することを禁止、あるいはキャンプオンすることを禁止するようにしてもよい。
セル選択または再選択あるいはキャンプオンを禁止する方法として、以下に3つ開示する。(1)セルのDL/ULリンク情報を用いる、(2)セルのバード情報を用いる、(3)RACH構成用パラメータを用いる。
セルのDL/ULリンク情報を用いる方法の具体例を開示する。セルのDL/ULリンク情報によってUL CCの構成が無いことが示された場合、UEは、該セルにセル選択または再選択あるいはキャンプオンを禁止する。これを規格などで静的に予め決めておくとよい。UEは、セルのDL/ULリンク情報から、該セルがセル選択または再選択あるいはキャンプオンを禁止されているかどうかを判断することが可能となる。
セルのバード情報を用いる方法の具体例を開示する。セルのバード情報を示すパラメータを設けてもよい。セルのバード情報を示すパラメータとして、セルバード(CellBarred)を用いてもよい。UL CCを構成しないセルは、セルバードにバード、すなわち禁止されたことを示す情報を設定する。セルバードは、システム情報として傘下のUEに報知される。セルバードは、SIB1に含めて報知してもよい。UEは、受信したセルバードがバードを示す情報である場合、該セルへのセル選択または再選択あるいはキャンプオンを禁止することとする。これによって、UEは、セルのバード情報を示すパラメータから、該セルがセル選択または再選択あるいはキャンプオンを禁止されているかどうかを判断することが可能となる。
この方法の場合、従来のセルバードの方法に従うので、別途規格などで静的に予め決めておく必要が無い。また、従来のセルバードの方法に従うので、リリース8または9対応のUEが、セルのDL/ULリンク情報などの本実施の形態で新たに設けた情報を得ることができない場合にも、本方法を適用することができる。
RACH構成用パラメータを用いる方法の具体例を開示する。UL CCを構成しないセルは、DL CCのシステム情報のRACH構成用パラメータの値を設定しない、あるいはパラメータをシステム情報にのせない。セルは、システム情報を傘下のUEに報知する。UEは、受信したシステム情報に、RACH構成用パラメータの値が無い、あるいはRACH構成用パラメータが無い場合は、該セルへのセル選択または再選択あるいはキャンプオンを禁止することとする。これを規格などで静的に予め決めておくとよい。UEは、セルのRACH構成用パラメータから、該セルがセル選択または再選択あるいはキャンプオンを禁止されているかどうかを判断することが可能となる。
RACH構成用パラメータとしては、例えばRACHのプリアンブルシーケンス情報を示す「PRACH-Config」、ランダムアクセスに必要な情報である「RACH-ConfigCommon」とするとよい。
図20は、セルのDL/ULリンク情報を用いる場合におけるセルのシステム情報(SI)の設定処理に関するeNBの処理手順を示すフローチャートである。図21は、セルのDL/ULリンク情報を用いる場合におけるUEによるUL CCを構成しないセルの選択または再選択あるいはキャンプオンを禁止する処理に関するUEの処理手順を示すフローチャートである。本実施の形態では、セルのDL/ULリンク情報として、UL CCの構成の有無を示すパラメータ「ULCCconfig」を用いることとする。図21に示すフローチャートは、前述の図12に示すフローチャートと類似しているので、同一のステップについては、同一のステップ番号を付して、共通する説明を省略する。
eNBは、セルのUL CCの構成に基づいてシステム情報(SI)の設定を行う。具体的には、まず図20のステップST2001において、eNBは、セルが、UL CCを構成しているか否か、すなわちUL CCの構成が有るか否かを判断する。eNBは、UL CCの構成が有ると判断した場合は、ステップST2003に移行し、UL CCの構成が無いと判断した場合は、ステップST2002に移行する。
ステップST2002において、eNBは、パラメータ「ULCCconfig」に、UL CCの構成が無いことを示す「0」を設定して、ステップST2004に移行する。
ステップST2003において、eNBは、パラメータ「ULCCconfig」に、UL CCの構成が有ることを示す「1」を設定して、ステップST2004に移行する。
ステップST2004において、eNBは、該セルのMIBに、セルのDL/ULリンク情報である「ULCCconfig」を含めて、ステップST2005に移行する。
ステップST2005において、eNBは、DL CCのPBCHにMIBをマッピングして、該セルの傘下のUEに報知する。該MIBには、セルのDL/ULリンク情報である「ULCCconfig」が含まれる。ステップST2005の処理を終了した後は、全ての処理手順を終了する。
該セルを選択したUEは、図21のステップST1204において、該セルのPBCHを受信してMIBを受信する。その後、ステップST2006に移行する。
ステップST2006において、UEは、ステップST1204で受信したMIBに含まれる「ULCCconfig」から、該セルにUL CCが構成されているか否か、すなわちUL CCの構成が有るか否かを判断する。「ULCCconfig」が「1」の場合は、UEは、UL CCの構成が有ると判断して、ステップST1205に移行する。「ULCCconfig」が「0」の場合は、UEは、UL CCの構成が無いと判断する。UL CCの構成が無いと判断した場合、UEは、UL CCを構成しないセルの選択または再選択あるいはキャンプオンを禁止されているので、該セルを選択できない。したがって、該セルを候補セルから外して、再度ステップST1201に戻ってセルサーチを行う。
こうすることで、DL用リソースに関連付けるUL用リソースを有さないDL用リソースのみで構成するセルを設けた場合に、UEが該セルを選択または再選択あるいはキャンプオンすることを禁止することが可能となり、無駄な上りアクセスによるUEの消費電力の増大、および他のシステムなどへの干渉の増大を抑制することが可能となる。
また、MIBにセルのDL/ULリンク情報を含めて報知するようにしているので、UEは、セル選択または再選択時に、UL CCの構成の有無を早期に判断することができる。これによって、セル選択または再選択するまでの処理における遅延時間を削減することが可能となる。
図22は、セルのバード情報を用いる場合におけるセルのシステム情報(SI)の設定処理に関するeNBの処理手順を示すフローチャートである。図23は、セルのバード情報を用いる場合におけるUEによるUL CCを構成しないセルの選択または再選択あるいはキャンプオンを禁止する処理に関するUEの処理手順を示すフローチャートである。図23に示すフローチャートは、前述の図12に示すフローチャートと類似しているので、同一のステップについては、同一のステップ番号を付して、共通する説明を省略する。
eNBは、セルのUL CCの構成に基づいてシステム情報(SI)の設定を行う。具体的には、まず図22のステップST2101において、eNBは、セルが、UL CCを構成しているか否か、すなわちUL CCの構成が有るか否かを判断する。eNBは、UL CCの構成が有ると判断した場合は、ステップST2103に移行し、UL CCの構成が無いと判断した場合は、ステップST2102に移行する。
ステップST2102において、eNBは、セルバード(Cellbarred)にバードする、すなわち禁止することを示す「barred」を設定して、ステップST2104に移行する。
ステップST2103において、eNBは、セルバード(Cellbarred)にバードしない、すなわち禁止しないことを示す「notbarred」を設定して、ステップST2104に移行する。
ステップST2104において、eNBは、該セルのSIB1に、セルバード(Cellbarred)を含めて、ステップST2105に移行する。
ステップST2105において、eNBは、DL CCのPDSCHにSIB1をマッピングして、該セルの傘下のUEに報知する。該SIB1には、セルバード(Cellbarred)が含まれる。ステップST2105の処理を終了した後は、全ての処理手順を終了する。
該セルを選択したUEは、図23のステップST1205において、該セルのPDSCHにマッピングされるDL−SCHを受信してSIB1を受信する。その後、ステップST2106に移行する。
ステップST2106において、UEは、ステップST1205で受信したSIB1に含まれるセルバード(Cellbarred)から、該セルがバードされているか否かを判断する。セルバード(Cellbarred)が「notbarred」の場合は、UEは、該セルはバードされていないと判断して、ステップST1206に移行する。セルバード(Cellbarred)が「barred」の場合は、UEは、該セルはバードされていると判断する。この場合、UEは、バードされているセルを選択または再選択あるいはキャンプオンすることを禁止されている。したがってUEは、該セルを選択できないので、該セルを候補セルから外して、再度ステップST1201に戻ってセルサーチを行う。
このように、UL CCが構成されないセルのセルバードにバードすることを示す値を設定して、傘下のUEに報知することによって、該報知情報を受信したUEが該セルを選択または再選択あるいはキャンプオンすることを禁止することが可能となり、無駄な上りアクセスによるUEの消費電力の増大、および他のシステムなどへの干渉の増大を抑制することが可能となる。
この方法の場合、従来のセルバードの方法に従うので、別途規格などを静的に予め決めておく必要が無い。また、リリース8または9対応のUEが、セルのDL/ULリンク情報などの本実施の形態で新たに設けた情報を得ることができない場合にも、本方法を適用することができる。
前述のように、UEがUL CCを構成しないセルを選択または再選択あるいはキャンプオンすることを禁止した場合、下り通信のみを必要とするUEは、該セルを用いて通信可能であるにもかかわらず、該セルの選択または再選択あるいはキャンプオンをすることができなくなってしまうという問題が生じる。
この問題を解消するために、UL CCを構成しないセルでは、上りアクセスを禁止し、該セルの選択または再選択あるいはキャンプオンを禁止しないようにする。
該セルへの上りアクセスを禁止する方法として、以下に4つ開示する。(1)セルのDL/ULリンク情報を用いる、(2)アクセスを確率的に禁止する情報を用いる、(3)アクセスを禁止するか否かを示す情報を用いる、(4)RACH構成用パラメータを用いる。
前記(1)のセルのDL/ULリンク情報を用いる方法の具体例を開示する。セルのDL/ULリンク情報によってUL CCの構成が無いことが示された場合、UEは、該セルにアクセス禁止あるいはアクセス不実行とする。これを規格などで静的に予め決めておくとよい。UEは、セルのDL/ULリンク情報から、該セルがアクセス禁止あるいはアクセス不実行かどうかを判断することが可能となる。
前記(2)のアクセスを確率的に禁止する情報を用いる方法の具体例を開示する。アクセスを確率的に禁止する情報を示すパラメータを設けてもよい。アクセスを確率的に禁止する情報を示すパラメータとして、アクセスクラスバーリング(Access Class Barring:ACB)を用いてもよい。キャンプオンした全UEを含むアクセスクラスを設け、そのアクセスクラスのバーリング確率、すなわち禁止確率を決めるACBファクタ(ac-BarringFactor)を「0」とすることで、アクセスを不可能とすればよい。ACBファクタが「0」の場合、常にバーリング、すなわち禁止となる。セルは、傘下のUEにACBファクタを報知する。UEは該アクセスクラスのACBファクタが「0」である場合、該セルにアクセス禁止あるいはアクセス不実行とする。UEは、該アクセスクラスのACBファクタから、該セルがアクセス禁止あるいはアクセス不実行かどうかを判断することが可能となる。
この方法の場合、従来のACBの方法に従うので、別途規格などを静的に予め決めておく必要が無い。また、従来のACBの方法に従うので、リリース8または9対応のUEが、セルのDL/ULリンク情報などの本実施の形態で新たに設けた情報を得ることができない場合にも、本方法を適用することができる。
前記(3)のアクセスを禁止するか否かを示す情報を用いる方法の具体例を開示する。アクセスを禁止するか否かを示す情報を示すパラメータを設けてもよい。アクセスを禁止するか否かを示す情報を示すパラメータを、例えば、「Ac-barringForNoUL」とする。アクセスを禁止するか否かを示す情報を示すパラメータの値を、「1」と「0」の2値とする。パラメータ「Ac-barringForNoUL」が「1」の場合は、アクセス禁止を表し、パラメータ「Ac-barringForNoUL」が「0」の場合は、アクセスを禁止しないことを表すこととする。これによって、セルは、アクセスを禁止するか否かを、傘下のUEに明示的に与えられる。UEは、アクセスを禁止するか否かを示す情報から、該セルがアクセス禁止あるいはアクセス不実行かどうかを判断することが可能となる。
前記(4)のRACH構成用パラメータを用いる方法の具体例を開示する。UL CCを構成しないセルは、DL CCのシステム情報のRACH構成用パラメータの値を設定しない、あるいはパラメータをシステム情報にのせない。セルは、システム情報を傘下のUEに報知する。UEは、受信したシステム情報に、RACH構成用パラメータの値が無い、あるいはRACH構成用パラメータが無い場合は、該セルにアクセス禁止あるいはアクセス不実行とする。これを規格などで静的に予め決めておくとよい。UEは、セルのRACH構成用パラメータから、該セルがアクセス禁止あるいはアクセス不実行かどうかを判断することが可能となる。RACH構成用パラメータとしては、例えばRACHのプリアンブルシーケンス情報を示す「PRACH-Config」、ランダムアクセスに必要な情報である「RACH-ConfigCommon」とするとよい。
図24は、DL/ULリンク情報を用いて上りアクセスを禁止する場合におけるセルのシステム情報(SI)の設定処理に関するeNBの処理手順を示すフローチャートである。図25は、セルのDL/ULリンク情報を用いてUEによるUL CCを構成しないセルでの上りアクセスを禁止する処理に関するUEの処理手順を示すフローチャートである。本実施の形態では、セルのDL/ULリンク情報として、UL CCの構成の有無を示すパラメータ「ULCCconfig」を用いることとする。図25に示すフローチャートは、前述の図12に示すフローチャートと類似しているので、同一のステップについては、同一のステップ番号を付して、共通する説明を省略する。
eNBは、セルのUL CCの構成に基づいてシステム情報(SI)の設定を行う。具体的には、まず図24のステップST2201において、eNBは、セルが、UL CCを構成しているか否か、すなわちUL CCの構成が有るか否かを判断する。eNBは、UL CCの構成が有ると判断した場合は、ステップST2203に移行し、UL CCの構成が無いと判断した場合は、ステップST2202に移行する。
ステップST2202において、eNBは、パラメータ「ULCCconfig」に、UL CCの構成が無いことを示す「0」を設定して、ステップST2204に移行する。
ステップST2203において、eNBは、パラメータ「ULCCconfig」に、UL CCの構成が有ることを示す「1」を設定して、ステップST2204に移行する。
ステップST2204において、eNBは、該セルのSIB1に、セルのDL/ULリンク情報である「ULCCconfig」を含めて、ステップST2205に移行する。
ステップST2205において、eNBは、DL CCのPDSCHにSIB1をマッピングして、該セルの傘下のUEに報知する。該SIB1には、「ULCCconfig」が含まれる。ステップST2205の処理を終了した後は、全ての処理手順を終了する。
該セルを選択したUEは、図25のステップST1205において、該セルのSIB1を受信する。その後、ステップST2206に移行する。
ステップST2206において、UEは、ステップST1205で受信したSIB1に含まれる「ULCCconfig」から、該セルにUL CCが構成されているか否か、すなわちUL CCの構成が有るか否かを判断する。「ULCCconfig」が「1」の場合は、UEは、UL CCの構成が有ると判断して、ステップST1206に移行する。「ULCCconfig」が「0」の場合は、UEは、UL CCの構成が無いと判断して、ステップST2207に移行する。
ステップST2207において、UEは、上りアクセス禁止の設定が行われて、ステップST2208に移行する。
ステップST2208において、UEは、SIB1のTACがUE保有のTACと同じであるか否かを判断する。ステップST2208において、SIB1のTACがUE保有のTACと同じであると判断した場合は、上りアクセスを必要としないので、UEは、待受け動作に入る。ステップST2208において、SIB1のTACがUE保有のTACと同じではない、すなわち異なると判断した場合は、TAUが必要となる。しかし、UEは、ステップST2207において上りアクセスが禁止されているので、TAU処理を開始することができない。したがって、UEは、該セルを選択または再選択あるいはキャンプオンできずに、該セルを候補セルから外して、再度、ステップST1201に戻ってセルサーチ処理を行う。
ステップST2208で待受け動作処理に移行したUEは、ステップST2207で上りアクセスを禁止されているので、下り通信のみ行うことが可能となる。上り通信が必要となるUEは、上りアクセスが必要となった時点で再度、ステップST1201に戻ってセルサーチ処理を行ってもよい。あるいは、ステップST2208の判断処理のときに、自UEが上りアクセスが必要か否かを判断して、上りアクセスが必要ならば再度ステップST1201に戻ってセルサーチ処理を行うようにしてもよい。上りアクセスが必要ない場合は、待受け動作に入ればよい。
こうすることで、DL用リソースに関連付けるUL用リソースを有さないDL用リソースのみで構成するセルを設けた場合に、UEの上りアクセスを禁止することが可能となるので、無駄な上りアクセスによるUEの消費電力の増大、および他のシステムなどへの干渉の増大を抑制することが可能となる。また、UEは、UL CCを構成しないセルの選択または再選択あるいはキャンプオンを禁止されていないので、下り通信のみを必要とするUEは、該セルを選択または再選択あるいはキャンプオンすることが可能となる。したがって、該UEは下り通信を行うことができる。
図26は、アクセスを確率的に禁止する情報を用いる場合におけるセルのシステム情報(SI)の設定処理に関するeNBの処理手順を示すフローチャートである。図27は、アクセスを確率的に禁止する情報を用いる場合におけるUEによるUL CCを構成しないセルでの上りアクセスを禁止する処理に関するUEの処理手順を示すフローチャートである。図27に示すフローチャートは、前述の図12に示すフローチャートと類似しているので、同一のステップについては、同一のステップ番号を付して、共通する説明を省略する。
eNBは、セルのUL CCの構成に基づいてシステム情報(SI)の設定を行う。具体的には、まず図26のステップST2301において、eNBは、セルが、UL CCを構成しているか否か、すなわちUL CCの構成が有るか否かを判断する。eNBは、UL CCの構成が有ると判断した場合は、ステップST2303に移行し、UL CCの構成が無いと判断した場合は、ステップST2302に移行する。
ステップST2302において、eNBは、ACBファクタ(ac-BarringFactor)に「0」を設定して、ステップST2304に移行する。
ステップST2303において、eNBは、ACBファクタ(ac-BarringFactor)にセルの混雑状況などに基づいて導出した値(ここでは「x」としている)を設定して、ステップST2304に移行する。
ステップST2304において、eNBは、該セルのSIB2に、ACBファクタ(ac-BarringFactor)を含めて、ステップST2305に移行する。
ステップST2305において、eNBは、DL CCのPDSCHにSIB2をマッピングして、該セルの傘下のUEに報知する。該SIB2には、ACBファクタ(ac-BarringFactor)が含まれる。ステップST2305の処理を終了した後は、全ての処理手順を終了する。
該セルを選択したUEは、図27のステップST2306あるいはステップST2307において、該セルのSIB2を受信する。ステップST2306においてSIB2を受信したUEは、上りアクセスを必要としないので、そのまま待受け動作を行う。ステップST2307において該セルのSIB2を受信したUEは、ステップST2308に移行する。
ステップST2307でSIB2を受信したUEは、TAU処理を開始するために上りアクセスを必要とするので、ステップST2308において、SIB2に含まれるACBファクタ(ac-BarringFactor)に「0」が設定されているかどうかを判断する。ACBファクタ(ac-BarringFactor)に「0」が設定されていないと判断した場合、UEは、従来のLTEにおけるACB処理によって、上りアクセスを行う。
具体的には、ACBファクタ(ac-BarringFactor)の値に応じて、確率的に上りアクセスを行うことが可能かどうかを判断し、可能であればTAU処理のために上りアクセスを行い、不可能であれば所定の期間待機した後、再度ACB処理を行う。ステップST2308でACBファクタ(ac-BarringFactor)に「0」が設定されていると判断した場合、UEは、上りアクセス禁止と判断して、該セルを候補セルから外して、再度ステップST1201に戻ってセルサーチ処理を行う。
以上のようにすることによって、図24および図25に示す例で述べた場合と同様の効果を得ることができる。また図27に開示した例では、従来のACBの方法に従うので、別途規格などで静的に予め決めておく必要が無い。また、従来のACBの方法に従うので、リリース8または9対応のUEが、セルのDL/ULリンク情報などの本実施の形態で新たに設けた情報を得ることができない場合にも、本方法を適用することができる。
この場合、双方向通信サービスを必要とするUEが、UL CCを構成しないセルを選択または再選択した場合、該UEは、上りアクセスできないにもかかわらず、該セルにキャンプオンしてしまうことになる。したがって、双方向通信サービスの要求に応えられなくなるという問題が生じる。
そこで、この問題を解消するために、双方向通信サービスを必要とするUEは、上述した、セルのDL/ULリンク情報、アクセスを確率的に禁止する情報、アクセスを禁止するか否かを示す情報、またはRACH構成用パラメータで、該セルへの上りアクセスを禁止することが示された場合、該セルの選択または再選択あるいはキャンプオンを行わないようにしてもよい。特に、セルのDL/ULリンク情報、RACH構成用パラメータを用いた場合は、UL CCを構成しないセルであることが明確であるので、前記問題を解消するのに適している。
以上のように本実施の形態で開示した方法によれば、eNBとUEとは、DL用リソースを含み、UL用リソースを含まないセルである非関連セルを用いて通信するので、通信システムにおいて、DL用リソースと同一の周波数バンド内に、UL用リソースを必ず確保しておく必要がなくなる。これによって、不要となったUL用リソースを、他のセルまたは他のオペレータあるいは他のシステムなどに割当てることが可能となる。したがって、周波数リソースの利用効率を向上させることが可能となる。
本実施の形態において、上りアクセスを必要とするCA対応のUEが、UL CCを構成しないセルを用いて双方向の通信を行うことを可能とする方法を開示する。この方法として、本実施の形態では、該セルをCA用のセル(サービングセル)として使用するとよい。その際、UL CCが構成されているサービングセルを少なくとも一つ含むようにCAすればよい。上りアクセスは、UL CCが構成されているサービングセルを用いて行う。UL CCが構成されているサービングセルがPCellとなってもよい。UEは、UL CCを構成しないサービングセルに関する上り制御情報、例えば、下りデータに対するCQI、下りデータに対するAck/Nackなども、UL CCが構成されているサービングセルを用いて送信すればよい。
こうすることで、CA対応のケーパビリティを持つUEが、UL CCを構成しないセルを用いて双方向の通信を行うことができる。
この場合、UL CCを構成しないセルがPCellとなることを禁止し、SCellとして用いられることに限定するとよい。UEがRRC接続を行うセルがPCellとなるが、UL CCを構成しないセルでは、UEがRRC接続を行うために上りアクセスを行うことは不可能である。したがって、UL CCを構成しないセルがPCellとなることを禁止することで、UEは、UL CCを構成しているセルをPCellとすることになり、CAが可能となる。また、UEがUL CCを構成しないセルで無駄にRRC接続処理を行うことを防ぐことができる。
図28は、本発明の実施の形態1におけるCAに使用するセルを説明するための図である。セル(Cell)1は、DL CC1とUL CC1とで構成される。DL CC1と関連付けられるUL CC1のキャリア周波数は、セルのDL/ULリンク(link)情報によって示される。セル(Cell)2は、DL CC2のみで構成され、UL CCは構成されない。したがって、セルのDL/ULリンク情報として、UL CCを構成しない旨が示される。セル1は、関連セルに相当し、DL CC1は、他の下りリンク用リソースに相当し、UL CC1は、上りリンク用リソースに相当する。セル2は、非関連セルに相当し、DL CC2は、下りリンク用リソースに相当する。
図29は、UL CCを構成しないセルを用いた場合のCAのシーケンスの一例を示す図である。セル1にキャンプオンしたUEは、ステップST2501において、セル1にRRC接続要求(RRC Connection Request)を通知する。セル1は、UL CC1が構成されているので、上りアクセスが可能である。したがって、ステップST2502において、セル1は、UEに対して、RRC接続セットアップ(RRC Connection Setup)メッセージを通知する。
RRC接続セットアップメッセージを受信してRRC接続のセットアップ処理を行ったUEは、ステップST2503において、RRC接続セットアップ完了(RRC Connection Setup Complete)メッセージをセル1に通知する。
ステップST2504において、eNBあるいはセル1は、UEにセル2をCAすることを決定する。例えば、画像などの大容量データのダウンロードなど、UEへの下りデータ量が上りデータ量に比べて大きい通信サービスが生じた場合などである。
ステップST2505において、セル1は、UEに対して、CAのためにRRC接続リコンフィグレーション(RRC Connection Reconfiguration)メッセージを通知する。RRC接続リコンフィグレーションメッセージには、CAを行うサービングセルであるセル2の情報、具体的には、DL CC2を付加(Add)する旨を示す情報、セル2に関するシステム情報、およびUL CCが構成されない旨を示す情報などが含まれている。UEは、これらの情報を受信することで、セル1に加えてセル2のDL CC2がCAされることを認識することが可能となる。
RRC接続リコンフィグレーションメッセージを受信したUEは、セル1とセル2とのCA処理の準備を行い、ステップST2506において、RRC接続リコンフィグレーション完了(RRC Connection Reconfiguration Complete)メッセージをセル1に通知する。
RRC接続リコンフィグレーション完了メッセージを受信したセル1あるいはeNBは、セル1に加えてセル2をCAする。セル1がPCellとなる。
ステップST2507において、UEとセル1との間で、下り通信および上り通信が行われる。ステップST2508において、UEとセル2との間で、下り通信が行われる。
ステップST2507の下り通信および上り通信は、DL CC1とUL CC1とを用いて行われる。ステップST2508の下り通信は、DL CC2を用いて行われる。すなわち、下り通信は、セル1とセル2とを用いて行われ、上り通信は、セル1を用いて行われる。セル2の下りデータに対する上り制御情報、例えば、下りデータに対するCQI、下りデータに対するAck/Nackなどは、UL CCが構成されているセル1を用いてUEが送信する。
以上のように本実施の形態で開示したCAの方法によれば、通信システムにおいてDL用リソースと同一の周波数バンド内にUL用リソースを確保せずに、非対称CAを行うことが可能となる。
したがって、不要となったUL用リソースを、他のセルまたは他のオペレータあるいは他のシステムなどに割当てることが可能となるので、周波数リソースの利用効率を向上させることが可能となる。
前述のように、UEは、セルサーチの際に、PCIを用いて同期をとるとともに、同期がとれたセルのPCIを検出(特定)する。セル毎に割り当てられたPCIは、該セルのRS用のコードを導出する際に用いられる。同期がとれたセルの特定したPCIから、該セルのRS用のコードを導出することによって、RSを検出し、RS受信電力を測定する。また、このRSは、UEにおいて受信データ復調用の基準信号として用いられる。すなわち、前記RSは、位相を調整するための位相同期用信号として用いられる。このように、セル毎に割り当てられたPCIは、該セルと通信をするために必要となる。
CAが行われる際に、SCellとなるセルをUEがセルサーチして検出するわけではない。したがって、従来の方法のように、UEがセルサーチの際に、セルの同期信号(SS)からPCIを検出(特定)することはできない。このため、UEは、SCellのPCIを認識することができず、RSなどを検出することができず、RS受信電力の測定およびSCellとの通信ができなくなってしまう。
この問題を解消するための方法を開示する。eNBあるいはセルは、CAを行うUEに対して、個別RRCシグナリングによって、CAするSCellのPCIを通知する。RRC接続リコンフィグレーションメッセージを用いてもよく、CAを行うサービングセルの情報とともに通知してもよい。例えば、前述の図29において、ステップST2505で、セル1は、UEに対して、CAのために通知するRRC接続リコンフィグレーションメッセージに、CAを行うサービングセルであるセル2の情報として、セル2のPCIを含めるようにしておく。UEは、このPCIを受信することによって、セル2のRS受信電力の測定だけでなく、セル2との通信が可能となる。
この例では、CAを行うサービングセルの情報として、PCIをRRC接続リコンフィグレーションメッセージに含めてUEへ通知する場合について説明したが、CAを行うサービングセルの情報は、PCIに関する情報であってもよい。PCIに関する情報とは、例えば、PCIの値そのものではなく、PCIの値がナンバリングされている場合は、該ナンバであってもよい。前述のように、PCIが例えば504通りである場合、予め規格において各PCI値に0〜503のナンバを付しておき、該ナンバを通知するようにしてもよい。これによって、UEへ通知するために必要な情報量を低減することが可能となる。PCIに関する情報を示す新たなパラメータを設けてもよい。たとえば、パラメータをCellpciとする。CellpciにPCIの値、あるいは、PCIの値を示すナンバを設定してUEに通知する。
SCellのPCIがPCellのPCIと同じ場合は、UEに通知することを省略してもよい。例えば、所定のSCellのPCIがPCellと同じ場合は、該所定のSCellの情報として、CellpciをRRC接続リコンフィグレーションメッセージに含めない。UEは、RRC接続リコンフィグレーションメッセージに該パラメータが含まれていない場合は、該パラメータが含まれていないSCellのPCIがPCellのPCIと同じであると判断して、該PCIを用いてRSなどの導出を行うようにすればよい。前記に開示した方法によって、UEは、CAするSCellと通信可能となる。
また、オペレータまたはeNBが、同一eNB内の各セルのPCIを設定してもよいし、セルが自セルのPCIを設定してもよい。これによって、システムとして、同一eNBが構成するセルのPCIを柔軟に設定することが可能となる。例えば、全セルに異なるPCIを設定してもよいし、同一キャリア周波数内のセルのみに異なるPCIを設定するようにしてもよい。同一キャリア周波数内のセルのみに異なるPCIを設定する場合は、異なるキャリア周波数間でのPCIの設定に制限は無くてよい。また、同一eNBからなるセルを所定のグループに分けて、グループ内の全セルに異なるPCIを設定してもよいし、逆にグループ内の全セルに同一のPCIを設定するようにしてもよい。前記PCIの設定方法を適宜組み合わせてもよい。
このように、同一eNBが構成するセルのPCIを柔軟に設定することを可能とすることで、例えば都心部のような非常に高速で大容量を必要とするエリアにおいて、多数のセルを構成する多数のeNBを柔軟に配置することができるので、高速で大容量の通信システムを構築することが可能となる。
前述の問題を解消するための別の方法を開示する。同一eNBが構成するセルにおいて、CA可能なセルには同一PCIを設定する。異なるキャリア周波数でカバレッジの一部または全部が重なるセルのPCIには、同一PCIを設定する。このようにすることによって、CAされるSCellのPCIは、PCellのPCIと同じになる。したがって、SCellのPCIがUEに通知される必要は無い。RRCシグナリングによってCAするSCellのPCIをUEに通知する必要は無くなる。これによって、シグナリング量の削減を図ることが可能となる。
前記に開示した方法は、実施の形態1に限らず、後述する実施の形態2〜実施の形態5にも適用可能であり、適宜組み合わせて用いればよい。また、従来のセルの構成を用いたCAにも適用可能である。
実施の形態2.
本実施の形態では、実施の形態1で述べた問題を解消するために、異なる周波数バンドのDL CCとUL CCとを関連付ける方法について開示する。
異なる周波数バンドでのDL CCとUL CCとを関連付ける旨が、3GPP TR 36.815 V9.1.0(以下「非特許文献10」という(5.1.3章))に記載されているが、どのように関連付けるのかの詳細な方法については、全く開示されていない。
また、3GPP R2−102260(以下「非特許文献11」という)には、UL CCがDL CCと異なる周波数バンドに存在する場合に、SIB2のパラメータ「ul-CarrierFreq」を用いることが記載されている。
しかし、前述のように、非特許文献8によると、FDDにおいては、下りリンクの周波数バンドと対をなす上りリンクの周波数バンドが予め決められている。このため、従来のSIB2のパラメータ「ul-CarrierFreq」を用いたDL/ULのリンクでは、この予め決められた対となる周波数バンドの中で行われてしまう。具体的には、セルは、SIB1に、下りリンクの周波数バンドと対となる上りリンクの周波数バンドの組のナンバを示す周波数バンド情報(freqncyBandIndicator)を含めて、傘下のUEに報知する。この周波数バンド情報によって、セルが構成するDL CCとUL CCとは、予め決められた対となる周波数バンド内になってしまう。
したがって、これらの方法では、異なる周波数バンドでのDL CCとUL CCとを関連付けることは不可能である。
そこで、本実施の形態では、異なる周波数バンドでのDL CCとUL CCとの関連付けを実現するために、DL用リソースに関連付けるUL用リソースを、DL用リソースとは異なる周波数バンド内に構成するセルを設け、該セルは該UL(上りリンク)用リソース情報を傘下のUEに報知するように構成する。
図30は、DL CCと関連付けるUL CCを異なる周波数バンド内に構成したセルを示す図である。図30に示すセルでは、下りリンクの周波数バンド(Band B)内のDL CC2に対して、予め決められた対応する上りリンクの周波数バンド(下りと同様にBand Bで表す)とは異なる周波数バンド(Band A)内のUL CC1が関連付けられている。DL用リソースに関連付けるUL用リソース情報が、セルのDL/ULリンク情報によって示される。図30に示すセルは、非対称セルに相当する。
セルが傘下のUEに報知するUL用リソース情報の具体例として、以下に5つ開示する。(1)UL CCの存在する周波数バンド、(2)UL CCのキャリア周波数、(3)UL CCのバンド幅、(4)UL CCの存在する周波数バンドにおけるラスタ周波数、(5)UL CCの存在する周波数バンドの下限周波数。これらの取り得る値を予め規格などで決めてナンバリングしておき、そのナンバとしてもよい。
DL CCと関連付けるUL CCを異なる周波数バンド内に構成するために、セルは、傘下のUEに、DL CCの存在する周波数バンド情報だけでなく、UL CCの存在する周波数バンド情報を報知する。これによって、UEは、UL CCのキャリア周波数を特定することが可能となる。また、セルが傘下のUEに対して、UL CCの存在する周波数バンド情報を報知することによって、UEは、そのケーパビリティに応じてそのセルを、選択、再選択、キャンプオン、アクセスするか否かを判断するようにしてもよい。
DL CCの存在する周波数バンド情報を従来の周波数バンド情報(freqncyBandIndicator)に含めて、UL CCの存在する周波数バンド情報を示す新たなパラメータを設けるようにしてもよい。これによって、パラメータ数を低減することができる。また、UL CCの存在する周波数バンド情報をSIB1に含めて報知するようにしてもよい。これによってUEは、DL CCの存在する周波数バンド情報とUL CCの存在する周波数バンド情報とを、同じSIBから得ることが可能となり、処理を簡略化でき、低消費電力化を図ることが可能となる。
セルが、傘下のUEに対して、DL CCと対となるUL CCのキャリア周波数を報知することによって、UEは、UL CCのキャリア周波数を特定することが可能となる。
セルが、傘下のUEに対して、DL CCと対となるUL CCのバンド幅を報知することによって、UEは、UL CCのバンド幅を特定することが可能となる。
システム毎にキャリア周波数の取り得る値であるラスタ周波数が決められている。例えば、他のシステムに割り当てられた周波数バンドを用いる場合、該周波数バンドのラスタ周波数は、LTE−Aにおけるラスタ周波数と異なる場合がある。したがって、セルは、傘下のUEに対して、UL CCの存在する周波数バンドにおけるラスタ周波数を報知するとよい。
セルは、傘下のUEに対して、UL CCの存在する周波数バンドの下限周波数を報知するとよい。これらの情報を用いることによって、UEは、UL CCのキャリア周波数を特定することが可能となる。
LTEでは、UEが、DL CCのキャリア周波数とUL CCのキャリア周波数とを、所定の算出式を用いて導出する(非特許文献8参照)。この方法を適用してもよい。UEには、セルがDL用リソース情報とUL用リソース情報とを通知する。通知方法としては、報知でも個別RRCシグナリングでもよく、状況によって使い分けられる。UEは、これらのDL用リソース情報およびUL用リソース情報を受信して、DL CCのキャリア周波数とUL CCのキャリア周波数とを導出する。
DL用リソース情報として、DL CCのキャリア周波数ナンバ(N_DL)、DL CCの存在する周波数バンドの下限周波数(FB_DL_l)、DL CCの存在する周波数バンドの下限周波数ナンバ(N_DL_l)、ラスタ周波数(Fr_DL)とする。
UL用リソース情報として、前述のUL CCのキャリア周波数ナンバ(N_UL)、UL CCの存在する周波数バンドの下限周波数(FB_UL_l)、UL CCの存在する周波数バンドの下限周波数ナンバ(N_UL_l)、ラスタ周波数(Fr_UL)とする。
DL CCのキャリア周波数(F_DL)を、以下の式(2)を用いて導出する。
F_DL=FB_DL_l+Fr_DL×(N_DL−N_DL_l) …(2)
UL CCのキャリア周波数(F_UL)を、以下の式(3)を用いて導出する。
F_UL=FB_UL_l+Fr_UL×(N_UL−N_UL_l) …(3)
これによって、UEは、DL CCのキャリア周波数と、UL CCのキャリア周波数とを特定することが可能となる。
DL用リソース情報とUL用リソース情報との全部をセルが通知してもよいし、これらの値の一部をセルが通知し、他は予め規格などで決めておくようにしてもよい。
セルは、UL用リソース情報をシステム情報に含めてもよい。システム情報としては、MIB、SIBなどの情報としてもよく、セルは傘下のUEに対して該情報を報知するようにしてもよい。これによって、UL CCを構成しない旨の情報をMIBあるいはSIBで報知する前述の実施の形態1と同様の効果を得ることができる。UL CCを構成しない旨の情報をSIBに含める場合、SIB1あるいはSIB2に含めるとよい。これによって、前述の実施の形態1と同様の効果を得ることができる。
図31は、セルのシステム情報(SI)の設定処理に関するeNBの処理手順を示すフローチャートである。図32は、DL CCとUL CCとが異なる周波数バンド内に構成されたセルをセル選択した場合のUEの処理手順を示すフローチャートである。図32に示すフローチャートは、前述の図12に示すフローチャートと類似しているので、同一のステップについては、同一のステップ番号を付して、共通する説明を省略する。
eNBは、セルのUL CCの構成に基づいてシステム情報(SI)の設定を行う。図31および図32に示すフローチャートでは、設定するUL用リソース情報を、UL CCの存在する周波数バンド、UL CCのキャリア周波数、およびUL CCのバンド幅とする。これらの情報にあわせて、上りアクセスのためにUL CCに構成されるRACH構成用パラメータの設定を行う。
図31のステップST2701において、eNBは、セルがDL CCと異周波数バンドにUL CCを構成しているか否かを判断する。eNBは、異周波数バンドにUL CCを構成していると判断した場合は、ステップST2702に移行し、異周波数バンドにUL CCを構成していないと判断した場合は、ステップST2703に移行する。
ステップST2702において、eNBは、UL用周波数バンド情報として該UL CCが構成されている周波数バンドを設定し、SIB1に入れて、ステップST2703に移行する。
ステップST2703において、eNBは、セルのUL CCキャリア周波数情報を設定し、SIB2に入れて、ステップST2704に移行する。
ステップST2704において、eNBは、セルのUL CC周波数帯域幅情報を設定し、SIB2に入れて、ステップST2705に移行する。
ステップST2705において、eNBは、セルのRACH構成用パラメータを設定し、SIB2に入れて、ステップST2706に移行する。
ステップST2706において、eNBは、SIB1をセルの傘下のUEに報知する。該SIB1には、UL CCの周波数バンド情報が含まれる。ステップST2706の処理を終了した後は、ステップST2708に移行する。
ステップST2708において、eNBは、SIB2をセルの傘下のUEに報知する。該SIB2には、UL CCキャリア周波数情報、UL CC周波数帯域幅情報、RACH構成用パラメータが含まれる。ステップST2708の処理を終了した後は、全ての処理手順を終了する。
該セルを選択したUEは、図32のステップST1205において、該セルのSIB1を受信する。ステップST2707において、UEは、UL CCの周波数バンドに対応しているか否かを判断する。具体的には、UEは、まず、SIB1にUL CCの周波数バンド情報が含まれているかどうかを判断する。
UEは、SIB1にUL CCの周波数バンド情報が含まれていないと判断した場合は、UL CCの周波数バンドはDL CCと同一の周波数バンドであると判断し、自UEはUL CCの周波数バンドに対応していると判断して、ステップST2709に移行する。
UEは、SIB1にUL CCの周波数バンド情報が含まれていると判断した場合は、該UL CCの周波数バンド情報から、該セルのUL CCが構成される周波数バンドを認識して、自UEが該周波数バンドに対応しているか否かを判断する。UEは、対応していると判断した場合は、ステップST2709に移行し、対応していないと判断した場合は、該セルで上りアクセス不可能と判断し、該セルを選択または再選択あるいはキャンプオン不可能として、該セルを候補セルから外して、再度、ステップST1201に戻ってセルサーチを行う。
ステップST2709において、UEは、該セルのSIB2を受信して、ステップST1206に移行する。ステップST1206において、UEは、ステップST1205で受信したSIB1のTACが、自UEが保有しているTACと同じか否かを判断することによって、TAUが必要であるか否かを判断する。UEは、SIB1のTACが、自UEが保有しているTACと同じであると判断した場合、TAUが不要であると判断して、待受け動作に入る。UEは、SIB1のTACが、自UEが保有しているTACと同じでないと判断した場合、TAUが必要であると判断して場合、ステップST2710に移行する。
ステップST2710において、UEは、該セルからSIB1およびSIB2を受信して得たUL CCの周波数バンド、UL CCキャリア周波数、UL CC周波数帯域幅に基づいて、UL用周波数バンドのUL CCの構成を導出し、RACH構成用パラメータに基づいて、UL CC内のRACH構成を導出する。このRACH構成に基づいて、上りアクセスを行い、TAU処理を開始する。TAU処理後、UEは待受け動作に入る。
以上のようにすることによって、DL CCとUL CCとが異なる周波数バンド内に構成されたセルを設け、異周波数バンド対応のケーパビリティを持つUEが、該セルをセル選択した場合にも、DL CCとは異なる周波数バンド内に構成されたUL CCで上りアクセスが可能となる。すなわち、該UEがDL CCとUL CCとが異なる周波数バンド内に構成されたセルで、双方向通信が可能となる。
UL CCのキャリア周波数(F_UL)を、前述の式(3)を用いて導出するようにした場合は、eNBは、セルのUL CCのキャリア周波数ナンバ(N_UL)、UL CCの存在する周波数バンドの下限周波数(FB_UL_l)、UL CCの存在する周波数バンドの下限周波数ナンバ(N_UL_l)、ラスタ周波数(Fr_UL)をシステム情報に設定し、セルは、傘下のUEに該システム情報を報知するようにしておけばよい。システム情報としては、MIBでもよいし、SIBでもよい。例えば、SIB1に、FB_UL_l、Fr_ULを入れ、SIB2に、N_UL、N_UL_lを入れて報知する。これによって、該セルからのシステム情報を受信したUEは、UL CCのキャリア周波数(F_UL)を導出することが可能となる。
例えばリリース8または9対応のUEのように、同一周波数バンド内でのみ送受信可能なUEは、DL CCと異なる周波数バンドでUL CCが構成されているセルを選択または再選択した場合、上りアクセスができない。それにもかかわらず、該UEがDL CCと異なる周波数バンドでUL CCが構成されているセルを選択または再選択した場合、該セルで上りアクセスしてしまう可能性がある。
この無駄な上りアクセスによるUEの消費電力の増大、および他のシステムなどへの干渉の増大を抑制するために、同一周波数バンド内でのみ送受信可能なUEは、DL CCと異なる周波数バンドでUL CCが構成されているセルを選択または再選択することを禁止、あるいはキャンプオンすることを禁止するようにしてもよい。
同一周波数バンド内でのみ送受信可能なUEが、該セルでセル選択または再選択あるいはキャンプオンすることを禁止する方法として、以下に2つ開示する。(1)セルのUL CCの存在する周波数バンド情報を用いる、(2)セルのバード情報を用いる。
前記(1)のセルのUL CCの存在する周波数バンド情報を用いる方法の具体例を開示する。セルのUL CCの存在する周波数バンド情報によって、DL CCと異なる周波数バンドにUL CCが構成されたことが示された場合、同一周波数バンド内でのみ送受信可能なUEは、該セルにセル選択または再選択あるいはキャンプオンを禁止する。これを規格などで静的に予め決めておくとよい。UEは、セルのUL CCの存在する周波数バンド情報から、該セルがセル選択または再選択あるいはキャンプオンを禁止されているかどうかを判断することが可能となる。
前記(2)のセルのバード情報を用いる方法の具体例を開示する。セルのバード情報を示すパラメータを設けてもよい。セルのバード情報を示すパラメータとして、セルバード(CellBarred)を用いてもよい。DL CCと異なる周波数バンドでUL CCを構成するセルは、セルバードにバードを示す情報を設定する。セルバードは、システム情報として、傘下のUEに報知される。セルバードは、SIB1に含めて報知してもよい。
UEは、受信したセルバードがバードを示す情報である場合、該セルへのセル選択または再選択あるいはキャンプオンを禁止する。これによって、UEは、セルのセルバードを示すパラメータから、該セルがセル選択または再選択あるいはキャンプオンを禁止されているかどうかを判断することが可能となる。
セルのバード情報を用いる方法の場合、従来のセルバードの方法に従うので、別途規格などで静的に予め決めておく必要が無い。また、従来のセルバードの方法に従うので、例えばリリース8または9対応のUEのように、同一周波数バンド内でのみ送受信可能なUEが、セルのUL CCの存在する周波数バンド情報などの本実施の形態で新たに設けた情報を得ることができない場合にも、本方法を適用することができる。
しかし、前述のセルのバード情報を用いる方法の場合、セルがDL CCと異なる周波数バンドでUL CCが構成されている場合、異周波数バンドにあるDL CCとUL CCとで送受信可能なUEも、バードされてしまう。
この問題を解消するために、UEのケーパビリティに応じてセルがバードするか否かを設定できるようにしておくとよい。例えば、同一周波数バンド内でのみ送受信可能なUEケーパビリティのクラスと、異周波数バンドで送受信可能なUEケーパビリティのクラスとを設ける。同一周波数バンド内でのみ送受信可能なUEケーパビリティのクラス用には、従来のセルバード(CellBarred)パラメータを用いて設定し、異周波数バンドで送受信可能なUEケーパビリティのクラス用には、新たなセルバードパラメータを設ける。
例えば、異周波数バンドで送受信可能なUEケーパビリティのクラス用のセルバードパラメータを「CellBarred-inter」とする。DL CCと異なる周波数バンドにUL CCを構成するセルは、パラメータ「CellBarred-inter」に、異周波数バンドで送受信可能なUEに対してバードするか否かを示す情報を設定する。例えば、異周波数バンドで送受信可能なUEに対して、バードとする場合はパラメータ「CellBarred-inter」に「barred」を設定し、バードとしない場合はパラメータ「CellBarred-inter」に「notbarred」を設定する。
パラメータ「CellBarred-inter」は、システム情報として傘下のUEに報知される。具体的には、パラメータ「CellBarred-inter」は、SIB1に含めて報知するとよい。これによってUEは、従来のセルバードと同様の手順で、パラメータ「CellBarred-inter」を受信することができる。
DL CCと異なる周波数バンドにUL CCを構成するセルは、同一周波数バンド内でのみ送受信可能なUEケーパビリティのクラス用の従来のセルバード(CellBarred)パラメータにバードを設定し、パラメータ「CellBarred-inter」に、異周波数バンドで送受信可能なUEに対してバードしないことを示す情報(notbarred)を設定する。このように設定することによって、同一周波数バンド内でのみ送受信可能なUEが、該セルにセル選択または再選択あるいはキャンプオンすることを禁止することができるとともに、異周波数バンドで送受信可能なUEが、該セルにセル選択または再選択あるいはキャンプオンすることを可能とすることができる。このように、UEのケーパビリティに応じて適切な処理を実行することができる。
図33は、セルのバード情報を用いる場合におけるセルのシステム情報(SI)の設定処理に関するeNBの処理手順を示すフローチャートである。図34は、セルのバード情報を用いる場合におけるUEによるDL CCと異なる周波数バンドにUL CCが構成されたセルの選択または再選択あるいはキャンプオンを禁止する処理に関するUEの処理手順を示すフローチャートである。図34に示すフローチャートは、前述の図12に示すフローチャートと類似しているので、同一のステップについては、同一のステップ番号を付して、共通する説明を省略する。
eNBは、セルのUL CCの構成に基づいてシステム情報(SI)の設定を行う。図33および図34に示すフローチャートでは、図31および図32に示すフローチャートと同様に、設定するUL用リソース情報を、UL CCの存在する周波数バンド、UL CCのキャリア周波数、UL CCのバンド幅とする。これらの情報にあわせて、上りアクセスのためにUL CCに構成されるRACH構成用パラメータの設定を行う。
図33のステップST2801において、eNBは、セルがDL CCと異なる周波数バンド、すなわち異周波数バンドにUL CCを構成しているか否かを判断する。eNBは、異周波数バンドにUL CCを構成していると判断した場合は、ステップST2802に移行し、異周波数バンドにUL CCを構成していないと判断した場合は、ステップST2803に移行する。
ステップST2802において、eNBは、「Cellbarred」に、バードすることを示す「barred」を設定するとともに、「Cellbarred-inter」に、バードしないことを示す「notbarred」を設定して、ステップST2804に移行する。
ステップST2803において、eNBは、「Cellbarred」に、バードしないことを示す「notbarred」を設定するとともに、「Cellbarred-inter」に、バードしないことを示す「notbarred」を設定して、ステップST2805に移行する。
ステップST2804において、eNBは、UL用周波数バンド情報として該UL CCが構成されている周波数バンドを設定し、SIB1に入れてステップST2805に移行する。
ステップST2805において、eNBは、該セルのSIB1にCellbarred情報とCellbarred-inter情報とを含めて、ステップST2806に移行する。
ステップST2806において、eNBは、セルのUL CCキャリア周波数情報、UL CC周波数帯域幅情報、RACH構成用パラメータを設定してSIB2に入れて、ステップST2807に移行する。
ステップST2807において、eNBは、DL CCのPDSCHにSIB1をマッピングして、該セルの傘下のUEに報知する。該SIB1には、Cellbarred、Cellbarred-inter、UL用周波数バンド情報が含まれる。ステップST2807の処理を終了した後は、ステップST2812に移行する。
ステップST2812において、eNBは、SIB2をセルの傘下のUEに報知する。該SIB2には、UL CCキャリア周波数情報、UL CC周波数帯域幅情報、RACH構成用パラメータが含まれる。ステップST2812の処理を終了した後は、全ての処理手順を終了する。
以上のようにしてシステム情報が設定されるセルを選択したUEは、図34のステップST1205において、該セルのPDSCHにマッピングされるDL−SCHを受信してSIB1を受信する。
次に、ステップST2808において、UEは、自UEのケーパビリティから、自UEが異周波数バンドに対応しているか否か、具体的には、DL CCと異周波数バンドに構成されたUL CCで上りアクセスが可能であるか否かを判断する。上りアクセスが可能であると判断した場合は、異周波数バンドに対応していると判断して、ステップST2809に移行し、上りアクセスが不可能であると判断した場合は、異周波数バンドに対応していないと判断して、ステップST2810に移行する。
ステップST2809において、UEは、SIB1に含まれるCellbarred-interから、該セルがバードされているか否か、すなわち「Cellbarred-inter」が「barred」であるか否かを判断する。ステップST2809において、「Cellbarred-inter」が「barred」であると判断した場合、UEは、該セルの選択または再選択あるいはキャンプオンが禁止されていると判断して、該セルを候補セルから外して、再度ステップST1201に戻ってセルサーチを行う。ステップST2809において、「Cellbarred-inter」が「barred」でない、すなわち「notbarred」であると判断した場合、UEは、該セルの選択または再選択あるいはキャンプオンが可能であると判断して、ステップST2811に移行する。
ステップST2810において、UEは、SIB1に含まれるCellbarredから、該セルがバードされているか否か、すなわち「Cellbarred」が「barred」であるか否かを判断する。ステップST2810において、「Cellbarred」が「barred」であると判断した場合は、UEは、該セルの選択または再選択あるいはキャンプオンが禁止されていると判断して、該セルを候補セルから外して、再度ステップST1201に戻ってセルサーチを行う。ステップST2810において、「Cellbarred」が「barred」でない、すなわち「notbarred」であると判断した場合は、UEは、該セルの選択または再選択あるいはキャンプオンが可能であると判断して、ステップST2811に移行する。
ステップST2811において、UEは、該セルのSIB2を受信して、ステップST1206に移行する。ステップST1206において、UEは、ステップST1205で受信したSIB1のTACが、自UEが保有しているTACと同じか否かを判断することによって、TAUが必要であるか否かを判断する。UEは、SIB1のTACが、自UEが保有しているTACと同じであると判断した場合、TAUが不要であると判断して、待受け動作に入る。UEは、SIB1のTACが、自UEが保有しているTACと同じでないと判断した場合、TAUが必要であると判断して、ステップST2813に移行する。
ステップST2813において、UEは、該セルからSIB1およびSIB2を受信して得たUL CCの周波数バンド、UL CCキャリア周波数、UL CC周波数帯域幅に基づいて、UL用周波数バンドのUL CCの構成を導出し、RACH構成用パラメータに基づいて、UL CC内のRACH構成を導出する。そして、このRACH構成に基づいて上りアクセスを行い、TAU処理を開始する。TAU処理後、UEは待受け動作に入る。
以上のようにすることによって、DL CCと異なる周波数バンドにUL CCが構成されるセルのバード情報を、UEのケーパビリティに応じて設定することが可能となる。この方法を用いて、同一周波数バンド内でのみ送受信可能なUEに対してはバードし、異周波数バンドで送受信可能なUEに対してはバードしないようにすることによって、同一周波数バンド内でのみ送受信可能なUEが該セルで無駄な上りアクセスを行うことを防ぐことができる。したがって、UEの消費電力の増大、および他のシステムなどへの干渉の増大を抑制することが可能となる。
また他の例として、UEが対応するリリースによって、UEのケーパビリティのクラスを設けてもよい。リリース9以前に対応したUEのケーパビリティのクラスと、リリース10以降に対応したUEのケーパビリティのクラスとを設けてもよい。リリース9以前に対応したUEのケーパビリティのクラス用には、従来のセルバード(CellBarred)パラメータを用いて設定し、リリース10以降に対応したUEのケーパビリティのクラス用には、新たなセルバードパラメータを設けるようにしてもよい。このようにすることによっても、前述の例と同様の効果を得ることができる。
以上の述べた方法のように、同一周波数バンド内でのみ送受信可能なUEが、DL CCと異なる周波数バンドでUL CCが構成されているセルを選択または再選択あるいはキャンプオンすることを禁止とした場合、該UEが下り通信のみを必要とする場合には該セルを用いて通信可能であるにもかかわらず、該セルの選択または再選択あるいはキャンプオンができなくなってしまうという問題が生じる。
この問題を解消するために、DL CCと異なる周波数バンドでUL CCが構成されているセルでは、同一周波数バンド内でのみ送受信可能なUEは、上りアクセスを禁止とし、該セルを選択または再選択あるいはキャンプオンすることを禁止しないようにする。
該セルへの上りアクセスを禁止する方法として、以下に3つ開示する。(1)セルのUL CCの存在する周波数バンド情報を用いる、(2)アクセスを確率的に禁止する情報を用いる、(3)アクセスを禁止するか否かを示す情報を用いる。
前記(1)のセルのUL CCの存在する周波数バンド情報を用いる方法の具体例を開示する。セルのUL CCの存在する周波数バンド情報によって、DL CCと異なる周波数バンドにUL CCが構成されたことが示された場合、同一周波数バンド内でのみ送受信可能なUEは、該セルにアクセス禁止あるいはアクセス不実行とする。これを規格などで静的に予め決めておくとよい。UEは、セルのUL CCの存在する周波数バンド情報から、該セルがアクセス禁止あるいはアクセス不実行かどうかを判断することが可能となる。
前記(2)のアクセスを確率的に禁止する情報を用いる方法の具体例を開示する。アクセスを確率的に禁止する情報を示すパラメータを設けてもよい。アクセスを確率的に禁止する情報を示すパラメータとして、アクセスクラスバーリング(Access Class Barring:ACB)を用いてもよい。同一周波数バンド内でのみ送受信可能なUEのアクセスクラスを設け、そのアクセスクラスのバーリング確率を決めるACBファクタ(ac-BarringFactor)を「0」とすることで、アクセスを不可能とすればよい。ACBファクタが「0」の場合、常にバーリングとなる。
セルは、傘下のUEに、ACBファクタを報知する。同一周波数バンド内でのみ送受信可能なUEは、自UEのアクセスクラスのACBファクタが「0」で有る場合、該セルにアクセス禁止あるいはアクセス不実行とする。同一周波数バンド内でのみ送受信可能なUEは、該アクセスクラスのACBファクタから、該セルがアクセス禁止あるいはアクセス不実行かどうかを判断することが可能となる。
この方法の場合、従来のACBの方法に従うので、別途規格などで静的に予め決めておく必要が無い。また、従来のACBの方法に従うので、例えばリリース8または9対応のUEなどが、セルのDL/ULリンク情報などの本実施の形態で新たに設けた情報を得ることができない場合にも、本方法を適用することができる。
前記(3)のアクセスを禁止するか否かを示す情報を用いる方法の具体例を開示する。アクセスを禁止するか否かを示す情報を示すパラメータを設けてもよい。アクセスを禁止するか否かを示す情報を示すパラメータを、例えば、「Ac-barringForIntrafbandUE」とする。アクセスを禁止するか否かを示す情報を、「1」と「0」の2値として、「1」の場合はアクセス禁止とし、「0」の場合はアクセス禁止しないとする。これによって、セルは、同一周波数バンド内でのみ送受信可能なUEに、アクセスを禁止するか否かを明示的に与えられる。同一周波数バンド内でのみ送受信可能なUEは、アクセスを禁止するか否かを示す情報から、該セルがアクセス禁止あるいはアクセス不実行かどうかを判断することが可能となる。
以上のように本実施の形態で開示した方法によれば、eNBとUEとは、DL用リソースと、DL用リソースとは異なる周波数バンドに含まれるUL用リソースとを含むセルである非対称セルを用いて通信するので、通信システムにおいて、DL用リソースと同一の周波数バンド内に、UL用リソースを必ず確保しておく必要がなくなる。これによって、不要となったUL用リソースを、他のセルまたは他のオペレータあるいは他のシステムなどに割当てることが可能となる。したがって、周波数リソースの利用効率を向上させることが可能となる。
本実施の形態において、CA対応のUEが、DL CCと異なる周波数バンドでUL CCが構成されているセルを用いてCAされることを可能とする方法を開示する。この方法として、本実施の形態では、個別RRCシグナリングによるDL/ULリンクにおいても、DL CCと異なる周波数バンドのUL CCを構成することを許可する。このようにすることで、UEにとって周波数バンドをまたいだDL/ULリンクが可能となり、DL CCとUL CCとが異なる周波数バンドで構成されるセルをCAすることが可能となる。
個別RRCシグナリングによるDL/ULリンクの方法として、リンクするUL CCに関する情報を、UEに個別に通知するとよい。UL CCに関する情報の具体例としては、前述のUL用リソース情報の具体例として示したものが適用できる。
図35は、本発明の実施の形態2におけるCAに使用するセルを説明するための図である。セル(Cell)1は、同一周波数バンド、具体的にはBand A内のDL CC1とUL CC1とで構成される。DL CC1と関連付けられるUL CC1のキャリア周波数は、セル1のDL/ULリンク情報によって示される。セル(Cell)2は、DL CC2と、DL CC2とは異なる周波数バンドのUL CC2とで構成される。DL CC2は、周波数バンドB(Band B)内にあり、UL CC2は、周波数バンドA(Band A)内にある。DL CC2と関連付けられるUL CC2の周波数バンド、キャリア周波数などのUL用リソース情報は、セル2のDL/ULリンク情報によって示される。セル2は、非対称セルに相当する。
図36は、DL CCとUL CCとが異なる周波数バンドで構成されるセルを用いた場合のCAのシーケンスの一例を示す図である。図36に示すシーケンスは、図29に示すシーケンスと類似しているので、同一のステップについては、同一のステップ番号を付して、共通する説明を省略する。
本実施の形態では、ステップST2504でUEにセル2をCAすることが決定された後は、ステップST3001の処理が行われる。ステップST3001において、セル1は、UEに対してCAのために、RRC接続リコンフィグレーション(RRC Connection Reconfiguration)メッセージを通知する。RRC接続リコンフィグレーションメッセージには、CAを行うサービングセルであるセル2の情報、具体的には、DL CC2を付加(Add)する旨を示す情報、セル2に関するシステム情報、DL CC2と関連付けるUL CC(ここではUL CC2)に関する情報、UL CC2のリソース情報、例えばUL CC2の周波数バンド情報およびキャリア周波数情報などが含まれている。
RRC接続リコンフィグレーションメッセージを受信したUEは、セル1とセル2とのCA処理の準備を行い、ステップST3002において、RRC接続リコンフィグレーション完了(RRC Connection Reconfiguration Complete)メッセージをセル1に通知する。
RRC接続リコンフィグレーション完了メッセージを受信したセル1あるいはeNBは、セル1に加えてセル2をCAする。セル1がPCellとなる。
ステップST3003において、UEとセル1との間で、下り通信および上り通信が行われる。ステップST3004において、UEとセル2との間で、下り通信および上り通信が行われる。
ステップST3003の下り通信および上り通信は、DL CC1とUL CC1とを用いて行われる。
ステップST3004の下り通信および上り通信は、DL CC2とUL CC2とを用いて行われる。セル2の下りデータに対する上り制御情報、例えば、下りデータに対するCQI、下りデータに対するAck/Nackなどは、上りデータが無い場合は、セル1のUL CC1を用いてUEが送信してもよいし、セル2のUL CC2を用いてUEが送信してもよい。PCellにおいて送信するか、サービングセル毎に送信するかを予め規格などで決めておいてもよい。
本実施の形態で開示したCAの方法によって、通信システムにおいてDL用リソースと同一周波数バンド内にUL用リソースを確保せずに非対称CAを行うことが可能となる。これによって、不要となったUL用リソースを、他のセルまたは他のオペレータあるいは他のシステムなどに割当てることが可能となる。したがって、周波数リソースの利用効率を向上させることが可能となる。
DL CCと異なる周波数バンドでUL CCが構成されているセルをCAに用いる場合に、セルのDL CCのみをCA用に構成し、該DL CCに関連付けられたUL CCをCA用に構成しないようにしてもよい。この場合、個別RRCシグナリングによるDL/ULリンク(UE specific link)によって、CAを行わせるUEに、該セルのDL CCをCA用のDL用リソースとする旨の情報、および該DL CCに関連付けるUL CCの構成が無いことを示す情報を通知すればよい。
こうすることで、該セルのDL/ULリンクで構成されるUL CCを他のUEのUL用リソースとして用いることが可能となる。これによって、周波数リソースの利用効率をさらに向上させることが可能となる。
図36では、セル1がPCellとなるCAについて説明したが、本実施の形態で開示した方法を用いることによって、セル2がPcellとなるCAも可能である。
この場合、セル1がPCellとなる場合と同様に、DL CCと異なる周波数バンドでUL CCが構成されているセル2にUEがキャンプオンし、セル2とRRC接続を行い、セル2からRRC接続リコンフィグレーションメッセージにてCAするサービングセルであるセル1の情報を通知される。セル2から通知されるセル1の情報は、具体的には、DL CC1を付加する旨を示す情報、セル1に関するシステム情報、DL CC1と関連付けるUL CC(ここではUL CC1)に関する情報、UL CC1のリソース情報、例えばUL CC1の周波数バンド情報およびキャリア周波数情報などである。
このようにすることによって、異周波数バンドでDL CCとUL CCとが構成されているセル2などのセルをPCellとすることができる。したがって、UEにおけるセル選択において、より通信品質の高いセルを選択できる可能性を高めることができる。また、さらに柔軟な周波数リソースの利用が可能となる。
実施の形態2 変形例1.
本変形例では、異周波数バンドにまたがった周波数の利用をさらに柔軟にするために、DL用リソースと異なる周波数バンド内にUL用リソースを構成するセルが少なくとも一つ存在し、該UL用リソースと、前記DL用リソースとは別のDL用リソースとで構成されるセルが一つ以上存在する構成とする。そして、該セルは、各々のDL用リソースを用いてUL用リソース情報を傘下のUEに報知する。
図37は、異なる周波数バンドの二つのDL CCに同一のUL CCを関連付けて構成した二つのセルの概念を示す図である。
セル(Cell)1は、同一周波数バンド、具体的にはBand A内のDL CC1とUL CC1とで構成される。DL CC1と関連付けられるUL CC1のキャリア周波数は、セル1のDL/ULリンク情報によって示される。セル(Cell)2は、DL CC2と、DLCC2とは異なる周波数バンドのUL CC1とで構成される。DL CC2は、周波数バンドB(Band B)内にある。DL CC2と関連付けられるUL CC1の周波数バンド、キャリア周波数などのUL用リソース情報は、セル2のDL/ULリンク情報によって示される。セル1は、対称セルに相当し、セル2は、非対称セルに相当する。
セル1で示されるUL CC1のリソース情報およびRACH構成と、セル2で示されるUL CC1のリソース情報およびRACH構成とは、各々同じでもよいし、異なっていてもよい。例えば、UL CC1の周波数帯域幅を異ならせてもよい。あるいは、UL CC1に構成されるRACH構成を異ならせてもよい。周波数帯域幅およびRACH構成を異ならせることで、セル毎に最適なUL用リソースの設定が可能となる。
セルが、傘下のUEに、DL用リソースを用いてUL用リソース情報を報知する方法としては、前述の実施の形態2で開示した方法を適用することができ、前述の実施の形態2と同様の効果を得ることができる。また、同一周波数バンド内にDL用リソースとUL用リソースとが構成されているセルでは、従来のSIB1による周波数バンドの通知方法、あるいはSIB2によるDL/ULリンクの通知方法などを適用することが可能である。アクセス制限方法、CA方法なども、前述の実施の形態2で開示した方法を適用することができる。
図38は、異なる周波数バンドの二つのDL CCに同一のUL CCを関連付けて二つのセルを構成した場合のCAのシーケンスの一例を示す図である。図38では、UEがセル1にキャンプオンしている場合を示している。図38に示すシーケンスは、図29に示すシーケンスと類似しているので、同一のステップについては、同一のステップ番号を付して、共通する説明を省略する。
前述の非特許文献1に記載されているように、現在の規格においては、一つのUEにとって、各UL用リソースは、一つのサービングセルのみに属する。したがって、図37に示されるような構成の場合、CAにおいてUL CC1は、セル1とセル2との両方をサービングセルとすることはできないという問題がある。この問題を解消するために、UE特有のリンクによって、いずれか一つのDL CCに対応するUL CCの構成を無し、とすればよい。
本変形例では、図38のステップST2504において、eNBあるいはセル1は、UEに対してセル2をCAすることを決定する。ここで、eNBあるいはセル1は、セル2のUL CCがセル1のUL CCと同じであるか否かを考慮して決定するようにしておくとよい。ここでは、セル2のUL CCがセル1のUL CCと同じであるので、セル2のDL CC2のみCAすることを決定する。
ステップST3201において、セル1は、UEに対してCAのために、RRC接続リコンフィグレーション(RRC Connection Reconfiguration)メッセージを通知する。RRC接続リコンフィグレーションメッセージには、CAを行うサービングセルであるセル2の情報、具体的には、DL CC2を付加(Add)する旨を示す情報、セル2に関するシステム情報、UL CCが構成されない旨を示す情報などが含まれている。
RRC接続リコンフィグレーションメッセージを受信したUEは、セル1とDL CC2とのCA処理の準備を行い、ステップST3202において、RRC接続リコンフィグレーション完了(RRC Connection Reconfiguration Complete)メッセージをセル1に通知する。
RRC接続リコンフィグレーション完了メッセージを受信したセル1あるいはeNBは、セル1に加えてDL CC2をCAする。セル1がPCellとなる。
ステップST3203において、UEとセル1との間で、下り通信および上り通信が行われる。ステップST3204において、UEとDL CC2との間で、下り通信が行われる。
ステップST3203の下り通信および上り通信は、DL CC1とUL CC1とを用いて行われる。ステップST3204の下り通信は、DL CC2を用いて行われる。すなわち、下り通信は、セル1とセル2とを用いて行われ、上り通信は、セル1を用いて行われる。セル2の下りデータに対する上り制御情報、例えば、下りデータに対するCQI、下りデータに対するAck/Nackなどは、UL CCが構成されているセル1を用いてUEが送信する。
このような方法とすることで、異なる周波数バンドの二つのDL CCに同一のUL CCを、セルのDL/ULリンクで関連付けて二つのセルを構成した場合にもCAすることが可能となる。したがって、さらに柔軟な周波数リソースの利用が可能となる。
図39は、異なる周波数バンドの二つのDL CCに同一のUL CCを関連付けて二つのセルを構成した場合のCAのシーケンスの他の例を示す図である。図39では、図38と異なり、UEがセル2にキャンプオンしている場合を示している。
セル2にキャンプオンしたUEは、ステップST3301において、セル2にRRC接続要求(RRC Connection Request)を通知する。セル2は、UL CC1が構成されているので、上りアクセスが可能である。
ステップST3302において、セル2は、UEに対してRRC接続セットアップ(RRC Connection Setup)メッセージを通知する。RRC接続セットアップメッセージを受信してRRC接続のセットアップ処理を行ったUEは、ステップST3303において、RRC接続セットアップ完了(RRC Connection Setup Complete)メッセージをセル2に通知する。
ステップST3304において、eNBあるいはセル2は、UEにセル1をCAすることを決定する。ここで、eNBあるいはセル2は、セル1のUL CCがセル2のUL CCと同じであるか否かを考慮して決定するようにしておくとよい。ここでは、セル1のUL CCがセル2のUL CCと同じであるので、セル1のDL CC1のみCAすることを決定する。
ステップST3305において、セル2は、UEに対して、CAのために、RRC接続リコンフィグレーション(RRC Connection Reconfiguration)メッセージを通知する。RRC接続リコンフィグレーションメッセージには、CAするサービングセルであるセル1の情報、具体的には、DL CC1を付加(Add)する旨を示す情報、セル1に関するシステム情報、UL CCが構成されない旨を示す情報などが含まれている。
RRC接続リコンフィグレーションメッセージを受信したUEは、セル2とDL CC1とのCA処理の準備を行い、ステップST3306において、RRC接続リコンフィグレーション完了(RRC Connection Reconfiguration Complete)メッセージをセル2に通知する。
RRC接続リコンフィグレーション完了メッセージを受信したセル2あるいはeNBは、セル2に加えてDL CC1をCAする。セル2がPCellとなる。
ステップST3307において、UEとセル2との間で、下り通信および上り通信が行われる。ステップST3308において、UEとDL CC1との間で、下り通信が行われる。
ステップST3307の下り通信および上り通信は、DL CC2とUL CC1とを用いて行われる。
ステップST3308の下り通信は、DL CC1を用いて行われる。セル1の下りデータに対する上り制御情報、例えば、下りデータに対するCQI、下りデータに対するAck/Nackなどは、UL CCが構成されているセル2を用いてUEが送信する。
このようにすることで、前述の図38に示すシーケンスの場合と同様の効果を得ることができる。また、これだけでなく、UEは、どちらのセルにキャンプオンしていてもCAを行うことが可能であることから、UEが、より通信品質の良好なリンクを有するセルを選択する可能性を高めることができる。
前述のように実施の形態1から実施の形態2で開示した方法を用いることによって、既に下りリンク用周波数バンドと、それと対になる上りリンク用周波数バンドとが構成されている場合に、無駄なキャリア周波数が生じることの無いように、効率的な周波数リソースの利用が可能となる。
また、前述の実施の形態1から実施の形態2の変形例1で開示した方法を適宜組合せてもよい。これによって、周波数リソースの柔軟な利用が可能となるので、周波数リソースの利用効率をより高めることが可能となる。
実施の形態3.
本実施の形態では、さらに効率的な周波数リソースの利用を可能とするための周波数バンドの構成を開示する。本実施の形態では、関連付けるUL用リソースの無い一つ以上のDL用リソースからなる周波数バンドを設ける。
図40は、関連付けるUL用リソースの無い一つ以上のDL用リソースからなる周波数バンドの概念を示す図である。DL用リソースとして、DL CC1とDL CC2とが下りリンク用周波数バンドAに構成される。下りリンク用周波数バンドAは、下限周波数(FDL_low)がFB_DL_lであり、上限周波数(FDL_high)がFB_DL_hである。DL CC1と関連付けられるUL用リソースであるUL CCの構成は無い。すなわちDL CC1のセルのDL/ULリンクによって構成されるUL CCは無い。同様に、DL CC2と関連付けられるUL用リソースであるUL CCの構成は無い。すなわちDL CC2のセルのDL/ULリンクによって構成されるUL CCは無い。
下りリンク用周波数バンドAは、このような関連付けるUL用リソースの無い一つ以上のDL用リソースからなる。言い換えると、下りリンク用周波数バンドAでは、UL用リソースの無い一つ以上のDL用リソースが構成される。この一つ以上のDL用リソースは、ここでは、DL CC1とDL CC2である。このように下りリンク用周波数バンドAは、DL用リソースを含み、UL用リソースを含まない。
各DL用リソースは、連続であってもよいし、非連続であってもよいし、帯域幅が異なっていてもよい。UL用リソースは無いので、下りリンク用周波数バンドに対応する上りリンク用周波数バンドは、無くてよい。これによって、対になる上りリンク用周波数バンドが構成されない下りリンク用周波数バンドを構成することが可能となる。
図41は、関連付けるUL用リソースの無い一つ以上のDL用リソースからなる周波数バンドの設定例を示す図である。周波数バンド(Band)Aとして、上りリンク用周波数バンド(UL operating band)は無い。下りリンク用周波数バンド(DL operating band)は存在し、下限周波数(FDL_low)がFB_DL_l、上限周波数(FDL_high)がFB_DL_hと設定される。このように、周波数バンドとして、下りリンク用周波数バンドのみを設定し、上りリンク用周波数バンドを設定しないようにする。周波数バンドの構成が予め決められる場合に有効である。
このようにすることによって、実際の周波数リソースとして、下りリンク用周波数バンドのみがあればよくなる。これによって、上りリンク用周波数バンドの用途が無いにもかかわらず、上りリンク用周波数バンドを実際の周波数リソースとして割当てて確保しておく必要が無くなる。したがって、例えば、狭帯域な周波数リソースが一つ存在するような場合にも、下りリンク用のみの周波数バンドを構成することが可能となる。これによって、離散的で狭帯域な周波数リソースが存在するような場合に、効率的な周波数リソースの利用が可能となる。
また、本実施の形態で開示した下りリンク用周波数バンドの場合、該バンドに構成されるDL CCにおいて、セルのDL/ULリンク情報を削減してもよい。またセルのDL/ULリンク情報を、傘下のUEに報知しなくてよい。該バンドに構成されるDL CCにおいて、下りリンク用周波数バンドが示される。具体的には、SIB1に含まれる。図41に示したように、予め規格などで周波数バンドの構成が決められている場合、UEは、該構成を予め認識することが可能である。
したがって、UEは、たとえ該セルからセルのDL/ULリンク情報を受信しなかったとしても、該セルが構成される周波数バンドの構成を認識することができ、該周波数バンドで上りリンク用周波数バンドが構成されないことを認識することができる。これによって、該セルのDL CCに関係付けられるUL CCが無いことを認識することが可能となる。こうすることで、セルのシステム情報を削減することができ、セルからUEに対するシグナリング量を削減することが可能となる。
実施の形態4.
前述の実施の形態1では、DL用リソースに関連付けるUL用リソースを有さないDL用リソースのみで構成するセルを設ける方法を開示した。本実施の形態では、UL用リソースに関連付けるDL用リソースを有さないUL用リソースのみで構成するセルを設ける。
図42は、UL CCに関連付けるDL CCを有さないUL CCのみで構成するセルの概念を示す図である。図42に示すセルは、UL CC1と関連付けられるDL CCが無く、UL CCのみのセルであり、UL用リソースのみが確保されたセルである。すなわち図42に示すセルは、セルのDL/ULリンクによるUL CCに関連付けられるDL CCが無い。このようなセルを構成することによって、上りリンクのみの通信を該セルで行うことができるので、有効である。図42に示すセルは、非関連セルに相当する。
LTEにおいては、UEが、DL用リソースであるDL CCが構成されないセルで上りアクセスを行うことは不可能である。該セルでUEが通信を行うことはできない。そもそもLTEにおいては、DL CCが構成されないセルは無い。
そこで、CA対応のケーパビリティを持つUEが、DL CCを構成しないセルを用いて通信を行うことを可能とする方法を開示する。該セルをCA用のセル(サービングセル)として使用するとよい。その際、DL CCが構成されているサービングセルを少なくとも一つ含むようにCAすればよい。下りアクセスは、DL CCが構成されているサービングセルを用いて行うことが可能となるので、UEは通信を行うことができる。
また、eNBは、UL CCのみのサービングセルに関するシステム情報、下り制御情報、上りスケジューリング情報、上りデータに対するHARQなども、DL CCが構成されているサービングセルを用いてUEに通知すればよい。
こうすることによって、eNBは、DL CCを構成しないセルをUEとの通信に使用可能となる。
この場合、DL CCを構成しないセルがPCellとなることを禁止するとよい。PCellとするには、DL CCが必要であるからである。通常、UEは、DL CCを構成しないセルをセル選択または再選択することはないので、該セルがPCellとなることはない。したがって、特に該セルがPCellになることを明示的に禁止しなくてもよい。
図43は、本発明の実施の形態4におけるCAに使用するセルを説明するための図である。セル(Cell)1は、DL CC1とUL CC1とで構成される。DL CC1と関連付けられるUL CC1のキャリア周波数は、セルのDL/ULリンク情報によって示される。セル(Cell)2は、DL CC2のみで構成され、UL CCは構成されない。セルのDL/ULリンク情報として、UL CCを構成しない旨が示される。セル(Cell)3は、UL CC3のみで構成され、DL CCは構成されない。
図44は、DL CCを構成しないセルを用いた場合のCAのシーケンスの一例を示す図である。図44では、UEがセル1にキャンプオンしている場合を示している。図44に示すシーケンスは、図29に示すシーケンスと類似しているので、同一のステップについては、同一のステップ番号を付して、共通する説明を省略する。
本実施の形態では、ステップST2503でUEからRRC接続セットアップ完了(RRC Connection Setup Complete)メッセージがセル1に通知された後は、ステップST3801の処理が行われる。ステップST3801において、eNBあるいはセル1は、UEにDL CC2とUL CC3とをCAすることを決定する。eNBあるいはセル1は、DL CC2とUL CC3とを関連付けて設定する。
ステップST3802において、セル1は、UEに対して、CAのために、RRC接続リコンフィグレーション(RRC Connection Reconfiguration)メッセージを通知する。RRC接続リコンフィグレーションメッセージには、CAを行うサービングセルであるセル2の情報と、CAするサービングセルであるセル3の情報が含まれている。セル2の情報としては、DL CC2を付加(Add)する旨を示す情報、セル2に関するシステム情報、対応するUL CCとしてUL CC3を設定する旨を示す情報などが含まれている。セル3の情報としては、UL CC3を付加(Add)する旨を示す情報、セル3に関するシステム情報、対応するDL CCとしてDL CC2を設定する旨を示す情報などが含まれている。
RRC接続リコンフィグレーションメッセージを受信したUEは、セル1とDL CC2とUL CC3とのCA処理の準備を行い、ステップST3803において、RRC接続リコンフィグレーション完了(RRC Connection Reconfiguration Complete)メッセージをセル1に通知する。
RRC接続リコンフィグレーション完了メッセージを受信したセル1あるいはeNBは、セル1に加えてDL CC2とUL CC3とをCAする。セル1がPCellとなる。
ステップST3804において、UEとセル1との間で、下り通信および上り通信が行われる。ステップST3805において、UEとDL CC2との間で、下り通信が行われる。ステップST3806において、UEとUL CC3との間で、上り通信が行われる。
ステップST3804の下り通信および上り通信は、DL CC1とUL CC1とを用いて行われる。DL CC2の下りデータに対する上り制御情報、例えば、下りデータに対するCQI、下りデータに対するAck/Nackなどは、UL CCが構成されているセル1あるいはUL CC3を用いてUEが送信する。
UL CC3の上りデータ用の制御情報、例えば、リソースのスケジューリング情報などは、DL CC2あるいはセル1のDL CC1を用いて送信される。
このような方法とすることで、本実施の形態で開示した、UL CCに関連付けるDL CCを有さないUL CCのみのセルを構成した場合にも、CAすることを可能にすることができる。これによって、該セルを用いてUEとの間で通信を行うことを可能にすることができる。したがって、上りリンク用周波数リソースのみに空きが有る場合に、本実施の形態を利用できるなど、さらに柔軟な周波数リソースの利用が可能となり、周波数リソースの利用効率をより高めることができる。
実施の形態5.
本実施の形態では、さらに効率的な周波数リソースの利用を可能とするための周波数バンドの構成を開示する。本実施の形態では、関連付けるDL用リソースの無い一つ以上のUL用リソースからなる周波数バンドを設ける。
図45は、関連付けるDL用リソースの無い一つ以上のUL用リソースからなる周波数バンドの概念を示す図である。UL用リソースとして、UL CC1とUL CC2とが上りリンク用周波数バンドBに構成される。上りリンク用周波数バンドBは、下限周波数(FUL_low)がFB_UL_lであり、上限周波数(FUL_high)がFB_UL_hである。UL CC1と関連付けられるDL用リソースであるDL CCの構成は無い。同様に、UL CC2と関連付けられるDL用リソースであるDL CCの構成は無い。
上りリンク用周波数バンドBは、このような関連付けるDL用リソースの無い一つ以上のUL用リソースからなる。言い換えると、上りリンク用周波数バンドBでは、DL用リソースの無い一つ以上のUL用リソースが構成される。この一つ以上のUL用リソースは、ここでは、UL CC1とUL CC2である。このように上りリンク用周波数バンドBは、UL用リソースを含み、DL用リソースを含まない。
各UL用リソースは、連続であってもよいし、非連続であってもよいし、帯域幅が異なっていてもよい。DL用リソースは無いので、上りリンク用周波数バンドに対応する下りリンク用周波数バンドは、無くてよい。これによって、対になる下りリンク用周波数バンドが構成されない上りリンク用周波数バンドを構成することが可能となる。
図46は、関連付けるDL用リソースの無い一つ以上のUL用リソースからなる周波数バンドの設定例を示す図である。周波数バンド(Band)Bとして、上りリンク用周波数バンド(UL operating band)が存在し、下限周波数(FUL_low)がFB_UL_lと設定され、上限周波数(FUL_high)がFB_UL_hと設定される。下りリンク用周波数バンド(DL operating band)は無い。このように、周波数バンドとして、上りリンク用周波数バンドのみを設定し、下りリンク用周波数バンドを設定しないようにする。これは、周波数バンドの構成が予め決められる場合に有効である。
このようにすることによって、実際の周波数リソースとして、上りリンク用周波数バンドのみがあればよくなる。これによって、下りリンク用周波数バンドの用途が無いにもかかわらず、下りリンク用周波数バンドを実際の周波数リソースとして割当てて確保しておく必要が無くなる。したがって、例えば、狭帯域な周波数リソースが一つ存在するような場合にも、上りリンク用のみの周波数バンドを構成することが可能となる。これによって、離散的で狭帯域な周波数リソースが存在するような場合に、効率的な周波数リソースの利用が可能となる。
以上の実施の形態1から実施の形態5で開示した方法を適宜組合せてもよい。これによって、離散的で狭帯域な周波数リソースが存在するような場合にも、周波数リソースの利用効率をより高めることが可能となる。
本発明は、ETWS、CMASおよびMBMS(Multimedia Broadcast Multicast Services)などの下り通信のみが行われるようなサービスを提供するシステム(以下「下り通信サービスシステム」という場合がある)にも適用可能である。対応するUL用リソースが構成されないDL用リソースで下り通信サービスシステムをサポートすればよい。これによって、下り通信サービスシステムに対応したケーパビリティを持つUEが、該DL用リソースを用いて下り通信サービスを提供することが可能となる。
また、UL用リソースが構成されないDL用リソースで構成される下りリンク用の周波数バンドを、下り通信サービスシステム用として設けてもよい。これによって、下り通信サービスシステム用の下りリンク用周波数バンドに対応で、下り通信サービスシステムに対応したケーパビリティを持つUEが、該下りリンク用の周波数バンドのDL用リソースを用いて、下り通信サービスを提供することが可能となる。したがって、周波数リソースの利用効率を向上させることが可能となる。
本発明で開示した方法は、eNB/NBに限らず、HeNB、HNB、ピコeNB(LTE ピコセル(EUTRAN pico cell))、ピコNB(WCDMA(登録商標) ピコセル(UTRAN pico cell)、ホットゾーンセル用のノード、リレーノード、リモートラジオヘッド(RRH)などの、いわゆるローカルノードにも適用できる。例えばノードの種類毎に、キャリア周波数を異ならせるような場合、および周波数バンドを異ならせるような場合にも、本発明を適用することができる。これによって、周波数リソースの利用効率を向上させることが可能となる。
以上の各実施の形態では、LTE−Aシステムを中心に説明したが、本発明の通信システムは、他の通信システムにも適用することが可能である。
たとえば、放送システムにおいては下りリンク用の周波数バンドのみが割り当てられている。本発明を用いることで、このような放送システム用の周波数バンドを通信システム用に利用することができ、両システムの相互利用を可能にすることができる。本発明を、いわゆるホワイトスペースに適用してもよい。これによって、周波数リソースの利用効率を向上させることが可能となる。ホワイトスペースについては、以下の非特許文献12に記載されている。
非特許文献12:総務省電波政策課、”ホワイトスペース活用の実現に向けた取組”、放送システム委員会第21回資料、[online]、平成22年10月29日、情報通信審議会 情報通信技術分科会、[平成22年12月9日検索]、インターネット<URL:http://www.soumu.go.jp/main_content/000087579.pdf>
この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。
71 移動端末装置(UE)、72 基地局装置、72−1 eNB、72−2 Home−eNB、73 MME/S−GW部(MME部)、74 HeNBGW、CC コンポーネントキャリア、DL 下りリンク、UL 上りリンク。

Claims (3)

  1. 通信端末装置および前記通信端末装置との間で無線通信を行う基地局装置を含む移動体通信システムであって、
    前記基地局装置から前記通信端末装置への下り通信に割当てられる下りリンク用リソースを含み、前記通信端末装置から前記基地局装置への上り通信に割当てられる上りリンク用リソースを含まない非関連セルを構成し、
    前記下りリンク用リソースと前記上りリンク用リソースとの間の前記非関連セルに関するリンク情報を、前記基地局装置から前記通信端末装置に通知せず、
    前記基地局装置から前記通信端末装置への下り通信に割当てられる他の下りリンク用リソースと、前記通信端末装置から前記基地局装置への上り通信に割当てられる上りリンク用リソースとを含む関連セルを構成し、
    前記下りリンク用リソースと前記上りリンク用リソースとの間の前記関連セルに関するリンク情報を、前記基地局装置から前記通信端末装置に通知し、
    前記非関連セルと前記関連セルとを用いて前記下り通信を行い、前記関連セルを用いて前記上り通信を行うことを特徴とする移動体通信システム。
  2. 通信端末装置との間で無線通信を行う基地局装置であって、
    前記通信端末装置への下り通信に割当てられる下りリンク用リソースを含み、前記通信端末装置からの上り通信に割当てられる上りリンク用リソースを含まない非関連セルを構成し、
    前記下りリンク用リソースと前記上りリンク用リソースとの間の前記非関連セルに関するリンク情報を前記通信端末装置に通知せず、
    前記通信端末装置への下り通信に割当てられる他の下りリンク用リソースと、前記通信端末装置からの上り通信に割当てられる上りリンク用リソースとを含む関連セルを構成し、
    前記下りリンク用リソースと前記上りリンク用リソースとの間の前記関連セルに関するリンク情報を前記通信端末装置に通知し、
    前記非関連セルと前記関連セルとを用いて前記下り通信を行い、前記関連セルを用いて前記上り通信を行うことを特徴とする基地局装置。
  3. 基地局装置との間で無線通信を行う通信端末装置であって、
    前記基地局装置からの下り通信に割当てられる下りリンク用リソースを含み、前記基地局装置への上り通信に割当てられる上りリンク用リソースを含まない非関連セルを構成し、
    前記下りリンク用リソースと前記上りリンク用リソースとの間の前記非関連セルに関するリンク情報を受信せず、
    前記基地局装置からの下り通信に割当てられる他の下りリンク用リソースと、前記基地局装置への上り通信に割当てられる上りリンク用リソースとを含む関連セルを構成し、
    前記下りリンク用リソースと前記上りリンク用リソースとの間の前記関連セルに関するリンク情報を前記基地局装置から受信し、
    前記非関連セルと前記関連セルとを用いて前記下り通信を行い、前記関連セルを用いて前記上り通信を行うことを特徴とする通信端末装置。
JP2016145988A 2011-01-07 2016-07-26 移動体通信システム、基地局装置および通信端末装置 Active JP6312753B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011001684 2011-01-07
JP2011001684 2011-01-07

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012551814A Division JP5980124B2 (ja) 2011-01-07 2011-12-20 基地局装置および通信システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018046817A Division JP6526276B2 (ja) 2011-01-07 2018-03-14 通信端末装置

Publications (2)

Publication Number Publication Date
JP2016184981A true JP2016184981A (ja) 2016-10-20
JP6312753B2 JP6312753B2 (ja) 2018-04-18

Family

ID=46457442

Family Applications (5)

Application Number Title Priority Date Filing Date
JP2012551814A Expired - Fee Related JP5980124B2 (ja) 2011-01-07 2011-12-20 基地局装置および通信システム
JP2016145988A Active JP6312753B2 (ja) 2011-01-07 2016-07-26 移動体通信システム、基地局装置および通信端末装置
JP2018046817A Active JP6526276B2 (ja) 2011-01-07 2018-03-14 通信端末装置
JP2019087320A Active JP6767539B2 (ja) 2011-01-07 2019-05-07 通信システム、基地局および通信端末装置
JP2020155416A Active JP7026746B2 (ja) 2011-01-07 2020-09-16 通信システム、基地局および通信端末装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2012551814A Expired - Fee Related JP5980124B2 (ja) 2011-01-07 2011-12-20 基地局装置および通信システム

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP2018046817A Active JP6526276B2 (ja) 2011-01-07 2018-03-14 通信端末装置
JP2019087320A Active JP6767539B2 (ja) 2011-01-07 2019-05-07 通信システム、基地局および通信端末装置
JP2020155416A Active JP7026746B2 (ja) 2011-01-07 2020-09-16 通信システム、基地局および通信端末装置

Country Status (4)

Country Link
US (7) US9380563B2 (ja)
EP (3) EP4096331A1 (ja)
JP (5) JP5980124B2 (ja)
WO (1) WO2012093582A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021186690A1 (ja) * 2020-03-19 2021-09-23 株式会社Nttドコモ 端末、無線通信方法及び基地局

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5980124B2 (ja) * 2011-01-07 2016-08-31 三菱電機株式会社 基地局装置および通信システム
WO2013191084A1 (ja) * 2012-06-18 2013-12-27 シャープ株式会社 無線通信システム、無線通信方法、移動局装置、基地局装置、プログラム、および記憶媒体
CN104488339A (zh) * 2012-07-24 2015-04-01 富士通株式会社 无线终端、无线基站、无线通信系统以及无线通信方法
US20150237668A1 (en) * 2012-10-26 2015-08-20 Lg Electronics Inc. Method for configuring state of cell at user equipment in wireless communication system and an apparatus therefor
US9668162B2 (en) * 2013-04-15 2017-05-30 Telefonaktiebolaget Lm Ericcson (Publ) Signaling of system information to MTC-devices
EP2997775B1 (en) * 2013-05-06 2019-02-27 LG Electronics Inc. Method and apparatus for controlling traffic steering in wireless communication system
EP3032902B1 (en) * 2013-09-12 2021-09-01 Huawei Technologies Co., Ltd. Information obtaining method, terminal, base station and system
US9232516B1 (en) * 2014-01-03 2016-01-05 Sprint Spectrum L.P. Managing allocation of frequency bandwidth between donor access link and relay backhaul link
US10117246B2 (en) * 2014-01-20 2018-10-30 Qulacomm Incorporated Techniques for identifying secondary serving cells operating in shared access radio frequency spectrum
CN104811946B (zh) * 2014-01-29 2020-03-20 北京三星通信技术研究有限公司 处理干扰信号的方法及设备
CN105050177A (zh) * 2014-04-15 2015-11-11 财团法人资讯工业策进会 直接通讯网络系统及其资源同步通讯方法
JP2015216471A (ja) * 2014-05-08 2015-12-03 株式会社Nttドコモ 通信方法、及び通信システム
KR102301826B1 (ko) * 2014-08-27 2021-09-14 삼성전자 주식회사 무선 통신 시스템 및 그 시스템에서 간섭 조정을 위한 자원 관리 방법
US20160105813A1 (en) * 2014-10-08 2016-04-14 Samsung Electronics Co., Ltd. Method for cell selection in a heterogeneous network by user equipment in a cre region
US10993098B2 (en) * 2015-03-31 2021-04-27 Sony Corporation Telecommunications apparatus and methods
US9866310B1 (en) 2015-11-17 2018-01-09 Sprint Spectrum L.P. Dynamic selection of a donor base station to serve a relay node
US10085206B2 (en) * 2016-03-08 2018-09-25 Wipro Limited Methods and systems for optimization of cell selection in TD-SCDMA networks
JP6191740B2 (ja) * 2016-07-12 2017-09-06 富士通株式会社 無線端末、無線基地局、無線通信システムおよび無線通信方法
IT201800000832A1 (it) * 2018-01-12 2019-07-12 Inst Rundfunktechnik Gmbh Sender und/oder empfänger zum senden bzw. empfangen von rundfunkinformationssignalen
WO2019158811A1 (en) * 2018-02-15 2019-08-22 Nokia Technologies Oy Methods and apparatuses for faster radio frequency activation
US10848995B2 (en) * 2018-03-29 2020-11-24 Apple Inc. Reducing power usage during activity
EP3900437A4 (en) * 2019-01-28 2022-03-09 Samsung Electronics Co., Ltd. METHOD AND APPARATUS FOR CELL DENIAL IN A WIRELESS COMMUNICATION SYSTEM
US10904862B2 (en) * 2019-05-16 2021-01-26 Sprint Communications Company L.P. Wireless access point assistance to wireless user devices for wireless communication network selection
CN112261698B (zh) 2020-10-13 2023-09-26 北京小米移动软件有限公司 接入网络的方法及装置、终端、存储介质

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI19992694A (fi) * 1999-12-15 2001-06-16 Nokia Networks Oy Menetelmä hajaspektrisignaalin vastaanottamiseksi ja vastaanotin
EP1969737B1 (en) * 2005-12-19 2014-03-26 LG Electronics Inc. Method for reading dynamic system information blocks
JP4951062B2 (ja) 2006-05-12 2012-06-13 ノキア コーポレイション 固定および可変の構成部分を有する区分されたダウンリンク共有制御チャネルを提供する装置、方法およびコンピュータ・プログラム製品
JP4964081B2 (ja) * 2007-10-01 2012-06-27 パナソニック株式会社 無線送信装置
JP4555892B2 (ja) * 2007-10-29 2010-10-06 パナソニック株式会社 移動局装置、基地局装置、制御チャネル復号方法および制御チャネル割当方法
KR101215118B1 (ko) 2008-02-15 2012-12-24 리서치 인 모션 리미티드 슬롯들의 혼합형 조합의 할당 및 배분을 위한 시스템 및 방법
CN101677311A (zh) 2008-09-19 2010-03-24 夏普株式会社 单播业务和多媒体广播多播业务复用系统和方法
JP5219708B2 (ja) * 2008-09-22 2013-06-26 株式会社エヌ・ティ・ティ・ドコモ 移動端末装置、無線基地局装置、無線通信システム及び無線通信方法
US9203595B2 (en) * 2008-10-22 2015-12-01 Lg Electronics Inc. Efficient initial access system under a multi-carrier combination condition for supporting broadband
KR101603651B1 (ko) * 2008-10-30 2016-03-15 엘지전자 주식회사 단일 주파수 대역만을 사용하는 제1 사용자 기기와 복수의 주파수 대역을 사용하는 제2 사용자 기기를 지원하는 무선 통신 시스템에 있어서, 사용자 기기와 기지국 간의 무선 통신 방법
CN102349329A (zh) * 2009-03-12 2012-02-08 交互数字专利控股公司 用于执行特定于分量载波的重配置的方法和设备
KR101189806B1 (ko) * 2009-03-25 2012-10-10 한국전자통신연구원 자원 할당 방법 및 자원 할당 장치
KR101621102B1 (ko) * 2009-04-21 2016-05-16 엘지전자 주식회사 다중 반송파 시스템에서 반송파의 설정장치 및 방법
US9209933B2 (en) 2009-06-11 2015-12-08 Qualcomm Incorporated Method and apparatus for dispatching a channel quality indicator feedback in multicarrier system
MY164925A (en) * 2009-06-18 2018-02-15 Interdigital Patent Holdings Inc Operating in a discontinuous reception mode employing carrier aggregation
JP2011071963A (ja) * 2009-08-26 2011-04-07 Sony Corp 通信システム、通信装置及び通信方法、並びにコンピューター・プログラム
GB2475164B (en) * 2009-11-04 2012-05-16 Lg Electronics Inc Method for handling radio link failure in multiple carrier system
US8804633B2 (en) * 2009-11-05 2014-08-12 Innovative Sonic Corporation Method and apparatus to trigger a random access procedure for carrier aggregation in a wireless communication network
US8750886B2 (en) * 2010-05-06 2014-06-10 Nokia Corporation Apparatus and method for dynamic resolution of secondary communication system resources
US9480098B2 (en) * 2010-08-16 2016-10-25 Htc Corporation Handling radio resource control connection reconfiguration and related communication device
US10333650B2 (en) * 2010-08-16 2019-06-25 Qualcomm Incorporated Aperiodic channel quality indicator report in carrier aggregation
JP2012099875A (ja) 2010-10-29 2012-05-24 Sharp Corp 通信システム、移動局装置、無線送信制御方法及び集積回路
CN103202059B (zh) 2010-11-09 2016-08-10 夏普株式会社 移动站装置、基站装置、无线通信系统、无线通信方法及集成电路
JP5980124B2 (ja) * 2011-01-07 2016-08-31 三菱電機株式会社 基地局装置および通信システム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "DL-UL CC linking in CA[online]", 3GPP TSG-RAN WG2♯69 R2-101019, JPN6017020089, 26 February 2010 (2010-02-26), pages 1 - 5, ISSN: 0003704469 *
PANASONIC: "Confirmation of Cell configuration set based on SIB2 linking in CA[online]", 3GPP TSG-RAN WG2♯71 R2-104480, JPN6017020087, 27 August 2010 (2010-08-27), pages 1 - 6, ISSN: 0003704468 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021186690A1 (ja) * 2020-03-19 2021-09-23 株式会社Nttドコモ 端末、無線通信方法及び基地局
CN115669127A (zh) * 2020-03-19 2023-01-31 株式会社Ntt都科摩 终端、无线通信方法以及基站

Also Published As

Publication number Publication date
US11337181B2 (en) 2022-05-17
JP6526276B2 (ja) 2019-06-05
US10841903B2 (en) 2020-11-17
US20210029677A1 (en) 2021-01-28
JPWO2012093582A1 (ja) 2014-06-09
US10412712B2 (en) 2019-09-10
US20190116580A1 (en) 2019-04-18
US9380563B2 (en) 2016-06-28
JP2020202587A (ja) 2020-12-17
US20160270035A1 (en) 2016-09-15
JP6312753B2 (ja) 2018-04-18
EP2663148A4 (en) 2017-08-16
EP2663148A1 (en) 2013-11-13
US20190342863A1 (en) 2019-11-07
US10609685B2 (en) 2020-03-31
EP4096331A1 (en) 2022-11-30
JP2019126098A (ja) 2019-07-25
WO2012093582A1 (ja) 2012-07-12
JP2018093548A (ja) 2018-06-14
US20200187167A1 (en) 2020-06-11
US9980251B2 (en) 2018-05-22
JP5980124B2 (ja) 2016-08-31
US20130288694A1 (en) 2013-10-31
EP3595390A1 (en) 2020-01-15
US10200976B2 (en) 2019-02-05
JP6767539B2 (ja) 2020-10-14
JP7026746B2 (ja) 2022-02-28
EP3595390B1 (en) 2022-08-24
US20180242281A1 (en) 2018-08-23

Similar Documents

Publication Publication Date Title
JP7026746B2 (ja) 通信システム、基地局および通信端末装置
JP6602935B2 (ja) 無線通信システム、第1の基地局および第2の基地局
JP6366763B2 (ja) 通信システム、通信端末装置およびプライマリセル

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180320

R150 Certificate of patent or registration of utility model

Ref document number: 6312753

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250