JP2016184630A - Reactor and method of manufacturing reactor - Google Patents

Reactor and method of manufacturing reactor Download PDF

Info

Publication number
JP2016184630A
JP2016184630A JP2015063488A JP2015063488A JP2016184630A JP 2016184630 A JP2016184630 A JP 2016184630A JP 2015063488 A JP2015063488 A JP 2015063488A JP 2015063488 A JP2015063488 A JP 2015063488A JP 2016184630 A JP2016184630 A JP 2016184630A
Authority
JP
Japan
Prior art keywords
region
insulating material
winding
layer
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015063488A
Other languages
Japanese (ja)
Inventor
慎太郎 南原
Shintaro Nanbara
慎太郎 南原
浩平 吉川
Kohei Yoshikawa
浩平 吉川
崇志 高田
Takashi Takada
崇志 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd, AutoNetworks Technologies Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP2015063488A priority Critical patent/JP2016184630A/en
Publication of JP2016184630A publication Critical patent/JP2016184630A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Insulating Of Coils (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reactor capable of reconciling good heat dissipation and noise reduction, and to provide a method of manufacturing the reactor.SOLUTION: A reactor includes a coil having a wound part formed by winding spirally, a magnetic core having a part disposed in the wound part, a metal member having a mounting surface of a combination body of the core and magnetic core, and an insulation layer provided on the mounting surface of the metal member, and bonding the wound part and metal member. The insulation layer is composed of a plurality of insulation materials containing resin and having different hardness, where hard regions composed of a hard insulation material, and soft regions composed of an insulation material softer than the hard insulation material exist alternately, when viewing in the axial direction of the wound part.SELECTED DRAWING: Figure 1

Description

本発明は、ハイブリッド自動車などの車両に搭載される車載用DC−DCコンバータといった電力変換装置の構成部品などに利用されるリアクトル、及びその製造方法に関する。特に、良好な放熱性と騒音の低減とを両立できるリアクトル及びその製造方法に関するものである。   The present invention relates to a reactor used for components of a power conversion device such as a vehicle-mounted DC-DC converter mounted on a vehicle such as a hybrid vehicle, and a manufacturing method thereof. In particular, the present invention relates to a reactor that can achieve both good heat dissipation and noise reduction, and a method for manufacturing the same.

電圧の昇圧動作や降圧動作を行う回路の部品の一つに、リアクトルがある。特許文献1,2は、ハイブリッド自動車などの車両に載置されるコンバータに利用されるリアクトルとして、巻線を螺旋状に巻回してなる一対の巻回部(コイル素子)を有するコイルと環状の磁性コアとの組合体がケースに収納され、このケース内に封止樹脂が充填されたものを開示している。コイルの巻回部と金属製のケースの底板部とを絶縁性樹脂や接着剤からなる接合層によって固定している。   A reactor is one of the parts of a circuit that performs a voltage step-up operation or a voltage step-down operation. In Patent Documents 1 and 2, as a reactor used in a converter mounted on a vehicle such as a hybrid vehicle, a coil having a pair of winding portions (coil elements) formed by spirally winding a coil and an annular shape are used. An assembly in which a combination with a magnetic core is housed in a case and a sealing resin is filled in the case is disclosed. The winding part of the coil and the bottom plate part of the metal case are fixed by a bonding layer made of an insulating resin or an adhesive.

特開2014−096463号公報JP 2014-096463 A 特開2014−107294号公報JP 2014-107294 A

良好な放熱性と騒音の低減とを両立できるリアクトルが望まれている。   There is a demand for a reactor that can achieve both good heat dissipation and reduced noise.

特許文献1,2に記載されるように、コイルの巻回部と金属製のケースの底板部とを絶縁性樹脂などの接合層で接合することで、巻回部と底板部との間の絶縁性を高められる上に、巻回部を底板部に近接配置した状態を維持できて放熱性に優れる。絶縁性樹脂などとして熱伝導率が高いセラミックスフィラーを含有するものを用いることで、放熱性に更に優れる。しかし、巻回部が底板部に近接されることで、磁歪などに起因する磁性コアの振動が巻回部及び接合層を介してケースに伝達して騒音が生じ得るという問題がある。特に、巻回部と底板部とをエポキシ樹脂などの比較的硬質な樹脂を含む材料で接合した場合には、上述の磁性コアの振動がケースに更に伝達し易い。また、接合層に何らかの応力が加わった場合には、上述の硬質な材料からなる接合層では、割れが生じたり、剥離したりする恐れがある。接合層の剥離などによって放熱性が低下したり、騒音が更に生じ易くなったりする。   As described in Patent Documents 1 and 2, by joining the winding portion of the coil and the bottom plate portion of the metal case with a bonding layer such as an insulating resin, between the winding portion and the bottom plate portion. In addition to being able to improve insulation, it is possible to maintain a state in which the winding portion is disposed close to the bottom plate portion, and it is excellent in heat dissipation. By using a resin containing a ceramic filler having a high thermal conductivity as an insulating resin, heat dissipation is further improved. However, since the winding part is brought close to the bottom plate part, there is a problem that the vibration of the magnetic core caused by magnetostriction or the like is transmitted to the case through the winding part and the bonding layer, and noise may be generated. In particular, when the wound portion and the bottom plate portion are joined with a material containing a relatively hard resin such as an epoxy resin, the vibration of the magnetic core is more easily transmitted to the case. In addition, when some stress is applied to the bonding layer, the bonding layer made of the hard material described above may be cracked or peeled off. The heat dissipation is reduced due to peeling of the bonding layer, and noise is more likely to occur.

上述のコイルと磁性コアとの組合体とケースの底板部との間に十分な隙間を設ければ、騒音を低減できるが、コイルと底板部との間の距離が大きくなり、放熱性の低下を招く。   Noise can be reduced if a sufficient gap is provided between the above-mentioned coil / magnetic core assembly and the bottom plate of the case, but the distance between the coil and the bottom plate increases and the heat dissipation decreases. Invite.

上述の硬質な材料に代えて、例えば、シリコーン樹脂などの比較的軟質な樹脂を含む材料を用いれば、この軟質な材料が上述の磁性コアの振動などを吸収でき、騒音の低減を期待できる。しかし、軟質の材料からなる接合層では、温度変化などによって生じる内部応力、外部からの振動や衝撃などによって、変形が生じたり、大きな衝撃を受けた場合には破壊したりする恐れがある。接合層の変形や破壊などによって、放熱性が低下したり、騒音の低減効果が得られなくなったりする。そのため、内部・外部からの作用に対する耐久性を向上することが望まれる。   If, for example, a material containing a relatively soft resin such as a silicone resin is used in place of the hard material described above, the soft material can absorb vibrations of the magnetic core described above, and noise reduction can be expected. However, the bonding layer made of a soft material may be deformed due to internal stress caused by temperature change, vibration or shock from the outside, or may be destroyed when subjected to a large shock. Due to deformation or destruction of the bonding layer, the heat dissipation may be reduced, or the noise reduction effect may not be obtained. Therefore, it is desired to improve durability against the action from the inside and the outside.

その他、接合層を、接着剤などを塗布した後固化することを繰り返して複数の接着剤層を積層させたり、特許文献1に記載される絶縁シートの両側に接着剤層を備えたりといったケースの深さ方向に積層された構造(以下、縦積み構造と呼ぶ)とすることがある。この場合、コイルの巻回部と金属製のケースの底板部との間の絶縁性を更に高められる上に、巻回部と底板部との間の距離の増大によって騒音の低減を期待できる。しかし、この場合には、上記距離の増大によって、放熱性の低下を招く。また、塗布及び固化を繰り返すことで製造工程数が多く、リアクトルの生産性の低下を招く。   In addition, a case where the bonding layer is repeatedly solidified after applying an adhesive or the like is laminated, or a plurality of adhesive layers are laminated, or an adhesive layer is provided on both sides of the insulating sheet described in Patent Document 1. It may be a structure laminated in the depth direction (hereinafter referred to as a vertically stacked structure). In this case, the insulation between the coil winding portion and the bottom plate portion of the metal case can be further enhanced, and a reduction in noise can be expected by increasing the distance between the winding portion and the bottom plate portion. However, in this case, the increase in the distance causes a decrease in heat dissipation. In addition, repeating the application and solidification increases the number of manufacturing steps, leading to a reduction in reactor productivity.

そこで、本発明の目的の一つは、良好な放熱性と騒音の低減とを両立できるリアクトルを提供することにある。   Accordingly, one of the objects of the present invention is to provide a reactor that can achieve both good heat dissipation and noise reduction.

また、本発明の別の目的は、良好な放熱性と騒音の低減とを両立できるリアクトルを製造可能なリアクトルの製造方法を提供することにある。   Another object of the present invention is to provide a reactor manufacturing method capable of manufacturing a reactor capable of achieving both good heat dissipation and noise reduction.

本発明の一態様に係るリアクトルは、巻線を螺旋状に巻回してなる巻回部を有するコイルと、前記巻回部内に配置される部分を有する磁性コアと、前記コイルと前記磁性コアとを含む組合体の載置面を有する金属部材と、前記金属部材の載置面上に設けられて、前記巻回部と前記金属部材とを接合する絶縁層とを備える。前記絶縁層は、樹脂を含み、硬度が異なる複数の絶縁材料で構成されており、硬質な絶縁材料から構成される硬質領域と、前記硬質な絶縁材料よりも軟質な絶縁材料から構成される軟質領域とが前記巻回部の軸方向にみて交互に存在する。   A reactor according to an aspect of the present invention includes a coil having a winding portion formed by spirally winding a winding, a magnetic core having a portion disposed in the winding portion, the coil, and the magnetic core. The metal member which has the mounting surface of the assembly containing this, and the insulating layer which is provided on the mounting surface of the said metal member, and joins the said winding part and the said metal member is provided. The insulating layer includes a resin and is composed of a plurality of insulating materials having different hardnesses, and includes a hard region composed of a hard insulating material and a soft region composed of an insulating material softer than the hard insulating material. Regions alternately exist when viewed in the axial direction of the winding portion.

本発明の一態様に係るリアクトルの製造方法は、以下の準備工程と、形成工程と、固化工程と、充填工程とを備える。
(準備工程) 巻線を螺旋状に巻回してなる巻回部を有するコイルと前記巻回部内に少なくとも一部が配置された磁性コアとを含む組合体と、前記組合体の載置面を有する金属部材と、樹脂を含む絶縁材料とを準備する工程。
(形成工程) 前記絶縁材料を用いて、前記載置面上に未固化層を形成する工程。
(固化工程) 前記未固化層に前記組合体の巻回部を載置して、前記未固化層における前記載置面側の領域から前記巻回部側の領域に向かって順次固化されるように加熱して、前記巻回部を前記載置面に固定すると共に、開気孔を備える固化層を形成する工程。
(充填工程) 前記絶縁材料とは固化後の硬度が異なり、樹脂を含む絶縁材料を前記開気孔内に充填可能な低粘度状態にして充填した後固化し、前記巻回部と前記載置面との間に、硬度が異なる複数の絶縁材料を含む絶縁層を形成する工程。
The manufacturing method of the reactor which concerns on 1 aspect of this invention is equipped with the following preparatory processes, a formation process, a solidification process, and a filling process.
(Preparation step) An assembly including a coil having a winding portion formed by winding a winding in a spiral shape and a magnetic core at least partially disposed in the winding portion, and a mounting surface of the combination The process of preparing the metal member which has, and the insulating material containing resin.
(Formation process) The process of forming a non-solidified layer on the said mounting surface using the said insulating material.
(Solidification step) The wound part of the assembly is placed on the unsolidified layer so that the unsolidified layer is sequentially solidified from the area on the mounting surface side to the area on the wound part side. The step of forming a solidified layer having open pores while fixing the winding part to the mounting surface as described above.
(Filling step) The hardness after solidification is different from that of the insulating material, and the insulating material containing resin is filled in a low-viscosity state that can be filled in the open pores and then solidified, and the winding portion and the mounting surface described above And forming an insulating layer including a plurality of insulating materials having different hardnesses.

上記のリアクトルは、良好な放熱性と騒音の低減とを両立できる。上記のリアクトルの製造方法は、良好な放熱性と騒音の低減とを両立できるリアクトルを製造できる。   The reactor described above can achieve both good heat dissipation and noise reduction. The reactor manufacturing method described above can manufacture a reactor that can achieve both good heat dissipation and noise reduction.

実施形態1のリアクトルを示す概略斜視図である。It is a schematic perspective view which shows the reactor of Embodiment 1. FIG. 実施形態1のリアクトルを図1に示す(II)−(II)切断線で切断した状態を示す縦断面図であり、ケースの底部側のみを示す。It is a longitudinal cross-sectional view which shows the state which cut | disconnected the reactor of Embodiment 1 by the (II)-(II) cutting line shown in FIG. 1, and shows only the bottom part side of a case. 実施形態1のリアクトルを図1に示す(III)−(III)切断線で切断した状態を示す平断面図であり、コイルの巻回部のうち、一部のターンのみを拡大して示す。It is a plane sectional view showing the state where the reactor of Embodiment 1 was cut by the (III)-(III) cutting line shown in Drawing 1, and expands and shows only some turns among the winding parts of a coil. 実施形態1のリアクトルに備える組合体の分解斜視図である。It is a disassembled perspective view of the union body with which the reactor of Embodiment 1 is equipped. 実施形態1のリアクトルの製造方法の一部を説明する工程説明図である。It is process explanatory drawing explaining a part of manufacturing method of the reactor of Embodiment 1. FIG.

[本発明の実施の形態の説明]
最初に本発明の実施形態を列記して説明する。
(1) 本発明の一態様に係るリアクトルは、巻線を螺旋状に巻回してなる巻回部を有するコイルと、上記巻回部内に配置される部分を有する磁性コアと、上記コイルと上記磁性コアとを含む組合体の載置面を有する金属部材と、上記金属部材の載置面上に設けられて、上記巻回部と上記金属部材とを接合する絶縁層とを備える。上記絶縁層は、樹脂を含み、硬度が異なる複数の絶縁材料で構成されている。この絶縁層は、硬質な絶縁材料から構成される硬質領域と、上記硬質な絶縁材料よりも軟質な絶縁材料から構成される軟質領域とが上記巻回部の軸方向にみて交互に存在する。
[Description of Embodiment of the Present Invention]
First, embodiments of the present invention will be listed and described.
(1) A reactor according to an aspect of the present invention includes a coil having a winding portion formed by spirally winding a winding, a magnetic core having a portion disposed in the winding portion, the coil, and the above A metal member having a mounting surface of a combined body including a magnetic core, and an insulating layer provided on the mounting surface of the metal member and joining the winding portion and the metal member. The insulating layer is made of a plurality of insulating materials containing resin and having different hardness. In this insulating layer, a hard region made of a hard insulating material and a soft region made of an insulating material softer than the hard insulating material are alternately present when viewed in the axial direction of the winding portion.

上記のリアクトルは、コイルの巻回部と金属部材との間に絶縁層を備えるため、電気絶縁性に優れる上に、この絶縁層が硬質な絶縁材料と軟質な絶縁材料との双方を含むことで、以下の理由によって、良好な放熱性と騒音の低減とを両立できる。   Since the above reactor includes an insulating layer between the coil winding portion and the metal member, it is excellent in electrical insulation, and the insulating layer includes both a hard insulating material and a soft insulating material. Therefore, it is possible to achieve both good heat dissipation and noise reduction for the following reasons.

(放熱性)
・ 上記絶縁層は、複数の異種材料を含むものの、特許文献1に記載される縦積み構造になっていない。詳しくは、上記絶縁層と上記縦積み構造の接合層とのそれぞれについて、その厚さ方向に直交に切断した平断面をとり、この平断面をコイルの巻回部の軸方向にみたとき、上記縦積み構造の接合層では、巻回部の一端から他端に亘って一様な材料から構成される平断面をとるが、上記絶縁層では、異種材料から構成される領域が交互に並ぶという平断面を有する。このような絶縁層は、例えば、従来の縦積み構造の接合層を構成する一つの層の厚さと同様な厚さとした場合でも、この一層に硬質領域と軟質領域との双方を含有できる。そのため、上記絶縁層の平均厚さを上記縦積み構造と比較して薄くし易く、コイルの巻回部と金属部材との間の距離(以下、対向距離と呼ぶことがある)を小さくし易く、巻回部と金属部材とを近接配置できる。従って、巻回部から金属部材までの放熱経路が短くなり、熱抵抗を小さくできる。
・ 上記絶縁層が複数の異種材料を含むため、そのうちの少なくとも一つの絶縁材料を、セラミックスフィラーを含有するなどして熱伝導性に優れるものとすることができ、絶縁層自体の熱伝導性を高められる。
(Heat dissipation)
-Although the said insulating layer contains a several different material, it does not have the vertically stacked structure described in patent document 1. FIG. Specifically, for each of the insulating layer and the joining layer of the vertically stacked structure, a flat cross section cut perpendicular to the thickness direction is taken, and when this flat cross section is viewed in the axial direction of the coil winding portion, The vertically stacked joining layer has a flat cross section made of a uniform material from one end to the other end of the wound portion, but the insulating layer has alternating regions made of different materials. Has a flat cross section. Such an insulating layer can contain both a hard region and a soft region even if it has a thickness similar to the thickness of one layer constituting the joining layer of the conventional vertically stacked structure. Therefore, it is easy to reduce the average thickness of the insulating layer as compared with the vertically stacked structure, and it is easy to reduce the distance between the coil winding portion and the metal member (hereinafter sometimes referred to as a facing distance). The winding part and the metal member can be arranged close to each other. Therefore, the heat radiation path from the winding part to the metal member is shortened, and the thermal resistance can be reduced.
-Since the insulating layer includes a plurality of different materials, at least one of the insulating materials can be made to have excellent thermal conductivity by containing a ceramic filler, and the thermal conductivity of the insulating layer itself can be improved. Enhanced.

(騒音の低減)
・ 上記絶縁層が硬質領域と軟質領域とを含むため、磁性コアの振動や外部からの振動を受けた際には、軟質領域が変形するなどしてこの振動を吸収でき、金属部材への振動伝搬を低減できる。
・ 上記絶縁層が硬質領域と軟質領域とを含むため、応力を受けた際には、軟質領域が変形するなどして応力を緩和でき、硬質領域に負荷される応力を低減できると共に、外部から衝撃を受けた際には、変形し難い硬質領域が軟質領域への衝撃を低減できる。このような振動の吸収、応力緩和、衝撃の低減などによって、振動や衝撃、応力などに起因する絶縁層の割れ、破壊、剥離などを低減でき、長期に亘り、絶縁層を良好に維持できる。この点から、上記絶縁層は、外部からの作用に対する耐久性に優れるといえる。
(Noise reduction)
-Since the insulating layer includes a hard region and a soft region, when the magnetic core receives vibrations from the outside or from the outside, the soft region can be deformed to absorb this vibration. Propagation can be reduced.
-Since the insulating layer includes a hard region and a soft region, when stress is applied, the soft region can be deformed and the stress can be relaxed, and the stress applied to the hard region can be reduced. When subjected to an impact, the hard region that is difficult to deform can reduce the impact on the soft region. Such vibration absorption, stress relaxation, impact reduction, and the like can reduce cracking, breakage, peeling, and the like of the insulating layer due to vibration, impact, stress, and the like, and the insulating layer can be satisfactorily maintained for a long time. From this point, it can be said that the insulating layer is excellent in durability against an external action.

(2) 上記のリアクトルの一例として、上記絶縁層が上記硬質な絶縁材料及び上記軟質な絶縁材料の一方から構成され、他方の絶縁材料によって囲まれる内包領域を備える形態が挙げられる。   (2) As an example of the reactor described above, there is a mode in which the insulating layer includes one of the hard insulating material and the soft insulating material and includes an inclusion region surrounded by the other insulating material.

内包領域が軟質な絶縁材料で構成される軟質領域である場合には、硬質領域中に適当な間隔で存在する軟質領域が磁性コアの振動や外部からの振動を吸収できて騒音を良好に低減できる。これらの軟質領域は応力を緩和して絶縁層の剥離などを低減できるため、コイルの巻回部と金属部材との固定状態を良好に維持でき、この形態は、放熱性に優れる上に絶縁も確保できる。硬質領域が後述する放熱性に優れる絶縁材料で構成される場合には、放熱性に更に優れる。   When the inclusion region is a soft region composed of a soft insulating material, the soft region existing at an appropriate interval in the hard region can absorb the vibration of the magnetic core and the vibration from the outside and reduce the noise well. it can. These soft regions can relieve stress and reduce peeling of the insulating layer, etc., so that the fixed state between the coil winding part and the metal member can be maintained well, and this form is excellent in heat dissipation and insulation. It can be secured. When the hard region is made of an insulating material having excellent heat dissipation described later, the heat dissipation is further improved.

又は、内包領域が硬質な絶縁材料で構成される硬質領域である場合には、軟質領域による磁性コアの振動や外部からの振動の吸収、応力緩和を確実に行えて、騒音を低減できる上に放熱性に優れる。特に、この形態は、軟質領域に比較して剛性が高く変形し難い硬質領域が外部からの衝撃による軟質領域の変形や破壊などを低減できることで、軟質領域による振動の低減効果、応力緩和効果を良好に得られる。また、この形態も、コイルの巻回部と金属部材との固定状態を良好に維持できることから、放熱性に優れる上に絶縁も確保できる。この形態は、絶縁層が軟質領域を比較的多く備えながらも、外部からの作用に対する耐久性に優れ、長期に亘り、所望の特性を維持できる。   Or, if the inclusion region is a hard region made of a hard insulating material, the soft core can reliably absorb the vibration of the magnetic core, absorb external vibrations, and relieve stress, thereby reducing noise. Excellent heat dissipation. In particular, this configuration has a hard region that is more rigid and difficult to deform than the soft region, and can reduce deformation and breakage of the soft region due to external impact, thereby reducing the vibration and stress relaxation effects of the soft region. Obtained well. Moreover, since this form can also maintain the fixed state of the winding part of a coil and a metal member favorably, it can also ensure insulation while being excellent in heat dissipation. In this form, the insulating layer has a relatively large number of soft regions, but has excellent durability against external effects, and can maintain desired characteristics over a long period of time.

(3) 上記のリアクトルの一例として、上述の内包領域を備える(2)の場合に上記内包領域が上記巻回部を構成するターンの周回方向に沿って形成されて、隣り合うターン間に配置される棒状体を含む形態が挙げられる。   (3) As an example of the above-described reactor, in the case of (2) including the above-described inclusion region, the inclusion region is formed along the circumferential direction of the turns constituting the winding portion and disposed between adjacent turns. The form containing the rod-shaped body made is mentioned.

上記形態は、絶縁層における隣り合うターン間の近傍領域の少なくとも一つに、棒状の内包領域を備える。代表的な形態として、絶縁層をコイルの巻回部の軸方向にみたとき、複数の棒状の内包領域が上記軸方向に並列するように配置された形態、即ち複数の隣り合うターン間にそれぞれ棒状体を備える形態が挙げられる。上記形態は、ターン間に内包領域が存在するため、絶縁層を巻回部の軸方向にみたときの硬質領域と軟質領域とが交互に配置される間隔を、ターンを形成する巻線の大きさ(厚さ)程度とすることができる点、内包領域がターンの周回方向に沿ってある程度長く存在できる点から、硬質領域と軟質領域とをバランスよく備えるといえる。そのため、上記形態は、軟質領域による振動の吸収や応力緩和、硬質領域による剛性の向上などの効果を良好に得られて、良好な放熱性と騒音の低減とを両立できる。また、上記形態は、内包領域が十分に存在するものの、絶縁層の厚さは内包領域を覆う外郭領域の厚さ程度にできる、いわば外郭領域がつくる一層分の厚さ程度にできるため、対向距離の増大を招くことが無く、放熱性に優れる。隣り合うターン間に棒状の内包領域を含む絶縁層を備える上記形態は、例えば、後述する実施形態のリアクトルの製造方法によって製造できる。   The said form equips at least one of the adjacent areas between the adjacent turns in an insulating layer with a rod-shaped inclusion area | region. As a representative form, when the insulating layer is viewed in the axial direction of the coil winding portion, a plurality of rod-shaped inclusion regions are arranged in parallel to the axial direction, that is, between a plurality of adjacent turns. The form provided with a rod-shaped body is mentioned. In the above configuration, since there is an inclusion region between the turns, the interval in which the hard region and the soft region are alternately arranged when the insulating layer is viewed in the axial direction of the winding portion is the size of the winding forming the turn. It can be said that the hard region and the soft region are provided in a well-balanced manner from the viewpoint that the thickness can be about the thickness (thickness) and the inclusion region can exist for a long time along the turn direction. Therefore, the said form can acquire favorable effects, such as a vibration absorption and stress relaxation by a soft area | region, and the rigidity improvement by a hard area | region, and can make favorable heat dissipation and noise reduction compatible. Moreover, although the above-mentioned form has sufficient inclusion region, the thickness of the insulating layer can be about the thickness of the outer region covering the inner region, so to speak, it can be about the thickness of one layer created by the outer region. No increase in distance and excellent heat dissipation. The said form provided with the insulating layer containing a rod-shaped inclusion area | region between adjacent turns can be manufactured with the manufacturing method of the reactor of embodiment mentioned later, for example.

(4) 上記のリアクトルの一例として、上述の内包領域を備える(2)又は(3)の場合に上記絶縁層を上記巻回部の軸方向に平行な平面で切断した縦断面における上記内包領域の内包径が0.1mm以上2mm以下である形態が挙げられる。   (4) As an example of the reactor, in the case of (2) or (3) including the above-described inclusion region, the inclusion region in a longitudinal section obtained by cutting the insulating layer along a plane parallel to the axial direction of the winding portion In which the inner diameter is 0.1 mm or more and 2 mm or less.

上記内包領域の内包径とは、上記絶縁層の縦断面における内包領域の包絡円の直径とする。例えば、内包領域の縦断面形状が円形であれば、上記内包径はこの円の直径である。   The inner diameter of the inner region is the diameter of the envelope circle of the inner region in the longitudinal section of the insulating layer. For example, if the longitudinal cross-sectional shape of the inner region is a circle, the inner diameter is the diameter of this circle.

上記形態は、内包領域と外郭領域とがバランスよく存在し、軟質領域による振動の吸収や応力緩和、硬質領域による剛性の向上などの効果を良好に得られて、良好な放熱性と騒音の低減とを両立できる。また、内包領域が大き過ぎないため、対向距離の増大を招くことが無く、上記形態は放熱性に優れる。   In the above configuration, the inclusion region and the outer region exist in a well-balanced manner, and effects such as vibration absorption and stress relaxation by the soft region and improvement of rigidity by the hard region can be obtained well, and good heat dissipation and noise reduction are achieved. And both. Moreover, since the inclusion region is not too large, the facing distance is not increased, and the above form is excellent in heat dissipation.

(5) 上記のリアクトルの一例として、上述の内包領域を備える(2)〜(4)のいずれか一つの場合に上記内包領域を、上記巻回部を構成する隣り合うターンと上記金属部材の載置面とで挟まれる断面T字状の領域に備える形態が挙げられる。   (5) As an example of the above reactor, in any one of the above (2) to (4) including the above-described inclusion region, the inclusion region, the adjacent turn constituting the winding portion, and the metal member The form with which the cross-section T-shaped area | region pinched | interposed with a mounting surface is mentioned.

上記断面T字状の領域は、その他の領域、具体的には巻回部における金属部材の載置面との対向面と金属部材の載置面とで挟まれる領域と比較して、断面積が大きい傾向にある。このような比較的大きな領域内に硬質領域と軟質領域との双方が存在することで、いずれか一方のみが存在する場合に比較して、上述の剛性の向上や、振動の吸収、応力緩和などの効果を得易い。   The cross-sectional T-shaped region has a cross-sectional area compared to other regions, specifically, a region sandwiched between the surface facing the metal member placement surface and the metal member placement surface in the winding portion. Tend to be large. Since both the hard region and the soft region exist in such a relatively large region, the above-described improvement in rigidity, vibration absorption, stress relaxation, etc., compared with the case where only one of them exists. It is easy to obtain the effect.

(6) 上記のリアクトルの一例として、上記金属部材が上記組合体を収納するケースであり、上記内包領域を構成する絶縁材料が上記ケース内に充填されて、上記組合体の少なくとも一部を埋設する封止樹脂である形態が挙げられる。   (6) As an example of the reactor, the metal member is a case for housing the combination, and the case is filled with an insulating material constituting the inclusion region, so that at least a part of the combination is embedded. The form which is sealing resin to perform is mentioned.

上記形態は、金属製のケースを備えるため放熱性に更に優れる上に、以下の理由により、製造性にも優れる。   Since the said form is provided with metal cases, it is further excellent in heat dissipation, and also it is excellent in manufacturability for the following reasons.

上記形態は、絶縁層の一部が封止樹脂で構成されるため、絶縁層の内外に連続して封止樹脂が存在するといえる。このような上記形態は、絶縁層の他部を形成する絶縁材料によって開気孔を有する固化層(外郭領域)をまず形成し、封止樹脂の原料となる樹脂材料をケース内に充填して固化することで製造できる(後述の実施形態のリアクトルの製造方法も参照)。ケース内に上記樹脂材料を充填すると、開気孔にも上記樹脂材料が自動的に充填され、この状態で固化されて、封止樹脂で構成される内包領域を備える絶縁層を製造できる。従って、上記形態は、複数の異種材料を含む絶縁層を備えるものの、絶縁層の一部の形成と封止樹脂の充填・固化とを兼用して工程数を低減できる上に、容易に製造できる。   In the above embodiment, since a part of the insulating layer is made of the sealing resin, it can be said that the sealing resin continuously exists inside and outside the insulating layer. In such a form, a solidified layer (outer region) having open pores is first formed of an insulating material that forms the other part of the insulating layer, and the resin material that is the raw material of the sealing resin is filled in the case and solidified. It can manufacture by doing (refer also to the manufacturing method of the reactor of the below-mentioned embodiment). When the case is filled with the resin material, the open pores are automatically filled with the resin material, and in this state, the resin material is solidified to produce an insulating layer having an inclusion region made of a sealing resin. Therefore, although the said form is provided with the insulating layer containing a several different material, it can manufacture easily while being able to reduce the number of processes by combining formation of a part of insulating layer and filling and solidification of sealing resin. .

(7) 上記のリアクトルの一例として、上記硬質な絶縁材料のショアD硬度が50以上であり、上記軟質な絶縁材料のショアA硬度が80以下である形態が挙げられる。   (7) As an example of the above reactor, there is a form in which the Shore D hardness of the hard insulating material is 50 or more and the Shore A hardness of the soft insulating material is 80 or less.

上記形態は、硬質領域が十分に硬く剛性に優れる絶縁材料で構成され、軟質領域が十分に柔らかく柔軟性に優れる絶縁材料で構成されるため、上述の剛性の向上や、振動の吸収、応力緩和などの効果を得易い。   The above configuration is made of an insulating material with a hard region that is sufficiently hard and excellent in rigidity, and a soft region is formed with an insulating material that is sufficiently soft and excellent in flexibility, so that the above-described improvement in rigidity, vibration absorption, and stress relaxation are achieved. It is easy to obtain such effects.

(8) 上記のリアクトルの一例として、上記硬質な絶縁材料の熱伝導率が2.0W/m・K以上及び上記軟質な絶縁材料の熱伝導率が0.1W/m・K以上5.0W/m・K以下の少なくとも一方を満たす形態が挙げられる。熱伝導率の測定は、絶縁層から試験片を切り出す、又は絶縁層を構成する絶縁材料の成分を分析し、分析結果に基づいて試験片を作製して行う。   (8) As an example of the above-described reactor, the thermal conductivity of the hard insulating material is 2.0 W / m · K or more and the thermal conductivity of the soft insulating material is 0.1 W / m · K or more and 5.0 W. The form which satisfy | fills at least one of below / m * K is mentioned. The measurement of thermal conductivity is performed by cutting out a test piece from the insulating layer or analyzing a component of the insulating material constituting the insulating layer and producing a test piece based on the analysis result.

熱伝導率が上記の特定の範囲を満たす高熱伝導性の絶縁材料から構成される硬質領域を有する場合には、放熱性に更に優れる。高熱伝導性の絶縁材料としては、例えば、樹脂と、熱伝導性に優れるセラミックスなどの絶縁体からなるフィラーとを含むものが利用できる(この点は、後述する軟質な絶縁材料も同様である)。   In the case of having a hard region made of an insulating material having a high thermal conductivity that satisfies the above specific range, the heat dissipation is further improved. As the insulating material having high thermal conductivity, for example, a material containing a resin and a filler made of an insulating material such as ceramics having excellent thermal conductivity can be used (this also applies to a soft insulating material described later). .

軟質な絶縁材料が特に高熱伝導性のものである場合、例えば、熱伝導率が1W/m・K以上である高熱伝導性の絶縁材料から構成される軟質領域を有する場合には、放熱性に更に優れる。一方、熱伝導率が1W/m・K未満の熱伝導性が比較的低い絶縁材料から構成される軟質領域を有する上記形態は、以下の理由により絶縁層を形成し易く、製造性に優れる。この軟質領域の原料には、上記フィラーを含まず実質的に樹脂からなる材料や、上記フィラーを含んでもその含有量が少ない材料を利用でき、このような絶縁材料は一般に未固化の状態では低粘度であり、塗布や充填などの作業を行い易いからである。   When the soft insulating material has a particularly high thermal conductivity, for example, when the soft insulating material has a soft region composed of a high thermal conductive insulating material having a thermal conductivity of 1 W / m · K or more, the heat dissipation performance is improved. Even better. On the other hand, the said form which has a soft area | region comprised from an insulating material with comparatively low heat conductivity whose heat conductivity is less than 1 W / m * K is easy to form an insulating layer for the following reasons, and is excellent in manufacturability. As the raw material for the soft region, a material that is substantially free of the filler and that is made of a resin, or a material that contains the filler and has a low content can be used. Such an insulating material is generally low in an unsolidified state. This is because it is a viscosity and it is easy to perform operations such as coating and filling.

その他、上記形態は、一方の絶縁材料が上記の特定の範囲を満たす場合に他方の絶縁材料は種々のものが利用でき、材料選択の自由度が高い。   In addition, in the above embodiment, when one insulating material satisfies the above specific range, various other insulating materials can be used, and the degree of freedom in material selection is high.

(9) 上記のリアクトルの一例として、上記絶縁層の耐電圧が1kV/mm以上である形態が挙げられる。   (9) As an example of the reactor, a mode in which the withstand voltage of the insulating layer is 1 kV / mm or more can be given.

上記形態は、耐電圧が高く、コイルと金属部材との間の電気絶縁性に優れる。   The said form has a high withstand voltage, and is excellent in the electrical insulation between a coil and a metal member.

(10) 本発明の一態様に係るリアクトルの製造方法は、以下の準備工程と、形成工程と、固化工程と、充填工程とを備える。
(準備工程) 巻線を螺旋状に巻回してなる巻回部を有するコイルと上記巻回部内に少なくとも一部が配置された磁性コアとを含む組合体と、上記組合体の載置面を有する金属部材と、樹脂を含む絶縁材料とを準備する工程。
(形成工程) 上記絶縁材料を用いて、上記載置面上に未固化層を形成する工程。
(固化工程) 上記未固化層に上記組合体の巻回部を載置して、上記未固化層における上記載置面側の領域から上記巻回部側の領域に向かって順次固化されるように加熱して、上記巻回部を上記載置面に固定すると共に、開気孔を備える固化層を形成する工程。
(充填工程) 上記絶縁材料とは固化後の硬度が異なり、樹脂を含む絶縁材料を上記開気孔内に充填可能な低粘度状態にして充填した後固化し、上記巻回部と上記載置面との間に、硬度が異なる複数の絶縁材料を含む絶縁層を形成する工程。
(10) The manufacturing method of the reactor which concerns on 1 aspect of this invention is equipped with the following preparatory processes, a formation process, a solidification process, and a filling process.
(Preparation step) An assembly including a coil having a winding portion formed by spirally winding a winding, and a magnetic core disposed at least in part in the winding portion, and a mounting surface of the combination The process of preparing the metal member which has, and the insulating material containing resin.
(Formation process) The process of forming an unsolidified layer on the said mounting surface using the said insulating material.
(Solidification step) The winding part of the assembly is placed on the unsolidified layer so that the unsolidified layer is solidified sequentially from the region on the placement surface side to the region on the winding part side. The step of forming a solidified layer having open pores while fixing the winding part to the placement surface described above.
(Filling step) The hardness after solidification is different from that of the insulating material, and the insulating material containing resin is filled in a low-viscosity state that can be filled in the open pores and then solidified, and the winding portion and the placement surface described above And forming an insulating layer including a plurality of insulating materials having different hardnesses.

本発明者らは、コイルの巻回部と金属部材との間に介在させる絶縁層を種々の条件で製造して、巻回部を金属部材に強固に固定して巻回部から金属部材への熱伝導を効率よく行えると共に騒音を低減できる構成を検討した。その結果、金属部材上に樹脂を含む絶縁材料からなる未固化層を形成し、この未固化層を、金属部材側から巻回部側に向かって固化されるように未固化層の加熱状態を制御すると、固化層に開気孔を形成できる、との知見を得た。固化層の平均厚さが1mm以下といった極薄い層であっても、開気孔を形成できた。開気孔の形成メカニズムは定かではないが、以下のように考えられる。   The inventors of the present invention manufactured an insulating layer interposed between a coil winding portion and a metal member under various conditions, and firmly fixed the winding portion to the metal member, from the winding portion to the metal member. We studied a configuration that can efficiently conduct heat conduction and reduce noise. As a result, an unsolidified layer made of an insulating material containing a resin is formed on the metal member, and the unsolidified layer is heated so that the unsolidified layer is solidified from the metal member side toward the winding portion side. It was found that when controlled, open pores can be formed in the solidified layer. Open pores could be formed even with an extremely thin layer having an average thickness of 1 mm or less. The formation mechanism of open pores is not clear, but is considered as follows.

金属部材上に未固化層を形成し、この未固化層上にコイルと磁性コアとを含む組合体を配置すると、未固化層は、組合体と金属部材とに挟まれた状態にあるといえる。このように未固化層を挟持する組合体と金属部材との組物を例えば加熱炉などに装入したり、金属部材に近接して加熱源を配置したりして、挟持された未固化層を加熱する。すると、組合体の熱容量は、通常、金属部材よりも十分に大きいため、未固化層は、その厚さ方向にみて金属部材側から巻回部側に向かって加熱され易く、未固化層における金属部材側の領域は、固化温度に維持され易くなって、固化され易くなる。未固化層における巻回部側の領域は、上記組物に脱熱されて金属部材側の領域に比較して加熱され難く、金属部材の載置面側の領域から遅れて固化することになる。未固化層における巻回部側の領域が固化温度に達するまでの間に、加熱によって絶縁材料の粘度がある程度低くなっていると、毛管現象によって隣り合うターン間に絶縁材料が侵入し得る。ターン間への絶縁材料の移動と、金属部材側の領域の順次の固化とによって、未固化層における巻回部と金属部材との間の絶縁材料が徐々に枯渇する。そのため、絶縁材料に代えて、上記組物の周囲の雰囲気ガスを未固化層の側面などから吸い込んだ結果、固化層の側面などに開口した開気孔が生じる、と考えられる。また、上述のように隣り合うターン間に絶縁材料が流動することで、隣り合うターンと金属部材の載置面とで挟まれる断面T字状の領域に、ターンの周回方向に沿った筒状の開気孔が形成されると考えられる。   When an unsolidified layer is formed on a metal member and a combined body including a coil and a magnetic core is disposed on the unsolidified layer, the unsolidified layer can be said to be sandwiched between the combined body and the metal member. . Thus, the unsolidified layer sandwiched by inserting the assembly of the unionized layer and the metal member into, for example, a heating furnace or placing a heating source in the vicinity of the metal member. Heat. Then, since the heat capacity of the assembly is usually sufficiently larger than that of the metal member, the unsolidified layer is easily heated from the metal member side to the winding portion side in the thickness direction, and the metal in the unsolidified layer The region on the member side is easily maintained at the solidification temperature and is easily solidified. The region on the winding part side in the unsolidified layer is deheated by the assembly and is not easily heated as compared with the region on the metal member side, and solidifies behind the region on the mounting surface side of the metal member. . If the viscosity of the insulating material is lowered to some extent by heating before the region on the winding portion side in the unsolidified layer reaches the solidification temperature, the insulating material can enter between adjacent turns by capillary action. By the movement of the insulating material between the turns and the sequential solidification of the region on the metal member side, the insulating material between the winding portion and the metal member in the unsolidified layer is gradually depleted. Therefore, it is considered that, instead of the insulating material, the atmospheric gas around the assembly is sucked from the side surface of the unsolidified layer or the like, and as a result, open pores are formed on the side surface of the solidified layer. In addition, as described above, the insulating material flows between adjacent turns, so that a cylindrical shape along the circumferential direction of the turns is formed in a T-shaped region sandwiched between the adjacent turns and the mounting surface of the metal member. It is considered that the open pores are formed.

上記のリアクトルの製造方法は、未固化層を固化すると同時に開気孔を形成し、この開気孔に粘度を調整した絶縁材料を充填することで、コイルの巻回部と金属部材との間に硬質な絶縁材料から構成される硬質領域と軟質な絶縁材料から構成される軟質領域とを含む絶縁層を備えるリアクトルを製造できる。即ち、上記のリアクトルの製造方法は、絶縁性に優れる上に、良好な放熱性と騒音の低減とを両立できる上記の実施形態のリアクトルを製造できる。   In the above-described reactor manufacturing method, an open pore is formed at the same time as the unsolidified layer is solidified, and the open pore is filled with an insulating material whose viscosity is adjusted, so that a hard portion is formed between the coiled portion and the metal member. It is possible to manufacture a reactor including an insulating layer including a hard region composed of a simple insulating material and a soft region composed of a soft insulating material. That is, the reactor manufacturing method described above can manufacture the reactor according to the above-described embodiment, which is excellent in insulation and can achieve both good heat dissipation and noise reduction.

また、上記のリアクトルの製造方法は、以下の理由により、上記の特定の構造の絶縁層を備えるリアクトルを生産性よく製造できる。
・ 固化層の平均厚さが1mm以下といった極薄い層であっても、開気孔を自動的に形成できる。
・ 軟質の絶縁材料として上述のフィラーを含まず実質的に樹脂からなる材料や少量のフィラーを含む材料を利用すると未固化の状態では低粘度であるため、未固化層を形成し易かったり、開気孔内に充填し易かったりなどする。
Moreover, the manufacturing method of said reactor can manufacture a reactor provided with the insulating layer of said specific structure with sufficient productivity for the following reasons.
-Open pores can be formed automatically even if the solidified layer is an extremely thin layer having an average thickness of 1 mm or less.
・ If a soft insulating material that does not contain the above-mentioned filler and is made of a resin or a material that contains a small amount of filler has low viscosity in an unsolidified state, it is easy to form an unsolidified layer or open it. It may be easy to fill the pores.

特に、金属部材を、組合体を収納する金属製のケースとし、このケースと、このケース内に充填される封止樹脂とを備えるリアクトルとし、開気孔に充填する絶縁材料を封止樹脂とする場合には、以下の理由により、生産性にも優れる。上述の縦積み構造の接合層と封止樹脂とを備えるリアクトルを製造する場合、上述のように未固化層の形成及び固化を複数回繰り返し、更に封止樹脂の充填及び固化という工程を備える。これに対し、上記のリアクトルの製造方法では、未固化層の形成及び固化が1回でよく、その後の封止樹脂の充填及び固化という工程で上記の特定の構造の絶縁層を備えるリアクトルを製造できるため、上記縦積み構造の場合と比較して、工程数が少ないからである。更に、上記の特定の構造の絶縁層を備えることで放熱性に優れることから、封止樹脂としてフィラーの含有量が少なく、未固化の状態で低粘度な絶縁材料を利用した場合には、流動性に優れてケース内に充填し易く、充填時間を短縮できるからである。   In particular, the metal member is a metal case for housing the assembly, a reactor including the case and a sealing resin filled in the case, and an insulating material filling the open pores is a sealing resin. In some cases, the productivity is excellent for the following reasons. In the case of manufacturing a reactor including the above-described vertically stacked bonding layer and the sealing resin, a process of filling and solidifying the sealing resin is further performed as described above, and the formation and solidification of the unsolidified layer is repeated a plurality of times. On the other hand, in the above-described reactor manufacturing method, the formation and solidification of the unsolidified layer may be performed once, and the reactor including the insulating layer having the specific structure described above is manufactured in the process of filling and solidifying the sealing resin thereafter. This is because the number of steps is smaller than in the case of the vertically stacked structure. Furthermore, since the insulating layer having the above specific structure is excellent in heat dissipation, the content of filler is small as a sealing resin, and when an insulating material having a low viscosity in an unsolidified state is used, This is because it is easy to fill the case, and the filling time can be shortened.

(11) 上記のリアクトルの製造方法の一例として、上記固化工程では、上記未固化層における上記金属部材側の領域の温度が上記巻回部側の領域の温度よりも高くなるように温度差を設けて上記固化層を形成する形態が挙げられる。   (11) As an example of the manufacturing method of the reactor, in the solidification step, the temperature difference is set so that the temperature of the region on the metal member side in the unsolidified layer is higher than the temperature of the region on the winding part side. The form which provides and forms the said solidified layer is mentioned.

上記形態は、未固化層における金属部材側の領域を巻回部側よりも高温とするため、未固化層を金属部材側から巻回部側に向かって固化し易く、上述の毛管現象による開気孔の形成を十分にかつ確実に行える。その結果、上記の形態は、固化層の開気孔に、固化層とは固化後の硬度が異なる絶縁材料が詰まった絶縁層を備えるリアクトルを製造し易い。   In the above configuration, since the region on the metal member side in the unsolidified layer is set to a temperature higher than that of the wound portion side, the unsolidified layer is easily solidified from the metal member side toward the wound portion side. The pores can be formed sufficiently and reliably. As a result, the above-described embodiment makes it easy to manufacture a reactor including an insulating layer in which the open pores of the solidified layer are filled with an insulating material having a hardness different from that of the solidified layer.

[本発明の実施形態の詳細]
以下、図面を参照して、本発明の実施形態を具体的に説明する。図中の同一符号は同一名称物を示す。
[Details of the embodiment of the present invention]
Embodiments of the present invention will be specifically described below with reference to the drawings. The same reference numerals in the figure indicate the same names.

[実施形態1]
まず、図1〜図4を参照して、実施形態1のリアクトル1を説明し、次に、図5を主に参照して、実施形態1のリアクトルの製造方法を工程ごとに説明する。図1〜図3,図5において、絶縁層6や未固化層610、固化層600の厚さt600、開気孔6pの大きさ(内包径D、後述の棒長さLなど)、隣り合うターン2t,2t間の間隔(特に図3)などは、分かり易いように誇張して又は模式的に示す。
[Embodiment 1]
First, the reactor 1 of Embodiment 1 is demonstrated with reference to FIGS. 1-4, and the manufacturing method of the reactor of Embodiment 1 is demonstrated for every process mainly with reference mainly to FIG. 1 to 3 and 5, the insulating layer 6, the unsolidified layer 610, the thickness t 600 of the solidified layer 600, the size of the open pores 6 p (the inner diameter D, the rod length L described later), and the like are adjacent to each other. An interval (in particular, FIG. 3) between the turns 2t and 2t is exaggerated or schematically shown for easy understanding.

(リアクトル)
・全体構成
実施形態1のリアクトル1は、図1に示すように、巻線2wを螺旋状に巻回してなる巻回部2a,2bを有するコイル2と、巻回部2a,2b内に配置される部分を有する磁性コア3と、コイル2と磁性コア3とを含む組合体10が載置される載置面を有する金属部材と、金属部材の載置面上に設けられて、コイル2と金属部材とを接合する絶縁層6とを備える。図1のリアクトル1は、組合体10を収納する金属製のケース4と、ケース4内に充填されて、組合体10の少なくとも一部(ここでは巻線2wの端部を除く実質的に全部)を埋設する封止樹脂100とを備える例を示す。この例の金属部材はケース4であり、載置面はケース4の底部40の内底面40iの一部である。リアクトル1は、ケース4がコンバータケースなどの設置対象(図示せず)に取り付けられて使用される。設置対象が冷却構造(図示せず)を備えている場合には、リアクトル1は設置対象によって冷却される。特にコイル2の巻回部2a,2bの熱や磁性コア3の熱は、絶縁層6を介して底部40に伝えられ、底部40を介してケース4外の設置対象に伝えられる。
(Reactor)
-Overall structure The reactor 1 of Embodiment 1 is arrange | positioned in the coil 2 which has the winding parts 2a and 2b formed by helically winding the coil | winding 2w, and the winding parts 2a and 2b, as shown in FIG. A magnetic member 3 having a portion to be mounted, a metal member having a mounting surface on which the combined body 10 including the coil 2 and the magnetic core 3 is mounted, and a coil 2 provided on the mounting surface of the metal member. And an insulating layer 6 for joining the metal member. The reactor 1 in FIG. 1 is made of a metal case 4 that houses a combination 10 and the case 4 is filled with at least a part of the combination 10 (here, substantially all except for the end of the winding 2w). ) Is embedded, and an example provided with sealing resin 100 is shown. The metal member in this example is the case 4, and the mounting surface is a part of the inner bottom surface 40 i of the bottom portion 40 of the case 4. Reactor 1 is used with case 4 attached to an installation target (not shown) such as a converter case. When the installation target has a cooling structure (not shown), the reactor 1 is cooled by the installation target. In particular, the heat of the winding portions 2 a and 2 b of the coil 2 and the heat of the magnetic core 3 are transmitted to the bottom portion 40 through the insulating layer 6 and are transmitted to the installation target outside the case 4 through the bottom portion 40.

実施形態1のリアクトル1は、絶縁層6が、樹脂を含み、硬度が異なる複数の絶縁材料で構成されており、図2の破線円内に示すように絶縁層6を巻回部2a,2bの軸方向(図2では左右方向)にみると、ある硬度の絶縁材料から構成される領域に対して、この絶縁材料よりも高硬度又は低硬度の絶縁材料から構成される領域が間欠的に並ぶように存在する点を特徴の一つとする。図2では、絶縁層6として、一方の領域が硬質な絶縁材料及び軟質な絶縁材料の一方から構成され、他方の絶縁材料を囲む外郭領域60であり、他方の領域が外郭領域60の構成材料に囲まれた内包領域61であり、かつ内包領域61の構成材料が封止樹脂100である例を示す。以下、実施形態1のリアクトル1の主要部材であるコイル2、磁性コア3、金属部材の一例であるケース4の概要と、特徴点である絶縁層6及び封止樹脂100の詳細とをまず説明し、次に、リアクトル1を製造できる実施形態1に係るリアクトルの製造方法を説明する。その後にリアクトル1の主要部材の詳細や変形例、その他の構成部材などを説明する。   In the reactor 1 of the first embodiment, the insulating layer 6 includes a resin and is made of a plurality of insulating materials having different hardness, and the insulating layer 6 is wound around the winding portions 2a and 2b as shown in the broken-line circle in FIG. When viewed in the axial direction (the left-right direction in FIG. 2), a region composed of an insulating material having a hardness higher or lower than that of the insulating material is intermittent with respect to a region composed of an insulating material having a certain hardness. One of the features is a point that exists in a line. In FIG. 2, as the insulating layer 6, one region is composed of one of a hard insulating material and a soft insulating material, and is an outer region 60 surrounding the other insulating material, and the other region is a constituent material of the outer region 60. An example is shown in which the encapsulating region 61 is surrounded by and the constituent material of the encapsulating region 61 is the sealing resin 100. Hereinafter, the outline of the case 2, which is an example of the coil 2, the magnetic core 3, and the metal member, which are the main members of the reactor 1 of the first embodiment, and the details of the insulating layer 6 and the sealing resin 100 that are characteristic points will be described first. Next, a method for manufacturing the reactor according to the first embodiment capable of manufacturing the reactor 1 will be described. After that, details and modifications of the main members of the reactor 1 and other components will be described.

・コイル
コイル2は、図4に示すように1本の連続する巻線2wを螺旋状に巻回して形成された一対の筒状の巻回部2a,2bと、巻線2wの一部から形成されて両巻回部2a,2bを接続する連結部2rとを備える。各巻回部2a,2bは、互いの軸が平行するように並列(横並び)に配置されている。この例の巻線2wは、断面が矩形状である平角線の導体(銅など)と、この導体の外周を覆う絶縁被覆(ポリアミドイミドなど)とを備える被覆平角線(いわゆるエナメル線)である。図4に示す各巻回部2a,2bは、角部を丸めた四角筒状のエッジワイズコイルである。巻回部2a,2bの外形はいずれも、四つの平面と、隣り合う平面を繋ぐ湾曲面とで構成され、四つの平面のうちの一面が金属部材の載置面(ここではケース4の内底面40i。以下、実施形態1において同様)に対向配置される。
Coil The coil 2 includes a pair of cylindrical winding portions 2a and 2b formed by spirally winding one continuous winding 2w as shown in FIG. 4 and a part of the winding 2w. And a connecting portion 2r that is formed and connects both winding portions 2a and 2b. Each winding part 2a, 2b is arrange | positioned in parallel (side by side) so that a mutual axis | shaft may be parallel. The winding 2w in this example is a covered rectangular wire (so-called enameled wire) including a rectangular conductor (copper or the like) having a rectangular cross section and an insulating coating (polyamideimide or the like) covering the outer periphery of the conductor. . Each winding part 2a, 2b shown in FIG. 4 is a square cylindrical edgewise coil with rounded corners. The outer shapes of the winding portions 2a and 2b are each composed of four planes and a curved surface connecting adjacent planes, and one of the four planes is a mounting surface of the metal member (in this case, the inside of the case 4). The bottom surface 40i is disposed opposite to the bottom surface 40i (hereinafter the same as in the first embodiment).

巻線2wの両端部はいずれも、巻回部2a,2bから適宜な方向に引き出され、その先端の絶縁被覆が剥されて、導体に端子金具(図示せず)が接続される。コイル2は、この端子金具を介して電源などの外部装置(図示せず)と電気的に接続される。   Both end portions of the winding 2w are drawn out from the winding portions 2a and 2b in an appropriate direction, the insulating coating at the tip thereof is peeled off, and a terminal fitting (not shown) is connected to the conductor. The coil 2 is electrically connected to an external device (not shown) such as a power source via the terminal fitting.

・磁性コア
磁性コア3は、図4に示すように複数の柱状のコア片31m,32mと、代表的にはコア片31m,31m間に介在される複数のギャップ材31gとを備え、環状に組み付けられる。この例では、図4の上方から見てU字状であるコア片32m,32mが、そのU字の開口部が向かい合うように配置される。これらコア片32m,32m間に、コア片31mとギャップ材31gとを積層した一対の積層物が横並び(並列)に配置される。この配置によって、磁性コア3は環状に組み付けられ、コイル2を励磁したときに閉磁路を形成する。磁性コア3におけるコア片31m及びギャップ材31gとU字状のコア片32mの一部(後述の突出部分)は、図2に示すようにコイル2の巻回部2a,2b内に配置される部分を構成し、U字状のコア片32mの残部(後述のブロック)は、巻回部2a,2bが配置されず、コイル2から突出した部分を構成する。
Magnetic Core The magnetic core 3 includes a plurality of columnar core pieces 31m and 32m and a plurality of gap members 31g typically interposed between the core pieces 31m and 31m as shown in FIG. Assembled. In this example, core pieces 32m and 32m that are U-shaped when viewed from above in FIG. 4 are arranged so that the U-shaped openings face each other. Between these core pieces 32m and 32m, a pair of laminated body which laminated | stacked the core piece 31m and the gap material 31g is arrange | positioned side by side (parallel). With this arrangement, the magnetic core 3 is assembled in an annular shape, and forms a closed magnetic path when the coil 2 is excited. The core piece 31m and the gap material 31g in the magnetic core 3 and a part of the U-shaped core piece 32m (protruding portions described later) are arranged in the winding portions 2a and 2b of the coil 2 as shown in FIG. The remaining portion (a block described later) of the U-shaped core piece 32m constitutes a portion protruding from the coil 2 without the winding portions 2a and 2b being disposed.

コア片31m,32mは、主として軟磁性材料から構成される。コア片31m,32mは、鉄や鉄合金(Fe−Si合金、Fe−Ni合金など)といった軟磁性金属粉末や更に絶縁被覆を備える被覆粉末などを圧縮成形した圧粉成形体、軟磁性粉末と樹脂とを含む複合材料などが利用できる。この例では、圧粉成形体としている。ギャップ材31gは、代表的にはコア片31m,32mよりも比透磁率が小さい材料、例えばアルミナなどの非磁性材から構成される。   The core pieces 31m and 32m are mainly composed of a soft magnetic material. The core pieces 31m and 32m are formed by compacting a soft magnetic metal powder such as iron or an iron alloy (Fe-Si alloy, Fe-Ni alloy, etc.) or a coating powder further provided with an insulation coating, a soft magnetic powder, A composite material containing resin can be used. In this example, the green compact is used. The gap material 31g is typically made of a material having a relative permeability smaller than that of the core pieces 31m and 32m, for example, a nonmagnetic material such as alumina.

・金属部材
リアクトル1は、組合体10が載置される金属部材として、組合体10を収納可能な金属製のケース4を備える。ケース4は、組合体10の機械的保護、外部環境からの保護(腐食ガスなどからの保護など)などの機能を有する他、その全体が金属で構成されることで一般に樹脂と比較して熱伝導性に優れることから、組合体10から設置対象への放熱経路としての機能も奏する。ケース4は、設置対象に直接取り付けられる部材でもある。
-Metal member The reactor 1 is equipped with the metal case 4 which can accommodate the combination body 10 as a metal member in which the combination body 10 is mounted. The case 4 has functions such as mechanical protection of the assembly 10 and protection from the external environment (protection from corrosive gas, etc.), and is generally made of metal so that it is generally more heat-resistant than resin. Since it is excellent in conductivity, it also functions as a heat dissipation path from the combined body 10 to the installation target. The case 4 is also a member that is directly attached to the installation target.

このようなケース4は、代表的には、組合体10の載置領域が設けられる内底面40iを備える底部40と、底部40から立設されて組合体10の周囲を囲む側壁部41とを備え、底部40に対向する側(図1では上側)が開口した箱体が挙げられる。この例のケース4は、底部40と側壁部41とが一体に成形された金属製の箱である。図1では、矩形平板状の底部40と、矩形枠状の側壁部41とを備えるケース4を示す。   Such a case 4 typically includes a bottom portion 40 having an inner bottom surface 40i in which a mounting area of the assembly 10 is provided, and a side wall portion 41 that stands from the bottom portion 40 and surrounds the periphery of the assembly 10. And a box having an opening on the side facing the bottom 40 (upper side in FIG. 1). The case 4 in this example is a metal box in which a bottom portion 40 and a side wall portion 41 are integrally formed. In FIG. 1, a case 4 having a rectangular flat plate-shaped bottom portion 40 and a rectangular frame-shaped side wall portion 41 is shown.

内底面40iのうち、少なくとも組合体10の載置領域が図2に示すような平坦な平面であると、コイル2の巻回部2a,2bの一面(内底面40iとの対向面、図2では下面)を内底面40iに平行に配置できる。この場合、巻回部2a,2bの一面(下面)における内底面40iとの近接領域を十分に広く設けられて、組合体10の載置の安定化、良好な放熱性などを図ることができる。また、内底面40iにおける組合体10の載置領域が平坦な平面であれば、絶縁層6の形成作業や組合体10の載置作業が行い易く、リアクトル1の製造性に優れる。   Of the inner bottom surface 40i, if at least the mounting region of the combined body 10 is a flat plane as shown in FIG. 2, one surface of the winding portions 2a and 2b of the coil 2 (the surface facing the inner bottom surface 40i, FIG. Then, the lower surface) can be arranged parallel to the inner bottom surface 40i. In this case, a region close to the inner bottom surface 40i on the one surface (lower surface) of the winding portions 2a and 2b can be provided sufficiently wide, so that the mounting of the combined body 10 can be stabilized and good heat dissipation can be achieved. . Moreover, if the mounting area | region of the assembly 10 in the inner bottom face 40i is a flat plane, the formation operation of the insulating layer 6 and the mounting operation of the assembly 10 will be easy, and it is excellent in the manufacturability of the reactor 1.

金属製のケース4の構成材料は、例えば、アルミニウムやその合金、マグネシウムやその合金、銅やその合金、銀やその合金、鉄やオーステナイト系ステンレス鋼などが挙げられる。アルミニウムやマグネシウム、これらの合金で形成すると、ケース4を軽量にできる。特にアルミニウムやアルミニウム合金は熱伝導率が高く、設置対象への熱伝導性に優れるケース4になって好ましい。更に、一体成形された金属製のケース4は、剛性、強度に優れ、リアクトル1全体の強度を高められる。   Examples of the constituent material of the metal case 4 include aluminum and its alloys, magnesium and its alloys, copper and its alloys, silver and its alloys, iron and austenitic stainless steel. When formed of aluminum, magnesium, or an alloy thereof, the case 4 can be lightened. In particular, aluminum or aluminum alloy is preferable because it has a high thermal conductivity and is excellent in the case 4 having excellent thermal conductivity to the installation target. Furthermore, the integrally formed metal case 4 is excellent in rigidity and strength, and the strength of the reactor 1 as a whole can be increased.

・絶縁層
絶縁層6は、主に図2を参照して説明する。図2は、リアクトル1をコイル2の巻回部2aの軸方向に平行な平面で切断した縦断面図であり、絶縁層6及びその近傍を示す。図2の破線円内は、巻回部2aとケース4の底部40との間の介在領域を拡大して示す。
Insulating layer The insulating layer 6 will be described mainly with reference to FIG. FIG. 2 is a longitudinal sectional view of the reactor 1 cut along a plane parallel to the axial direction of the winding portion 2 a of the coil 2, and shows the insulating layer 6 and the vicinity thereof. In the broken line circle of FIG. 2, the intervening region between the winding part 2 a and the bottom part 40 of the case 4 is shown enlarged.

リアクトル1には、コイル2の巻回部2a,2bとケース4の底部40との間に絶縁材料から構成される絶縁層6が介在する。この例の絶縁層6は、磁性コア3におけるコイル2から突出した部分(コア片32mの一部)とケース4の底部40との間にも介在する。絶縁層6は、巻回部2a,2b及び磁性コア3のコア片32mと底部40とを接合する。   In the reactor 1, an insulating layer 6 made of an insulating material is interposed between the winding portions 2 a and 2 b of the coil 2 and the bottom portion 40 of the case 4. The insulating layer 6 in this example is also interposed between a portion of the magnetic core 3 protruding from the coil 2 (a part of the core piece 32 m) and the bottom 40 of the case 4. The insulating layer 6 joins the winding portions 2 a and 2 b and the core piece 32 m of the magnetic core 3 and the bottom portion 40.

実施形態1のリアクトル1では、絶縁層6は、異種の絶縁材料、特に硬度が異なる複数の絶縁材料によって構成されて、硬度が異なる複数の領域を備える。詳しくは、絶縁層6は、樹脂を含み、硬質な絶縁材料によって構成される硬質領域(例えば外郭領域60)と、樹脂を含み、上記硬質な絶縁材料よりも軟質な絶縁材料によって構成される軟質領域(例えば内包領域61)とを備える。図2の破線円内に示すように、絶縁層6を巻回部2a,2bの軸方向にみると、硬質領域と軟質領域とが交互に存在する。   In the reactor 1 of the first embodiment, the insulating layer 6 is composed of different insulating materials, particularly a plurality of insulating materials having different hardnesses, and includes a plurality of regions having different hardnesses. Specifically, the insulating layer 6 includes a hard region (for example, the outer region 60) that includes a resin and is configured of a hard insulating material, and a soft region that includes a resin and is configured of an insulating material that is softer than the hard insulating material. A region (for example, an inclusion region 61). As shown in the broken-line circle in FIG. 2, when the insulating layer 6 is viewed in the axial direction of the winding portions 2a and 2b, hard regions and soft regions exist alternately.

・・絶縁特性
絶縁層6は、コイル2の巻回部2a,2bとケース4の底部40との間を絶縁する目的から、耐電圧が高いほど好ましい。具体的には、絶縁層6の耐電圧は1kV/mm以上が好ましく、3kV/mm以上、5kV/mm以上、7kV/mm以上がより好ましい。絶縁層6の構成材料として、電気絶縁性に優れる材料、例えば、後述するセラミックスなどからなるフィラーを含むと、特に含有量が多いほど、耐電圧を高められる傾向にある。
.. Insulating characteristics The insulating layer 6 is preferably as high as possible withstand voltage in order to insulate between the winding portions 2a and 2b of the coil 2 and the bottom 40 of the case 4. Specifically, the withstand voltage of the insulating layer 6 is preferably 1 kV / mm or more, more preferably 3 kV / mm or more, 5 kV / mm or more, or 7 kV / mm or more. When the insulating layer 6 includes a material having excellent electrical insulation, for example, a filler made of ceramics described later, the withstand voltage tends to be increased as the content increases.

・・厚さ
絶縁層6の平均厚さt(図2の破線円内参照)は、コイル2の巻回部2a,2bにおける底部40との対向面(図2では下面)とケース4の内底面40iとの間の対向距離に等しく、コイル2の巻回部2a,2bからケース4の底部40への熱伝導を効率よく行う目的から、薄いほど好ましい。絶縁層6は複数の異種の絶縁材料によって構成されるものの、上述の縦積み構造の接合層と異なり、その平均厚さtは、1種の絶縁材料からなる単層の厚さ(図2では外郭領域60の厚さ)に実質的に等しく、上述の縦積み構造の接合層と比較して薄い傾向にある。例えば、絶縁層6の平均厚さtは、2mm以下、更に1mm以下、0.8mm以下、0.5mm以下、0.1mm(100μm)以下が挙げられる。絶縁層6の平均厚さtが薄過ぎると(上記対向距離が小さ過ぎると)、巻回部2a,2bと底部40との間の絶縁性の低下を招くことから、30μm(0.03mm)以上、更に50μm以上、70μm以上が好ましい。絶縁層6の平均厚さtが上述の範囲を満たすように製造過程で未固化層610の厚さt610(図5、後述)、組合体10の押付力、固化条件などを調整するとよい。
· The average thickness of the insulating layer 6 thickness t 6 (see the broken line circle in FIG. 2) is wound portion 2a of the coil 2, the surface facing the bottom 40 in 2b (in Figure 2 the lower surface) and the casing 4 It is equal to the facing distance from the inner bottom surface 40i, and it is preferable that the thickness is thin for the purpose of efficiently conducting heat conduction from the winding portions 2a, 2b of the coil 2 to the bottom portion 40 of the case 4. Although the insulating layer 6 is composed of a plurality of different insulating materials, the average thickness t 6 is different from that of the above-described joining layer having the vertically stacked structure, and the average thickness t 6 is the thickness of a single layer made of one insulating material (FIG. 2). In this case, the thickness is substantially equal to the thickness of the outer region 60, and tends to be thinner than the above-described joining layer having the vertically stacked structure. For example, the average thickness t 6 of the insulating layer 6, 2 mm or less, more 1mm or less, 0.8 mm or less, 0.5 mm or less, and a 0.1 mm (100 [mu] m) or less. Insulating layer 6 average thickness t 6 is too thin for (if the opposing distance is too small), since it leads to a decrease in insulation between the winding part 2a, 2b and the bottom 40, 30 [mu] m (0.03 mm ) And more preferably 50 μm or more and 70 μm or more. The thickness t 610 of the unsolidified layer 610 average thickness t 6 of the insulating layer 6 during the manufacturing process so as to satisfy the range described above (FIG. 5, described later), the pressing force of the combined product 10, may like to adjust the solidification conditions .

絶縁層6の平均厚さtは、絶縁層6の縦断面をとり、絶縁層6のうち、コイル2の巻回部2a,2bにおける金属部材の載置面(ケース4の内底面40i)との対向面と上記載置面との間に存在する領域の厚さを複数点測定し(例えば、n≧3)、その平均とする。 The average thickness t 6 of the insulating layer 6 is a longitudinal section of the insulating layer 6, and the mounting surface of the metal member in the winding portions 2 a and 2 b of the coil 2 (inner bottom surface 40 i of the case 4) of the insulating layer 6. The thickness of the region existing between the facing surface and the placement surface is measured at a plurality of points (for example, n ≧ 3), and the average is obtained.

なお、コイル2の巻回部2a,2bをそれぞれ構成する複数のターン2tのうち、隣り合うターン2t,2t間に絶縁層6の構成材料の一部が充填されて、ターン2tの少なくとも一部が上記構成材料に埋設された状態になることがある。図2の破線円内では、ターン2t,2t間のうち、ケース4の底部40近傍の領域に上記構成材料が充填された状態を例示する。ターン2tの少なくとも一部が絶縁層6に埋設されると、巻回部2a,2bと絶縁層6との接触面積を増大でき、絶縁層6によって、コイル2と金属部材(ここではケース4の底部40。以下、実施形態1において同様)とを強固に固定できる。上述の絶縁層6の平均厚さtの測定は、隣り合うターン2t,2t間に充填された部分を除いて行う。 Of the plurality of turns 2t constituting the winding portions 2a and 2b of the coil 2, a part of the constituent material of the insulating layer 6 is filled between the adjacent turns 2t and 2t, and at least a part of the turn 2t. May be embedded in the constituent materials. In the broken-line circle in FIG. 2, a state in which the constituent material is filled in a region near the bottom 40 of the case 4 between the turns 2 t and 2 t is illustrated. When at least a part of the turn 2t is embedded in the insulating layer 6, the contact area between the winding portions 2a and 2b and the insulating layer 6 can be increased, and the insulating layer 6 allows the coil 2 and the metal member (here, the case 4). The bottom portion 40. Hereinafter, the same as in the first embodiment can be firmly fixed. The average measurement of the thickness t 6 of the insulating layer 6 above is performed except for the filled portion between adjacent turns 2t, 2t.

・・構成材料
絶縁層6を構成する硬質な絶縁材料及び軟質な絶縁材料はいずれも、樹脂を含む。樹脂は、一般に電気絶縁材料であり、絶縁層6の構成材料に好適に利用できる。また、樹脂は、未固化の状態では粘着性をある程度有するものがあり、固化後にコイル2と金属部材(ケース4の底部40)とを固定できる。接着剤を含む樹脂であれば、より強固な固定が期待できる。接着剤は、エポキシ樹脂、シリコーン樹脂、ウレタン樹脂などの熱硬化性樹脂を主体とするものが挙げられる。その他、樹脂は、リアクトル1の使用時の最高到達温度に対して過度に軟化しない程度の耐熱性を有することが好ましい。
.. Constituent material Both the hard insulating material and the soft insulating material constituting the insulating layer 6 contain a resin. Resin is generally an electrically insulating material and can be suitably used as a constituent material of the insulating layer 6. In addition, some resins have a certain degree of adhesiveness when not solidified, and the coil 2 and the metal member (the bottom 40 of the case 4) can be fixed after solidification. If it is resin containing an adhesive, stronger fixation can be expected. The adhesive mainly includes a thermosetting resin such as an epoxy resin, a silicone resin, or a urethane resin. In addition, it is preferable that the resin has heat resistance to such an extent that the resin is not excessively softened with respect to the highest temperature achieved when the reactor 1 is used.

・・・硬質な絶縁材料
・・・・成分
硬質な絶縁材料は、熱硬化性樹脂、熱可塑性樹脂、湿気硬化性樹脂、常温硬化性樹脂などの種々の樹脂のうち、固化後の硬度がある程度高い樹脂が挙げられる。具体的な硬度は後述する。又は、硬質な絶縁材料は、任意の硬度の樹脂と、電気絶縁性に優れる上に樹脂よりも高硬度な硬質粉末とを含むものが挙げられる。この絶縁層6は、樹脂の硬度によらず、硬質粉末によって十分に高硬度な硬質領域を備えることができる。
... Hard insulating material .... Component Hard insulating material has a certain degree of hardness after solidification among various resins such as thermosetting resin, thermoplastic resin, moisture curable resin, and room temperature curable resin. High resin is mentioned. Specific hardness will be described later. Alternatively, the hard insulating material includes a resin having an arbitrary hardness and a hard powder having excellent electrical insulation and higher hardness than the resin. This insulating layer 6 can be provided with a hard region having a sufficiently high hardness by a hard powder irrespective of the hardness of the resin.

熱硬化性樹脂は、例えば、エポキシ樹脂、ウレタン樹脂、不飽和ポリエステルなどが挙げられる。熱可塑性樹脂は、例えば、ポリテトラフルオロエチレン(PTFE)樹脂、液晶ポリマー(LCP)、ナイロン6やナイロン66などのポリアミド(PA)樹脂、ポリアミドイミド樹脂、ポリイミド樹脂などが挙げられる。   Examples of the thermosetting resin include an epoxy resin, a urethane resin, and an unsaturated polyester. Examples of the thermoplastic resin include polytetrafluoroethylene (PTFE) resin, liquid crystal polymer (LCP), polyamide (PA) resin such as nylon 6 and nylon 66, polyamideimide resin, and polyimide resin.

硬質粉末は、例えば、アルミナ、シリカ、酸化マグネシウムなどの酸化物、窒化珪素、窒化アルミニウム、窒化ほう素などの窒化物、炭化珪素などの炭化物などといったセラミックスに代表される非金属無機材料から構成されるものが挙げられる。セラミックスは、一般に、樹脂よりも硬度が高い、電気絶縁性に優れる、熱伝導性に優れる点から、セラミックスからなる硬質粉末(以下、セラミックスフィラーと呼ぶことがある)は、硬質な絶縁材料の添加剤に好適である。単一種の硬質粉末を含む形態、複数種の硬質粉末を含む形態のいずれも利用できる。   The hard powder is made of a non-metallic inorganic material typified by ceramics such as oxides such as alumina, silica and magnesium oxide, nitrides such as silicon nitride, aluminum nitride and boron nitride, and carbides such as silicon carbide. Can be mentioned. Ceramics are generally harder than resins, have excellent electrical insulation properties, and have excellent thermal conductivity. Hard powders made of ceramics (hereinafter sometimes referred to as ceramic fillers) are added with hard insulating materials. Suitable for the agent. Either a form containing a single kind of hard powder or a form containing a plurality of kinds of hard powder can be used.

・・・・硬度
硬質な絶縁材料の具体的な硬度は、ショアD硬度で50以上が挙げられる。硬質な絶縁材料の硬度が高いほど、硬質領域が高硬度になり、絶縁層6の剛性を高められ、外部からの振動や衝撃に強く、耐振性、耐衝撃性に優れる絶縁層6とすることができる。耐衝撃性などを考慮すると、硬質な絶縁材料のショアD硬度は、60以上、更に70以上、80以上が好ましい。硬質な絶縁材料として、実質的に樹脂のみから構成されるものを利用する場合、ショアD硬度が50以上を満たす樹脂を利用すればよい。又は、ショアD硬度が50以上を満たすように、上述の硬質粉末の材質、含有量などを調整するとよい。
.... Hardness Specific hardness of the hard insulating material is 50 or more in Shore D hardness. The higher the hardness of the hard insulating material, the higher the hardness of the hard region, and the higher the rigidity of the insulating layer 6. The insulating layer 6 should be resistant to vibration and impact from the outside, and excellent in vibration resistance and impact resistance. Can do. Considering impact resistance and the like, the Shore D hardness of the hard insulating material is preferably 60 or more, more preferably 70 or more, and 80 or more. In the case of using a material that is substantially composed only of a resin as a hard insulating material, a resin satisfying a Shore D hardness of 50 or more may be used. Or it is good to adjust the material, content, etc. of the above-mentioned hard powder so that Shore D hardness may satisfy 50 or more.

・・・・熱伝導性
硬質な絶縁材料が実質的に樹脂のみで構成される場合、その熱伝導率は、代表的には0.1W/m・K以上0.5W/m・K以下程度であり、1.0W/m・K未満である。上述のセラミックスフィラーを含む場合には、硬質な絶縁材料の熱伝導率がより高くなり、例えば、1W/m・K以上を満たす。セラミックスフィラーの材質や含有量によっては、硬質な絶縁材料の熱伝導率は、1.5W/m・K以上、更に2.0W/m・K以上、3.0W/m・K以上、5.0W/m・K以上を満たすことができる。この熱伝導率は、セラミックスフィラーの含有量が多いほど高くなる傾向にあるが、多過ぎると、原料の混合物の粘度が高くなり、硬質領域を形成し難くなる。そのため、製造性を考慮すると、熱伝導率が10W/m・K以下程度の材料が硬質な絶縁材料に利用し易いと考えられる。
.... Thermal conductivity When a hard insulating material is substantially composed of resin, its thermal conductivity is typically about 0.1 W / m · K or more and about 0.5 W / m · K or less. And less than 1.0 W / m · K. When the above ceramic filler is included, the thermal conductivity of the hard insulating material becomes higher and satisfies, for example, 1 W / m · K or more. Depending on the material and content of the ceramic filler, the thermal conductivity of the hard insulating material is 1.5 W / m · K or more, further 2.0 W / m · K or more, 3.0 W / m · K or more. It can satisfy 0 W / m · K or more. This thermal conductivity tends to be higher as the content of the ceramic filler is higher. However, when the content is too high, the viscosity of the mixture of raw materials is increased and it is difficult to form a hard region. Therefore, in consideration of manufacturability, it is considered that a material having a thermal conductivity of about 10 W / m · K or less can be easily used as a hard insulating material.

・・・軟質な絶縁材料
・・・・成分
軟質な絶縁材料は、熱硬化性樹脂、熱可塑性樹脂、湿気硬化性樹脂、常温硬化性樹脂などの種々の樹脂のうち、固化後の硬度が上述の硬質な絶縁材料よりも低い樹脂が挙げられる。具体的な硬度は後述する。又は、軟質な絶縁材料は、上述の硬質な絶縁材料よりも低硬度になる範囲で、好ましくは後述する硬度を満たす範囲で、樹脂と、上述の硬質粉末とを含むものとすることができる。上述のセラミックスフィラーを含有することで、放熱性を高められる。樹脂の具体例、硬質粉末の具体例は、上述の通りである。
・ ・ ・ Soft insulating materials ・ ・ ・ ・ Components Soft insulating materials have the above-mentioned hardness after solidification among various resins such as thermosetting resins, thermoplastic resins, moisture curable resins, and room temperature curable resins. The resin is lower than that of the hard insulating material. Specific hardness will be described later. Alternatively, the soft insulating material may include a resin and the above-described hard powder within a range where the hardness is lower than that of the above-described hard insulating material, and preferably within a range that satisfies the hardness described below. By containing the ceramic filler described above, heat dissipation can be improved. Specific examples of the resin and specific examples of the hard powder are as described above.

・・・・硬度
軟質な絶縁材料の具体的な硬度は、ショアD硬度で50未満が挙げられる。更に軟質な絶縁材料の硬度は、ショアA硬度で80以下が挙げられる。軟質な絶縁材料の硬度が低いほど、又は硬質な絶縁材料との硬度差が大きいほど、軟質領域が相対的に低硬度になり、軟質領域の柔軟性を高められる。そのため、磁性コア3の振動、外部からの振動の吸収や応力緩和を行い易い絶縁層6とすることができる。柔軟性などを考慮すると、軟質な絶縁材料のショアA硬度は、70以下、更に60以下が好ましい。軟質な絶縁材料が柔らか過ぎると、外部から衝撃などを受けたときに割れや破壊などし易く、耐衝撃性などに劣るため、軟質な絶縁材料のショアA硬度は、30以上、更に40以上が好ましい。ショアA硬度が80以下を満たす樹脂は、例えば、シリコーン樹脂、軟質エポキシ樹脂、軟質ウレタン樹脂などが挙げられる。上述の硬質粉末を含有する場合には、ショアA硬度が80以下を満たすように硬質粉末の材質、含有量などを調整するとよい。単一種の硬質粉末を含む形態、複数種の硬質粉末を含む形態のいずれも利用できる。
.... Hardness Specific hardness of the soft insulating material includes Shore D hardness of less than 50. Further, the hardness of the soft insulating material may be 80 or less in Shore A hardness. The lower the hardness of the soft insulating material or the greater the difference in hardness from the hard insulating material, the lower the hardness of the soft region and the higher the flexibility of the soft region. Therefore, it can be set as the insulating layer 6 which is easy to absorb the vibration of the magnetic core 3, the absorption of the vibration from the outside, and stress relaxation. In consideration of flexibility and the like, the Shore A hardness of the soft insulating material is preferably 70 or less, and more preferably 60 or less. If the soft insulating material is too soft, it is easy to crack or break when subjected to an impact from the outside, and is inferior in impact resistance. Therefore, the Shore A hardness of the soft insulating material is 30 or more, and further 40 or more. preferable. Examples of the resin having a Shore A hardness of 80 or less include a silicone resin, a soft epoxy resin, and a soft urethane resin. When the above hard powder is contained, the material, content, etc. of the hard powder may be adjusted so that the Shore A hardness satisfies 80 or less. Either a form containing a single kind of hard powder or a form containing a plurality of kinds of hard powder can be used.

・・・・熱伝導性
軟質な絶縁材料が実質的に樹脂のみで構成される場合、その熱伝導率は、代表的には0.1W/m・K以上0.5W/m・K以下程度であり、1.0W/m・K未満である。上述のセラミックスフィラーを含む場合には、その材質や含有量によって、軟質な絶縁材料の熱伝導率は、1.0W/m・K以上、更に1.5W/m・K以上を満たすことができる。軟質な絶縁材料の熱伝導率も、セラミックスフィラーの含有量が多いほど高くなる傾向にあるが、固化後の軟質領域の硬度が高くなり過ぎて、ショアA硬度が80超となり得る。軟質領域の硬度を考慮すると、軟質な絶縁材料の熱伝導率は、5.0W/m・K以下、更に3.0W/m・K以下、2.0W/m・K未満が好ましいと考えられる。
.... Thermal conductivity When a soft insulating material is substantially composed only of a resin, its thermal conductivity is typically about 0.1 W / m · K or more and about 0.5 W / m · K or less. And less than 1.0 W / m · K. When the above ceramic filler is included, the thermal conductivity of the soft insulating material can satisfy 1.0 W / m · K or more, and further 1.5 W / m · K or more depending on the material and content. . The thermal conductivity of the soft insulating material also tends to increase as the ceramic filler content increases, but the hardness of the soft region after solidification becomes too high, and the Shore A hardness can exceed 80. Considering the hardness in the soft region, it is considered that the thermal conductivity of the soft insulating material is preferably 5.0 W / m · K or less, more preferably 3.0 W / m · K or less, and less than 2.0 W / m · K. .

・・・硬質な絶縁材料及び軟質な絶縁材料の熱伝導性
硬質な絶縁材料の熱伝導率が2.0W/m・K以上、及び軟質な絶縁材料の熱伝導率が1.0W/m・K以上の少なくとも一方を満たせば放熱性に優れ、双方を満たせば放熱性に更に優れる絶縁層6とすることができる。硬質な絶縁材料の熱伝導率が2.0W/m・K以上、及び軟質な絶縁材料の熱伝導率が1.0W/m・K未満の少なくとも一方を満たせば、高熱伝導性の硬質領域による優れた放熱性が得られること、及び軟質な絶縁材料が未固化の状態では低粘度になり易く軟質領域を形成し易いため製造性に優れることの少なくとも一方の効果を奏する。
... Heat conductivity of hard insulation materials and soft insulation materials Thermal conductivity of hard insulation materials is 2.0 W / m · K or more, and heat conductivity of soft insulation materials is 1.0 W / m · If at least one of K or more is satisfied, the heat dissipation is excellent, and if both are satisfied, the insulating layer 6 can be further improved in heat dissipation. If at least one of the thermal conductivity of the hard insulating material is 2.0 W / m · K or more and the thermal conductivity of the soft insulating material is less than 1.0 W / m · K, the hard region with high thermal conductivity There are at least one of the effects that excellent heat dissipation can be obtained and that, when the soft insulating material is in an unsolidified state, the viscosity tends to be low and a soft region is easily formed.

・・・硬質領域及び軟質領域の存在状態
絶縁層6のうち、コイル2の巻回部2a,2bと金属部材の載置面(ケース4の内底面40i)とで挟まれる領域を巻回部2a,2bの軸方向にみると、図2の破線円内に示すように、この領域全体に亘って硬質領域と軟質領域とが交互に存在する。図2では外郭領域60内に複数の内包領域61が所定の間隔をあけて並列された例を示し、外郭領域60が硬質領域、内包領域61が軟質領域、又は外郭領域60が軟質領域、内包領域61が硬質領域である。詳しくは、内包領域61は、縦断面円形状であり、その内包径Dが0.1mm以上2mm以下であり、巻回部2a(2b)を構成する隣り合うターン2t,2tと金属部材の載置面(ケース4の内底面40i)とで挟まれる断面T字状の領域Taに備える。更に、この例の絶縁層6の内包領域61は、巻回部2a,2bを構成するターン2tの周回方向に沿って形成されて、隣り合うターン2t、2t間に配置される棒状体、例えば丸棒体を含む。
... Existence state of hard region and soft region Of insulating layer 6, a region sandwiched between winding parts 2a, 2b of coil 2 and a placement surface of metal member (inner bottom surface 40i of case 4) When viewed in the axial direction of 2a and 2b, as shown in the broken-line circle in FIG. 2, the hard region and the soft region are alternately present over the entire region. FIG. 2 shows an example in which a plurality of inclusion regions 61 are arranged in parallel within the outer region 60 at a predetermined interval. The outer region 60 is a hard region, the inner region 61 is a soft region, or the outer region 60 is a soft region. Region 61 is a hard region. Specifically, the inner region 61 has a circular shape in a longitudinal section, an inner diameter D of 0.1 mm or more and 2 mm or less, and the adjacent turns 2t and 2t constituting the winding portion 2a (2b) and the mounting of the metal member. It is provided in a region Ta having a T-shaped cross section sandwiched between the placement surface (the inner bottom surface 40i of the case 4). Furthermore, the inclusion region 61 of the insulating layer 6 in this example is formed along the circumferential direction of the turn 2t that constitutes the winding portions 2a and 2b, and is a rod-like body disposed between the adjacent turns 2t and 2t, for example, Includes round bars.

図3は、図1に示すリアクトル1において、絶縁層6をその平均厚さtの半分程度の位置(巻回部2a,2bと金属部材の載置面(ケース4の内底面4i)との間の対向距離の半分程度の位置)で、絶縁層6の厚さ方向に直交する平面で切断した平断面図であり、各巻回部2a,2bを構成する複数のターン2tのうち、一部のターン2t群のみを示す。図3に示すように、一方の巻回部2aに着目すると、隣り合うターン2t,2t間に棒状の内包領域61が並列している。他方の巻回部2bに着目すると、同様に、隣り合うターン2t,2t間に棒状の内包領域61が並列している。図3の平断面において、隣り合うターン2t,2tに挟まれる領域に着目すると、この領域の概ね中心にターン2tの周回方向に沿って、棒状の内包領域61が存在し、棒状の内包領域61を挟むようにその両側に外郭領域60,60が存在する。更に、図3の平断面を巻回部2a,2bの並列方向(図3では上下方向)にみると、一方の巻回部2aから、両巻回部2a,2b間を経て他方の巻回部2bに向かって連続して封止樹脂100が存在し、封止樹脂100のうち、隣り合うターン2t,2t間に介在される絶縁材料が内包領域61を形成する。なお、巻回部2a,2bがいずれも、角部を丸めた角筒状であるため、両巻回部2a,2b間には、比較的多くの封止樹脂100が存在する。 3, the reactor 1 shown in FIG. 1, an insulating layer 6 about half position of the average thickness t 6 (winding part 2a, the mounting surface of the 2b and the metal member (the inner bottom surface 4i of the case 4) Is a cross-sectional view taken along a plane orthogonal to the thickness direction of the insulating layer 6 at a position that is about half of the facing distance between each of the turns 2a and 2b of the plurality of turns 2t. Only the turn 2t group is shown. As shown in FIG. 3, when attention is paid to one winding portion 2a, rod-shaped inclusion regions 61 are arranged in parallel between adjacent turns 2t and 2t. When attention is paid to the other winding part 2b, similarly, rod-shaped inclusion regions 61 are arranged in parallel between adjacent turns 2t and 2t. When attention is paid to a region sandwiched between adjacent turns 2t, 2t in the plane cross section of FIG. 3, a rod-shaped inclusion region 61 exists along the circumferential direction of the turn 2t at the approximate center of this region. The outer regions 60 and 60 are present on both sides of the outer region so as to sandwich the region. 3 is viewed in the direction in which the winding portions 2a and 2b are arranged in parallel (the vertical direction in FIG. 3), one winding portion 2a passes between both winding portions 2a and 2b and the other winding. The sealing resin 100 exists continuously toward the portion 2 b, and the insulating material interposed between the adjacent turns 2 t and 2 t in the sealing resin 100 forms the inclusion region 61. In addition, since both winding part 2a, 2b is a square cylinder shape which rounded the corner | angular part, comparatively much sealing resin 100 exists between both winding part 2a, 2b.

このような複数の棒状の内包領域61と、これら棒状の内包領域61を並列状態で保持する外郭領域60とを含む絶縁層6を備えるリアクトル1は、例えば、後述する実施形態1のリアクトルの製造方法を利用することで製造できる。   The reactor 1 including the insulating layer 6 including the plurality of rod-shaped inclusion regions 61 and the outer region 60 that holds the rod-like inclusion regions 61 in a parallel state is, for example, a reactor manufactured according to the first embodiment described later. It can be manufactured using the method.

硬質領域と軟質領域との存在状態は、適宜変更できる。
図2に示す内包領域61はコイル2の巻回部2a,2b及び金属部材(ケース4の底部40)の双方に接触しない領域、外郭領域60は双方に接触する領域といえる。従って、例えば、内包領域61を軟質領域とすれば、軟質領域は、コイル2及び金属部材の双方に接触せず、外郭領域60を軟質領域とすれば、軟質領域は、コイル2及び金属部材の双方に接する形態とすることができる。
The existence state of the hard region and the soft region can be changed as appropriate.
The inner region 61 shown in FIG. 2 can be said to be a region that does not contact both the winding portions 2a and 2b of the coil 2 and the metal member (the bottom 40 of the case 4), and the outer region 60 is a region that contacts both. Therefore, for example, if the inclusion region 61 is a soft region, the soft region does not contact both the coil 2 and the metal member, and if the outer region 60 is a soft region, the soft region is the coil 2 and the metal member. It can be set as the form which touches both.

また、図2に示す例では、断面T字状の領域Taに外郭領域60の一部と内包領域61とを備え、それ以外の領域は外郭領域60の他部のみが存在する。従って、例えば、外郭領域60を軟質領域とすれば、コイル2と金属部材(ケース4の底部40)とで挟まれる区間に軟質領域のみが存在する部分を含む形態とすることができる。外郭領域60を硬質領域とすれば、その逆に硬質領域のみが存在する部分を含む形態とすることができる。   Further, in the example shown in FIG. 2, a part of the outer region 60 and the inner region 61 are provided in the region Ta having a T-shaped cross section, and only the other part of the outer region 60 exists in the other regions. Therefore, for example, if the outer region 60 is a soft region, it can be configured to include a portion where only the soft region exists in a section sandwiched between the coil 2 and the metal member (the bottom portion 40 of the case 4). If the outer region 60 is a hard region, on the contrary, it can be configured to include a portion where only the hard region exists.

・・・・内包領域
内包領域61を備える場合、その個数は一つでもよいが複数であると、好ましくは(ターン数−1)などのターン数と同等程度といった多数であると、絶縁層6における内包領域61の占有割合を高められる。その結果、外郭領域60及び内包領域61の一方である硬質領域と、他方である軟質領域との双方の領域が有する効果をバランスよく備えられる。
.... Inclusion region When the inclusion region 61 is provided, the number of the inclusion region 61 may be one, but if it is a plurality, the insulating layer 6 preferably has a large number such as the number of turns such as (turn number -1). The occupying ratio of the inclusion region 61 can be increased. As a result, the effects of both the hard region which is one of the outer region 60 and the inclusion region 61 and the soft region which is the other can be provided in a balanced manner.

内包領域61の形状に着目すると、例えば、その縦断面形状又は絶縁層6の側面に見える端面形状(開口部の形状)は、円形状の他、楕円状などの曲面形状、三角形状、矩形状などの多角形状に代表される平面形状などとすることができる。棒状の内包領域61は、丸棒の他、多角柱状などの非円柱状とすることができる。   Focusing on the shape of the inclusion region 61, for example, the vertical cross-sectional shape or the end surface shape (opening shape) that can be seen on the side surface of the insulating layer 6 is a circular shape, a curved surface shape such as an elliptical shape, a triangular shape, a rectangular shape, etc. A planar shape represented by a polygonal shape such as The rod-shaped inclusion region 61 can be a non-cylindrical shape such as a polygonal column in addition to a round bar.

内包領域61の大きさに着目すると、絶縁層6におけるコイル2の巻回部2a,2bの軸方向に平行な平面で切断した縦断面において、各内包領域61の包絡円の直径を各内包領域61の内包径Dとするとき、内包径Dは、巻線2wの厚さ(丸線であれば直径)の1/2以下程度が挙げられる。また、内包径Dは、隣り合うターン2t,2t間の間隔よりも大きく、断面T字状の領域Taに収納可能な程度に小さいことが挙げられる。内包径Dが大きいほど絶縁層6における内包領域61の占有割合を高められて、上述のように硬質領域と軟質領域との双方が奏する効果をバランスよく備えられる。巻線2wの厚さなどにもよるが、内包径Dは、例えば0.1mm以上、更に0.3mm以上が挙げられる。内包径Dが大き過ぎると、絶縁層6を形成し難くなると考えられることから、2mm以下、更に1.5mm以下、1mm以下が好ましい。   When attention is paid to the size of the inclusion region 61, the diameter of the envelope circle of each inclusion region 61 in the longitudinal section of the insulating layer 6 cut along a plane parallel to the axial direction of the winding portions 2 a and 2 b of the coil 2 is determined for each inclusion region. When the inner diameter D is 61, the inner diameter D may be about ½ or less of the thickness of the winding 2w (or the diameter in the case of a round wire). Further, the inner diameter D is larger than the interval between the adjacent turns 2t and 2t, and is small enough to be accommodated in the region Ta having a T-shaped cross section. As the inner envelope diameter D is larger, the occupation ratio of the inner region 61 in the insulating layer 6 is increased, and the effects produced by both the hard region and the soft region can be provided in a balanced manner as described above. Although depending on the thickness of the winding 2w, the inner diameter D is, for example, 0.1 mm or more, and further 0.3 mm or more. Since it will be difficult to form the insulating layer 6 if the inner diameter D is too large, it is preferably 2 mm or less, more preferably 1.5 mm or less, and 1 mm or less.

棒状の内包領域61におけるターン2tの周回方向に沿った長さ(以下、棒長さLと呼ぶ、図3)は、各巻回部2a,2bにおける横並び方向(並列方向)に沿った長さ(以下、巻回部の幅W(図4)と呼ぶ)と同等以下が挙げられる。図3では、棒長さLが巻回部の幅Wから丸められた角部を除いた部分の幅W(図4)と同等の場合を示す。棒長さLが大きいほど絶縁層6における内包領域61の占有割合を高められて、上述のように硬質領域と軟質領域との双方が奏する効果をバランスよく備えられる。そのため、棒長さLは、巻回部の幅Wの1/5以上、更に1/4以上、1/3以上、1/2以上が好ましい。棒長さLが長過ぎると絶縁層6を形成し難くなると考えられることから、巻回部の幅Wと同等以下、更に4/5以下程度が好ましいと考えられる。 The length along the circumferential direction of the turn 2t in the rod-shaped inclusion region 61 (hereinafter referred to as the rod length L, FIG. 3) is the length along the side-by-side direction (parallel direction) of the winding portions 2a and 2b ( Hereinafter, the equivalent or less than the width W t (refer to FIG. 4) of the winding portion may be mentioned. In Figure 3, it shows the case Bocho L is equal to the width W of the portion excluding the rounded corners from the width W t of the winding portion (FIG. 4). As the rod length L is larger, the occupation ratio of the inclusion region 61 in the insulating layer 6 is increased, and the effects produced by both the hard region and the soft region can be provided in a balanced manner as described above. Therefore, Bocho, L is 1/5 or more the width W t of the winding portion, and further not less than 1/4, 1/3 or more, 1/2 or more. If the rod length L is too long, it will be difficult to form the insulating layer 6. Therefore, it is considered to be preferably equal to or less than the width W t of the wound portion, and more preferably about 4/5 or less.

後述する実施形態1のリアクトルの製造方法を利用する場合には、内包領域61の形状、大きさ(内包径D、棒長さLなど)を高精度に制御することが難しいと考えられる。しかし、硬質の絶縁材料又は軟質の絶縁材料で形成した固化層に、ドリルなどの切削工具を用いて、適宜な形状、大きさの開気孔を形成する場合には、所望の形状、大きさの内包領域61を精度よく形成できると期待される。   When using the reactor manufacturing method according to the first embodiment described later, it is considered difficult to control the shape and size (the inner diameter D, the rod length L, etc.) of the inner envelope region 61 with high accuracy. However, when forming an open hole of an appropriate shape and size in a solidified layer formed of a hard insulating material or a soft insulating material using a cutting tool such as a drill, the desired shape and size It is expected that the inclusion region 61 can be formed with high accuracy.

その他、内包領域61を備えると共に、又は内包領域61を備えておらず、硬質領域及び軟質領域の双方がコイル2の巻回部2a,2b及び金属部材(ケース4の底部40)の少なくとも一方に接触する形態とすることができる。この形態は、いわば、内包領域61が絶縁層6の側面に開口することに加えて、又は側面に開口せず、金属部材及びターン2tの少なくも一方に対して開口して、硬質又は軟質な絶縁材料が充填された領域を含む状態である。後述する実施形態1のリアクトルの製造方法を利用する場合には、このような領域が形成される場合がある。   In addition, the inner region 61 is provided or the inner region 61 is not provided, and both the hard region and the soft region are provided on at least one of the winding portions 2a and 2b of the coil 2 and the metal member (the bottom portion 40 of the case 4). It can be set as the form which contacts. In this form, in addition to the inclusion region 61 opening on the side surface of the insulating layer 6 or not opening on the side surface, it opens to at least one of the metal member and the turn 2t and is hard or soft. This is a state including a region filled with an insulating material. Such a region may be formed when the reactor manufacturing method according to the first embodiment described later is used.

・封止樹脂
図1に示すリアクトル1では、ケース4内に収納された組合体10は、コイル2の巻線2wの端部を除き、その実質的に全体がケース4内に充填された封止樹脂100に埋設されている。従って、封止樹脂100は、ケース4の内底面40iからケース4の開口部に向かって連続的に存在する。封止樹脂100は、樹脂を含む絶縁材料で構成されている。そのため、リアクトル1は、封止樹脂100によって、組合体10の実質的に全体と外部環境の雰囲気との接触を防止して耐食性に優れる、組合体10を機械的に保護できる、組合体10と外部部品との接触を防止して電気絶縁性に優れるといった効果が得られる。
Sealing Resin In the reactor 1 shown in FIG. 1, the combined body 10 housed in the case 4 is a sealed case in which the case 4 is substantially entirely filled except for the end of the winding 2 w of the coil 2. It is embedded in the stop resin 100. Therefore, the sealing resin 100 is continuously present from the inner bottom surface 40 i of the case 4 toward the opening of the case 4. The sealing resin 100 is made of an insulating material containing resin. Therefore, the reactor 1 can prevent mechanical contact of the union 10 with the sealing resin 100 and prevent the contact between the substantially entire union 10 and the atmosphere of the external environment and has excellent corrosion resistance. The effect of preventing contact with external parts and excellent electrical insulation is obtained.

この例では、封止樹脂100の一部を絶縁層6の構成材料とする。図2,図3では、絶縁層6のうち、内包領域61が封止樹脂100で構成された例を示す。封止樹脂100の一部が絶縁層6の一部を構成する場合には、封止樹脂100の構成材料には、上述の硬質な絶縁材料、又は軟質な絶縁材料を利用できる。具体的な成分は、上述の通りである。また、この場合、絶縁層6の内外に封止樹脂100が連続して存在する。そのため、絶縁層6を介したコイル2とケース4との一体化、封止樹脂100を介したコイル2及び磁性コア3(特にコア片32m)とケース4との一体化に加えて、絶縁層6と封止樹脂100との一体化がなされて、コイル2と磁性コア3とケース4とを絶縁層6及び封止樹脂100とによって強固に一体化できる。   In this example, a part of the sealing resin 100 is used as a constituent material of the insulating layer 6. 2 and 3 show an example in which the inclusion region 61 of the insulating layer 6 is made of the sealing resin 100. When a part of the sealing resin 100 constitutes a part of the insulating layer 6, the above-mentioned hard insulating material or soft insulating material can be used as the constituent material of the sealing resin 100. Specific components are as described above. In this case, the sealing resin 100 is continuously present inside and outside the insulating layer 6. Therefore, in addition to the integration of the coil 2 and the case 4 via the insulating layer 6, the integration of the coil 2 and the magnetic core 3 (particularly the core piece 32m) and the case 4 via the sealing resin 100, the insulating layer 6 and the sealing resin 100 are integrated, and the coil 2, the magnetic core 3, and the case 4 can be firmly integrated with the insulating layer 6 and the sealing resin 100.

封止樹脂100は、組合体10の少なくとも一部を埋設すればよく、組合体10に対する封止樹脂100の埋設領域は適宜選択できる。図1に示すように組合体10の実質的に全体を封止樹脂100で埋設すると、上述のように外部環境からの保護、機械的保護、電気絶縁の確保を良好に図ることができる。組合体10の一部のみ、例えば、ケース4の底部40近傍のみを埋設する形態とすることができる。この形態は、封止樹脂100の使用量を低減でき、充填時間・固化時間を短縮でき、製造性に優れる。また、ケース4の深さ(高さ)も低くでき、小型なケースを利用できたり、軽量化を図ったりすることができる。封止樹脂100が少ない場合でも、特定の構造の絶縁層6を備えることで、リアクトル1は、良好な放熱性を有することができる。   The sealing resin 100 should just embed at least one part of the assembly 10, and the embedding area | region of the sealing resin 100 with respect to the assembly 10 can be selected suitably. As shown in FIG. 1, when substantially the entire assembly 10 is embedded with the sealing resin 100, as described above, protection from the external environment, mechanical protection, and electrical insulation can be favorably achieved. Only a part of the combined body 10, for example, only the vicinity of the bottom 40 of the case 4 can be embedded. This form can reduce the amount of the sealing resin 100 used, shorten the filling time / solidification time, and is excellent in manufacturability. Further, the depth (height) of the case 4 can be reduced, so that a small case can be used and the weight can be reduced. Even when the amount of the sealing resin 100 is small, the reactor 1 can have a good heat dissipation property by including the insulating layer 6 having a specific structure.

(リアクトルの製造方法)
上述の特定の構造の絶縁層6を備えるリアクトル1は、特に、固化後の硬度が異なる複数の絶縁材料を用いて、ある絶縁材料によって開気孔を有する固化層を形成した後、別の絶縁材料を開気孔に充填して固化することで製造できる。図2では、開気孔に充填する絶縁材料を封止樹脂100とする例を示す。リアクトル1は、例えば、以下の準備工程、形成工程、固化工程、充填工程を備える実施形態1のリアクトルの製造方法によって製造できる。
(Reactor manufacturing method)
The reactor 1 including the insulating layer 6 having the above-described specific structure, in particular, uses a plurality of insulating materials having different hardness after solidification to form a solidified layer having open pores with a certain insulating material, and then another insulating material. Can be produced by filling the open pores and solidifying. FIG. 2 shows an example in which the insulating material filling the open pores is the sealing resin 100. Reactor 1 can be manufactured by the manufacturing method of the reactor of Embodiment 1 provided with the following preparatory processes, a formation process, a solidification process, and a filling process, for example.

・準備工程
この工程では、コイル2と磁性コア3とを含む組合体10と、金属部材と、樹脂を含む絶縁材料とを準備する。この例の組合体10は、巻線2wを螺旋状に巻回してなる巻回部2a,2bを有するコイル2と、コア片31m及びギャップ材31gを交互に積層した積層物(図4)と、一対のコア片32m,32mと、介在部材5(後述)とを用意して、巻回部2a,2b内に各積層物を配置して、両積層物とコア片32m,32mと介在部材5とを組み付けることで得られる(図4,図5の上図参照)。この例の金属部材は、組合体10の載置面である内底面40iを有する金属製のケース4とする。
-Preparation process In this process, the assembly 10 containing the coil 2 and the magnetic core 3, the metal member, and the insulating material containing resin are prepared. The combined body 10 of this example includes a coil 2 having winding portions 2a and 2b formed by spirally winding the winding 2w, and a laminate (FIG. 4) in which core pieces 31m and gap materials 31g are alternately stacked. A pair of core pieces 32m and 32m and an intervening member 5 (described later) are prepared, and the respective laminates are arranged in the winding portions 2a and 2b, and both laminates, the core pieces 32m and 32m, and the intervening member are arranged. 5 (see the upper figure of FIG. 4 and FIG. 5). The metal member of this example is a metal case 4 having an inner bottom surface 40 i that is a mounting surface of the combined body 10.

この例では、絶縁層6の外郭領域60を形成する硬質な絶縁材料及び軟質な絶縁材料の一方と、絶縁層6の内包領域61及び封止樹脂100を形成する他方の絶縁材料とを用意する。特に、内包領域61に充填する他方の絶縁材料は、所定の温度での粘度が十分に低いもの、好ましくは、後述するような小さく、細長いといった開気孔6p(図5)に容易に充填可能な程度に低粘度となるものを利用すると、充填作業性に優れる。更にこの低粘度となる温度が所定の固化温度までの昇温過程の温度域に含まれると、別途、低粘度として充填するための加熱工程を不要にできて製造性に優れて好ましい。このような低粘度とは、例えば、10Pa・s以下程度が挙げられる。   In this example, one of a hard insulating material and a soft insulating material that form the outer region 60 of the insulating layer 6 and the other insulating material that forms the inclusion region 61 of the insulating layer 6 and the sealing resin 100 are prepared. . In particular, the other insulating material that fills the inclusion region 61 has a sufficiently low viscosity at a predetermined temperature, and preferably can be easily filled into the open pores 6p (FIG. 5) that are small and elongated as described later. When a material having a low viscosity is used, filling workability is excellent. Further, it is preferable that the temperature at which the viscosity becomes low is included in the temperature range of the temperature raising process up to a predetermined solidification temperature, because a heating step for filling as a low viscosity is unnecessary, and the productivity is excellent. Such low viscosity includes, for example, about 10 Pa · s or less.

・形成工程
この工程では、図5の上段に示すように、用意した金属部材の載置面(ケース4の内底面40i、図5では上面)上に、用意した絶縁材料を用いて、未固化層610を形成する。未固化層610の形成には、刷毛やロール、ノズルなどによる塗布、スクリーン印刷などが利用できる。未固化層610の形成には、例えば、上述の樹脂とセラミックスフィラーなどの硬質粉末とを含み、熱伝導率が2.0W/m・K以上である硬質な絶縁材料やショアA硬度が70〜80程度の軟質な絶縁材料を用いる。
Forming step In this step, as shown in the upper part of FIG. 5, the prepared metal member is placed on the mounting surface (the inner bottom surface 40 i of the case 4, the upper surface in FIG. 5) by using the prepared insulating material. Layer 610 is formed. For the formation of the unsolidified layer 610, application by brush, roll, nozzle, or the like, screen printing, or the like can be used. Formation of the unsolidified layer 610 includes, for example, a hard insulating material having a thermal conductivity of 2.0 W / m · K or more and a Shore A hardness of 70 to 70, including the above-described resin and hard powder such as a ceramic filler. A soft insulating material of about 80 is used.

未固化層610の形成厚さt610は、適宜選択できるが、厚過ぎると固化後の固化層600の平均厚さt600が大きくなり易く、コイル2の巻回部2a,2bと金属部材の載置面(ケース4の内底面40i)との間の対向距離が増大して、放熱性の低下を招く。従って、固化後の固化層600の平均厚さt600が所望の大きさとなるように、未固化層610の形成厚さt610を調整する。未固化層610の形成厚さt610は、例えば、平均で50μm以上5mm以下、更に100μm以上3mm以下程度が挙げられる。 Formation thickness t 610 of the unsolidified layer 610 may be appropriately selected, tends average thickness t 600 of the solidified layer 600 after solidification and too thick is large, the winding part 2a of the coil 2, the 2b and the metal member The facing distance between the mounting surface (the inner bottom surface 40i of the case 4) is increased, and the heat dissipation is reduced. Thus, as the average thickness t 600 of the solidified layer 600 after solidification becomes a desired size, adjusting the formation thickness t 610 of the unsolidified layer 610. Formation thickness t 610 of the unsolidified layer 610 is, for example, 50 [mu] m or more 5mm or less in average, and the degree or less than 3mm further 100 [mu] m.

・固化工程
この工程では、図5の中段に示すように、未固化層610に組合体10の巻回部2a,2bを載置して加熱して、巻回部2a,2bを金属部材の載置面(ケース4の内底面40i)に固定すると共に、固化層600を形成する。特に、実施形態1のリアクトルの製造方法では、加熱条件に特徴の一つがあり、未固化層610における載置面(内底面40i)側の領域から巻回部2a,2b側の領域に向かって順次固化されるように未固化層610を加熱する。
Solidification step In this step, as shown in the middle of FIG. 5, the winding portions 2a and 2b of the combined body 10 are placed on the unsolidified layer 610 and heated, and the winding portions 2a and 2b are made of metal members. While fixing to a mounting surface (inner bottom 40i of case 4), the solidified layer 600 is formed. In particular, the reactor manufacturing method according to the first embodiment has one of the characteristics in the heating condition, from the region on the mounting surface (inner bottom surface 40i) side in the unsolidified layer 610 toward the region on the winding part 2a, 2b side. The unsolidified layer 610 is heated so as to be sequentially solidified.

金属部材の載置面側からコイル2側への加熱方法として、例えば、図5の中段に示すように、金属部材において未固化層610が形成されている載置面近傍の領域を主として加熱する方法が挙げられる。具体的には、常温(例えば20℃〜25℃程度)としている組合体10と金属部材との組物を恒温槽(図示せず)に装入し、金属部材に接するように又は近接するようにヒータなどの加熱源200を配置して、金属部材を主として加熱する。図5では、ケース4の底部40の外底面に加熱源200を接して配置した状態を示す。この状態で加熱すると、金属部材(ケース4の底部40)は、速やかに、加熱源200の設定温度に加熱される。しかし、組合体10は、金属部材(主として底部40)と比較して熱容量が大きく、上記設定温度に加熱されるまでの時間が長い。このような温度差がある二つの部材、即ち高温の金属部材(底部40)と低温の組合体10とに挟まれた未固化層610には、その金属部材(底部40)側の領域の温度がコイル2の巻回部2a,2b側の領域の温度よりも高いという温度差が生じる。このような温度差を未固化層610に積極的に設けることで、未固化層610を、載置面(ケース4の内底面40i)側の領域から巻回部2a,2b側の領域に向かって順次固化できる。   As a heating method from the placement surface side of the metal member to the coil 2 side, for example, as shown in the middle part of FIG. 5, a region near the placement surface in which the unsolidified layer 610 is formed in the metal member is mainly heated. A method is mentioned. Specifically, the assembly of the combined body 10 and the metal member that is at room temperature (for example, about 20 ° C. to 25 ° C.) is inserted into a thermostatic bath (not shown) so as to come into contact with or close to the metal member. A heating source 200 such as a heater is disposed on the metal member to mainly heat the metal member. FIG. 5 shows a state in which the heating source 200 is disposed in contact with the outer bottom surface of the bottom 40 of the case 4. When heated in this state, the metal member (the bottom 40 of the case 4) is quickly heated to the set temperature of the heating source 200. However, the combined body 10 has a larger heat capacity than the metal member (mainly the bottom 40), and takes a long time to be heated to the set temperature. An unsolidified layer 610 sandwiched between two members having such a temperature difference, that is, a high-temperature metal member (bottom 40) and a low-temperature combination 10 has a temperature in a region on the metal member (bottom 40) side. Is higher than the temperature of the region of the coil 2 on the winding portions 2a and 2b side. By actively providing such a temperature difference in the unsolidified layer 610, the unsolidified layer 610 is moved from the region on the placement surface (inner bottom surface 40i of the case 4) to the region on the winding part 2a, 2b side. Can be solidified sequentially.

その他の加熱方法として、例えば、常温(例えば20℃〜25℃程度)としている組合体10と金属部材との組物を雰囲気炉などの加熱炉(図示せず)に装入して加熱する方法が挙げられる。この方法でも、金属部材は、速やかに、加熱炉の雰囲気温度に加熱されるが、熱容量が大きい組合体10は、その全体が上記雰囲気温度に加熱されるまでの時間が長い。そのため、上述のように未固化層610における金属部材(ここではケース4の底部40)側の領域の温度がコイル2の巻回部2a,2b側の領域の温度よりも高くなる温度差を設けられて、未固化層610を載置面(ケース4の内底面40i)側の領域から巻回部2a,2b側の領域に向かって順次固化できる。   As another heating method, for example, a method in which an assembly of a combination 10 and a metal member that is set to room temperature (for example, about 20 ° C. to 25 ° C.) is charged in a heating furnace (not shown) such as an atmospheric furnace and heated. Is mentioned. Even in this method, the metal member is quickly heated to the atmospheric temperature of the heating furnace, but the combination 10 having a large heat capacity takes a long time until the entire assembly 10 is heated to the atmospheric temperature. Therefore, as described above, a temperature difference is provided such that the temperature of the region on the metal member (here, the bottom portion 40 of the case 4) side of the unsolidified layer 610 is higher than the temperature of the region on the winding portions 2a and 2b side of the coil 2. Thus, the unsolidified layer 610 can be sequentially solidified from the region on the placement surface (inner bottom surface 40i of the case 4) side toward the region on the winding portions 2a and 2b side.

上述の設定温度や雰囲気温度は、未固化層610を構成する絶縁材料、特に樹脂に応じて適宜選択するとよい。   The set temperature and the ambient temperature described above may be appropriately selected according to the insulating material constituting the unsolidified layer 610, particularly the resin.

上述のように未固化層610を金属部材の載置面側の領域から順次固化することで、コイル2の巻回部2a,2bを金属部材の載置面(ケース4の内底面40i)に固定できる。かつ、図5の下段に示すように巻回部2a,2bと金属部材(内底面40i)との間に、少なくとも一つの開気孔6pを有する固化層600を形成できる。開気孔6pを形成する固化層600の内周面は、上述の絶縁層6の外郭領域60の内周面を形成する。   As described above, the unsolidified layer 610 is sequentially solidified from the region on the metal member placement surface side, whereby the winding portions 2a and 2b of the coil 2 are placed on the metal member placement surface (the inner bottom surface 40i of the case 4). Can be fixed. In addition, as shown in the lower part of FIG. 5, a solidified layer 600 having at least one open hole 6p can be formed between the winding portions 2a and 2b and the metal member (inner bottom surface 40i). The inner peripheral surface of the solidified layer 600 that forms the open pores 6p forms the inner peripheral surface of the outer region 60 of the insulating layer 6 described above.

開気孔6pは、代表的には、コイル2の巻回部2a,2bを構成する隣り合うターン2t,2tと金属部材の載置面(ケース4の内底面40i)とで挟まれる断面T字状の領域Taに形成される。この理由は定かではないが、上述のように未固化層610を固化する際に、未固化層610を構成する絶縁材料の一部が毛管現象によって隣り合うターン2t,2t間に侵入し、断面T字状の領域Ta近傍の絶縁材料が枯渇するために雰囲気ガスを吸い込んだことが考えられる。この考察を裏付ける一つの理由として、固化後に固化層600を観察すると、隣り合うターン2t,2t間に絶縁材料の一部が充填されていることが挙げられる。   The open hole 6p is typically a T-shaped cross section sandwiched between adjacent turns 2t and 2t constituting the winding portions 2a and 2b of the coil 2 and a mounting surface of the metal member (inner bottom surface 40i of the case 4). It is formed in the shape area Ta. The reason for this is not clear, but when the unsolidified layer 610 is solidified as described above, a part of the insulating material constituting the unsolidified layer 610 penetrates between adjacent turns 2t and 2t by capillary action, and the cross section It is conceivable that atmospheric gas was sucked in because the insulating material near the T-shaped region Ta was exhausted. One reason for supporting this consideration is that when the solidified layer 600 is observed after solidification, a part of the insulating material is filled between adjacent turns 2t and 2t.

開気孔6pは、代表的には、固化層600の側面からコイル2のターン2tの周回方向に沿って設けられる細長い孔である。開気孔6pの開口部の形状又は縦断面形状は、図2の破線円内や図5の下段に示すように円形状又は円形に近いような曲面形状である。開気孔6pは、上述のように固化時に自動的に形成されるため、その形状や大きさなどを高精度に制御することが難しいが、断面円形状で細長くなる傾向を有することを確認している。   The open pores 6p are typically elongated holes provided along the circumferential direction of the turn 2t of the coil 2 from the side surface of the solidified layer 600. The shape or vertical cross-sectional shape of the opening of the open pore 6p is a circular shape or a curved surface shape close to a circle as shown in the broken line circle of FIG. 2 or the lower stage of FIG. Since the open pores 6p are automatically formed when solidified as described above, it is difficult to control the shape and size thereof with high accuracy, but it is confirmed that the open pores 6p tend to be elongated in a circular cross section. Yes.

開気孔6pは、代表的には、図5の下段に示すように複数形成される。各開気孔6pは、代表的には、上述のようにコイル2のターン2tの周回方向に沿って細長くなっており、隣り合うターン2t,2t間に配置され、複数の細長い開気孔6はコイル2の巻回部2a,2bの軸方向に並列するように形成される(図3の内包領域61も参照)。   A plurality of open pores 6p are typically formed as shown in the lower part of FIG. Each open hole 6p is typically elongated along the circumferential direction of the turn 2t of the coil 2 as described above, and is disposed between the adjacent turns 2t and 2t, and the plurality of elongated open holes 6 are coiled. The two winding portions 2a and 2b are formed in parallel in the axial direction (see also the inclusion region 61 in FIG. 3).

開気孔6pの大きさについて述べると、固化層600の側面に設けられる開口部の包絡円の直径、又は固化層600の縦断面の包絡円の直径を内包径D6pとすると、内包径D6pは例えば2mm以下が挙げられる。未固化層610や固化層600を構成する絶縁材料や形成厚さt610、固化条件などにもよるが、内包径D6pの下限は0.1mm、更に0.3mm、上限は1.5mm、更に1mmが挙げられる。固化層600の開気孔6pの内包径D6pは、上述の絶縁層6に備える内包領域61の内包径D(図2)に実質的に等しい。 The size of the open pore 6p will be described. When the diameter of the envelope circle of the opening provided on the side surface of the solidified layer 600 or the diameter of the envelope circle of the vertical cross section of the solidified layer 600 is the inner envelope diameter D6p , the inner envelope diameter D6p. For example, 2 mm or less is mentioned. Depending on the insulating material constituting the unsolidified layer 610 and the solidified layer 600, the formation thickness t610 , solidification conditions, etc., the lower limit of the inner diameter D6p is 0.1 mm, further 0.3 mm, the upper limit is 1.5 mm, Furthermore, 1 mm is mentioned. The inner diameter D 6p of the open pores 6p of the solidified layer 600 is substantially equal to the inner diameter D (FIG. 2) of the inner area 61 provided in the insulating layer 6 described above.

細長い開気孔6pにおけるターン2tの周回方向に沿った長さ(以下、孔長さと呼ぶ)は、未固化層610や固化層600を構成する絶縁材料や形成厚さt610、固化条件などにもよるが、例えば、上述したコイル2の巻回部の幅Wを基準として、巻回部の幅Wの1/5以上、更に1/4以上、1/3以上、1/2以上が挙げられ、巻回部の幅Wと同等以下、更に4/5以下が挙げられる。固化層600の開気孔6pの孔長さは、上述の絶縁層6に備える棒状の内包領域の棒長さL(図3)に実質的に等しい。 The length (hereinafter referred to as the hole length) along the turn direction of the turn 2t in the elongated open hole 6p is determined by the insulating material forming the unsolidified layer 610 and the solidified layer 600, the formation thickness t610 , and the solidification condition. According However, for example, based on the width W t of the windings of the coil 2 described above, one-fifth of the width W t of the winding portion, and further not less than 1/4, 1/3 or more, 1/2 or more The width is equal to or less than the width W t of the winding portion, and further 4/5 or less. The hole length of the open pores 6p of the solidified layer 600 is substantially equal to the rod length L (FIG. 3) of the rod-shaped inclusion region provided in the insulating layer 6 described above.

上述の組合体10の載置では、未固化層610がある程度柔らかいため、未固化層610の上から組合体10を押し付けることで、コイル2の巻回部2a,2bの一部を未固化層610に埋設できる。この埋設状態で固化すると、巻回部2a,2bと固化層600との接触面積が増大し、固化層600は巻回部2a,2bを強固に固定できる。なお、この押し付けや、組合体10の自重によって、固化層600の平均厚さt600が未固化層610の形成厚さt610よりも薄くなることがある。固化層600の平均厚さt600が所望の範囲となるように組合体10の重量などを考慮して上記の押し付けを調整する。この押し付けによっても、隣り合うターン2t,2t間に未固化層610を構成する絶縁材料を充填できる場合がある。 Since the unsolidified layer 610 is soft to some extent in the mounting of the union 10 described above, pressing the union 10 from above the unsolidified layer 610 causes some of the winding portions 2a and 2b of the coil 2 to be unsolidified. 610 can be embedded. When solidified in this embedded state, the contact area between the winding portions 2a and 2b and the solidified layer 600 increases, and the solidified layer 600 can firmly fix the winding portions 2a and 2b. Note that the average thickness t 600 of the solidified layer 600 may become thinner than the formation thickness t 610 of the unsolidified layer 610 due to this pressing or the weight of the combined body 10. The average thickness t 600 of the solidified layer 600 in consideration of the weight of the combined product 10 so that the desired range to adjust the pressing of the above. Even by this pressing, the insulating material constituting the unsolidified layer 610 may be filled between the adjacent turns 2t and 2t.

・充填工程
この工程では、固化層600に有する開気孔6p内に、固化層600を構成する絶縁材料とは固化後の硬度が異なる絶縁材料を充填した後固化し、コイル2の巻回部2a,2bと金属部材の載置面(ケース4の内底面40i)との間に、硬度が異なる複数の絶縁材料を含む絶縁層6を形成する。特に、開気孔6pは上述のように小さく、細長い場合が多い。このような開気孔6p内に隙間なく、用意した樹脂を含む絶縁材料を充填できるように、この樹脂を含む絶縁材料を開気孔6p内に充填可能な低粘度状態とする。
Filling step In this step, the open pores 6p of the solidified layer 600 are filled with an insulating material having a hardness after solidification different from that of the insulating material constituting the solidified layer 600 and then solidified, and the winding portion 2a of the coil 2 is solidified. , 2b and the metal member mounting surface (inner bottom surface 40i of the case 4), an insulating layer 6 including a plurality of insulating materials having different hardnesses is formed. In particular, the open pores 6p are small as described above and are often elongated. The insulating material containing the resin is in a low-viscosity state that can be filled in the open pores 6p so that the insulating material containing the prepared resin can be filled without gaps in the open pores 6p.

例えば、低粘度になっている絶縁材料を開気孔6pごとに充填して固化することで、内包領域61を有する絶縁層6を形成できる。封止樹脂100を備えていないリアクトルとする場合には、この方法を利用するとよい。この場合、固化層600が外郭領域60を形成し、外郭領域60を構成する絶縁材料と、内包領域61を構成する絶縁材料とは、(固化後の)硬度が異なる。   For example, the insulating layer 6 having the inclusion region 61 can be formed by filling and solidifying a low-viscosity insulating material for each open pore 6p. This method may be used when the reactor does not include the sealing resin 100. In this case, the solidified layer 600 forms the outer region 60, and the insulating material constituting the outer region 60 and the insulating material constituting the inclusion region 61 have different hardnesses (after solidification).

更に、封止樹脂100を備えるリアクトルとする場合には、上述のように絶縁層6の形成後に、ケース4内に封止樹脂100の原料となる樹脂を含む絶縁材料をケース4内に充填した後、固化するとよい。開気孔6pごとに絶縁材料を充填する方法を利用することで、外郭領域60を構成する絶縁材料と、内包領域61を構成する絶縁材料と、封止樹脂100を構成する絶縁材料との三者について、(固化後の)硬度を異ならせることができる。又は、外郭領域60の絶縁材料と封止樹脂100の絶縁材料とを同じ絶縁材料として同じ硬度としたり、内包領域61の絶縁材料と、封止樹脂100の絶縁材料とを同じ絶縁材料として同じ硬度としたりすることができる。   Furthermore, when it is set as the reactor provided with the sealing resin 100, after forming the insulating layer 6 as described above, the case 4 is filled with an insulating material containing a resin as a raw material of the sealing resin 100 in the case 4. It is better to solidify later. By using a method of filling an insulating material for each open air hole 6p, the insulating material constituting the outer region 60, the insulating material constituting the inclusion region 61, and the insulating material constituting the sealing resin 100 are used. Can vary in hardness (after solidification). Alternatively, the insulating material of the outer region 60 and the insulating material of the sealing resin 100 have the same hardness as the same insulating material, or the insulating material of the inclusion region 61 and the insulating material of the sealing resin 100 have the same hardness as the same insulating material. It can be done.

封止樹脂100を備えるリアクトルとして、実施形態1のリアクトル1のように、絶縁層6の内包領域61の構成材料と封止樹脂100の構成材料とを同一とする場合には、上述のように開気孔6pを有する固化層600を形成し、充填工程では、ケース4内に封止樹脂100の原料を充填した後、固化するとよい。ケース4に封止樹脂100の原料を充填すると同時に、複数の開気孔6p内に樹脂を含む絶縁材料を充填できる。この絶縁材料を固化することで、開気孔6p内に封止樹脂100の一部が充填された絶縁層6を形成できると共に、封止樹脂100を備えるリアクトル1を同時に形成できる。封止樹脂100の原料とする樹脂を含む絶縁材料には、上述のように固化温度までの昇温過程の温度域に加熱されることで例えば10Pa・s以下程度といった低粘度になるものを利用すると、小さく細長い開気孔6pを複数備えていても、各開気孔6p内に容易に充填できて好ましい。原料とする絶縁材料について、予め、昇温過程での粘度を調べておくと利用し易い。   As described above, when the constituent material of the encapsulated region 61 of the insulating layer 6 and the constituent material of the sealing resin 100 are the same as the reactor including the sealing resin 100 as in the reactor 1 of the first embodiment, as described above. The solidified layer 600 having the open pores 6p is formed, and in the filling step, the case 4 is filled with the raw material of the sealing resin 100 and then solidified. At the same time that the case 4 is filled with the raw material of the sealing resin 100, an insulating material containing resin can be filled in the plurality of open pores 6p. By solidifying this insulating material, the insulating layer 6 in which a part of the sealing resin 100 is filled in the open pores 6p can be formed, and the reactor 1 including the sealing resin 100 can be simultaneously formed. As the insulating material including the resin used as the raw material of the sealing resin 100, a material having a low viscosity of, for example, about 10 Pa · s or less by being heated in the temperature range of the temperature rising process up to the solidification temperature as described above is used. Then, even if a plurality of small and elongated open holes 6p are provided, each open hole 6p can be easily filled, which is preferable. It is easy to use the insulating material used as a raw material if the viscosity during the temperature rising process is examined in advance.

(主要な効果)
実施形態1のリアクトル1は、コイル2の巻回部2a,2bと金属部材の載置面(例えばケース4の内底面40i)との間に絶縁層6を備えるため、コイル2と金属部材との間の絶縁性を高められる。この絶縁層6が、硬質な絶縁材料からなる硬質領域(例えば外郭領域60)と軟質な絶縁材料からなる軟質領域(例えば内包領域61)との双方を含むことで、以下の理由(1)〜(3)によって放熱性に優れ、以下の理由(4)、(5)によって騒音を低減できる。
(1) 絶縁層6を、ケースの深さ方向に積層した縦積み構造のように厚くする必要がなく、縦積み構造に比較して薄くできる。その結果、巻回部2a,2bと金属部材の載置面との間の対向距離を短くできる。
(2) 絶縁層6によって、コイル2の巻回部2a,2bと金属部材とを接合している。
(3) 硬質な絶縁材料に、樹脂とセラミックスフィラーなどの硬質粉末とを含有して、熱伝導率が高いものを利用できる。
(4) 軟質領域の変形によって磁性コア3の振動や外部からの振動を吸収でき、磁性コア3の振動や外部からの振動が金属部材に伝達されることを低減できる。
(5) 軟質領域が応力緩和を行えて、硬質領域に負荷される応力を低減できると共に、剛性が高く変形し難い硬質領域によって軟質領域への衝撃伝搬などを低減でき、振動や衝撃、応力などに起因する絶縁層6の割れや剥離、変形などを低減できる。
(Main effect)
Since the reactor 1 of the first embodiment includes the insulating layer 6 between the winding portions 2a and 2b of the coil 2 and the mounting surface of the metal member (for example, the inner bottom surface 40i of the case 4), the coil 2 and the metal member Increases the insulation between. The insulating layer 6 includes both a hard region (for example, the outer region 60) made of a hard insulating material and a soft region (for example, the inclusion region 61) made of a soft insulating material. The heat dissipation is excellent by (3), and noise can be reduced by the following reasons (4) and (5).
(1) The insulating layer 6 does not need to be thick like the vertically stacked structure laminated in the depth direction of the case, and can be made thinner than the vertically stacked structure. As a result, the facing distance between the winding parts 2a and 2b and the placement surface of the metal member can be shortened.
(2) The winding portions 2 a and 2 b of the coil 2 and the metal member are joined by the insulating layer 6.
(3) A hard insulating material containing a resin and a hard powder such as a ceramic filler and having a high thermal conductivity can be used.
(4) The deformation of the soft region can absorb the vibration of the magnetic core 3 and the vibration from the outside, and the transmission of the vibration of the magnetic core 3 and the vibration from the outside to the metal member can be reduced.
(5) The soft region can relieve stress and reduce the stress applied to the hard region, and the hard region that is highly rigid and difficult to deform can reduce the propagation of impact to the soft region, such as vibration, impact, stress, etc. It is possible to reduce cracking, peeling, deformation, etc. of the insulating layer 6 due to the above.

特に、この例のリアクトル1では、以下の理由(6)〜(8)によって放熱性に更に優れると共に、騒音を更に低減できる。
(6) コイル2の巻回部2a,2bの軸方向の全長に亘って、硬質領域と軟質領域とが交互に並ぶため、両領域をバランスよく備えられ、両領域を具備する効果を良好に得られる。
(7) 隣り合うターン2t,2t間に絶縁層6の構成材料の一部が充填されて、巻回部2a,2bと絶縁層6との接触面積が大きく、両者が強固に固定される。
(8) 金属製のケース4の全体を放熱経路に利用できる。
In particular, in the reactor 1 of this example, the heat dissipation is further improved and the noise can be further reduced for the following reasons (6) to (8).
(6) Since the hard region and the soft region are alternately arranged over the entire axial length of the winding portions 2a and 2b of the coil 2, both regions are provided in a well-balanced manner, and the effect of providing both regions is excellent. can get.
(7) Part of the constituent material of the insulating layer 6 is filled between the adjacent turns 2t and 2t, the contact area between the winding portions 2a and 2b and the insulating layer 6 is large, and both are firmly fixed.
(8) The entire metal case 4 can be used as a heat dissipation path.

実施形態1のリアクトルの製造方法は、硬質な絶縁材料及び軟質な絶縁材料の一方の絶縁材料で形成した未固化層610を特定の加熱条件で固化することで開気孔6pを自動的に形成でき、開気孔6pに特定の粘度条件で他方の絶縁材料を充填することで、特定の構造の絶縁層6を備えるリアクトル1を製造できる。即ち、実施形態1のリアクトルの製造方法は、上述の良好な放熱性と騒音の低減とを両立できる実施形態1のリアクトル1を製造できる。開気孔6pが上述のように小さく、細長いものであっても、固化時の条件を調整することで容易に形成できる。また、充填時の条件を調整することで、このような小さく細長い開気孔6pに絶縁材料を容易に充填できる。そのため、実施形態1のリアクトルの製造方法は、実施形態1のリアクトル1を生産性よく製造できる。   In the reactor manufacturing method of the first embodiment, the open pores 6p can be automatically formed by solidifying an unsolidified layer 610 formed of one of a hard insulating material and a soft insulating material under a specific heating condition. The reactor 1 including the insulating layer 6 having a specific structure can be manufactured by filling the open pores 6p with the other insulating material under a specific viscosity condition. That is, the reactor manufacturing method according to the first embodiment can manufacture the reactor 1 according to the first embodiment, which can achieve both the above-described good heat dissipation and noise reduction. Even if the open pores 6p are small and elongated as described above, they can be easily formed by adjusting the conditions during solidification. Further, by adjusting the filling conditions, it is possible to easily fill the insulating material into the small and long open pores 6p. Therefore, the manufacturing method of the reactor of Embodiment 1 can manufacture the reactor 1 of Embodiment 1 with high productivity.

更に、実施形態1のリアクトルの製造方法は、以下の理由(α)〜(γ)によって、実施形態1のリアクトル1を生産性よく製造できる。
(α) 上述の縦積み構造のリアクトルを製造する場合と比較して、固化層600の固化工程数を低減できる。
(β) 軟質な絶縁材料として、上述のセラミックスフィラーなどの硬質粉末を実質的に含まないもの、又は硬質粉末の含有量が少ないものなどといった未固化の状態で比較的低粘度なものを利用でき、未固化層610の形成を行い易い。
(γ) 封止樹脂100を備える場合に、上述の硬質粉末を実質的に含まないもの、又は硬質粉末の含有量が少ないものなどを利用でき、ケース4への充填を行い易い。
Furthermore, the manufacturing method of the reactor of Embodiment 1 can manufacture the reactor 1 of Embodiment 1 with sufficient productivity for the following reasons (α) to (γ).
(Α) The number of solidification steps of the solidified layer 600 can be reduced as compared with the case where the reactor having the vertically stacked structure described above is manufactured.
(Β) As a soft insulating material, a material having a relatively low viscosity in an unsolidified state such as a material that does not substantially contain hard powder such as the above-mentioned ceramic filler, or a material that contains a small amount of hard powder can be used. It is easy to form the unsolidified layer 610.
(Γ) When the sealing resin 100 is provided, it is possible to use a material that does not substantially contain the hard powder described above, or a material that contains a small amount of the hard powder, and is easy to fill the case 4.

・主要部材の詳細、変形例、その他の構成部材
・・コイル
この例では、一対の巻回部2a,2bを備える形態を説明したが、巻回部を一つのみ備える形態とすることができる。この場合、磁性コア3は、EEコアやEIコア、ERコアなどと呼ばれる公知の形状とすることが挙げられる。巻線2wとして、丸線の導体と絶縁被覆とを備える被覆丸線などを利用できる。巻回部を円筒状などとすることができる。
-Details of main members, modified examples, other constituent members-Coil In this example, a form provided with a pair of winding parts 2a, 2b has been described, but a form provided with only one winding part can be adopted. . In this case, the magnetic core 3 may have a known shape called an EE core, an EI core, an ER core, or the like. As the winding 2w, a covered round wire including a round wire conductor and an insulating coating can be used. The winding part can be cylindrical.

・・磁性コア
この例のコア片31mは、図4に示すように角部を丸めた直方体状であり、ギャップ材31gは、角部を丸めた矩形状の平板である。この例のコア片32mは、角部を丸めた直方体状のブロックと、このブロックから突出する一対の突出部分とを有する。突出部分は、ブロックにおけるコイル2の巻回部2a,2bの端面に対向する内端面32eからコイル2側に向かって突出する。各突出部分は、コア片31mと同様に角部を丸めた直方体状である。ブロックにおける内端面32eに対向する外表面は、平坦面であるが、湾曲面などとすることができる。
..Magnetic Core The core piece 31m in this example has a rectangular parallelepiped shape with rounded corners as shown in FIG. 4, and the gap material 31g is a rectangular flat plate with rounded corners. The core piece 32m of this example has a rectangular parallelepiped block with rounded corners and a pair of protruding portions protruding from the block. The protruding portion protrudes toward the coil 2 side from the inner end surface 32e facing the end surfaces of the winding portions 2a and 2b of the coil 2 in the block. Each protruding portion has a rectangular parallelepiped shape with rounded corners, like the core piece 31m. The outer surface facing the inner end surface 32e in the block is a flat surface, but may be a curved surface or the like.

更に、U字状のコア片32mにおける上記ブロックは、図2に示すようにケース4の内底面40iとの対向面(下面)が、コア片31mを含む積層物における内底面40iとの対向面(下面)よりも突出して形成されている。この例では、コイル2と磁性コア3とを組み付けたとき、上記ブロックにおける上記対向面(下面)がコイル2の巻回部2a,2bにおける内底面40iとの対向面(下面)よりも突出するように、上記ブロックが形成されている。こうすることで、上述のように巻回部2a,2bにおける上記対向面(下面)と内底面40iとの間に若干の隙間を設けられて、この隙間に封止樹脂100の一部を充填できる。また、上記ブロックにおける上記対向面(下面)が内底面40iに支持されることで、組合体10は、ケース4内での収納状態が安定する。更に、磁性コア3は、上記ブロックから内底面40iに熱を伝えられる。   Further, in the U-shaped core piece 32m, as shown in FIG. 2, the opposing surface (lower surface) of the case 4 to the inner bottom surface 40i is the opposing surface to the inner bottom surface 40i of the laminate including the core piece 31m. It protrudes from the (lower surface). In this example, when the coil 2 and the magnetic core 3 are assembled, the opposing surface (lower surface) of the block protrudes more than the opposing surface (lower surface) of the winding portions 2a and 2b of the coil 2 with the inner bottom surface 40i. As described above, the block is formed. As a result, a slight gap is provided between the facing surface (lower surface) and the inner bottom surface 40i of the winding portions 2a and 2b as described above, and a part of the sealing resin 100 is filled in the gap. it can. Moreover, the accommodation state in the case 4 is stabilized in the assembly 10 because the said opposing surface (lower surface) in the said block is supported by the inner bottom face 40i. Further, the magnetic core 3 can transfer heat from the block to the inner bottom surface 40i.

コア片31m,32m及びギャップ材31gの個数、形状、大きさ、組成などは適宜変更できる。例えば、コア片32mを直方体状とし、上述の突出部分をコア片31mとすることができる。ギャップ材31gに代えてエアギャップとしたり、ギャップ材31gを省略したりすることもできる。コア片とギャップ材とは、接着剤などで固定すると、組付け易い。   The number, shape, size, composition, and the like of the core pieces 31m, 32m and the gap material 31g can be appropriately changed. For example, the core piece 32m can have a rectangular parallelepiped shape, and the above-described protruding portion can be the core piece 31m. An air gap may be used instead of the gap material 31g, or the gap material 31g may be omitted. When the core piece and the gap material are fixed with an adhesive or the like, it is easy to assemble.

・・金属部材
金属部材をケース4とする場合、ケース4は上述の一様な構成材料からなる一体成形品の他、底部40と側壁部41とが別体であり、組み合わせて一体となる形態とすることができる。
..Metal member When the metal member is the case 4, the case 4 has a form in which the bottom portion 40 and the side wall portion 41 are separate from each other, and are integrally formed in addition to the integrally formed product made of the above-described uniform constituent material. It can be.

又は、特許文献1に記載されるように、組合体10を載置する底部40が金属板(底板部)から構成され、組合体10の周囲を囲む側壁部41が樹脂などの絶縁材料の成形品(壁枠部)から構成され、これらを組合せた形態とすることができる。この組合せのケースは、底板部と壁枠部とが着脱可能な独立部材である。そのため、製造過程では、壁枠部を取り外して底板部のみとし、内底面40iとなる底板部の一面(載置面)を露出した状態で組合体10の載置や未固化層610の形成などを行えて作業性に優れる。ひいてはリアクトル1の製造性に優れる。また、壁枠部が樹脂の成形品である場合には、コイル2と側壁部41との間の絶縁性にも優れる上に、軽量なリアクトルとすることができる。一方、底板部が金属製であることで熱伝導性に優れるため、底板部を介して、コイル2の巻回部2a,2bの熱をケース4外の設置対象に良好に伝えられる。   Alternatively, as described in Patent Document 1, the bottom 40 on which the combined body 10 is placed is formed of a metal plate (bottom plate), and the side wall 41 surrounding the combined body 10 is formed of an insulating material such as a resin. It is comprised from goods (wall frame part), and can be set as the form which combined these. The case of this combination is an independent member in which the bottom plate portion and the wall frame portion are detachable. Therefore, in the manufacturing process, the wall frame portion is removed so that only the bottom plate portion is formed, and the assembly 10 is placed and the unsolidified layer 610 is formed with one surface (mounting surface) of the bottom plate portion serving as the inner bottom surface 40i exposed. Can be performed and is excellent in workability. As a result, the productivity of the reactor 1 is excellent. Further, when the wall frame portion is a resin molded product, the insulation between the coil 2 and the side wall portion 41 is excellent, and a lightweight reactor can be obtained. On the other hand, since the bottom plate portion is made of metal and has excellent thermal conductivity, the heat of the winding portions 2a and 2b of the coil 2 can be transmitted to the installation object outside the case 4 through the bottom plate portion.

上記底板部の構成材料には、金属製のケースの項で説明した上述の金属を利用できる。上記壁枠部の構成材料には、絶縁材料、例えば、ポリブチレンテレフタレート(PBT)樹脂、ウレタン樹脂、ポリフェニレンサルファイド(PPS)樹脂、アクリロニトリル−ブタジエン−スチレン(ABS)樹脂などの樹脂材料などが挙げられる。壁枠部は、上記の樹脂を射出成形するなど、公知の成形方法によって容易に製造できる。   As the constituent material of the bottom plate portion, the above-described metal described in the section of the metal case can be used. Examples of the constituent material of the wall frame include insulating materials such as polybutylene terephthalate (PBT) resin, urethane resin, polyphenylene sulfide (PPS) resin, and acrylonitrile-butadiene-styrene (ABS) resin. . The wall frame part can be easily manufactured by a known molding method such as injection molding of the above resin.

又は、上記底板部を、組合体10の載置領域のみが金属で構成され、その他の領域が非金属で構成された複合部材とすることができる。金属部分の構成材料は、金属製のケースの項で説明した上述の金属を利用できる。非金属部分の構成材料は、上記壁枠部を構成する樹脂材料やセラミックスなどの非金属無機材料などが挙げられる。   Or the said baseplate part can be used as the composite member by which only the mounting area | region of the assembly 10 was comprised with the metal, and the other area | region was comprised with the nonmetal. As the constituent material of the metal portion, the above-described metal described in the section of the metal case can be used. Examples of the constituent material of the non-metallic part include a non-metallic inorganic material such as a resin material or ceramics constituting the wall frame part.

別の金属部材として、例えば、組合体10を載置した状態で設置対象に取り付けられる金属板である形態が挙げられる。この金属板は、例えば、放熱部材や、設置対象への固定部材などに利用される。この形態は、組合体10の周囲が上述のケース4の側壁部41や封止樹脂100に覆われず、露出した状態で設置対象に取り付けられる。例えば、この金属板は、組合体10が液体冷媒に直接曝される箇所などに取り付けられる。   As another metal member, the form which is a metal plate attached to an installation object in the state which mounted the assembly 10 is mentioned, for example. This metal plate is used, for example, as a heat radiating member or a fixing member to an installation target. In this embodiment, the periphery of the combined body 10 is not covered with the side wall 41 or the sealing resin 100 of the case 4 described above, and is attached to the installation target in an exposed state. For example, the metal plate is attached to a location where the combination 10 is directly exposed to the liquid refrigerant.

金属板の構成材料には、金属製のケースの項で説明した上述の金属を利用できる。金属板は、その表裏面が通常平面であるため、絶縁層6の形成作業性、組合体10の載置作業性などに優れる。この形態は、上述のケースを備える形態に比較して、側壁部が無いため、更なる軽量化を図れる。   As the constituent material of the metal plate, the above-described metal described in the section of the metal case can be used. Since the front and back surfaces of the metal plate are usually flat, the metal plate is excellent in the workability of forming the insulating layer 6 and the workability of placing the assembly 10. Since this form does not have a side wall part compared with the form provided with the above-mentioned case, further weight reduction can be achieved.

上記金属板に代えて、リアクトル1の組合体10が載置される部材を、例えば、組合体10の載置領域のみが金属で構成され、その他の領域が非金属で構成された複合部材とし、この複合部材の金属部分を金属部材とすることができる。金属部分の構成材料は、金属製のケースの項で説明した上述の金属を利用できる。非金属部分の構成材料は、例えばセラミックスなどの非金属無機材料などとすると高い放熱性と絶縁性とを期待でき、樹脂などとするとインサート成形などで複合部材を容易に製造できる。   Instead of the metal plate, a member on which the combination 10 of the reactor 1 is placed is, for example, a composite member in which only the placement region of the combination 10 is made of metal and the other regions are made of nonmetal. The metal portion of the composite member can be a metal member. As the constituent material of the metal portion, the above-described metal described in the section of the metal case can be used. If the non-metallic portion is made of a non-metallic inorganic material such as ceramics, high heat dissipation and insulation can be expected, and if it is made of resin, the composite member can be easily manufactured by insert molding or the like.

・・封止樹脂
封止樹脂100を備える場合、上述のように封止樹脂100の構成材料と絶縁層6の構成材料の一部とが共通する形態の他、両者が全く異なる形態とすることができる。この場合、封止樹脂100の選択の自由度を高められる。例えば、封止樹脂100の構成材料は、硬質な絶縁材料や高熱伝導率の軟質な絶縁材料よりも熱伝導率が高いものなどとすることができる。具体的な樹脂、熱伝導性を高めるための添加剤(上述のセラミックスフィラーなど)は、上述の絶縁層6の構成材料の項を参照するとよい。
..Encapsulating resin When the sealing resin 100 is provided, in addition to the form in which the constituent material of the sealing resin 100 and a part of the constituent material of the insulating layer 6 are common as described above, the two are completely different forms. Can do. In this case, the degree of freedom in selecting the sealing resin 100 can be increased. For example, the constituent material of the sealing resin 100 may be a material having a higher thermal conductivity than a hard insulating material or a soft insulating material having a high thermal conductivity. For specific resins and additives (such as the above-mentioned ceramic filler) for increasing thermal conductivity, refer to the above-mentioned section of the constituent material of the insulating layer 6.

・・介在部材
この例のリアクトル1(組合体10)は、図4に示すようにコイル2と磁性コア3との間に介在される介在部材5を備える。介在部材5は、コイル2と磁性コア3との間の電気的絶縁性を高める機能を有しており、この機能のために絶縁材料から構成される。
.. Interposition member The reactor 1 (combination body 10) of this example is provided with the interposition member 5 interposed between the coil 2 and the magnetic core 3, as shown in FIG. The interposition member 5 has a function of improving electrical insulation between the coil 2 and the magnetic core 3 and is made of an insulating material for this function.

この例の介在部材5は、コイル2の巻回部2a,2bの軸方向に分割される一対の分割材50a,50bを組み合わせて形成される。各分割材50a,50bは、磁性コア3のうち、巻回部2a,2b内に収納される部分との間に介在される内側介在部51と、巻回部2a,2bの端面とコア片32mの内端面32eとの間に介在される端面介在部52とを備える。内側介在部51は、巻回部2a,2bにおける丸められた角部に沿って配置される複数の湾曲した板片から構成される。各分割材50a,50bの内側介在部51,51の端部はそれぞれ、係合するように形成されている。内側介在部51を板片などとすることで、製造時、封止樹脂100の原料(未固化の絶縁材料)を充填し易い、隣り合うターン2t,2tから脱気し易いなどの効果が期待できる。端面介在部52は、コア片32mに備える一対の突出部分がそれぞれ挿通される二つの貫通孔52h,52hを有する枠状の平板部分である。介在部材5の形状は例示であり、適宜変更できる。例えば、両分割材50a,50bにおける内側介在部51の長さを異ならせた形態(この例では実質的に等しい)、内側介在部51の端部に係合箇所を有さない形態、内側介在部51と端面介在部52とが一体ではなく、それぞれが独立した別部材である形態などとすることができる。   The interposition member 5 in this example is formed by combining a pair of divided members 50a and 50b divided in the axial direction of the winding portions 2a and 2b of the coil 2. Each of the divided members 50a and 50b includes an inner interposed portion 51 interposed between the magnetic core 3 and a portion housed in the winding portions 2a and 2b, and end surfaces of the winding portions 2a and 2b and core pieces. And an end surface interposed portion 52 interposed between the inner end surface 32e of 32 m. The inner interposition part 51 is comprised from the some curved board piece arrange | positioned along the rounded corner | angular part in winding part 2a, 2b. The end portions of the inner interposed portions 51, 51 of the divided members 50a, 50b are formed so as to engage with each other. By making the inner interposition part 51 into a plate piece or the like, it is expected that the raw material (unsolidified insulating material) of the sealing resin 100 is easily filled during manufacture, and that the adjacent turns 2t and 2t can be easily degassed. it can. The end surface interposition part 52 is a frame-shaped flat plate part having two through holes 52h and 52h through which a pair of projecting parts provided in the core piece 32m are inserted. The shape of the interposition member 5 is an example, and can be changed as appropriate. For example, a form in which the lengths of the inner intervening portions 51 in the divided members 50a and 50b are different (substantially equal in this example), an embodiment in which no end of the inner intervening portion 51 is engaged, and an inner interposition The part 51 and the end surface interposition part 52 are not integrated, and each of them can be an independent member.

介在部材5の構成材料は、例えば、PPS樹脂、PTFE樹脂、LCP、PA樹脂、PBT樹脂などの熱可塑性樹脂などといった樹脂が挙げられる。介在部材5は、上記の樹脂を射出成形するなど、公知の成形法によって容易に作製できる。介在部材5には、公知の形状、組成の部材(ボビン、インシュレータと呼ばれることもある)を利用できる。   Examples of the constituent material of the interposition member 5 include resins such as PPS resin, PTFE resin, LCP, PA resin, and thermoplastic resin such as PBT resin. The interposition member 5 can be easily produced by a known molding method such as injection molding of the above resin. As the interposition member 5, a member having a known shape and composition (sometimes called a bobbin or an insulator) can be used.

・・・コア被覆材
上述の介在部材5に代えて、磁性コア3のコア片31m,32mや、コア片31mとギャップ材31gとの積層物などを上述の熱可塑性樹脂などの絶縁材料で覆ったコア被覆材とすることができる。介在部材5を省略することで、組合体10の組み付け部品点数を低減でき、組立作業性に優れる。また、複数のコア片などを一体物とすることで組み付け部品を取り扱い易く、リアクトル1の製造性に優れる。コア被覆材や上述の介在部材5を省略してもよいが、これらを備えることで、コイル2と磁性コア3との間の絶縁性を高められる。
... Core covering material Instead of the interposition member 5 described above, the core pieces 31m and 32m of the magnetic core 3 or a laminate of the core piece 31m and the gap material 31g are covered with an insulating material such as the thermoplastic resin described above. Core coating material can be used. By omitting the interposition member 5, the number of assembled parts of the combined body 10 can be reduced, and the assembly workability is excellent. Moreover, it is easy to handle assembly parts by making a plurality of core pieces and the like as one body, and the productivity of the reactor 1 is excellent. Although the core covering material and the above-described interposition member 5 may be omitted, by providing these, the insulation between the coil 2 and the magnetic core 3 can be enhanced.

・・・センサ
温度センサ、電流センサ、電圧センサ、磁束センサなどのリアクトル1の物理量を測定するセンサ(図示せず)を備えることができる。
... Sensor A sensor (not shown) that measures the physical quantity of the reactor 1 such as a temperature sensor, a current sensor, a voltage sensor, or a magnetic flux sensor can be provided.

・・・放熱板
コイル2の巻回部2a,2bの外周面のうち、金属部材の載置面に固定される面を除く任意の箇所に放熱板(図示せず)を備えることができる。例えば、ケース4を備える場合には、巻回部2a,2bの外周面のうち、側壁部41の内周面に対向する任意の箇所やケース4の開口部側に配置される面(図2では上面)に放熱板を配置できる。放熱板の構成材料は、金属製のケースの項で説明した上述の金属や上述のセラミックスなどの非金属無機材料などが利用できる。放熱板は、例えば、接着剤などによって固定するとよい。
... Heat dissipation plate A heat dissipation plate (not shown) can be provided at an arbitrary location on the outer peripheral surfaces of the winding portions 2a and 2b of the coil 2 except the surface fixed to the mounting surface of the metal member. For example, when the case 4 is provided, of the outer peripheral surfaces of the winding portions 2 a and 2 b, an arbitrary portion facing the inner peripheral surface of the side wall portion 41 and a surface disposed on the opening side of the case 4 (FIG. 2). Then, a heat sink can be arranged on the upper surface. As the constituent material of the heat sink, non-metallic inorganic materials such as the above-described metals and the above-described ceramics described in the section of the metal case can be used. For example, the heat radiating plate may be fixed with an adhesive or the like.

[試験例]
金属製のケースの内底面上に樹脂を含む絶縁材料を用いて未固化層を形成して、コイルと磁性コアとを含む組合体を載置した後、未固化層に用いた絶縁材料とは別の樹脂を含む絶縁材料をケース内に充填及び固化して、コイルの巻回部とケースの内底面とが、樹脂を含む絶縁材料よって接合されたリアクトルを作製した。詳細は以下の通りである。
[Test example]
After forming an unsolidified layer using an insulating material containing resin on the inner bottom surface of a metal case and placing an assembly including a coil and a magnetic core, what is the insulating material used for the unsolidified layer? An insulating material containing another resin was filled and solidified in the case to produce a reactor in which the coil winding portion and the inner bottom surface of the case were joined by the insulating material containing the resin. Details are as follows.

この試験で作製したリアクトルは、実施形態1で説明した構成、即ち角部を丸めた角筒状の一対の巻回部を有するコイルと、環状に組み付けられる磁性コアと、矩形箱状のケースと、封止樹脂と、特定の構造の絶縁層とを備えるものである。コイルはエッジワイズコイル、コア片は圧粉成形体、ケースはアルミニウム合金製である。ここでは、一般的に自動車用途のリアクトル程度の大きさのものを作製した。   The reactor manufactured in this test has the configuration described in the first embodiment, that is, a coil having a pair of winding portions in the shape of a rectangular tube with rounded corners, a magnetic core assembled in an annular shape, and a rectangular box-shaped case. And a sealing resin and an insulating layer having a specific structure. The coil is an edgewise coil, the core piece is a green compact, and the case is made of an aluminum alloy. Here, the thing of the magnitude | size about the reactor generally used for a motor vehicle was produced.

絶縁層は、硬質な絶縁材料から構成される外郭領域(硬質領域)と、軟質な絶縁材料から構成される内包領域(軟質領域)とを備えるものである。各絶縁材料の仕様を表1に示す。各絶縁材料は市販品、又は、市販の樹脂やフィラーを配合したものである。表1に示す粘度は、予め測定した。この試験では、熱伝導率、硬度はいずれも、各絶縁材料から試験片を作製して測定した。熱伝導率は、レーザフラッシュ法によって測定した。硬度は、市販のショア硬度計を用いて測定した。   The insulating layer includes an outer region (hard region) made of a hard insulating material and an inclusion region (soft region) made of a soft insulating material. Table 1 shows the specifications of each insulating material. Each insulating material is a commercial product or a blend of a commercially available resin or filler. The viscosities shown in Table 1 were measured in advance. In this test, both thermal conductivity and hardness were measured by preparing test pieces from each insulating material. The thermal conductivity was measured by a laser flash method. The hardness was measured using a commercially available Shore hardness meter.

Figure 2016184630
Figure 2016184630

この試験では、形成厚さが異なる未固化層を形成した3つのリアクトルを作製した。具体的には、表1に示す硬質な絶縁材料を用いて、ケースの底部の内底面に、表1に示すように形成厚さが1mm,2mm,3mmの未固化層をそれぞれ形成する。この試験では、コイルと磁性コアとを備える組合体のうち、ケースの内底面に平行に配置される部分に対応するように未固化層を形成した。詳しくは、コイルの巻回部の外周面のうち、角部を丸めた角筒状の四つの平面のうちの一平面と、磁性コアのコア片のうち、巻回部から露出されるコア片の一面とが接するように、未固化層を形成した。   In this test, three reactors were formed in which unsolidified layers having different formation thicknesses were formed. Specifically, using a hard insulating material shown in Table 1, unsolidified layers having a formation thickness of 1 mm, 2 mm, and 3 mm are formed on the inner bottom surface of the bottom portion of the case as shown in Table 1, respectively. In this test, an unsolidified layer was formed so as to correspond to a portion arranged in parallel to the inner bottom surface of the case in the combination including the coil and the magnetic core. Specifically, out of the outer peripheral surface of the winding part of the coil, one of the four planes of the rectangular tube shape with rounded corners and the core piece exposed from the winding part among the core pieces of the magnetic core An unsolidified layer was formed so as to be in contact with one surface.

未固化層の上に組合体を載置したケース(いずれも常温、20℃〜25℃程度)を恒温槽に装入して、未固化層を固化した。恒温槽の設定温度は140℃とし、所定の時間保持した。   A case in which the combination was placed on the unsolidified layer (both at room temperature and about 20 ° C. to 25 ° C.) was placed in a constant temperature bath to solidify the unsolidified layer. The set temperature of the thermostatic bath was 140 ° C. and held for a predetermined time.

所定時間経過後、固化層の縦断面をとると、いずれの試料も、コイルの巻回部とケースの内底面とで挟まれる領域に固化層が形成されており、かつ隣り合うターンと内底面とで挟まれる縦断面T字状の領域に開気孔が設けられていることが確認できた。固化層の平均厚さは、表1に示す範囲を満たように調整した。固化層の厚さは、例えば、組合体とケースの底部との間にスペーサを介在させたり、介在部材に脚片を設けたりするなどして調整すると、粘度が低いものを用いていても所望の厚さにできる。   When a vertical cross section of the solidified layer is taken after a lapse of a predetermined time, the solidified layer is formed in the region sandwiched between the coil winding portion and the inner bottom surface of the case, and the adjacent turn and inner bottom surface are taken. It was confirmed that open pores were provided in a T-shaped region sandwiched between the two. The average thickness of the solidified layer was adjusted to satisfy the range shown in Table 1. If the thickness of the solidified layer is adjusted, for example, by interposing a spacer between the assembly and the bottom of the case, or by providing a leg piece on the interposed member, the thickness of the solidified layer is desired. Can be as thick as possible.

固化層の形成後、ケース内に表1に示す軟質な絶縁材料を充填した後、表1に示す固化温度まで昇温した後、固化温度を所定時間保持し、軟質な絶縁材料を固化した。この試験では、充填時、軟質な絶縁材料を50℃〜100℃の範囲から選択した温度に保持して、粘度が十分に低い状態で充填した。この工程により、ケースと封止樹脂とを備えるリアクトルが得られた。   After forming the solidified layer, the case was filled with the soft insulating material shown in Table 1, and then the temperature was raised to the solidifying temperature shown in Table 1, and then the solidifying temperature was maintained for a predetermined time to solidify the soft insulating material. In this test, at the time of filling, the soft insulating material was kept at a temperature selected from the range of 50 ° C. to 100 ° C. and filled with a sufficiently low viscosity. By this step, a reactor including a case and a sealing resin was obtained.

得られた三つの試料のリアクトルをそれぞれ、コイルの巻回部の軸方向に平行な平面で切断した縦断面をとり、縦断面観察を行った。その結果、いずれの試料のリアクトルも、コイルの巻回部とケースの内底面との間に絶縁材料から構成される絶縁層が介在し、巻回部と内底面とがこの絶縁層によって接合されていることが確認できた。また、以下を確認した。
・ いずれの試料の絶縁層も、硬質な絶縁材料からなる硬質領域と、この硬質な絶縁材料よりも軟質な絶縁材料から構成される軟質領域とを備える。
・ いずれの試料の絶縁層も、その縦断面を上記巻回部の軸方向にみると、硬質領域と軟質領域とが交互に存在している。
・ いずれの試料の絶縁層も、軟質領域は封止樹脂の一部によって構成されている。
・ いずれの試料の絶縁層も、軟質領域は硬質な絶縁材料によって囲まれた内包領域であり、硬質領域は外郭領域を形成している。
・ いずれの試料の絶縁層も、内包領域は、隣り合うターンとケースの内底面とで挟まれる断面T字状の領域に備える。
・ いずれの試料の絶縁層も、内包領域の内包径Dは、0.1mm以上2mm以下である。
Each of the obtained reactors of the three samples was cut along a plane parallel to the axial direction of the coil winding portion, and the longitudinal section was observed. As a result, in each sample reactor, an insulating layer made of an insulating material is interposed between the coil winding portion and the inner bottom surface of the case, and the winding portion and the inner bottom surface are joined by this insulating layer. It was confirmed that In addition, the following was confirmed.
The insulating layer of any sample includes a hard region made of a hard insulating material and a soft region made of an insulating material softer than the hard insulating material.
-As for the insulating layer of any sample, when the longitudinal cross section is seen in the axial direction of the said winding part, a hard area | region and a soft area | region exist alternately.
In any sample insulating layer, the soft region is constituted by a part of the sealing resin.
In each sample insulating layer, the soft region is an inner region surrounded by a hard insulating material, and the hard region forms an outer region.
In any sample insulating layer, the inclusion region is provided in a T-shaped region sandwiched between the adjacent turn and the inner bottom surface of the case.
In any sample insulating layer, the inner diameter D of the inner region is 0.1 mm or more and 2 mm or less.

得られた三つの試料のリアクトルをそれぞれ、絶縁層の厚さ方向に直交する平面で切断した平断面をとり、平断面観察を行ったところ、いずれの試料の絶縁層も、複数の内包領域を備えており、概ねの内包領域は、ターンの周回方向に沿って形成され、かつ隣り合うターン間にそれぞれ配置される棒状であった。   Each of the three sample reactors was cut in a plane that was cut by a plane perpendicular to the thickness direction of the insulating layer, and the cross section was observed. As a result, the insulating layer of each sample had a plurality of inclusion regions. The general inclusion area was formed in a bar shape that was formed along the turn direction of the turn and was arranged between adjacent turns.

上述のようにコイルの巻回部と金属部材の載置面とを絶縁層で接合したリアクトルとして、絶縁層を、固化後の硬度が異なる複数の絶縁材料で構成すると共に、硬質領域と軟質領域とが巻回部の軸方向にみたときに交互に並ぶといった特定の構造の絶縁層を備えることで、上述のように良好な放熱性と騒音の低減とを両立できると期待される。硬質領域を備える効果(剛性の向上による衝撃の低減など)と、軟質領域を備える効果(振動吸収、応力緩和など)とをバランスよく備えることができるからである。   As described above, as a reactor in which the coil winding part and the mounting surface of the metal member are joined by an insulating layer, the insulating layer is composed of a plurality of insulating materials having different hardness after solidification, and a hard region and a soft region As described above, it is expected that both good heat dissipation and noise reduction can be achieved by providing the insulating layers having a specific structure such that and are alternately arranged when viewed in the axial direction of the winding portion. This is because the effect of providing a hard region (reduction of impact due to improvement in rigidity, etc.) and the effect of providing a soft region (vibration absorption, stress relaxation, etc.) can be provided in a well-balanced manner.

なお、140℃の恒温槽に装入することに代えて、設定温度を140℃としたホットプレートを利用した。詳しくは、組合体と未固化層とを備えるケースをホットプレート上に配置して恒温槽に装入した場合も、同様のリアクトルが作製できることを確認している。   In addition, it replaced with charging to a 140 degreeC thermostat, and utilized the hotplate which set temperature as 140 degreeC. Specifically, it has been confirmed that a similar reactor can be produced even when a case including a combined body and an unsolidified layer is placed on a hot plate and placed in a thermostatic bath.

本発明は、これらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。   The present invention is not limited to these exemplifications, but is defined by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.

本発明のリアクトルは、ハイブリッド自動車、プラグインハイブリッド自動車、電気自動車、燃料電池自動車などの車両に搭載される車載用コンバータ(代表的にはDC−DCコンバータ)や空調機のコンバータなどの種々のコンバータ、電力変換装置の構成部品に利用することができる。本発明のリアクトルの製造方法は、上述のリアクトルの製造に利用することができる。   The reactor of the present invention includes various converters such as an in-vehicle converter (typically a DC-DC converter) and an air conditioner converter mounted on a vehicle such as a hybrid vehicle, a plug-in hybrid vehicle, an electric vehicle, and a fuel cell vehicle. It can be used as a component of a power conversion device. The manufacturing method of the reactor of this invention can be utilized for manufacture of the above-mentioned reactor.

1 リアクトル 10 組合体 100 封止樹脂
2 コイル 2a,2b 巻回部 2r 連結部 2t ターン 2w 巻線
3 磁性コア 31m,32m コア片 31g ギャップ材 32e 内端面
4 ケース 40 底部 40i 内底面 41 側壁部
5 介在部材 50a,50b 分割材 51 内側介在部 52 端面介在部
52h 貫通孔
6 絶縁層 60 外郭領域 61 内包領域
600 固化層 6p 開気孔 610 未固化層
Ta 断面T字状の領域 200 加熱源
DESCRIPTION OF SYMBOLS 1 Reactor 10 Combination 100 Sealing resin 2 Coil 2a, 2b Winding part 2r Connection part 2t Turn 2w Winding 3 Magnetic core 31m, 32m Core piece 31g Gap material 32e Inner end face 4 Case 40 Bottom part 40i Inner bottom face 41 Side wall part 5 Intervening members 50a, 50b Dividing material 51 Inner interposition part 52 End face interposition part 52h Through hole 6 Insulating layer 60 Outer region 61 Inclusion region 600 Solidified layer 6p Open pore 610 Unsolidified layer Ta Cross section T-shaped region 200 Heating source

Claims (11)

巻線を螺旋状に巻回してなる巻回部を有するコイルと、
前記巻回部内に配置される部分を有する磁性コアと、
前記コイルと前記磁性コアとを含む組合体の載置面を有する金属部材と、
前記金属部材の載置面上に設けられて、前記巻回部と前記金属部材とを接合する絶縁層とを備え、
前記絶縁層は、樹脂を含み、硬度が異なる複数の絶縁材料で構成されており、硬質な絶縁材料から構成される硬質領域と、前記硬質な絶縁材料よりも軟質な絶縁材料から構成される軟質領域とが前記巻回部の軸方向にみて交互に存在するリアクトル。
A coil having a winding portion formed by spirally winding a winding;
A magnetic core having a portion disposed in the winding portion;
A metal member having a mounting surface of a combination including the coil and the magnetic core;
An insulating layer provided on the mounting surface of the metal member and joining the winding part and the metal member;
The insulating layer includes a resin and is composed of a plurality of insulating materials having different hardnesses, and includes a hard region composed of a hard insulating material and a soft region composed of an insulating material softer than the hard insulating material. Reactors in which regions exist alternately when viewed in the axial direction of the winding portion.
前記絶縁層は、前記硬質な絶縁材料及び前記軟質な絶縁材料の一方から構成され、他方の絶縁材料によって囲まれる内包領域を備える請求項1に記載のリアクトル。   The reactor according to claim 1, wherein the insulating layer includes one of the hard insulating material and the soft insulating material, and includes an inclusion region surrounded by the other insulating material. 前記内包領域は、前記巻回部を構成するターンの周回方向に沿って形成されて、隣り合うターン間に配置される棒状体を含む請求項2に記載のリアクトル。   The reactor according to claim 2, wherein the inclusion region includes a rod-like body that is formed along a turn direction of the turns constituting the winding portion and is disposed between adjacent turns. 前記絶縁層を前記巻回部の軸方向に平行な平面で切断した縦断面における前記内包領域の内包径が0.1mm以上2mm以下である請求項2又は請求項3に記載のリアクトル。   The reactor according to claim 2 or 3, wherein an inner diameter of the inner region in a longitudinal section obtained by cutting the insulating layer along a plane parallel to the axial direction of the winding portion is 0.1 mm or more and 2 mm or less. 前記内包領域は、前記巻回部を構成する隣り合うターンと前記金属部材の載置面とで挟まれる断面T字状の領域に備える請求項2〜請求項4のいずれか1項に記載のリアクトル。   The said inclusion | inner_cover area | region is equipped with the cross-section T-shaped area | region pinched | interposed by the adjacent turn which comprises the said winding part, and the mounting surface of the said metal member, The any one of Claims 2-4 Reactor. 前記金属部材は、前記組合体を収納するケースであり、
前記内包領域を構成する絶縁材料は、前記ケース内に充填されて、前記組合体の少なくとも一部を埋設する封止樹脂である請求項2〜請求項5のいずれか1項に記載のリアクトル。
The metal member is a case for storing the combination.
The reactor according to any one of claims 2 to 5, wherein the insulating material constituting the encapsulating region is a sealing resin that fills the case and embeds at least a part of the combination.
前記硬質な絶縁材料のショアD硬度は50以上であり、
前記軟質な絶縁材料のショアA硬度は80以下である請求項1〜請求項6のいずれか1項に記載のリアクトル。
The hard insulating material has a Shore D hardness of 50 or more,
The reactor according to any one of claims 1 to 6, wherein the soft insulating material has a Shore A hardness of 80 or less.
前記硬質な絶縁材料の熱伝導率が2.0W/m・K以上及び前記軟質な絶縁材料の熱伝導率が0.1W/m・K以上5.0W/m・K以下の少なくとも一方を満たす請求項1〜請求項7のいずれか1項に記載のリアクトル。   The hard insulating material has a thermal conductivity of 2.0 W / m · K or higher and the soft insulating material has a thermal conductivity of 0.1 W / m · K or higher and 5.0 W / m · K or lower. The reactor of any one of Claims 1-7. 前記絶縁層の耐電圧が1kV/mm以上である請求項1〜請求項8のいずれか1項に記載のリアクトル。   The reactor according to any one of claims 1 to 8, wherein the withstand voltage of the insulating layer is 1 kV / mm or more. 巻線を螺旋状に巻回してなる巻回部を有するコイルと前記巻回部内に少なくとも一部が配置された磁性コアとを含む組合体と、前記組合体の載置面を有する金属部材と、樹脂を含む絶縁材料とを準備する準備工程と、
前記絶縁材料を用いて、前記載置面上に未固化層を形成する形成工程と、
前記未固化層に前記組合体の巻回部を載置して、前記未固化層における前記載置面側の領域から前記巻回部側の領域に向かって順次固化されるように加熱して、前記巻回部を前記載置面に固定すると共に、開気孔を備える固化層を形成する固化工程と、
前記絶縁材料とは固化後の硬度が異なり、樹脂を含む絶縁材料を前記開気孔内に充填可能な低粘度状態にして充填した後固化し、前記巻回部と前記載置面との間に、硬度が異なる複数の絶縁材料を含む絶縁層を形成する充填工程とを備えるリアクトルの製造方法。
A combination including a coil having a winding portion formed by winding a winding in a spiral shape and a magnetic core disposed at least partially in the winding portion; and a metal member having a mounting surface of the combination. A preparatory step of preparing an insulating material including a resin;
A forming step of forming an unsolidified layer on the mounting surface using the insulating material,
The wound part of the assembly is placed on the unsolidified layer, and heated so that the unsolidified layer is sequentially solidified from the area on the mounting surface side to the area on the wound part side. A solidification step of fixing the winding portion to the mounting surface and forming a solidified layer having open pores;
The hardness after solidification is different from that of the insulating material, and after filling the insulating material containing resin in a low-viscosity state that can be filled in the open pores, the solidified, and between the winding part and the mounting surface And a filling step of forming an insulating layer including a plurality of insulating materials having different hardnesses.
前記固化工程では、前記未固化層における前記金属部材側の領域の温度が前記巻回部側の領域の温度よりも高くなるように温度差を設けて前記固化層を形成する請求項10に記載のリアクトルの製造方法。   The said solidification process WHEREIN: The said solidified layer is formed by providing a temperature difference so that the temperature of the area | region by the side of the said metal member in the said non-solidified layer may become higher than the temperature of the area | region by the side of the said winding part. Manufacturing method for the reactor.
JP2015063488A 2015-03-25 2015-03-25 Reactor and method of manufacturing reactor Pending JP2016184630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015063488A JP2016184630A (en) 2015-03-25 2015-03-25 Reactor and method of manufacturing reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015063488A JP2016184630A (en) 2015-03-25 2015-03-25 Reactor and method of manufacturing reactor

Publications (1)

Publication Number Publication Date
JP2016184630A true JP2016184630A (en) 2016-10-20

Family

ID=57243257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015063488A Pending JP2016184630A (en) 2015-03-25 2015-03-25 Reactor and method of manufacturing reactor

Country Status (1)

Country Link
JP (1) JP2016184630A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018147061A1 (en) * 2017-02-10 2018-08-16 株式会社オートネットワーク技術研究所 Reactor
JP2021015932A (en) * 2019-07-16 2021-02-12 住友ベークライト株式会社 Sealing resin composition and mold coil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018147061A1 (en) * 2017-02-10 2018-08-16 株式会社オートネットワーク技術研究所 Reactor
JP2018129457A (en) * 2017-02-10 2018-08-16 株式会社オートネットワーク技術研究所 Reactor
JP2021015932A (en) * 2019-07-16 2021-02-12 住友ベークライト株式会社 Sealing resin composition and mold coil

Similar Documents

Publication Publication Date Title
JP6418454B2 (en) Reactor
JP6127365B2 (en) Reactor, composite material, reactor core, converter, and power converter
WO2016104246A1 (en) Reactor
JP6376461B2 (en) Reactor
US20190131052A1 (en) Reactor
JP2016152368A (en) Reactor
JP6489029B2 (en) Reactor
JP2012209333A (en) Reactor and manufacturing method of the same
JP2016066686A (en) Reactor
JP2016184630A (en) Reactor and method of manufacturing reactor
JP2012119454A (en) Reactor
WO2018163869A1 (en) Coil molding and reactor
JP2016178175A (en) Reactor
JP2016096271A (en) Reactor
JP5099523B2 (en) Reactor
JP7215036B2 (en) Reactor
CN109416976B (en) Reactor and method for manufacturing reactor
JP7022342B2 (en) Reactor
JP7202544B2 (en) Reactor
US11908613B2 (en) Reactor
JP5398636B2 (en) Magnetic element
JP6809440B2 (en) Reactor
JP2017041497A (en) Reactor
JP6468466B2 (en) Reactor
JP2016111276A (en) Reactor