JP2016096271A - Reactor - Google Patents

Reactor Download PDF

Info

Publication number
JP2016096271A
JP2016096271A JP2014232041A JP2014232041A JP2016096271A JP 2016096271 A JP2016096271 A JP 2016096271A JP 2014232041 A JP2014232041 A JP 2014232041A JP 2014232041 A JP2014232041 A JP 2014232041A JP 2016096271 A JP2016096271 A JP 2016096271A
Authority
JP
Japan
Prior art keywords
coil
case
winding
reactor
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014232041A
Other languages
Japanese (ja)
Inventor
崇志 高田
Takashi Takada
崇志 高田
浩平 吉川
Kohei Yoshikawa
浩平 吉川
慎太郎 南原
Shintaro Nanbara
慎太郎 南原
哲也 中村
Tetsuya Nakamura
哲也 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd, AutoNetworks Technologies Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP2014232041A priority Critical patent/JP2016096271A/en
Publication of JP2016096271A publication Critical patent/JP2016096271A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coils Of Transformers For General Uses (AREA)
  • Transformer Cooling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reactor capable of reducing a temperature difference between a bottom part side region of a case and an opening side region in a coil.SOLUTION: A reactor comprises: a coil 2 that has a winding part 2b formed by wounding a wire 2w in spiral; a magnetic core 3 that has a part to be arranged in the wiring part; a case 4 in which an assembling body 10 including the coil and the magnetic core is housed; and a radiation member 8A that is arranged so as to cover at least one part of an opening side region of the case in the wiring part. A bottom part of the case includes a metal region to which the assembling body is mounted. The radiation member has a base part 80, and a plurality of radiation projections 82 which is projected toward an outer of the case from an outside surface of the base part, and a resin is included in the radiation projection part and an opposite region opposite to the winding part of an inner side surface of the base part.SELECTED DRAWING: Figure 1

Description

本発明は、ハイブリッド自動車などの車両に搭載される車載用DC−DCコンバータや電力変換装置の構成部品などに利用されるリアクトルに関する。特に、コイルにおけるケースの底部側領域と開口側領域との温度差を低減できるリアクトルに関する。   The present invention relates to a reactor that is used in a vehicle-mounted DC-DC converter or a component of a power converter mounted on a vehicle such as a hybrid vehicle. In particular, the present invention relates to a reactor that can reduce a temperature difference between a bottom side region and an opening side region of a case in a coil.

電圧の昇圧動作や降圧動作を行う回路の部品の一つに、リアクトルがある。特許文献1,2には、ハイブリッド自動車などの車両に載置されるコンバータに利用されるリアクトルを開示している。特許文献1は、一対の巻回部を有するコイルと、コイルが配置される環状の磁性コアと、コイルと磁性コアとの組合体を収納するケースと、一対の巻回部間に配置されてコイルの温度を測定する温度センサと、コイルと磁性コアとの間に介在すると共に温度センサを保持する部分を備えるインシュレータと、ケース内に充填される封止樹脂とを備えるリアクトルを開示している。   A reactor is one of the parts of a circuit that performs a voltage step-up operation or a voltage step-down operation. Patent Documents 1 and 2 disclose a reactor used for a converter mounted on a vehicle such as a hybrid vehicle. Patent Document 1 is arranged between a pair of winding portions, a coil having a pair of winding portions, an annular magnetic core in which the coils are disposed, a case housing a combination of the coil and the magnetic core, and a pair of winding portions. A reactor including a temperature sensor that measures the temperature of the coil, an insulator that is interposed between the coil and the magnetic core and that holds the temperature sensor, and a sealing resin that fills the case is disclosed. .

特許文献2は、ケース及び封止樹脂を省略したリアクトルを開示している。このリアクトルは、コイルの外周が樹脂部で覆われたコイル成形体を備える。このコイル成形体は、樹脂部に一体成形された放熱フィンを備える。   Patent Document 2 discloses a reactor in which a case and a sealing resin are omitted. The reactor includes a coil molded body in which the outer periphery of the coil is covered with a resin portion. The coil molded body includes heat radiating fins integrally formed with the resin portion.

特開2012−253384号公報JP 2012-253384 A 特開2011−009660号公報JP 2011-009660 A

コイルと磁性コアとがケースに収納されたリアクトルに対して、コイルにおけるケースの底部側領域と開口側領域との温度差を低減することが望まれている。   It is desired to reduce the temperature difference between the bottom side region of the case and the opening side region of the coil with respect to the reactor in which the coil and the magnetic core are housed in the case.

リアクトルに利用されるコイルは、通常、通電に伴って発熱する。この熱がコイル周辺のリアクトルの構成要素に熱損傷や熱ストレスを与え得る。このような悪影響を低減するために、コイルの発熱量が大きくなるような大電流が流され得るリアクトル、例えば車載用コンバータなどに備えられるリアクトルでは、冷却構造を備える設置対象に取り付けられて冷却される。この設置対象にケースを設置した場合、ケース内に収納されたコイルにおいて、上記設置対象に近い領域、代表的にはケースの底部側領域は上記設置対象によって冷却される。一方、このコイルにおいて、設置対象から離れた領域、代表的にはケースの開口側領域は、ケース内に熱が籠ることで設置対象による冷却が不十分になり得る。その結果、コイルにおけるケースの底部側領域と開口側領域との温度差が大きくなる。この温度差に起因して、上述の熱に起因する悪影響が生じ得る。ケース内に封止樹脂を備える場合には、封止樹脂の熱伝導率が不十分であれば熱が籠り易い。一般的な封止樹脂は必ずしも十分な熱伝導率を有するとは言えず、封止樹脂を備えるリアクトルについても更なる放熱性の向上が望まれる。金属製のケースとすれば、ケース自体は熱伝導性に優れる。しかし、コイルにおけるケースの開口側領域は、通常、ケースに接触しないため、金属製のケースを備えるだけでは、上記開口側領域からケース外に熱を効率よく放散できず、上記の温度差に起因する悪影響が生じ得る。   The coil used for the reactor usually generates heat when energized. This heat can cause thermal damage and stress to the reactor components around the coil. In order to reduce such adverse effects, a reactor that can be supplied with a large current that increases the amount of heat generated by the coil, for example, a reactor provided in an in-vehicle converter or the like, is attached to an installation target having a cooling structure and cooled. The When a case is installed on this installation target, in the coil housed in the case, the region close to the installation target, typically the bottom side region of the case is cooled by the installation target. On the other hand, in this coil, the region away from the installation target, typically the opening side region of the case, may be insufficiently cooled by the installation target due to heat generated in the case. As a result, the temperature difference between the bottom side region and the opening side region of the case in the coil increases. Due to this temperature difference, the above-mentioned adverse effects due to heat can occur. When the sealing resin is provided in the case, heat is easily generated if the thermal conductivity of the sealing resin is insufficient. A general sealing resin does not necessarily have a sufficient thermal conductivity, and a further improvement in heat dissipation is desired for a reactor including the sealing resin. If a metal case is used, the case itself has excellent thermal conductivity. However, since the opening side region of the case in the coil does not normally contact the case, it is not possible to efficiently dissipate heat from the opening side region to the outside of the case simply by providing a metal case. Adverse effects can occur.

ケースを省略すれば、上述のケース内の熱の籠りが無くなるものの、この場合にはコイル及び磁性コアが外部環境に曝される。コイル及び磁性コアに対する外部環境からの保護や機械的保護を十分に図ることが望まれる場合には、ケースを備えることが好ましい。   If the case is omitted, the heat inside the case is eliminated, but in this case, the coil and the magnetic core are exposed to the external environment. When it is desired to sufficiently protect the coil and the magnetic core from the external environment and mechanical protection, it is preferable to provide a case.

そこで、本発明の目的の一つは、コイルにおけるケースの底部側領域と開口側領域との温度差を低減できるリアクトルを提供することにある。   Then, one of the objectives of this invention is providing the reactor which can reduce the temperature difference of the bottom part side area | region and opening side area | region of a case in a coil.

本発明の一態様に係るリアクトルは、巻線を螺旋状に巻回してなる巻回部を有するコイルと、前記巻回部内に配置される部分を有する磁性コアと、前記コイルと前記磁性コアとを含む組合体を収納するケースと、前記巻回部における前記ケースの開口側領域の少なくとも一部を覆うように配置される放熱部材とを備える。前記ケースの底部は、前記組合体が載置される金属領域を含む。前記放熱部材は、基部と、前記基部の外側面から前記ケース外に向かって突設される複数の放熱用突起とを備える。前記基部の内側面のうち前記巻回部との対向領域と前記放熱用突起とは樹脂を含む。   A reactor according to an aspect of the present invention includes a coil having a winding portion formed by spirally winding a winding, a magnetic core having a portion disposed in the winding portion, the coil, and the magnetic core. And a heat radiating member disposed so as to cover at least a part of the opening side region of the case in the winding part. The bottom of the case includes a metal region on which the combination is placed. The heat dissipating member includes a base and a plurality of heat dissipating protrusions protruding from the outer surface of the base toward the outside of the case. Of the inner surface of the base portion, the region facing the winding portion and the heat dissipating protrusion include resin.

上記のリアクトルは、コイルにおけるケースの底部側領域と開口側領域との温度差を低減できる。   Said reactor can reduce the temperature difference of the bottom part side area | region and opening side area | region of a case in a coil.

実施形態1のリアクトルの概略斜視図である。It is a schematic perspective view of the reactor of Embodiment 1. 実施形態1のリアクトルを図1に示す(II)−(II)切断線で切断した縦断面図である。It is the longitudinal cross-sectional view which cut | disconnected the reactor of Embodiment 1 by the (II)-(II) cutting line shown in FIG. 実施形態1のリアクトルを図1に示す(III)−(III)切断線で切断した部分横断面図であり、放熱部材の近傍を示す。It is the partial cross-sectional view which cut | disconnected the reactor of Embodiment 1 by the (III)-(III) cutting line shown in FIG. 1, and shows the vicinity of a thermal radiation member. 実施形態1のリアクトルの分解斜視図である。It is a disassembled perspective view of the reactor of Embodiment 1. FIG. 実施形態1のリアクトルに備えるコイルと磁性コアとを含む組合体の分解斜視図である。It is a disassembled perspective view of the combined body containing the coil and magnetic core with which the reactor of Embodiment 1 is equipped. 実施形態1のリアクトルに備える放熱部材の別例(縦並びフィン)を示す概略斜視図である。It is a schematic perspective view which shows another example (vertically arranged fin) of the thermal radiation member with which the reactor of Embodiment 1 is equipped. 実施形態1のリアクトルに備える放熱部材の別例(縦並びフィン)を内側面からみた概略斜視図である。It is the schematic perspective view which looked at another example (vertically arranged fin) of the heat radiating member with which the reactor of Embodiment 1 is equipped from the inner surface. 実施形態1のリアクトルに備える放熱部材の別例(棒状フィン)を示す概略斜視図である。It is a schematic perspective view which shows the other example (bar-shaped fin) of the heat radiating member with which the reactor of Embodiment 1 is equipped. 実施形態1のリアクトルに備える放熱部材の別例(棒状フィン)を示す概略斜視図である。It is a schematic perspective view which shows the other example (bar-shaped fin) of the heat radiating member with which the reactor of Embodiment 1 is equipped. 実施形態2のリアクトルをコイルの軸方向に平行な平面で切断した縦断面図である。It is the longitudinal cross-sectional view which cut | disconnected the reactor of Embodiment 2 by the plane parallel to the axial direction of a coil. 実施形態2のリアクトルをコイルの軸方向に直交する平面で切断した部分横断面図であり、放熱部材(櫛歯有り)の近傍を示す。It is the partial cross section which cut | disconnected the reactor of Embodiment 2 by the plane orthogonal to the axial direction of a coil, and shows the vicinity of a thermal radiation member (with a comb tooth).

[本発明の実施形態の説明]
最初に本発明の実施態様を列記して説明する。
(1)本発明の一態様に係るリアクトルは、巻線を螺旋状に巻回してなる巻回部を有するコイルと、上記巻回部内に配置される部分を有する磁性コアと、上記コイルと上記磁性コアとを含む組合体を収納するケースと、上記巻回部における上記ケースの開口側領域の少なくとも一部を覆うように配置される放熱部材とを備える。上記ケースの底部は、上記組合体が載置される金属領域を含む。上記放熱部材は、基部と、上記基部の外側面から上記ケース外に向かって突設される複数の放熱用突起とを備える。上記基部の内側面のうち上記巻回部との対向領域と、上記放熱用突起とは樹脂を含む。
[Description of Embodiment of the Present Invention]
First, embodiments of the present invention will be listed and described.
(1) A reactor according to an aspect of the present invention includes a coil having a winding portion formed by winding a winding spirally, a magnetic core having a portion disposed in the winding portion, the coil, and the above A case that houses a combination including a magnetic core, and a heat radiating member that is disposed so as to cover at least a part of the opening side region of the case in the winding part. The bottom of the case includes a metal region on which the combination is placed. The heat dissipating member includes a base and a plurality of heat dissipating protrusions protruding from the outer surface of the base toward the outside of the case. Of the inner side surface of the base portion, a region facing the winding portion and the heat dissipation protrusion include a resin.

上記のリアクトルでは、ケースの底部におけるコイルの巻回部の載置領域が一般に熱伝導性に優れる材料である金属で構成されており、このケースにコイルが収納されている。そのため、ケースが取り付けられる設置対象が冷却構造などを備えて冷却可能な構成である場合に、コイルの熱を、上記載置領域(金属領域)を介して設置対象に伝えられる。その結果、コイルの巻回部におけるケースの底部側領域の温度を低くできる。かつ、上記のリアクトルでは、コイルの巻回部におけるケースの開口側領域に放熱部材が配置されている。特に、この放熱部材に備える複数の放熱用突起がケース外に向かって突出しており、ケース外の外部環境との接触面積を十分に有する。そのため、コイルの熱を、これら放熱用突起を介して外部環境に効率よく放散できる。その結果、巻回部におけるケースの開口側領域の温度を低くできる。このようにして上記のリアクトルは、コイルにおけるケースの底部側領域と開口側領域との温度差を緩和できる。換言すれば、上記のリアクトルは、通電に伴ってコイルが高温になり得る場合でも、設置対象と外部環境との双方にコイルの熱を放散できて、コイルにおけるケースの底部側から開口側に亘って一様な低い温度にし易い。従って、上記のリアクトルは、コイルの温度上昇に起因する特性への悪影響やコイル周辺のリアクトルの構成要素の熱損傷、熱ストレスなどを抑制できる。   In the reactor described above, the mounting region of the coil winding portion at the bottom of the case is generally made of metal, which is a material having excellent thermal conductivity, and the coil is housed in this case. Therefore, when the installation target to which the case is attached has a cooling structure or the like and can be cooled, the heat of the coil is transmitted to the installation target through the above-described installation region (metal region). As a result, the temperature of the bottom side region of the case at the coil winding portion can be lowered. And in said reactor, the heat radiating member is arrange | positioned in the opening side area | region of the case in the winding part of a coil. In particular, a plurality of heat-dissipating protrusions provided on the heat-dissipating member protrude toward the outside of the case, and have a sufficient contact area with the external environment outside the case. Therefore, the heat of the coil can be efficiently dissipated to the external environment through these heat radiation projections. As a result, the temperature of the opening side region of the case in the winding part can be lowered. Thus, said reactor can relieve | moderate the temperature difference of the bottom part side area | region and opening side area | region of a case in a coil. In other words, the reactor described above can dissipate the heat of the coil to both the installation target and the external environment even when the coil can become hot with energization, and extends from the bottom side of the case to the opening side of the coil. Easy to achieve a uniform low temperature. Therefore, the reactor described above can suppress adverse effects on characteristics due to the temperature rise of the coil, thermal damage of the components of the reactor around the coil, thermal stress, and the like.

また、上記のリアクトルでは、放熱部材においてコイルの巻回部に近接する又は接触し得る箇所、具体的には内側面における巻回部との対向領域が、一般に電気絶縁材である樹脂を含むため、巻回部と放熱部材との間の電気絶縁性にも優れる。かつ、この放熱部材においてケースの側壁部の内周面や開口縁などに近接する箇所、具体的には放熱用突起が、一般に電気絶縁材である樹脂を含むため、ケースが金属製である場合でも、ケースと放熱部材との間の電気絶縁性に優れる。即ち、上記のリアクトルは、コイルと、ケースと、放熱部材との三者の間の電気絶縁性にも優れる。   Further, in the above-described reactor, the portion of the heat dissipation member that is close to or can be in contact with the coil winding portion, specifically, the region facing the winding portion on the inner surface generally contains a resin that is an electrical insulating material. Moreover, it is excellent also in the electrical insulation between a winding part and a heat radiating member. In addition, the case where the case is made of metal because the heat dissipation member includes a resin, which is generally an electrical insulating material, in the vicinity of the inner peripheral surface or opening edge of the side wall portion of the case, specifically, the heat dissipation protrusion. However, it is excellent in electrical insulation between the case and the heat dissipation member. That is, the reactor described above is also excellent in electrical insulation between the coil, the case, and the heat dissipation member.

その他、上記のリアクトルは、コイル及び磁性コアがケースに収納されており、コイル及び磁性コアに対して、外部環境からの保護、機械的保護を図ることができる。   In addition, the above-described reactor includes a coil and a magnetic core housed in a case, and can protect the coil and the magnetic core from an external environment and mechanical protection.

(2) 上記のリアクトルの一例として、上記ケース内に充填され、上記巻回部と上記放熱部材とを固定する部分を有する封止樹脂を備える形態が挙げられる。   (2) As an example of the reactor described above, a mode is provided that includes a sealing resin that is filled in the case and includes a portion that fixes the winding portion and the heat dissipation member.

上記形態は、封止樹脂を備えるものの、この封止樹脂の一部によってコイルの巻回部と放熱部材とが強固に固定されて巻回部の熱を放熱部材により効率よく伝達でき、放熱性に優れる。巻回部と放熱部材との間に隙間なく封止樹脂が充填された場合には、上記隙間がある場合、即ち熱伝導性に劣る空気が介在する場合に比較して、熱伝導性により優れる。これらの点から、上記形態は、コイルにおけるケースの底部側領域と開口側領域との温度差をより低減できる。   Although the said form is provided with sealing resin, the winding part of a coil and a heat radiating member are firmly fixed by a part of this sealing resin, and the heat of a winding part can be efficiently transmitted with a heat radiating member, and heat dissipation Excellent. When the sealing resin is filled with no gap between the winding part and the heat radiating member, the thermal conductivity is superior to the case where there is the gap, that is, the case where air inferior in thermal conductivity is present. . From these points, the said form can further reduce the temperature difference of the bottom part side area | region and opening side area | region of a case in a coil.

(3) 上記のリアクトルの一例として、上記放熱部材が上記基部の内側面のうち上記巻回部との対向領域から突設されて、上記巻回部のターン間に介在される複数の介在突起を備える形態が挙げられる。   (3) As an example of the reactor, a plurality of interposing protrusions, wherein the heat radiating member protrudes from a region facing the winding portion on the inner side surface of the base portion, and is interposed between the turns of the winding portion. The form provided with is mentioned.

上記形態は、ターン間に介在される介在突起によって、コイルの巻回部の熱を放熱部材自体が実質的に直接受け取れる。介在突起が放熱経路として機能するため、上記形態は巻回部からケース外にコイルの熱をより効率よく放散でき、放熱性に更に優れる。この点から、上記形態は、コイルにおけるケースの底部側領域と開口側領域との温度差をより低減できる。更に、これらの介在突起は、放熱部材における巻回部との対向領域から延設されており樹脂を含むため、ターン間の電気絶縁材としても機能できる上に、ターン間に介在することで巻回部の軸方向の伸縮や径方向の変形などを防止できる。即ち、これらの介在突起は、巻回部の形状維持部材や寸法維持部材などとしても機能できる。巻回部の形状などの安定によって、特性の安定性なども期待できる。   In the above configuration, the heat dissipation member itself can substantially directly receive the heat of the winding portion of the coil by the interposition protrusion interposed between the turns. Since the interposition protrusion functions as a heat dissipation path, the above configuration can dissipate the heat of the coil from the winding part to the outside of the case more efficiently, and is further excellent in heat dissipation. From this point, the said form can further reduce the temperature difference of the bottom part side area | region and opening side area | region of a case in a coil. Furthermore, since these interposing protrusions are extended from a region facing the winding portion of the heat radiating member and contain a resin, they can also function as an electrical insulating material between the turns, and can be wound by interposing between the turns. It is possible to prevent expansion and contraction in the axial direction and deformation in the radial direction of the turning portion. That is, these interposition protrusions can also function as a shape maintaining member or a dimension maintaining member of the winding part. Due to the stability of the shape of the winding part, the stability of characteristics can be expected.

(4) 上記のリアクトルの一例として、上記コイルの温度を測定する温度センサを備え、上記コイルは互いの軸が平行するように並列に配置される一対の上記巻回部を有し、上記放熱部材は上記温度センサを上記一対の巻回部間に位置決めするセンサ配置部を備える形態が挙げられる。   (4) As an example of the reactor, a temperature sensor that measures the temperature of the coil is provided, the coil has a pair of winding portions that are arranged in parallel so that their axes are parallel, and the heat dissipation A form with which the member is provided with the sensor arrangement | positioning part which positions the said temperature sensor between said pair of winding parts is mentioned.

上記形態は、温度センサによってコイルの温度を測定できるため、測定結果に基づいて、コイルへの通電状態の制御などを適切に行える。特に上記形態は、放熱部材の一部を温度センサの位置決めに利用するため、温度センサが所定の位置に安定して配置されて、コイルの温度をより適切に測定できる。更に、上記形態は、温度センサの位置決め部材が別途不要であり、部品点数が少ない上に、放熱部材の配置と温度センサの位置決めとを同時に行えて組立工程数が少なく、製造性にも優れる。   Since the said form can measure the temperature of a coil with a temperature sensor, based on a measurement result, the control of the electricity supply state to a coil etc. can be performed appropriately. In particular, the above embodiment uses a part of the heat radiating member for positioning of the temperature sensor, so that the temperature sensor can be stably arranged at a predetermined position and the temperature of the coil can be measured more appropriately. Furthermore, the above-described form does not require a temperature sensor positioning member, and the number of parts is small, and the arrangement of the heat dissipating member and the temperature sensor positioning can be performed simultaneously, so that the number of assembly steps is small and the manufacturability is excellent.

(5) 上記のリアクトルの一例として、上記放熱部材は熱伝導率が1W/m・K以上である高熱伝導性樹脂の一体成形物である形態が挙げられる。   (5) As an example of the above reactor, the heat radiating member may be an integrally molded product of a high thermal conductive resin having a thermal conductivity of 1 W / m · K or more.

上記形態は、放熱部材が基部と放熱用突起とを備える一体成形物、又は基部と放熱用突起と介在突起とを備える一体成形物であり、一様な材料で構成されているため、放熱部材内での熱伝導を一様に行える。この点から、上記形態は、放熱部材が異種の材質から構成される組物である場合と比較して、放熱部材を介して巻回部の熱をケース外に安定して放散できると考えられる。また、放熱部材が一体成形物であるため、部品点数及び組立工程数が少なく、上記形態は製造性にも優れる。   The above-mentioned form is an integrally molded product in which the heat radiating member has a base and a heat radiating projection, or an integral molded product having a base, a heat radiating projection and an interposing projection, and is made of a uniform material. The heat conduction inside can be performed uniformly. From this point, it is considered that the above embodiment can stably dissipate the heat of the winding part outside the case through the heat dissipation member, as compared with the case where the heat dissipation member is a set made of different materials. . Moreover, since the heat radiating member is an integrally molded product, the number of parts and the number of assembling steps are small, and the above form is excellent in manufacturability.

[本発明の実施形態の詳細]
以下に図面を参照して、本発明の実施形態に係るリアクトルの具体例を説明する。図中の同一符号は同一名称物を示す。
[Details of the embodiment of the present invention]
A specific example of a reactor according to an embodiment of the present invention will be described below with reference to the drawings. The same reference numerals in the figure indicate the same names.

[実施形態1]
・全体構成
図1〜図9を参照して、実施形態1のリアクトル1Aを説明する。実施形態1のリアクトル1Aは、巻線2wを螺旋状に巻回してなる一対の巻回部2a,2bを有するコイル2と、巻回部2a,2b内に配置される部分を有する磁性コア3と、コイル2と磁性コア3とを含む組合体10を収納するケース4と、ケース4内に充填される封止樹脂100とを備える。この例のリアクトル1Aは、更にコイル2の温度を測定する温度センサ70(図3)を備える。リアクトル1Aは、ケース4の底面4d(図2)がコンバータケースなどの設置対象1000(図2)の表面に接するように取り付けられて使用される。設置対象1000は、例えば、冷却構造(図示せず)を備えており、ケース4の底板部40(図2)を介して、ケース4内に収納されるコイル2などを冷却する。以下の説明では、図1,図2に示す状態を設置状態とし、ケース4の底板部40の底面4d側を下側(設置側)、その反対側のケース4の開口側を上側と呼ぶことがある。図1に示す設置状態は例示である。図2は、リアクトル1Aを、コイル2の巻回部2aの軸方向に平行な平面で切断した縦断面図である。図3は、リアクトル1Aを巻回部2a,2bの軸方向に直交する平面で切断した横断面図であり、温度センサ70の近傍を拡大して示す。
[Embodiment 1]
-Overall structure The reactor 1A of Embodiment 1 is demonstrated with reference to FIGS. A reactor 1A of Embodiment 1 includes a coil 2 having a pair of winding portions 2a and 2b formed by spirally winding a winding 2w, and a magnetic core 3 having a portion disposed in the winding portions 2a and 2b. And a case 4 that houses the combination 10 including the coil 2 and the magnetic core 3, and a sealing resin 100 that fills the case 4. The reactor 1 </ b> A in this example further includes a temperature sensor 70 (FIG. 3) that measures the temperature of the coil 2. Reactor 1A is used by being attached so that bottom surface 4d (FIG. 2) of case 4 is in contact with the surface of installation object 1000 (FIG. 2) such as a converter case. The installation object 1000 includes, for example, a cooling structure (not shown), and cools the coil 2 and the like housed in the case 4 via the bottom plate portion 40 (FIG. 2) of the case 4. In the following description, the state shown in FIG. 1 and FIG. 2 is an installation state, the bottom surface 4d side of the bottom plate portion 40 of the case 4 is referred to as the lower side (installation side), and the opening side of the opposite case 4 is referred to as the upper side. There is. The installation state shown in FIG. 1 is an example. FIG. 2 is a longitudinal sectional view of the reactor 1 </ b> A cut along a plane parallel to the axial direction of the winding portion 2 a of the coil 2. FIG. 3 is a cross-sectional view of the reactor 1A cut along a plane orthogonal to the axial direction of the winding portions 2a and 2b, and shows the vicinity of the temperature sensor 70 in an enlarged manner.

実施形態1のリアクトル1Aは、ケース4内に収納されるコイル2の巻回部2a,2bのうち、ケース4の開口側領域(上側領域)の少なくとも一部を覆うように配置される放熱部材8Aを備え、この放熱部材8Aが複数の放熱用突起82を備える点、放熱部材8Aが樹脂を含む点、ケース4の底部(底板部40)に金属を含む点をそれぞれ特徴の一つとする。以下、各構成要素を順に説明する。   Reactor 1A of Embodiment 1 is a heat dissipating member arranged to cover at least a part of the opening side region (upper region) of case 4 among winding portions 2a and 2b of coil 2 housed in case 4. 8A, the heat radiating member 8A includes a plurality of heat radiating protrusions 82, the heat radiating member 8A includes a resin, and the case 4 includes a metal at the bottom (bottom plate portion 40). Hereinafter, each component will be described in order.

・・コイル
コイル2は、図5に示すように、1本の連続する巻線2wを螺旋状に巻回して形成された一対の筒状の巻回部2a,2bと、巻線2wの一部から形成されて両巻回部2a,2bを接続する連結部2rとを有する。巻回部2a,2bは、互いの軸が平行するように並列(横並び)に配置されている。この例の巻線2wは、平角線の導体(銅など)と、導体の外周に絶縁被覆(ポリアミドイミドなど)とを有する被覆平角線(いわゆるエナメル線)であり、巻回部2a,2bはエッジワイズコイルである。
.. Coil As shown in FIG. 5, the coil 2 includes a pair of cylindrical winding portions 2a and 2b formed by spirally winding a single continuous winding 2w, and one coil 2w. A connecting portion 2r that is formed from a portion and connects both winding portions 2a and 2b. The winding parts 2a, 2b are arranged in parallel (side by side) so that their axes are parallel to each other. The winding 2w in this example is a covered rectangular wire (so-called enameled wire) having a flat wire conductor (copper or the like) and an insulating coating (polyamideimide or the like) on the outer periphery of the conductor, and the winding portions 2a and 2b are It is an edgewise coil.

この例の巻回部2a,2bは、角部を丸めた四角筒状であり、巻回部2a,2bの端面形状は、角R部20を有する矩形枠状である。並列された巻回部2a,2b間には、図3に示すように対向配置された角R部20,20と、巻回部2a,2bの外周面(ケース4の開口側面である上面20u又は底部側面である下面)を並列方向に繋ぐ仮想面とによって横断面が台形状の空間が形成される。この例では、下向きの台形状の空間を温度センサ70の収納空間とする。上記台形状の空間は、コイル2が最も高温になり得る領域であり、コイル2の温度測定に適する箇所の一つといえる。またこの下向きの台形状の空間は、放熱部材8Aの配置前において、ケース4の開口側に向かって開口した空間、即ち上向きに開口した空間である。そのため、温度センサ70をコイル2(巻回部2a,2b)の上方から容易に配置できる。更に上記台形状の空間は、コイル2のデッドスペースであり、温度センサ70の配置箇所とすることで、デッドスペースを有効利用できてリアクトル1Aを小型にできる。   The winding portions 2a and 2b in this example are rectangular tube shapes with rounded corners, and the end surface shape of the winding portions 2a and 2b is a rectangular frame shape having corner R portions 20. Between the winding parts 2a and 2b arranged in parallel, as shown in FIG. 3, the corner R parts 20 and 20 arranged to face each other, and the outer peripheral surface of the winding parts 2a and 2b (the upper surface 20u which is the opening side surface of the case 4). Alternatively, a space having a trapezoidal cross section is formed by a virtual surface that connects the bottom surface (the bottom side surface) in the parallel direction. In this example, a downward trapezoidal space is used as a storage space for the temperature sensor 70. The trapezoidal space is an area where the coil 2 can be at the highest temperature, and can be said to be one of the locations suitable for measuring the temperature of the coil 2. The downward trapezoidal space is a space opened toward the opening side of the case 4 before the heat radiating member 8A is arranged, that is, a space opened upward. Therefore, the temperature sensor 70 can be easily disposed from above the coil 2 (winding portions 2a and 2b). Furthermore, the trapezoidal space is a dead space of the coil 2, and the dead space can be effectively used and the reactor 1 </ b> A can be downsized by using the location where the temperature sensor 70 is disposed.

巻線2wの両端部はいずれも、巻回部2a,2bから適宜な方向に引き出されて端子金具(図示せず)などが取り付けられて、電源などの外部装置(図示せず)に電気的に接続される。   Both ends of the winding 2w are drawn out from the winding portions 2a and 2b in appropriate directions and attached with terminal fittings (not shown) or the like, and are electrically connected to an external device (not shown) such as a power source. Connected to.

・・磁性コア
磁性コア3は、図2に示すように、コイル2の巻回部2a,2b内に配置される部分と、コイル2が実質的に配置されず、巻回部2a,2b外に突出するように配置される部分とを有する。
.. Magnetic core As shown in FIG. 2, the magnetic core 3 includes a portion disposed in the winding portions 2 a and 2 b of the coil 2, and a portion where the coil 2 is not substantially disposed, and the outside of the winding portions 2 a and 2 b. And a portion arranged to protrude.

この例の磁性コア3は、図2,図5に示すように、複数の柱状のコア片31m,32mと、コア片31m,31m間、コア片31m,32m間に介在される複数のギャップ材31gとを備える。図5の上方から見てU字状であるコア片32m,32mが、そのU字の開口部が向かい合うように配置される。これらコア片32m,32m間に、コア片31mとギャップ材31gとの一対の積層物が横並び(並列)に配置される。この配置によって、磁性コア3は環状に組み付けられ、コイル2を励磁したときに閉磁路を形成する。磁性コア3におけるコア片31m及びギャップ材31gとU字状のコア片32mの一部(後述の突出部分)は、コイル2の巻回部2a,2b内に配置される部分を構成し(図2)、U字状のコア片32mの残部(後述のブロック)は、コイル2(巻回部2a,2b)が配置されず、コイル2から突出した部分を構成する(図2)。   2 and 5, the magnetic core 3 in this example includes a plurality of columnar core pieces 31m and 32m, a plurality of gap members interposed between the core pieces 31m and 31m, and between the core pieces 31m and 32m. 31g. Core pieces 32m, 32m that are U-shaped when viewed from above in FIG. 5 are arranged so that the U-shaped openings face each other. Between these core pieces 32m and 32m, a pair of laminates of the core piece 31m and the gap material 31g are arranged side by side (in parallel). With this arrangement, the magnetic core 3 is assembled in an annular shape, and forms a closed magnetic path when the coil 2 is excited. The core piece 31m and the gap member 31g in the magnetic core 3 and a part of the U-shaped core piece 32m (protruding portions described later) constitute portions disposed in the winding portions 2a and 2b of the coil 2 (see FIG. 2) The remaining portion (a block to be described later) of the U-shaped core piece 32m constitutes a portion protruding from the coil 2 without the coil 2 (winding portions 2a and 2b) (FIG. 2).

コア片31m,32mは、主として軟磁性材料から構成される。コア片31m,32mは、鉄や鉄合金(Fe−Si合金、Fe−Ni合金など)といった軟磁性金属粉末や更に絶縁被覆を備える被覆粉末などを圧縮成形した圧粉成形体、軟磁性粉末と樹脂とを含む複合材料などが利用できる。この例では、圧粉成形体としている。ギャップ材31gは、代表的にはコア片31m,32mよりも比透磁率が小さい材料(例えば、アルミナなどの非磁性材料)から構成される。   The core pieces 31m and 32m are mainly composed of a soft magnetic material. The core pieces 31m and 32m are formed by compacting a soft magnetic metal powder such as iron or an iron alloy (Fe-Si alloy, Fe-Ni alloy, etc.) or a coating powder further provided with an insulation coating, a soft magnetic powder, A composite material containing resin can be used. In this example, the green compact is used. The gap material 31g is typically made of a material having a lower relative permeability than the core pieces 31m and 32m (for example, a nonmagnetic material such as alumina).

この例のコア片31mは、角部を丸めた直方体状であり、ギャップ材31gは、角部を丸めた矩形状の平板である。この例のコア片32mは、図5に示すように角部を丸めた直方体状のブロックと、このブロックから突出する一対の突出部分とを有する。突出部分は、ブロックにおけるコイル2(巻回部2a,2b)の端面に対向する内端面32eからコイル2側に向かって突出する。各突出部分は、コア片31mと同様に角部を丸めた直方体状である。コア片32mは更に、上記一対の突出部分とは反対方向に、即ちコイル2から離れる側に突出する部分も備える(図5の左側のコア片32mを特に参照)。詳しくはブロックにおける巻回部2a,2bの並列方向の中央部分がこの中央部分を挟む両側の部分よりも突出している。このような突出箇所があることで、コア片32mの中央部分の厚み(ブロック+中央の突出箇所の厚み)と、両側の部分の厚み(ブロック+上記巻回部2a,2b内に挿入される突出部分)とが同等程度となっており、コア片32mは成形性に優れる。   The core piece 31m in this example has a rectangular parallelepiped shape with rounded corners, and the gap member 31g is a rectangular flat plate with rounded corners. The core piece 32m of this example has a rectangular parallelepiped block with rounded corners as shown in FIG. 5, and a pair of protruding portions protruding from the block. The protruding portion protrudes toward the coil 2 side from the inner end surface 32e facing the end surface of the coil 2 (winding portions 2a, 2b) in the block. Each protruding portion has a rectangular parallelepiped shape with rounded corners, like the core piece 31m. The core piece 32m further includes a portion protruding in a direction opposite to the pair of protruding portions, that is, a side away from the coil 2 (refer to the left core piece 32m in FIG. 5 in particular). Specifically, the central portion in the parallel direction of the winding portions 2a and 2b in the block protrudes from the portions on both sides sandwiching the central portion. By having such a protruding portion, the thickness of the central portion of the core piece 32m (block + the thickness of the protruding portion at the center) and the thickness of the portions on both sides (block + the winding portions 2a and 2b are inserted). The projecting part) is comparable, and the core piece 32m is excellent in moldability.

その他、U字状のコア片32mにおける上記ブロックは、図2に示すようにケース4の底板部40の内底面4iに対向する面(下面)が、コイル2と磁性コア3とを組み付けたときにコイル2におけるケース4の内底面4iに対向する面(下面)と面一になるように形成されている。即ち、組合体10におけるケース4の内底面4iとの対向面(下面)は、コイル2の一面(下面)と、磁性コア3のコア片32mの一面(主としてブロックの下面)とによって構成される。磁性コア3がこのような特定の形状であることで、リアクトル1Aでは、コイル2及び磁性コア3の双方が、ケース4の底板部40に安定して配置されて支持される上に、底板部40を放熱経路にできる。   In addition, the above-described block of the U-shaped core piece 32m has a surface (lower surface) facing the inner bottom surface 4i of the bottom plate portion 40 of the case 4 when the coil 2 and the magnetic core 3 are assembled as shown in FIG. The coil 2 is formed so as to be flush with the surface (lower surface) facing the inner bottom surface 4 i of the case 4. That is, the surface (lower surface) facing the inner bottom surface 4i of the case 4 in the assembly 10 is constituted by one surface (lower surface) of the coil 2 and one surface (mainly the lower surface of the block) of the core piece 32m of the magnetic core 3. . Since the magnetic core 3 has such a specific shape, in the reactor 1A, both the coil 2 and the magnetic core 3 are stably disposed and supported by the bottom plate portion 40 of the case 4, and the bottom plate portion 40 can be a heat dissipation path.

コア片31m,32m及びギャップ材31gの個数、形状、大きさ、組成などは適宜変更できる。例えば、コア片32mを直方体状とし、上述の突出部分をコア片31mとすることができる。ギャップ材31gに代えてエアギャップとしたり、ギャップ材31gを省略したりすることもできる。   The number, shape, size, composition, and the like of the core pieces 31m, 32m and the gap material 31g can be appropriately changed. For example, the core piece 32m can have a rectangular parallelepiped shape, and the above-described protruding portion can be the core piece 31m. An air gap may be used instead of the gap material 31g, or the gap material 31g may be omitted.

・・介在部材
この例のリアクトル1A(組合体10)は、図5に示すようにコイル2と磁性コア3との間に介在される介在部材5を備える。介在部材5は、コイル2と磁性コア3との間の絶縁性を高める機能を有しており、この機能のために絶縁材料から構成される。
.. Intervening Member The reactor 1A (combination body 10) of this example includes an interposing member 5 interposed between the coil 2 and the magnetic core 3 as shown in FIG. The interposition member 5 has a function of enhancing the insulation between the coil 2 and the magnetic core 3 and is made of an insulating material for this function.

この例の介在部材5は、コイル2の巻回部2a,2bの軸方向に分割される一対の分割材50a,50bを組み合わせて形成される。各分割材50a,50bは、磁性コア3のうち、巻回部2a,2b内に収納される部分との間に介在される内側介在部51と、コイル2の端面とコア片32mの内端面32eとの間に介在される端面介在部52とを備える。内側介在部51は、巻回部2a,2bの角R部20に沿って配置される複数の湾曲した板片から構成される。各分割材50a,50bの内側介在部51,51の端部はそれぞれ、係合するように形成されている。端面介在部52は、コア片32mに備える一対の突出部分がそれぞれ挿通される二つの貫通孔52h,52hを有する枠状の平板部分である。介在部材5の形状は例示であり、適宜変更できる。例えば、両分割材50a,50bにおける内側介在部51の長さを等しくしたり(この例では異なっている)、内側介在部51の端部に係合箇所を有していなかったり、内側介在部51と端面介在部52とが一体ではなく、それぞれが独立した別部材である形態などとすることができる。   The interposition member 5 in this example is formed by combining a pair of divided members 50a and 50b divided in the axial direction of the winding portions 2a and 2b of the coil 2. Each of the divided members 50a and 50b includes an inner interposition part 51 interposed between the magnetic core 3 and the part accommodated in the winding parts 2a and 2b, the end face of the coil 2, and the inner end face of the core piece 32m. 32e is provided with an end face interposition part 52 interposed therebetween. The inner interposition part 51 is comprised from the some curved board piece arrange | positioned along the corner | angular R part 20 of winding part 2a, 2b. The end portions of the inner interposed portions 51, 51 of the divided members 50a, 50b are formed so as to engage with each other. The end surface interposition part 52 is a frame-shaped flat plate part having two through holes 52h and 52h through which a pair of projecting parts provided in the core piece 32m are inserted. The shape of the interposition member 5 is an example, and can be changed as appropriate. For example, the lengths of the inner intervening portions 51 in both divided members 50a and 50b are equal (different in this example), the end portions of the inner intervening portions 51 do not have an engaging portion, 51 and the end surface interposition part 52 are not integrated, but can be configured such that each is an independent member.

介在部材5の構成材料は、例えば、ポリフェニレンサルファイド(PPS)樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、液晶ポリマー(LCP)、ナイロン6やナイロン66などのポリアミド(PA)樹脂、ポリブチレンテレフタレート(PBT)樹脂などの熱可塑性樹脂などといった樹脂が挙げられる。介在部材5は、上記の樹脂を射出成形するなど、公知の成形法によって容易に作製できる。介在部材5には、公知の形状、組成の部材(ボビン、インシュレータと呼ばれることもある)を利用できる。   The constituent material of the interposition member 5 is, for example, polyphenylene sulfide (PPS) resin, polytetrafluoroethylene (PTFE) resin, liquid crystal polymer (LCP), polyamide (PA) resin such as nylon 6 or nylon 66, polybutylene terephthalate (PBT). ) Resins such as thermoplastic resins such as resins. The interposition member 5 can be easily produced by a known molding method such as injection molding of the above resin. As the interposition member 5, a member having a known shape and composition (sometimes called a bobbin or an insulator) can be used.

・・ケース
ケース4は、図2に示すように、組合体10が載置される載置領域を有する平板状の底板部40と、組合体10の周囲を囲むように底板部40から立設される矩形枠状の側壁部41とを有し、底板部40とは反対側(上側)が開口した矩形状の箱である。
.. Case As shown in FIG. 2, the case 4 is erected from the bottom plate portion 40 so as to surround the periphery of the combination body 10 and a flat bottom plate portion 40 having a placement area on which the combination body 10 is placed. It is a rectangular box that has a rectangular frame-shaped side wall portion 41 that is open and opens on the side opposite to the bottom plate portion 40 (upper side).

この例のケース4は、底板部40と側壁部41とが一体に成形された金属製の箱である。この底板部40は組合体10の載置領域のみが金属領域であるだけでなく、底板部40全体が金属によって構成されている。金属は一般に樹脂に比較して熱伝導率が高いため、底板部40全体を放熱経路にできる。その結果、リアクトル1Aは、コイル2におけるケース4の底部側領域から底板部40を介して設置対象1000にコイル2の熱を効率よく伝えられ、少なくとも上述のコイル2の底部側領域の温度を低下できる。その他、この例のケース4は、その内周の四隅に、組合体10をケース4に固定するステーなどの固定部材(図示せず)の台座(図4)を備える。台座を省略すると、ケース4の内周形状が単純になる。   The case 4 in this example is a metal box in which a bottom plate portion 40 and a side wall portion 41 are integrally formed. In the bottom plate portion 40, not only the mounting region of the assembly 10 is a metal region, but the entire bottom plate portion 40 is made of metal. Since metal generally has higher thermal conductivity than resin, the entire bottom plate portion 40 can be used as a heat dissipation path. As a result, the reactor 1 </ b> A can efficiently transfer the heat of the coil 2 from the bottom side region of the case 4 in the coil 2 to the installation target 1000 via the bottom plate part 40, and at least lower the temperature of the bottom side region of the coil 2 described above. it can. In addition, the case 4 of this example includes pedestals (FIG. 4) of fixing members (not shown) such as stays that fix the combined body 10 to the case 4 at the four corners of the inner periphery. If the pedestal is omitted, the inner peripheral shape of the case 4 is simplified.

ケース4の構成材料は、例えば、アルミニウムやその合金、マグネシウムやその合金、銅やその合金、銀やその合金、鉄やオーステナイト系ステンレス鋼などが挙げられる。アルミニウムやマグネシウム、これらの合金で形成した場合、ケース4を軽量にできる。特にアルミニウムやアルミニウム合金は熱伝導率が高く、放熱性に優れるケース4になって好ましい。   Examples of the constituent material of the case 4 include aluminum and its alloys, magnesium and its alloys, copper and its alloys, silver and its alloys, iron and austenitic stainless steel. When formed of aluminum, magnesium, or an alloy thereof, the case 4 can be lightened. In particular, aluminum or an aluminum alloy is preferable because it has a high thermal conductivity and is excellent in heat dissipation.

・・樹脂層
この例のリアクトル1Aは、更に図2,図4に示すように、組合体10におけるケース4の内底面4iとの対向面(下面)と、ケース4の内底面4iとの間に介在される樹脂層42を備える。樹脂層42の機能の一つは、コイル2の巻回部2a,2bとケース4の底板部40との間の絶縁性を高めることにある。詳しくは、樹脂層42は、コイル2におけるケース4の底部側領域(主として下面)とケース4におけるコイル2の載置領域である金属領域との間の絶縁性を高めること、即ち電気絶縁層としての機能がある。樹脂層42の機能の別の一つは、樹脂自体の粘着性を利用して、組合体10を底板部40に強固に固定すること、即ち接合層としての機能がある。この例の組合体10の下面及びケース4の内底面4iはいずれも実質的に平面で構成されており、樹脂層42を平面的に形成することで、樹脂層42を介して組合体10とケース4とが面接触できる。そのため、コイル2の熱を、樹脂層42を介して底板部40に伝達し易い上に、組合体10は底板部40に安定して支持され、かつ樹脂層42によって強固に固定される。
.. Resin layer As shown in FIGS. 2 and 4, the reactor 1 </ b> A in this example is a space between the facing surface (lower surface) of the assembly 4 and the inner bottom surface 4 i of the case 4 and the inner bottom surface 4 i of the case 4. A resin layer 42 interposed between the two is provided. One of the functions of the resin layer 42 is to improve the insulation between the winding portions 2 a and 2 b of the coil 2 and the bottom plate portion 40 of the case 4. Specifically, the resin layer 42 increases the insulation between the bottom side region (mainly the lower surface) of the case 4 in the coil 2 and the metal region that is the mounting region of the coil 2 in the case 4, that is, as an electrical insulating layer. There is a function. Another function of the resin layer 42 is to firmly fix the combined body 10 to the bottom plate portion 40 using the adhesiveness of the resin itself, that is, a function as a bonding layer. The lower surface of the combination 10 and the inner bottom surface 4i of the case 4 are both substantially planar, and the resin layer 42 is formed in a plane so that the combination 10 The case 4 can be in surface contact. Therefore, the heat of the coil 2 is easily transmitted to the bottom plate portion 40 through the resin layer 42, and the combined body 10 is stably supported by the bottom plate portion 40 and is firmly fixed by the resin layer 42.

樹脂層42の構成材料は、リアクトル1Aの使用時の最高到達温度に対して軟化しない程度の耐熱性を有する樹脂、特に接着剤を含むものが好ましく、更に電気絶縁性に優れる樹脂が好ましい。具体的には、エポキシ樹脂、シリコーン樹脂、不飽和ポリエステルなどの熱硬化性樹脂や、PPS樹脂、LCPなどの熱可塑性樹脂が挙げられる。樹脂層42の構成材料は、放熱性を高める観点から、アルミナやシリカなどの熱伝導率が高いフィラー(放熱部材の項参照)を含有することができる。樹脂層42の熱伝導性を考慮すると、上記構成材料の熱伝導率は、0.1W/m・K以上、更に1W/m・K以上、特に2W/m・K以上と高いことが好ましい。樹脂層42は、例えばシート状のものを用いたり、底板部40の内底面4iに原料の樹脂などを塗布やスプレーしたりして形成することができる。   The constituent material of the resin layer 42 is preferably a resin having heat resistance to such an extent that it does not soften with respect to the maximum temperature achieved when the reactor 1A is used, particularly one containing an adhesive, and more preferably a resin excellent in electrical insulation. Specific examples include thermosetting resins such as epoxy resins, silicone resins, and unsaturated polyesters, and thermoplastic resins such as PPS resins and LCPs. The constituent material of the resin layer 42 can contain a filler having a high thermal conductivity such as alumina or silica (see the section of the heat dissipation member) from the viewpoint of improving the heat dissipation. In consideration of the thermal conductivity of the resin layer 42, the thermal conductivity of the constituent material is preferably 0.1 W / m · K or higher, more preferably 1 W / m · K or higher, particularly 2 W / m · K or higher. The resin layer 42 can be formed, for example, by using a sheet-like material, or by applying or spraying a raw material resin or the like on the inner bottom surface 4 i of the bottom plate portion 40.

・・センサ部材
この例のリアクトル1Aは、図4に示すようにリアクトル1Aのコイル2の温度を測定する温度センサ70を有するセンサ部材7を備える。センサ部材7は、温度センサ70と、温度センサ70を覆って保護する保護部72と、温度センサ70に接続されて温度センサ70の感知情報(電気信号)を制御装置などの外部装置(図示せず)に伝達する配線78とを有する。この例では、温度センサ70は、図3に示すようにコイル2の一対の巻回部2a,2b間、特に対向配置される角R部20,20間に配置される。温度センサ70の配置状態の詳細は、放熱部材の項で述べる。
-Sensor member The reactor 1A of this example is provided with the sensor member 7 which has the temperature sensor 70 which measures the temperature of the coil 2 of the reactor 1A, as shown in FIG. The sensor member 7 includes a temperature sensor 70, a protection unit 72 that covers and protects the temperature sensor 70, and an external device (not shown) such as a control device that is connected to the temperature sensor 70 and detects sensing information (electric signal) of the temperature sensor 70. Wiring 78 for transmitting to In this example, the temperature sensor 70 is disposed between the pair of winding parts 2a and 2b of the coil 2, as shown in FIG. Details of the arrangement state of the temperature sensor 70 will be described in the section of the heat dissipation member.

温度センサ70は、温度の測定が可能なセンサ、例えば、サーミスタ、熱電対、焦電素子といった感熱素子が挙げられる。この例ではサーミスタを備える。   The temperature sensor 70 is a sensor capable of measuring temperature, for example, a thermosensitive element such as a thermistor, a thermocouple, or a pyroelectric element. In this example, a thermistor is provided.

保護部72は、温度センサ70を保護できればよく、組成、形状、大きさなどは適宜選択できる。この例では、保護部72を円柱体とし、この円柱体の長さをコイル2の巻回部2a,2bの軸方向長さよりも短くしている。   The protection unit 72 only needs to protect the temperature sensor 70, and the composition, shape, size, and the like can be selected as appropriate. In this example, the protection portion 72 is a cylindrical body, and the length of the cylindrical body is shorter than the axial length of the winding portions 2 a and 2 b of the coil 2.

保護部72の構成材料は、熱可塑性樹脂、熱硬化性樹脂などの樹脂が挙げられる。熱可塑性樹脂は、例えば、PPS樹脂、PTFE樹脂、LCP、ナイロン6などのPA樹脂、PBT樹脂、アクリロニトリル−ブタジエン−スチレン(ABS)樹脂などが挙げられる。熱硬化性樹脂は、例えば、不飽和ポリエステル樹脂、エポキシ樹脂、ウレタン樹脂、シリコーン樹脂などが挙げられる。これらの樹脂は、一般に、空気よりも熱伝導率が高い。このような樹脂からなる保護部72がコイル2と温度センサ70との間に介在することで、温度センサ70の周囲に空気が存在する場合に比較して、コイル2の熱を、保護部72を介して温度センサ70に良好に伝達できる。また、これらの樹脂は、一般に、電気絶縁材であるため、コイル2と温度センサ70などとの間の電気的絶縁を確保できる。保護部72は、温度センサ70を中子として、射出成形などの適宜な成形法を利用すれば容易に形成できる。   Examples of the constituent material of the protection part 72 include resins such as a thermoplastic resin and a thermosetting resin. Examples of the thermoplastic resin include PPS resin, PTFE resin, LCP, PA resin such as nylon 6, PBT resin, acrylonitrile-butadiene-styrene (ABS) resin, and the like. Examples of the thermosetting resin include unsaturated polyester resins, epoxy resins, urethane resins, and silicone resins. These resins generally have a higher thermal conductivity than air. Since the protective part 72 made of such resin is interposed between the coil 2 and the temperature sensor 70, the heat of the coil 2 is reduced compared to the case where air exists around the temperature sensor 70. Can be satisfactorily transmitted to the temperature sensor 70. Moreover, since these resins are generally electrical insulating materials, electrical insulation between the coil 2 and the temperature sensor 70 can be ensured. The protection part 72 can be easily formed by using an appropriate molding method such as injection molding with the temperature sensor 70 as a core.

・・放熱部材
放熱部材8Aは、コイル2に対して取付可能な独立した部材であり、図1〜図3に示すようにケース4の開口側に配置されて、ケース4内に収納される組合体10の一部を覆う。詳しくは放熱部材8Aは、コイル2の巻回部2a,2bにおけるケースの開口側領域の少なくとも一部を覆うように配置される。放熱部材8Aは、コイル2の特定の領域を覆うことでコイル2の熱をケース4の開口側からケース4外に伝達する放熱経路として機能する。この機能を効果的に奏するために、放熱部材8Aは、巻回部2a,2bにおけるケースの開口側領域に対向配置される板状の基部80と、基部80の外側面からケース4外に向かって突設される複数の放熱用突起82とを備える。かつ、金属を主体とするコイル2との電気的絶縁性、金属製のケース4との電気的絶縁性の双方を高めるために、基部80の内側面のうち、巻回部2a,2bにおけるケースの開口側領域との対向領域と、放熱用突起とは、樹脂を含む材料によって構成している。この例の放熱部材8Aは、基部80と放熱用突起82とが高熱伝導性樹脂によって一体に成形された一体成形物である。
..Heat radiating member The heat radiating member 8A is an independent member that can be attached to the coil 2, and is disposed on the opening side of the case 4 as shown in FIGS. Cover part of body 10. Specifically, the heat radiating member 8 </ b> A is arranged so as to cover at least part of the opening side region of the case in the winding portions 2 a and 2 b of the coil 2. The heat radiating member 8 </ b> A functions as a heat radiating path that covers the specific region of the coil 2 to transmit the heat of the coil 2 from the opening side of the case 4 to the outside of the case 4. In order to effectively perform this function, the heat radiating member 8A includes a plate-like base 80 disposed opposite to the opening side region of the case in the winding portions 2a and 2b, and the outside of the base 80 toward the outside of the case 4. And a plurality of heat-dissipating protrusions 82 provided in a protruding manner. And in order to improve both the electrical insulation with the coil 2 which has metal as a main body, and the electrical insulation with the metal case 4, the case in winding part 2a, 2b among the inner surfaces of the base 80. The region opposite to the opening side region and the heat dissipating protrusion are made of a material containing resin. The heat radiating member 8A in this example is an integrally molded product in which the base 80 and the heat radiating protrusion 82 are integrally formed of a high thermal conductive resin.

・・・基部
放熱部材8Aの基部80は、コイル2の巻回部2a,2bにおけるケース4の開口側領域に対する被覆領域が大きいほど、巻回部2a,2bに近接配置される領域又は接する領域が多くなってケース4外への放熱性を高められる。また、上記被覆領域が大きいほど、放熱部材8Aにおけるコイル2に対する配置状態の安定性、放熱用突起82の形成領域の増大による放熱性の向上などが期待できる。この例では、図1,図2に示すように基部80は、コイル2の巻回部2a,2b及び連結部2rの実質的に全体がケース4の開口部から露出しないようにその形状及び大きさが調整されている。詳しくは、図1,図4に示すように基部80は上方から見て矩形状の部分と、一つの周縁から三角形状に突出した部分とを有し、矩形状の部分が巻回部2a,2bを覆い、三角形状の部分が連結部2rを覆う。基部80の長さは、巻回部2a,2bの軸方向長さに実質的に等しく(図2)、基部80の幅は、巻回部2a,2bの並列方向の大きさ(巻回部2a,2bの合計幅)に実質的に等しい(図3)。基部80の厚さは、複数の放熱用突起82を支持可能な剛性を有する程度としており、幅方向の両端寄りの部分及び中央部分がそれ以外の部分よりも厚い(図3)。なお、上記長さとは、巻回部2a,2bの軸方向(図2では左右方向)に沿った大きさとし、上記幅とは、巻回部2a,2bの並列方向(図3では左右方向)に沿った大きさとする。以下、各構成要素の長さ、幅について同様とする。上記厚さとは、ここでは長さ方向及び幅方向の双方に直交する方向(図3では上下方向)の大きさとする。
... Base 80 A base 80 of the heat radiating member 8 </ b> A is a region disposed closer to or in contact with the windings 2 a and 2 b as the covering region of the windings 2 a and 2 b of the coil 2 with respect to the opening side region of the case 4 is larger. Increases heat dissipation to the outside of the case 4. In addition, the larger the covering area, the higher the stability of the disposition state of the heat radiating member 8A with respect to the coil 2, and the improvement of the heat dissipation due to the increase in the formation area of the heat dissipation projections 82. In this example, as shown in FIGS. 1 and 2, the base 80 has a shape and a size so that substantially the entire winding portions 2 a and 2 b and the coupling portion 2 r of the coil 2 are not exposed from the opening of the case 4. Has been adjusted. Specifically, as shown in FIGS. 1 and 4, the base 80 has a rectangular part when viewed from above and a part protruding in a triangular shape from one peripheral edge, and the rectangular part is a winding part 2 a, 2b is covered, and a triangular portion covers the connecting portion 2r. The length of the base portion 80 is substantially equal to the axial length of the winding portions 2a and 2b (FIG. 2), and the width of the base portion 80 is the size of the winding portions 2a and 2b in the parallel direction (winding portion). The total width of 2a and 2b) is substantially equal (FIG. 3). The base 80 is thick enough to support the plurality of heat-dissipating protrusions 82, and the portion near the both ends in the width direction and the central portion are thicker than the other portions (FIG. 3). The length is the size along the axial direction (left and right direction in FIG. 2) of the winding portions 2a and 2b, and the width is the parallel direction of the winding portions 2a and 2b (left and right direction in FIG. 3). The size along Hereinafter, the same applies to the length and width of each component. Here, the thickness is a size in a direction (vertical direction in FIG. 3) orthogonal to both the length direction and the width direction.

この例では、放熱部材8Aの基部80の外側面(ケース4の開口側面)を実質的に平面としている。また、この例では、基部80の内側面(コイル2の巻回部2a,2bとの対向面)を巻回部2a,2bにおけるケース4の開口側領域に実質的に沿った形状としている。即ち、基部80の内側面は、図3に示すように一つの巻回部2a(又は2b)における四つの角R部20のうち、ケース4の開口側(上側)に配置される二つの角R部20,20と、一つの巻回部2a(又は2b)における外周面のうち、上側の角R部20,20で挟まれるケース4の開口側面(矩形状の上面20u)とがつくる輪郭に沿った形状である。この内側面は、一方の巻回部2aの外側の角R部20から上面20uを経て内側の角R部20に連なる湾曲面と、巻回部2a,2b間を渡って、他方の巻回部2bの内側の角R部20から上面20uを経て外側の角R部20に連なる湾曲面とを含み、これら二つの湾曲面(凹面)が連なったm字形状である。基部80における巻回部2a,2b間に配置される部分は、基部80の幅方向の中央部分が巻回部2a,2bに向かって(下方に向かって)突出して形成されており、巻回部2a,2b間がつくる空間に沿った断面逆三角形状である。このようにコイル2の外形に対応した形状の内側面を有する放熱部材8Aは、コイル2に配置されると、コイル2に安定して支持されると共に、コイル2に近接配置される領域又は接する領域を多く有して、放熱性を高められる。   In this example, the outer side surface (opening side surface of the case 4) of the base portion 80 of the heat radiating member 8A is substantially flat. In this example, the inner side surface of the base portion 80 (the surface facing the winding portions 2a and 2b of the coil 2) has a shape substantially along the opening side region of the case 4 in the winding portions 2a and 2b. That is, the inner surface of the base portion 80 has two corners arranged on the opening side (upper side) of the case 4 among the four corner R portions 20 in one winding portion 2a (or 2b) as shown in FIG. Contour formed by the R portions 20 and 20 and the opening side surface (rectangular upper surface 20u) of the case 4 sandwiched between the upper corner R portions 20 and 20 among the outer peripheral surfaces of one winding portion 2a (or 2b). It is a shape along. This inner side surface extends from the outer corner R portion 20 of one winding portion 2a through the upper surface 20u to the inner corner R portion 20 and between the winding portions 2a and 2b. A curved surface continuous from the inner corner R portion 20 of the portion 2b to the outer corner R portion 20 through the upper surface 20u, and the two curved surfaces (concave surfaces) are continuous. The portion of the base portion 80 disposed between the winding portions 2a and 2b is formed such that the central portion of the base portion 80 in the width direction protrudes (downward) toward the winding portions 2a and 2b. The cross section is an inverted triangular shape along the space created between the portions 2a and 2b. When the heat radiating member 8 </ b> A having the inner side surface corresponding to the outer shape of the coil 2 is arranged in the coil 2, the heat radiating member 8 </ b> A is stably supported by the coil 2 and is in close contact with the region disposed in contact with the coil 2. It has many areas and can improve heat dissipation.

・・・センサ配置部
更に、この例の放熱部材8Aは、コイル2の一対の巻回部2a,2b間に温度センサ70を位置決めするセンサ配置部87を基部80の内側面の一部に備える。詳しくは基部80の内側面において、巻回部2a,2b間に配置される断面逆三角形状の部分の一部に、図3,後述する図7に示すように温度センサ70を内包する円柱状の保護部72の外形に対応して断面円弧状に切り欠かれた部分を有する。この切り欠かれた部分は、保護部72の長さに対応した樋状の曲面部分と、巻回部2a,2bの軸方向に直交するように上記曲面部分の端部に設けられ、保護部72の円形状の端面の少なくとも一部が当接する平面部分とを有する。この樋状の曲面部分と当接面とをセンサ配置部87とする。
... Sensor arrangement part Furthermore, heat dissipation member 8A of this example equips a part of inner surface of base 80 with sensor arrangement part 87 which positions temperature sensor 70 between a pair of winding parts 2a and 2b of coil 2. . Specifically, on the inner side surface of the base portion 80, a cylindrical shape that includes a temperature sensor 70 as shown in FIG. 3 and later-described FIG. 7 in a part of an inverted triangular section disposed between the winding portions 2a and 2b. Corresponding to the outer shape of the protective portion 72, a portion cut out in a circular arc shape in cross section. The notched portion is provided at the end portion of the curved portion so as to be orthogonal to the hook-shaped curved portion corresponding to the length of the protective portion 72 and the axial direction of the winding portions 2a and 2b. 72 and a flat surface portion with which at least a part of the circular end face abuts. The hook-shaped curved surface portion and the contact surface are referred to as a sensor placement portion 87.

リアクトル1Aでは、図3に示すように一対の巻回部2a,2bに挟まれてできる空間のうち、対向配置される角R部20,20と、上述の基部80の内側面におけるセンサ配置部87とで囲まれる空間を温度センサ70の配置箇所とする。従って、基部80の内側面のうち、センサ配置部87を備える箇所では、巻回部2a,2bにおけるケース4の開口側領域に応じた二つの凹部と、この二つの凹部に挟まれる位置に、保護部72に応じた小さな凹部とを備える。センサ配置部87の曲面部分に保護部72が嵌め込まれ、平面部分に保護部72の端面が当て止めされた状態で、放熱部材8Aが封止樹脂100によって固定されると、温度センサ70は巻回部2a,2bにおける対向配置された角R部20,20に接触又は近接した状態に保持される。そのため、温度センサ70には保護部72を介してコイル2の熱が良好に伝達される。センサ配置部87の形状、大きさ、個数などは、センサ部材7(保護部72)の形状、大きさ、個数に応じて適宜変更できる。   In the reactor 1A, as shown in FIG. 3, among the spaces formed between the pair of winding portions 2a and 2b, the corner R portions 20 and 20 that are opposed to each other, and the sensor placement portion on the inner surface of the above-described base portion 80 A space surrounded by 87 is defined as a location where the temperature sensor 70 is disposed. Therefore, in the portion provided with the sensor arrangement portion 87 on the inner side surface of the base portion 80, the two recessed portions according to the opening side region of the case 4 in the winding portions 2a and 2b, and the position between the two recessed portions, And a small concave portion corresponding to the protection portion 72. When the heat radiating member 8A is fixed by the sealing resin 100 in a state where the protective portion 72 is fitted into the curved surface portion of the sensor placement portion 87 and the end surface of the protective portion 72 is abutted against the flat portion, the temperature sensor 70 is wound. The turning portions 2a and 2b are held in contact with or in close proximity to the corner R portions 20 and 20 that are arranged to face each other. Therefore, the heat of the coil 2 is satisfactorily transmitted to the temperature sensor 70 via the protection unit 72. The shape, size, number, and the like of the sensor placement portion 87 can be changed as appropriate according to the shape, size, number of sensor members 7 (protection portions 72).

更に、この例の放熱部材8Aは、図1に示すように温度センサ70に接続される配線78を放熱部材8Aの内側面から外側面に引き出す貫通孔87hを基部80に備える。詳しくは、基部80は、コイル2の連結部2r側に配置される周縁近傍に貫通孔87hを備える(後述する図6も参照)。貫通孔87hの形状、大きさ、個数などは配線78が挿通可能な範囲で適宜選択できる。例えば、貫通孔87hの大きさ及び形状を、円柱状の保護部72の外径と同等程度の直径を有する円孔とする他、円柱状の保護部72の外径以上の大きさ及び形状を有する孔として、保護部72を挿通可能とすることができる。この場合、放熱部材8Aの外側面から貫通孔87hを経て内側面のセンサ配置部87近傍に保護部72を容易に配置できる。貫通孔87hに挿通された配線78は、ある程度移動が規制される。この点から、貫通孔87hは、配線78の移動規制部としても機能できる。貫通孔87hの数を多くして、配線78を各孔に挿通することで、配線78をより確実に移動規制できる。貫通孔87hの他、配線78を掛止するフック部(図示せず)や配線78の端部に接続されるコネクタ部(図示せず)を係止するコネクタ支持部などを基部80に備えることができる。貫通孔87hに代えて、切欠とすることもできる。   Further, the heat dissipating member 8A of this example is provided with a through hole 87h in the base portion 80 for drawing the wiring 78 connected to the temperature sensor 70 from the inner surface to the outer surface of the heat dissipating member 8A as shown in FIG. Specifically, the base portion 80 includes a through hole 87h in the vicinity of the peripheral edge disposed on the coupling portion 2r side of the coil 2 (see also FIG. 6 described later). The shape, size, number, and the like of the through holes 87h can be selected as appropriate as long as the wiring 78 can be inserted. For example, the size and shape of the through-hole 87 h is a circular hole having a diameter equivalent to the outer diameter of the columnar protection part 72, and the size and shape greater than the outer diameter of the columnar protection part 72. The protective part 72 can be inserted as a hole. In this case, the protection part 72 can be easily arranged in the vicinity of the sensor arrangement part 87 on the inner side surface from the outer side surface of the heat radiating member 8A through the through hole 87h. The movement of the wiring 78 inserted into the through hole 87h is restricted to some extent. From this point, the through hole 87h can also function as a movement restricting portion of the wiring 78. By increasing the number of through-holes 87h and inserting the wiring 78 into each hole, the movement of the wiring 78 can be controlled more reliably. In addition to the through hole 87h, the base portion 80 includes a hook portion (not shown) for hooking the wiring 78 and a connector support portion for locking a connector portion (not shown) connected to the end of the wiring 78. Can do. Instead of the through hole 87h, a notch may be used.

その他、この例の基部80は、巻線2wの端部側に配置される周縁に、巻線2wの各端部がそれぞれ嵌め込まれる二つの切欠を備える(図4)。   In addition, the base portion 80 of this example includes two notches into which the respective end portions of the winding 2w are respectively fitted on the peripheral edge arranged on the end portion side of the winding 2w (FIG. 4).

基部80の形状、大きさなどは適宜変更できる。例えば、基部80の外側面のうち、放熱用突起82が設けられていない箇所を曲面として表面積を更に増大したり、温度センサ70を有さない場合にセンサ配置部87を省略したり、基部80を小さくする場合に上記巻線2wの端部を嵌め込む切欠を省略したりなどすることができる。   The shape and size of the base 80 can be changed as appropriate. For example, the surface area of the outer surface of the base portion 80 where the heat-dissipation protrusions 82 are not provided is curved to further increase the surface area, or the sensor arrangement portion 87 is omitted when the temperature sensor 70 is not provided. In order to reduce the length, the notch for fitting the end of the winding 2w can be omitted.

・・・放熱用突起
放熱用突起82は、幅や長さ(基部80の外側面に対する接続面積)が小さく、突出高さが長く、数が多く、表面積が大きな形状であるほど、放熱性に優れる。この例では、基部80の外側面から複数の平板状の放熱用突起82が整列配置されている。詳しくは図1,図3に示すように、放熱用突起82は、コイル2の巻回部2a,2bの並列方向の大きさに実質的に等しい幅を有する長方形状の平板であり、これらの放熱用突起82が巻回部2a,2bの軸方向に等間隔に並列されている(図2も参照)。各放熱用突起82が一対の巻回部2a,2bを跨ぐように設けられることで、コイル2において最も温度が高くなり得る箇所からコイル2の熱を良好に放散できると期待される。また、この形状によって、放熱部材8Aの剛性を高められると期待される。更に、放熱用突起82がこのような幅広の平板状であれば、一つあたりの放熱用突起82の表面積が大きく、ケース4外の雰囲気との接触面積を大きくできて、放熱性を高められると期待される。このような大面積であっても長方形の平板状であれば、単純な形状であるため成形性にも優れる。
... Heat dissipation protrusions The heat dissipation protrusions 82 have a smaller width and length (connection area to the outer surface of the base 80), a longer protrusion height, a larger number, and a larger surface area. Excellent. In this example, a plurality of flat plate-like heat-dissipating projections 82 are aligned from the outer surface of the base 80. Specifically, as shown in FIGS. 1 and 3, the heat dissipation protrusion 82 is a rectangular flat plate having a width substantially equal to the size in the parallel direction of the winding portions 2 a and 2 b of the coil 2. The heat dissipation projections 82 are arranged in parallel at equal intervals in the axial direction of the winding portions 2a and 2b (see also FIG. 2). It is expected that the heat of the coil 2 can be dissipated well from the place where the temperature can be highest in the coil 2 by providing each of the heat dissipation protrusions 82 so as to straddle the pair of winding portions 2a and 2b. Further, this shape is expected to increase the rigidity of the heat dissipation member 8A. Furthermore, if the heat dissipation protrusions 82 are such a wide flat plate shape, the surface area of each heat dissipation protrusion 82 is large, the contact area with the atmosphere outside the case 4 can be increased, and heat dissipation can be improved. It is expected. Even if it is such a large area, if it is a rectangular flat plate shape, since it is a simple shape, it is excellent in moldability.

放熱用突起82における基部80の外側面からの突出高さは、適宜選択でき、高いほど放熱用突起82におけるケース4外の雰囲気との接触面積を増大できて好ましい。この例に示すようにコイル2に放熱部材8Aを取り付けたときに全ての放熱用突起82の端部(この例では外周縁)がケース4の開口縁から突出するように突出高さを調整できる。この場合、放熱用突起82は、常に、ケース4外の雰囲気に接触できて、放熱効果が高いと期待される。なお、この場合、上記突出高さは、リアクトル1Aの大型化などを招かない範囲で選択するとよい。一方、複数の放熱用突起82のうち、少なくとも1個の放熱用突起82の端部がケース4の開口縁から突出せず、その突出高さがケース4の開口縁以下となるように調整できる。この場合、複数の放熱用突起82のなかには、ケース4の側壁部41の方が高く、側壁部41に囲まれるものが存在し得る。しかし、これらの放熱用突起82であっても、コイル2の巻回部2a,2bの上面20uよりも突出しているため、ケース4外の雰囲気に接触でき、放熱効果を期待できる。また、この場合、ケース4からの突出物が少なく、突出物を巻線2wの端部や配線78程度にできて、小型なリアクトル1Aにできる。放熱用突起82の幅や長さは、上記接触面積を十分に増大できるように適宜選択するとよい。また、基部80の外側面における放熱用突起82の形成領域は、少なくとも基部80におけるコイル3の巻回部2a,2bを覆う箇所を含むことが好ましい。外側面における上記形成領域の平面面積は、この例のように巻回部2a,2bの軸方向長さと、巻回部2a,2bの合計幅との積以上であることが好ましい。   The protrusion height of the heat dissipation protrusion 82 from the outer surface of the base 80 can be selected as appropriate. A higher height is preferable because the contact area of the heat dissipation protrusion 82 with the atmosphere outside the case 4 can be increased. As shown in this example, when the heat radiating member 8A is attached to the coil 2, the protruding height can be adjusted so that the ends (outer peripheral edges in this example) of all the heat radiating protrusions 82 protrude from the opening edge of the case 4. . In this case, the heat-dissipating protrusion 82 can always be in contact with the atmosphere outside the case 4 and is expected to have a high heat-dissipating effect. In this case, the protruding height may be selected within a range that does not cause an increase in the size of the reactor 1A. On the other hand, among the plurality of heat radiation protrusions 82, at least one of the heat radiation protrusions 82 does not protrude from the opening edge of the case 4, and the height of the protrusion can be adjusted to be equal to or less than the opening edge of the case 4. . In this case, among the plurality of heat-dissipating protrusions 82, the side wall 41 of the case 4 is higher and there may be one surrounded by the side wall 41. However, even these heat-dissipating protrusions 82 protrude from the upper surfaces 20u of the winding portions 2a and 2b of the coil 2, so that they can come into contact with the atmosphere outside the case 4 and a heat dissipation effect can be expected. Further, in this case, there are few protrusions from the case 4, and the protrusions can be made about the ends of the windings 2 w and the wiring 78, so that a small reactor 1 </ b> A can be obtained. The width and length of the heat dissipating protrusion 82 may be appropriately selected so that the contact area can be sufficiently increased. Moreover, it is preferable that the formation region of the heat dissipation projection 82 on the outer surface of the base portion 80 includes at least a portion that covers the winding portions 2 a and 2 b of the coil 3 in the base portion 80. The planar area of the formation region on the outer side surface is preferably equal to or greater than the product of the axial length of the winding portions 2a and 2b and the total width of the winding portions 2a and 2b as in this example.

その他の放熱用突起82として、例えば図6,図7に示す放熱部材8Cのように、放熱部材8Aと同様に基部80の外側面から複数の平板状の放熱用突起82が整列配置されており、整列方向が異なる形態とすることができる。図1などに示す放熱用部材8Aでは、複数の放熱用突起82が横並びであるのに対し、図6,図7に示す放熱部材8Cでは、放熱用突起82が縦並びである。詳しくは、放熱用突起82は、コイル2の巻回部2a,2bの軸方向長さに実質的に等しい長さを有する長方形状の平板であり、各放熱用突起82の長手方向が巻回部2a,2bの軸方向に平行するように配置されると共に、基部80の幅方向に等間隔に並列されている。また、放熱用突起82が平板状であるため、上述の放熱部材8Aと同様に放熱部材8Cも成形性にも優れる。放熱部材8C及び後述する図8などに示す放熱部材8Dの基部80は、図1などに示す放熱部材8Aの基部80と同様である。   As other heat radiation protrusions 82, a plurality of plate-shaped heat radiation protrusions 82 are arranged from the outer surface of the base portion 80 in the same manner as the heat radiation member 8A, for example, as in the heat radiation member 8C shown in FIGS. The alignment direction can be different. In the heat radiating member 8A shown in FIG. 1 and the like, the plurality of heat radiating protrusions 82 are arranged side by side, whereas in the heat radiating member 8C shown in FIGS. 6 and 7, the heat radiating protrusions 82 are arranged vertically. Specifically, the heat dissipation protrusion 82 is a rectangular flat plate having a length substantially equal to the axial length of the winding portions 2a and 2b of the coil 2, and the longitudinal direction of each heat dissipation protrusion 82 is wound. The portions 2 a and 2 b are arranged so as to be parallel to the axial direction, and are arranged in parallel in the width direction of the base portion 80 at equal intervals. In addition, since the heat dissipation protrusion 82 has a flat plate shape, the heat dissipation member 8C is excellent in moldability as well as the heat dissipation member 8A described above. The base 80 of the heat radiating member 8C and the heat radiating member 8D shown in FIG. 8 to be described later is the same as the base 80 of the heat radiating member 8A shown in FIG.

その他の放熱用突起82として、例えば図8,図9に示す放熱部材8Dのように、基部80の外側面から複数の棒状の放熱用突起82が整列配置された形態とすることができる。放熱部材8Dでは、丸棒状の放熱用突起82がコイル2の巻回部2a,2bの軸方向及び基部80の幅方向の双方に対して等間隔に並列されている。一つの放熱用突起82の大きさはある程度小さいものの、放熱部材8Dは、非常に多くの放熱用突起82を備えられるため、結果として表面積を非常に増大でき、放熱性に優れる。放熱用突起82は、丸棒の他、直方体などの角柱状、楕円柱などの非円柱状などにすることができる。   As the other heat radiation projections 82, for example, a plurality of rod-shaped heat radiation projections 82 can be arranged from the outer surface of the base portion 80 as in a heat radiation member 8D shown in FIGS. In the heat radiating member 8 </ b> D, round rod-shaped heat radiating protrusions 82 are arranged in parallel at equal intervals in both the axial direction of the winding portions 2 a and 2 b of the coil 2 and the width direction of the base portion 80. Although the size of one heat dissipation protrusion 82 is small to some extent, the heat dissipation member 8D is provided with a very large number of heat dissipation protrusions 82. As a result, the surface area can be greatly increased and the heat dissipation is excellent. The heat-dissipating protrusions 82 can be formed into a rectangular column shape such as a rectangular parallelepiped or a non-cylindrical shape such as an elliptical column in addition to a round bar.

その他、放熱部材8Aは、形状及び大きさの少なくとも一方が異なる放熱用突起を組み合わせて備えることができる。例えば、基部80におけるコイル2の温度分布に応じて放熱用突起の形状や大きさ、数などを変更できる。基部80におけるコイル2の巻回部2a,2b間を覆う領域は高温になり易く、巻回部2a,2bの上面20uを覆う領域は温度がそれほど高くならない場合を例にとると、高温になり易い領域に、幅や長さを小さくしたり突出高さを高くしたりした放熱用突起を数多く設けて、表面積を局所的に大きくし、温度がそれほど高くならない領域に、突出高さを小さくした放熱用突起を設けたり、放熱用突起の数を少なくしたりすることができる。   In addition, the heat radiating member 8A can be provided with a combination of heat radiating protrusions having different shapes and sizes. For example, the shape, size, number, etc. of the heat dissipation protrusions can be changed according to the temperature distribution of the coil 2 at the base 80. The region covering the space between the winding portions 2a and 2b of the coil 2 in the base 80 is likely to be high temperature, and the region covering the upper surface 20u of the winding portions 2a and 2b is high temperature, for example. Many heat-dissipating protrusions with reduced width and length or increased protrusion height are provided in the easy area, the surface area is locally increased, and the protrusion height is reduced in areas where the temperature does not increase so much. It is possible to provide heat dissipation protrusions or to reduce the number of heat dissipation protrusions.

・・・構成材料
放熱部材8Aなどの構成材料は、高熱伝導性樹脂を好適に利用できる。高熱伝導性樹脂とは、ここでは、熱伝導率が1W/m・K以上であり、樹脂を30体積%以上70体積%以下程度含むものとする。このような高熱伝導性樹脂は、熱伝導率が高いフィラーを含有する樹脂が挙げられる。具体的な樹脂は、PPS樹脂、PTFE樹脂、LCP、ナイロン6やナイロン66などのPA樹脂、PBT樹脂といったポリエステル樹脂など熱可塑性樹脂、エポキシ樹脂、フェノール樹脂などの熱硬化性樹脂などが挙げられる。フィラーは、セラミックスなどの無機化合物といった非金属無機材料であれば、電気絶縁性にも優れて好ましい。無機化合物は、例えばアルミナ、シリカなどの酸化物、窒化珪素、窒化アルミニウム、窒化ほう素などの窒化物、炭化珪素などの炭化物などが挙げられる。高熱伝導性樹脂の熱伝導率は、高いほど放熱性に優れる放熱部材8Aなどとなって好ましく、1W以上、更に2W/m・K以上、3W/m・K以上、5W/m・K以上がより好ましい。フィラーの含有量が多いほど高熱伝導性樹脂の熱伝導率が高くなる傾向にあるものの、多過ぎると成形性の低下を招き得る。放熱部材8Aなどの成形性を考慮すると、10W/m・K以下程度の高熱伝導性樹脂が利用し易いと考えられる。放熱部材8Aなどは、複雑な立体形状であるものの、高熱伝導性樹脂を射出成形などの公知の成形法を利用することで、容易に、かつ精度よく形成できる。
... Constituent material As the constituent material such as the heat radiating member 8A, a high thermal conductive resin can be suitably used. Here, the high thermal conductive resin has a thermal conductivity of 1 W / m · K or more and includes about 30% by volume to 70% by volume of resin. Examples of such a high thermal conductive resin include a resin containing a filler having a high thermal conductivity. Specific examples of the resin include PPS resin, PTFE resin, LCP, PA resin such as nylon 6 and nylon 66, thermoplastic resin such as polyester resin such as PBT resin, and thermosetting resin such as epoxy resin and phenol resin. If the filler is a non-metallic inorganic material such as an inorganic compound such as ceramics, it is preferable because of excellent electrical insulation. Examples of the inorganic compound include oxides such as alumina and silica, nitrides such as silicon nitride, aluminum nitride, and boron nitride, and carbides such as silicon carbide. The higher the thermal conductivity of the high thermal conductive resin is, the higher the heat dissipation member 8A, etc., which is more excellent in heat dissipation. 1W or more, 2W / m · K or more, 3W / m · K or more, 5W / m · K or more. More preferred. Although the thermal conductivity of the high thermal conductive resin tends to increase as the filler content increases, if the content is too large, the moldability may be reduced. Considering the moldability of the heat radiating member 8A and the like, it is considered that a high thermal conductive resin of about 10 W / m · K or less is easy to use. The heat radiating member 8A and the like have a complicated three-dimensional shape, but can be easily and accurately formed by using a well-known molding method such as injection molding of a high thermal conductive resin.

・・封止樹脂
この例のリアクトル1Aでは、図1,図2に示すように、ケース4内に封止樹脂100が充填されている。ケース4内に収納された組合体10は、コイル2の巻線2wの端部を除き、コイル2の実質的に全体が封止樹脂100に埋設されている。この例では、図2に示すように放熱部材8Aの基部80の一部が埋設されると共に、放熱用突起82の全体が露出される程度に封止樹脂100がケース4内に充填されている。封止樹脂100は、コイル2の巻回部2a,2bにおけるケース4の開口側領域と、放熱部材8Aの基部80の内側面における上記コイル2の開口側領域を覆う領域との間にも介在し得る(図3)。封止樹脂100における基部80を埋設する部分や、巻回部2a,2bと基部80との間に介在する部分は、巻回部2a,2bと放熱部材8Aとを固定する部分として機能する。
-Sealing resin In the reactor 1A of this example, as shown in FIG. 1, FIG. 2, the case 4 is filled with sealing resin 100. In FIG. In the combination 10 housed in the case 4, substantially the entire coil 2 is embedded in the sealing resin 100 except for the end of the winding 2 w of the coil 2. In this example, as shown in FIG. 2, a part of the base 80 of the heat radiating member 8A is embedded, and the sealing resin 100 is filled in the case 4 to the extent that the entire heat radiating protrusion 82 is exposed. . The sealing resin 100 is also interposed between the opening side region of the case 4 in the winding portions 2a and 2b of the coil 2 and the region covering the opening side region of the coil 2 on the inner side surface of the base 80 of the heat radiating member 8A. (FIG. 3). A portion of the sealing resin 100 in which the base portion 80 is embedded or a portion interposed between the winding portions 2a and 2b and the base portion 80 functions as a portion that fixes the winding portions 2a and 2b and the heat dissipation member 8A.

封止樹脂100の充填量を調整することで、上述の固定機能をより高められる。例えば、放熱用突起82における基部80との接続箇所近傍が埋設される程度に封止樹脂100を設けることが挙げられる。即ち、基部80の外側面の少なくとも一部を覆うように封止樹脂100を設けることができる。この場合、放熱部材8Aと封止樹脂100との接触面積が増大すると共に、基部80の内側面及び外側面が封止樹脂100で挟まれて、封止樹脂100による放熱部材8Aの強固な保持を実現できる。その結果、コイル2の巻回部2a,2bと放熱部材8Aとを強固に固定できる。この例のように基部80の外側面の全体が封止樹脂100から露出されている場合には、放熱性により優れると期待される。   By adjusting the filling amount of the sealing resin 100, the above-described fixing function can be further enhanced. For example, the sealing resin 100 may be provided to such an extent that the vicinity of the connection portion with the base 80 in the heat dissipation protrusion 82 is embedded. That is, the sealing resin 100 can be provided so as to cover at least a part of the outer surface of the base 80. In this case, the contact area between the heat radiating member 8A and the sealing resin 100 is increased, and the inner surface and the outer surface of the base 80 are sandwiched between the sealing resins 100 so that the heat radiating member 8A is firmly held by the sealing resin 100. Can be realized. As a result, the winding portions 2a and 2b of the coil 2 and the heat dissipation member 8A can be firmly fixed. When the entire outer surface of the base 80 is exposed from the sealing resin 100 as in this example, it is expected that the heat dissipation is more excellent.

その他、この例の封止樹脂100は、センサ部材7の周囲に生じ得る空間を埋める充填材としても機能する(図3)。センサ部材7の周囲が封止樹脂100で覆われて、空隙(空気)が低減される、好ましくは無くなることで、コイル2の熱をセンサ部材7の保護部72及び封止樹脂100を介して温度センサ70に良好に伝えられる。そのため、リアクトル1Aは、センサ部材7の周囲に空気といった熱伝導性に劣る物質が存在する場合に比較して、コイル2の温度を高精度にかつ安定して測定できる。   In addition, the sealing resin 100 in this example also functions as a filler that fills a space that can occur around the sensor member 7 (FIG. 3). Since the periphery of the sensor member 7 is covered with the sealing resin 100 and the air gap (air) is reduced or preferably eliminated, the heat of the coil 2 is passed through the protection portion 72 of the sensor member 7 and the sealing resin 100. The temperature sensor 70 is well transmitted. Therefore, the reactor 1 </ b> A can measure the temperature of the coil 2 with high accuracy and stability as compared with the case where a substance having poor thermal conductivity such as air exists around the sensor member 7.

封止樹脂100には、例えば、エポキシ樹脂、ウレタン樹脂、シリコーン樹脂、不飽和ポリエステル樹脂などが利用できる。放熱性を高める観点から、封止樹脂100は、アルミナやシリカなどの上述のフィラーを含有することができる。   For the sealing resin 100, for example, an epoxy resin, a urethane resin, a silicone resin, an unsaturated polyester resin, or the like can be used. From the viewpoint of improving heat dissipation, the sealing resin 100 can contain the above-described filler such as alumina or silica.

・リアクトルの製造方法
リアクトル1Aは、例えば、以下の準備工程、組合体の組立工程、ケースへの収納工程、封止樹脂の充填工程、放熱部材の配置工程、封止樹脂の固化工程を備えるリアクトルの製造方法によって製造できる。各工程の概略を説明する。
-Reactor manufacturing method The reactor 1A includes, for example, the following preparation process, assembly process, housing process, sealing resin filling process, heat radiation member disposing process, and sealing resin solidifying process. It can manufacture with the manufacturing method of. The outline of each process will be described.

準備工程では、コイル2、コア片31m,32m、ギャップ材31g、介在部材5、ケース4、センサ部材7、放熱部材8Aを準備する(図4,図5)。放熱部材8Aには、センサ部材7を取り付けておく。例えば、放熱部材8Aの基部80のセンサ配置部87に保護部72を配置し、配線78を挿通孔87hから引き出す。   In the preparation step, the coil 2, the core pieces 31m and 32m, the gap material 31g, the interposition member 5, the case 4, the sensor member 7, and the heat radiating member 8A are prepared (FIGS. 4 and 5). The sensor member 7 is attached to the heat radiating member 8A. For example, the protection part 72 is arranged on the sensor arrangement part 87 of the base 80 of the heat radiating member 8A, and the wiring 78 is pulled out from the insertion hole 87h.

組合体の組立工程では、コイル2と磁性コア3とを含む組合体10を作製する(図5)。この例では、コア片31mとギャップ材31gとを交互に積層した二つの積層物と、U字状のコア片32m,32mと、介在部材5の分割材50a,50bと、コイル2の巻回部2a,2bとを組み付けて、組合体10を作製する。   In the assembly process of the combined body, the combined body 10 including the coil 2 and the magnetic core 3 is produced (FIG. 5). In this example, two laminates obtained by alternately laminating core pieces 31m and gap members 31g, U-shaped core pieces 32m and 32m, split members 50a and 50b of the interposition member 5, and winding of the coil 2 The assembly 2 is produced by assembling the parts 2a and 2b.

ケースへの収納工程では、組合体10をケース4内に収納する(図4)。この例では、組合体10の下面とケース4の内底面4iとの間に樹脂層42を介在させる。樹脂層42には、樹脂シートなどを利用すると配置作業性に優れる。内底面4iに樹脂を適宜塗布などしても樹脂層42を形成できる。この例では更に、ボルトやねじ(図示せず)、ステーなどの帯状の固定部材などを適宜利用して、組合体10をケース4内に固定する。   In the storing process in the case, the combined body 10 is stored in the case 4 (FIG. 4). In this example, a resin layer 42 is interposed between the lower surface of the combined body 10 and the inner bottom surface 4 i of the case 4. If a resin sheet or the like is used for the resin layer 42, the arrangement workability is excellent. The resin layer 42 can also be formed by appropriately applying a resin to the inner bottom surface 4i. In this example, the combination 10 is further fixed in the case 4 by appropriately using bolts, screws (not shown), belt-like fixing members such as stays, and the like.

封止樹脂の充填工程では、組合体10が収納されたケース4内に、未固化の樹脂を充填する。このとき、放熱部材8Aを配置していないため、コイル2からのターン間の隙間などから充填や脱気を容易に行える。   In the sealing resin filling process, the unsolidified resin is filled into the case 4 in which the combination 10 is stored. At this time, since the heat dissipating member 8A is not disposed, filling and deaeration can be easily performed from a gap between turns from the coil 2.

放熱部材の配置工程では、上述の充填した樹脂が未固化の状態のときに、放熱部材8Aを組合体10の所定の位置に配置する。この例では温度センサ70がコイル2の巻回部2a,2bの角R部20,20間に配置されるように、かつ放熱部材8Aの基部80における内側面の一部(巻回部2a,2bとの対向領域)が巻回部2a,2bにおけるケース4の開口側領域を覆うように、放熱部材8Aを配置する(図2,図3)。放熱部材8Aや温度センサ70の載置によって押し退けられた未固化の樹脂は、放熱部材8Aの基部80や温度センサ70の周囲などを適宜埋める。未固化の樹脂の一部が放熱用突起82の一部を埋める場合がある。   In the heat dissipating member arranging step, the heat dissipating member 8A is arranged at a predetermined position of the assembly 10 when the above-described filled resin is in an unsolidified state. In this example, the temperature sensor 70 is disposed between the corner R portions 20 and 20 of the winding portions 2a and 2b of the coil 2, and a part of the inner surface (the winding portions 2a and 2b) of the base portion 80 of the heat radiating member 8A. The heat dissipating member 8A is arranged so that the region facing 2b covers the opening side region of the case 4 in the winding portions 2a and 2b (FIGS. 2 and 3). The unsolidified resin pushed away by placing the heat radiating member 8A and the temperature sensor 70 appropriately fills the base 80 of the heat radiating member 8A, the periphery of the temperature sensor 70, and the like. There is a case where a part of the unsolidified resin fills a part of the heat radiation protrusion 82.

封止樹脂の固化工程では、上述の未固化の樹脂を固化して、封止樹脂100とする(図1,図2)。封止樹脂100の固化によって、図1に示すリアクトル1Aが得られる。   In the sealing resin solidifying step, the above-mentioned unsolidified resin is solidified to form the sealing resin 100 (FIGS. 1 and 2). By the solidification of the sealing resin 100, the reactor 1A shown in FIG. 1 is obtained.

・効果
実施形態1のリアクトル1Aは、コイル2の巻回部2a,2bにおけるケース4の開口側に特定の放熱用突起82を有する放熱部材8Aを備えることで、ケース4の底部側を冷却し得る設置対象1000に取り付けられても、巻回部2a,2bにおけるケース4の底部側領域と開口側領域との温度差を低減できる。特に、リアクトル1Aでは、コイル2が一対の巻回部2a,2bを並列に備えており、巻回部2a,2b間に隙間が生じ得る形態であるものの、コイル2と放熱部材8Aとが独立した部材であるため、この隙間を渡るように放熱用突起82を有することができる。温度が高くなり易い巻回部2a,2b間の隙間近傍に放熱用突起82を配置できることからも、リアクトル1Aは、上記温度差を十分に低減できる。そのため、リアクトル1Aは、コイル2の全体に亘って温度上昇を抑制でき、局所的な温度上昇に起因する特性への悪影響や封止樹脂100における局所的な高温部分の発生に起因する熱ストレス、コイル2周辺の構成要素の熱損傷などを抑制できる。その結果、リアクトル1Aの信頼性や耐久性を向上できるといえる。
-Effect The reactor 1A of Embodiment 1 cools the bottom side of the case 4 by providing the heat radiating member 8A having a specific heat radiating protrusion 82 on the opening side of the case 4 in the winding portions 2a and 2b of the coil 2. Even if attached to the installation object 1000 to be obtained, the temperature difference between the bottom side region and the opening side region of the case 4 in the winding parts 2a and 2b can be reduced. In particular, in the reactor 1A, the coil 2 includes a pair of winding portions 2a and 2b in parallel, and a gap may be formed between the winding portions 2a and 2b, but the coil 2 and the heat dissipation member 8A are independent. Therefore, the heat dissipation protrusion 82 can be provided so as to cross this gap. Since the heat dissipation protrusion 82 can be disposed in the vicinity of the gap between the winding portions 2a and 2b where the temperature tends to increase, the reactor 1A can sufficiently reduce the temperature difference. Therefore, the reactor 1A can suppress the temperature rise over the entire coil 2, and adverse effects on the characteristics due to the local temperature rise and thermal stress due to the occurrence of local high temperature portions in the sealing resin 100, Thermal damage of components around the coil 2 can be suppressed. As a result, it can be said that the reliability and durability of the reactor 1A can be improved.

かつ、放熱部材8Aが電気絶縁材である樹脂を含むため、放熱部材8A(基部80の内側面)とコイル2の巻回部2a,2bとの間、及び放熱部材8A(放熱用突起82)とケース4(側壁部41の内周面や開口縁)との間との電気絶縁性に優れる。特に、リアクトル1Aでは、放熱部材8Aが樹脂と、熱伝導性及び電気絶縁性に優れるセラミックスフィラーとを主成分とするため、電気絶縁性により優れる。   And since the heat radiating member 8A contains the resin which is an electrical insulating material, between the heat radiating member 8A (inner side surface of the base 80) and the winding parts 2a and 2b of the coil 2, and the heat radiating member 8A (heat radiating protrusion 82). Excellent electrical insulation between the case 4 and the case 4 (inner peripheral surface or opening edge of the side wall 41). In particular, in the reactor 1A, since the heat radiating member 8A is mainly composed of a resin and a ceramic filler excellent in thermal conductivity and electrical insulation, the reactor 1A is more excellent in electrical insulation.

その他、この例のリアクトル1Aは、以下の効果を奏する。
・ コイル2の巻回部2a,2bと放熱部材8Aとが封止樹脂100によって固定されているため、巻回部2a,2bと放熱部材8Aとの間の熱伝達を良好に行えて、放熱性に優れる。
・ 温度センサ70を備え、かつ放熱部材8Aのセンサ配置部87によって所定の位置に温度センサ70が保持されるため、コイル2の温度を精度よく測定できる。封止樹脂100によって温度センサ70(保護部72)の周囲に生じ得る隙間を低減できることからも、コイル2の温度を精度よく測定できる。
・ 放熱部材8Aが高熱伝導性樹脂の一体成形物であるため、熱伝導率が高い点、放熱部材が複数の部品の組物である場合に比較して熱特性が一様な放熱経路を構築できる点から熱伝導性に優れる。この点からも、放熱性に優れる。
・ 放熱部材8Aが高熱伝導性樹脂の一体成形物であるため、容易に成形できて製造性に優れる、取り扱い易い、配置や搬送などの作業性に優れるといった利点を有する。
・ ケース4によって、組合体10、特にコイル2及び磁性コア3の外部環境(粉塵や腐食など)からの保護、機械的保護を図ることができる。
・ ケース4が金属製の一体成形物であるため、ケース4自体の強度に優れて、リアクトル1A全体の強度を高められる。
・ 封止樹脂100を備えることで、組合体10をケース4に固定できる上に、組合体10の電気的・機械的保護、外部環境からの保護、コイル2の通電に起因する磁性コア3の振動、及びこの振動に起因する騒音の低減などを図ることができる。
・ 温度が最も高くなり易いと考えられる領域に放熱用突起82が配置されるため、コイル2におけるケース4の側壁部41との対向領域(側面)などに別の放熱部材を配置しなくても、コイル2の熱を効率的に放散できる。そのため、大型化を招き難く、小型にできる。
In addition, the reactor 1A of this example has the following effects.
-Since the winding parts 2a and 2b of the coil 2 and the heat radiating member 8A are fixed by the sealing resin 100, heat transfer between the winding parts 2a and 2b and the heat radiating member 8A can be performed satisfactorily, and thus heat radiation. Excellent in properties.
Since the temperature sensor 70 is provided and the temperature sensor 70 is held at a predetermined position by the sensor placement portion 87 of the heat radiating member 8A, the temperature of the coil 2 can be measured with high accuracy. Since the sealing resin 100 can reduce a gap that may occur around the temperature sensor 70 (protection unit 72), the temperature of the coil 2 can be measured with high accuracy.
・ Since the heat radiating member 8A is an integrally molded product of highly heat conductive resin, it has a high heat conductivity and a heat radiating path with uniform thermal characteristics compared to the case where the heat radiating member is an assembly of multiple parts. Excellent heat conductivity from the point that it can be done. Also from this point, heat dissipation is excellent.
-Since the heat dissipating member 8A is an integrally molded product of a high thermal conductive resin, it has advantages such that it can be easily molded and is excellent in manufacturability, easy to handle, and excellent in workability such as arrangement and conveyance.
The case 4 can protect the assembly 10, especially the coil 2 and the magnetic core 3 from the external environment (dust, corrosion, etc.) and mechanical protection.
-Since case 4 is a metal integral molding, it is excellent in the intensity | strength of case 4 itself and the intensity | strength of the reactor 1A whole can be raised.
By providing the sealing resin 100, the combined body 10 can be fixed to the case 4, and the electrical / mechanical protection of the combined body 10, protection from the external environment, and the magnetic core 3 caused by energization of the coil 2 It is possible to reduce vibration and noise caused by the vibration.
Since the heat dissipation protrusion 82 is disposed in the region where the temperature is likely to be the highest, even if another heat dissipation member is not disposed in the region (side surface) of the coil 2 facing the side wall 41 of the case 4. The heat of the coil 2 can be dissipated efficiently. Therefore, it is difficult to increase the size and the size can be reduced.

[実施形態2]
図10,図11を参照して、実施形態2のリアクトル1Bを説明する。実施形態1では、放熱部材8A,8C,8Dとして、内側面がコイル2の各巻回部2a,2bをそれぞれ一纏めにした外形に対応した形状である構成を説明した。実施形態2のリアクトル1Bでは、放熱部材8Bの形状が放熱部材8Aなどとは異なっており、放熱部材8Bの基部80の外側面及び内側面のそれぞれから突出する突起(放熱用突起82,介在突起84)を有する点を、実施形態1との主な相違点とする。この放熱部材8Bの内側の形状は、各巻回部2a,2bにおける各ターン間の間隔についても対応している。以下、この相違点を詳細に説明し、重複する構成及び効果の詳細な説明は省略する。なお、図10は、リアクトル1Bをコイル2の巻回部2aの軸方向に平行な平面で切断した縦断面図を示す。図11は、リアクトル1Bを巻回部2a,2bの軸方向に直交する平面で切断した横断面図であり、放熱部材8Bの近傍を拡大して示す。温度センサ70は省略している。
[Embodiment 2]
With reference to FIG. 10, FIG. 11, the reactor 1B of Embodiment 2 is demonstrated. In the first embodiment, as the heat radiating members 8A, 8C, and 8D, the configuration has been described in which the inner surface has a shape corresponding to the outer shape in which the winding portions 2a and 2b of the coil 2 are gathered together. In the reactor 1B of the second embodiment, the shape of the heat radiating member 8B is different from that of the heat radiating member 8A and the like, and protrusions protruding from the outer surface and the inner surface of the base 80 of the heat radiating member 8B (heat radiating protrusions 82, intervening protrusions). 84) is the main difference from the first embodiment. The inner shape of the heat radiating member 8B also corresponds to the interval between the turns in the winding portions 2a and 2b. Hereinafter, this difference will be described in detail, and a detailed description of overlapping configurations and effects will be omitted. 10 shows a longitudinal sectional view of the reactor 1B cut along a plane parallel to the axial direction of the winding portion 2a of the coil 2. FIG. FIG. 11 is a cross-sectional view of the reactor 1B cut along a plane perpendicular to the axial direction of the winding portions 2a and 2b, and shows the vicinity of the heat dissipation member 8B in an enlarged manner. The temperature sensor 70 is omitted.

・全体構成
リアクトル1Bの基本構成は実施形態1のリアクトル1Aと同様である。概略を述べると、図10に示すように、リアクトル1Bは、巻線2wを螺旋状に巻回してなる一対の巻回部2a,2b(図11)を有するコイル2と、巻回部2a,2b内に配置される部分を有する磁性コア3と、コイル2と磁性コア3とを含む組合体10を収納するケース4と、ケース4内に充填される封止樹脂100と、巻回部2a,2bのうち、ケース4の開口側領域(上側領域)の少なくとも一部を覆うように配置される放熱部材8Bとを備える。
-Overall configuration The basic configuration of the reactor 1B is the same as the reactor 1A of the first embodiment. Briefly, as shown in FIG. 10, a reactor 1B includes a coil 2 having a pair of winding portions 2a and 2b (FIG. 11) formed by winding a winding 2w in a spiral shape, and a winding portion 2a, 2b, a magnetic core 3 having a portion arranged in 2b, a case 4 housing a combination 10 including the coil 2 and the magnetic core 3, a sealing resin 100 filled in the case 4, and a winding portion 2a , 2b, a heat radiating member 8B disposed so as to cover at least a part of the opening side region (upper region) of the case 4 is provided.

・放熱部材
放熱部材8Bは、板状の基部80と、基部80の外側面からケース4外に向かって突設される複数の放熱用突起82とを備える。放熱部材8Bは、更に基部80の内側面のうち、コイル2の巻回部2a,2bとの対向領域から突設されて、巻回部2a,2bのターン間に介在する複数の介在突起84を備える。即ち、放熱部材8Bは、基部80の内外の両面に放熱性を高めるための突起を有しているといえる。この例の基部80の内側面は、実施形態1と同様に、コイル2の巻回部2a,2bの外形に概ね沿ったm字形状であり、この内側面から突設された各介在突起84がターン間に介在される。この例の放熱部材8Bは、基部80と、複数の放熱用突起82と、複数の介在突起84とが高熱伝導性樹脂によって一体に成形された一体成形物である。
Heat dissipation member The heat dissipation member 8B includes a plate-like base 80 and a plurality of heat dissipation protrusions 82 protruding from the outer surface of the base 80 toward the outside of the case 4. The heat dissipating member 8B further protrudes from the inner surface of the base portion 80 from a region facing the winding portions 2a and 2b of the coil 2, and a plurality of intervening protrusions 84 interposed between the turns of the winding portions 2a and 2b. Is provided. That is, it can be said that the heat radiating member 8 </ b> B has protrusions for improving heat dissipation on both the inside and outside of the base 80. As in the first embodiment, the inner side surface of the base portion 80 in this example has an m-shape generally along the outer shape of the winding portions 2a and 2b of the coil 2, and each intervening protrusion 84 projecting from the inner side surface. Is interposed between turns. The heat radiating member 8B in this example is an integrally molded product in which a base 80, a plurality of heat radiating protrusions 82, and a plurality of intervening protrusions 84 are integrally formed of a high thermal conductive resin.

・・介在突起
介在突起84は、コイル2の巻回部2a,2bのターン間に介在して、ターン間に生じ得る隙間を低減し、コイル2からの熱の放熱経路として利用される。放熱性を考慮すると、介在突起84はターンに接触して、又は封止樹脂100を介して間接的に接触して存在することが好ましい。
..Interposition protrusion The interposition protrusion 84 is interposed between the turns of the winding portions 2a and 2b of the coil 2, reduces a gap that may be generated between the turns, and is used as a heat dissipation path for heat from the coil 2. In consideration of heat dissipation, it is preferable that the interposition protrusion 84 exists in contact with the turn or indirectly through the sealing resin 100.

介在突起84の形状、大きさなどは適宜選択できる。
大きさについて述べると、例えば、介在突起84の厚さをターン間の所定の間隔(コイル2の自然長での間隔)よりも薄くすることができる。この場合、介在突起84の挿入によるターン間の隙間の低減を図ることができる。また、この場合、介在突起84のターン間への挿入にあたり、ターンをつくる巻線2wに接触し難く、接触による損傷を招き難い。
又は、例えば、介在突起84の厚さをターン間の所定の間隔と同等以上とすることができる。この場合、ターンと介在突起84とが接触でき、放熱性に優れる。また、この場合、各介在突起84が隣り合うターンに挟持されて、放熱部材8Bはコイル2に強固に保持される。そのため、この場合、封止樹脂100を省略したり、別途接着剤などを用いたりしなくても、コイル2と放熱部材8Bとが強固に固定される。
又は、例えば、介在突起84の突出長さを、ターンをつくる巻線2wの幅と同等程度としたり、介在突起84の幅を大きくしたりすることができる。この場合、ターンと介在突起84との接触面積を増大でき、放熱性に優れる。
又は、例えば、介在突起84の突出長さを短くしたり、介在突起84の幅を小さくしたりすることができる。これらの場合、介在突起84をターン間に挿入し易く、組立作業性に優れる。
The shape, size, and the like of the interposition protrusion 84 can be selected as appropriate.
In terms of size, for example, the thickness of the intervening protrusion 84 can be made thinner than a predetermined interval between the turns (interval in the natural length of the coil 2). In this case, it is possible to reduce the gap between turns by inserting the interposition protrusion 84. Further, in this case, when inserting the interposition protrusion 84 between the turns, it is difficult to contact the winding 2w forming the turn, and damage due to the contact is hardly caused.
Alternatively, for example, the thickness of the intervening protrusion 84 can be equal to or greater than a predetermined interval between turns. In this case, the turn and the interposition protrusion 84 can be in contact with each other, and the heat dissipation is excellent. Further, in this case, each interposition protrusion 84 is sandwiched between adjacent turns, and the heat radiating member 8 </ b> B is firmly held by the coil 2. Therefore, in this case, the coil 2 and the heat radiating member 8B are firmly fixed without omitting the sealing resin 100 or using a separate adhesive or the like.
Alternatively, for example, the protruding length of the interposing protrusion 84 can be made substantially equal to the width of the winding 2w that forms the turn, or the width of the interposing protrusion 84 can be increased. In this case, the contact area between the turn and the interposition protrusion 84 can be increased, and the heat dissipation is excellent.
Alternatively, for example, the protruding length of the interposing protrusion 84 can be shortened, or the width of the interposing protrusion 84 can be reduced. In these cases, the interposition protrusion 84 can be easily inserted between turns, and the assembly workability is excellent.

介在突起84の形状について述べると、実施形態1で説明した放熱用突起82などと同様に平板状などが利用し易いと考えられる。この例の介在突起84は、図11に示すように矩形状の平板であり、その幅は、コイル2の巻回部2a,2bにおける上面20uの幅程度とし、その突出長さは、巻線2wの幅の半分程度としている。   When describing the shape of the interposition protrusion 84, it is considered that a flat plate or the like is easy to use like the heat dissipation protrusion 82 described in the first embodiment. As shown in FIG. 11, the intervening protrusion 84 in this example is a rectangular flat plate, the width of which is about the width of the upper surface 20u of the winding portions 2a, 2b of the coil 2, and the protruding length is the winding length. It is about half the width of 2w.

・リアクトルの製造方法
実施形態2のリアクトル1Bは、例えば、実施形態1で説明したリアクトルの製造方法によって製造できる。特に、放熱部材の配置工程では、コイル2の巻回部2a,2bのターン間に放熱部材8Bの介在突起84を差し入れて、放熱部材8Bをコイル2に配置する。封止樹脂100が未固化状態であるため、介在突起84を容易に挿入できる。
-Reactor manufacturing method The reactor 1B of Embodiment 2 can be manufactured with the manufacturing method of the reactor demonstrated in Embodiment 1, for example. Particularly, in the heat dissipating member disposing step, the interposing protrusion 84 of the heat dissipating member 8B is inserted between the turns of the winding portions 2a and 2b of the coil 2, and the heat dissipating member 8B is disposed on the coil 2. Since the sealing resin 100 is in an unsolidified state, the interposition protrusion 84 can be easily inserted.

・効果
実施形態2のリアクトル1Bは、高熱伝導性樹脂の成形体である放熱部材8Bを備えるため、実施形態1と同様の効果を奏する。代表的な効果を述べると、リアクトル1Bは、コイル2の巻回部2a,2bにおけるケース4の底部側領域と開口側領域との温度差を低減できる上に、放熱部材8Bの内側面と巻回部2a,2bとの間、及び放熱部材8Bの放熱用突起82とケース4の側壁部41の内周面や開口縁との間との電気絶縁性に優れる。
-Effect Since the reactor 1B of Embodiment 2 is equipped with the heat radiating member 8B which is a molded object of highly heat conductive resin, there exists an effect similar to Embodiment 1. FIG. To describe typical effects, the reactor 1B can reduce the temperature difference between the bottom side region and the opening side region of the case 4 in the winding portions 2a and 2b of the coil 2, and also the inner surface and winding of the heat radiating member 8B. It is excellent in electrical insulation between the turn portions 2a and 2b and between the heat radiation protrusion 82 of the heat radiation member 8B and the inner peripheral surface and the opening edge of the side wall portion 41 of the case 4.

特に、リアクトル1Bは、コイル2の巻回部2a,2bのターン間に介在突起84が介在するため、コイル2の熱を介在突起84から基部80を経て放熱用突起82によってケース4外に良好に伝えられて、放熱性により優れる。また、介在突起84が高熱伝導性樹脂で構成された電気絶縁材であるため、巻回部2a,2b(ターン)と放熱部材8B(介在突起84)との間の電気絶縁性にも優れる。基部80だけでなく介在突起84も封止樹脂100に埋設されることで、放熱部材8Bが封止樹脂100によって強固に保持されると共に、巻回部2a,2bと放熱部材8Bとも封止樹脂100によって強固に固定される。この点からも、リアクトル1Bは放熱性により優れる。   In particular, the reactor 1B has an interposition protrusion 84 interposed between the turns of the winding portions 2a and 2b of the coil 2. Therefore, the heat of the coil 2 is good outside the case 4 by the heat dissipation protrusion 82 from the interposition protrusion 84 through the base portion 80. The heat dissipation is superior. Further, since the interposition protrusion 84 is an electrical insulating material made of a high thermal conductive resin, the electrical insulation between the winding portions 2a, 2b (turns) and the heat radiating member 8B (interposition protrusion 84) is excellent. Since not only the base portion 80 but also the interposing protrusions 84 are embedded in the sealing resin 100, the heat radiating member 8B is firmly held by the sealing resin 100, and the winding portions 2a and 2b and the heat radiating member 8B are both encapsulating resin. 100 is firmly fixed. Also from this point, the reactor 1B is more excellent in heat dissipation.

[変形例1]
実施形態1,2では、ケース4が金属による一体成形物である形態を説明した。その他、底板部40と側壁部41とが独立した部材であり、組み合わせて一つのケースを構成する形態とすることができる。この形態では底板部40の構成材料と側壁部41の構成材料とを異ならせることができる。例えば、底板部40を金属製、側壁部41を樹脂製とすることができる。この場合、コイル2と側壁部41との間及び放熱部材8Aと側壁部41との間の電気絶縁性に優れる、ケース4が軽量である、側壁部41を取り外した状態で樹脂層42の形成や組合体10の載置が行えて作業性に優れる、といった利点を有する。一方、側壁部41が樹脂製である場合、側壁部41が金属製である場合に比較して、ケース4内にコイル2の熱が籠り易い。しかし、この場合でも、放熱部材8Aなどを備えるため、コイル2におけるケース4の底部側領域と開口側領域との温度差を低減できる。
[Modification 1]
In the first and second embodiments, the form in which the case 4 is an integrally formed product of metal has been described. In addition, the bottom plate part 40 and the side wall part 41 are independent members, and can be combined to form one case. In this embodiment, the constituent material of the bottom plate portion 40 and the constituent material of the side wall portion 41 can be made different. For example, the bottom plate portion 40 can be made of metal and the side wall portion 41 can be made of resin. In this case, the resin layer 42 is formed in a state in which the case 4 is lightweight and the side wall 41 is removed, which is excellent in electrical insulation between the coil 2 and the side wall 41 and between the heat radiation member 8A and the side wall 41. And the combination 10 can be placed and the workability is excellent. On the other hand, when the side wall part 41 is made of resin, the heat of the coil 2 is easily generated in the case 4 as compared with the case where the side wall part 41 is made of metal. However, even in this case, since the heat radiating member 8A is provided, the temperature difference between the bottom side region of the case 4 and the opening side region in the coil 2 can be reduced.

側壁部41を樹脂製とする場合、構成樹脂には、PBT樹脂、ウレタン樹脂、PPS樹脂、ABS樹脂などが挙げられる。樹脂製の側壁部41は、射出成形などの公知の成形法によって容易に製造できる。   When the side wall 41 is made of resin, examples of the constituent resin include PBT resin, urethane resin, PPS resin, and ABS resin. The resin side wall 41 can be easily manufactured by a known molding method such as injection molding.

又は、底板部40と側壁部41とが独立部材であって、双方共に金属製とすることができる。この場合、底板部40と側壁部41とで異なる組成の金属を利用できる。   Or the baseplate part 40 and the side wall part 41 are independent members, and both can be made of metal. In this case, metals having different compositions can be used for the bottom plate portion 40 and the side wall portion 41.

又は、底板部40におけるコイル2の載置領域のみが金属である形態、即ち、底板部40の一部にのみ金属領域を備え、他部が樹脂製である形態などとすることができる。   Or only the mounting area | region of the coil 2 in the baseplate part 40 is a form which is a metal, ie, a metal area | region is provided only in a part of the baseplate part 40, and another part can be made into resin.

[変形例2]
実施形態1,2では、ケース4内に封止樹脂100が充填される形態を説明した。その他、封止樹脂100を省略できる。この場合、コイル2と放熱部材8Aなどとを接着剤などで固定すると、両者を強固に固定できる上に、両者間の隙間を低減できて好ましい。
[Modification 2]
In the first and second embodiments, the form in which the sealing resin 100 is filled in the case 4 has been described. In addition, the sealing resin 100 can be omitted. In this case, it is preferable to fix the coil 2 and the heat radiating member 8A and the like with an adhesive or the like because both can be firmly fixed and the gap between the two can be reduced.

[変形例3]
実施形態1,2では、放熱部材8Aなどが樹脂を主体とする一体成形物である形態を説明した。その他、基部80の一部に樹脂よりも熱伝導性に優れる材料、即ち金属やアルミナなどの非金属無機材料(上述のフィラーの項参照)からなる部分を含む形態とすることができる。この場合、放熱性をより高められると期待される。基部80の一部に金属を含む場合でも、放熱部材などにおけるコイル2と接触し得る領域、即ち基部80の内側面のうち巻回部2a,2bとの対向領域と、ケース4(特に金属製の側壁部41)に近接配置される又は接触し得る放熱用突起82などとが樹脂といった電気絶縁材料を含むことで、コイル2と放熱部材などとケース4との三者間の電気絶縁性に優れる。
[Modification 3]
In the first and second embodiments, the configuration in which the heat radiating member 8A and the like are integrally molded mainly composed of resin has been described. In addition, a part of the base portion 80 may include a portion made of a material having higher thermal conductivity than the resin, that is, a non-metallic inorganic material such as metal or alumina (see the above-mentioned filler section). In this case, it is expected that the heat dissipation can be further improved. Even when metal is included in a part of the base portion 80, a region that can come into contact with the coil 2 in the heat radiating member, that is, a region facing the winding portions 2a and 2b on the inner side surface of the base portion 80, and the case 4 (particularly metal The heat dissipation projection 82 and the like which are disposed in close proximity to or in contact with the side wall 41) include an electrically insulating material such as resin, so that electrical insulation between the coil 2, the heat radiating member and the case 4 can be achieved. Excellent.

基部80に含む金属や非金属無機材料は、平板などが利用できる。この平板を中子として、上述の高熱伝導性樹脂などをインサート成形などすることで、基部80の一部に金属や非金属無機材料の平板を含む放熱部材を容易に製造できる。   A flat plate or the like can be used as the metal or non-metallic inorganic material included in the base 80. By using this flat plate as a core and insert-molding the above-described high thermal conductive resin or the like, a heat radiating member including a flat plate of a metal or a non-metallic inorganic material in a part of the base 80 can be easily manufactured.

[試験例1]
実施形態1のリアクトル1Aを作製して、コイル2の巻回部2a,2bにおけるケース4の底部側領域と開口側領域との温度差を測定した。比較として、放熱部材8Aを備えていない点を除いて同じ構成のリアクトルを作製し、同様に上記温度差を測定した。
[Test Example 1]
The reactor 1A of Embodiment 1 was produced, and the temperature difference between the bottom side region and the opening side region of the case 4 in the winding portions 2a and 2b of the coil 2 was measured. As a comparison, a reactor having the same configuration was manufactured except that the heat radiating member 8A was not provided, and the temperature difference was measured in the same manner.

この試験では、実施形態1のリアクトル1A及び比較のリアクトルのいずれも、模擬対象にケースの底部を載置した状態でコイルに通電して、コイルの巻回部におけるケースの底部側領域の温度Tdと、同開口側領域の温度Tuとをそれぞれ測定した。模擬対象とは、冷却構造を備える設置対象を模擬したものである。温度Td,Tuは、巻回部におけるケースの底部側に位置する二つの角R部間と、ケースの開口側領域に位置する二つの角R部間とにそれぞれ温度センサを配置して測定した。この試験ではケースは、底板部と側壁部とが一体成形されたアルミニウム合金製とし、放熱部材8Aは、高熱伝導性樹脂として、熱伝導率が1W/m・K以上10W/m・K以下を満たし、セラミックスフィラーを含む熱可塑性樹脂を用いて射出成形によって製造した一体成形物とした。   In this test, both the reactor 1A of the first embodiment and the comparative reactor are energized to the coil with the bottom of the case placed on the simulation target, and the temperature Td of the bottom side region of the case at the coil winding portion. And the temperature Tu of the opening side region were measured. The simulation target is a simulation of an installation target having a cooling structure. The temperatures Td and Tu were measured by placing temperature sensors between the two corner R portions located on the bottom side of the case in the winding portion and between the two corner R portions located in the opening side region of the case. . In this test, the case is made of an aluminum alloy in which a bottom plate portion and a side wall portion are integrally formed, and the heat radiating member 8A is a high thermal conductive resin with a thermal conductivity of 1 W / m · K to 10 W / m · K. It was set as the integral molded product manufactured by injection molding using the thermoplastic resin which satisfy | filled and contained the ceramic filler.

その結果、比較のリアクトルにおける上述の温度差(Tu−Td)を基準とすると、実施形態1のリアクトル1Aにおける上述の温度差(Tu−Td)は5℃低く、温度差が小さくなっていた。この試験から、特定の放熱部材を特定の箇所に備える実施形態1のリアクトル1Aは、コイル2の巻回部2a,2bにおけるケースの底部側領域と開口側領域との温度差を小さくできることが確認された。   As a result, based on the temperature difference (Tu−Td) in the comparative reactor, the temperature difference (Tu−Td) in the reactor 1 </ b> A of the first embodiment was 5 ° C. lower and the temperature difference was smaller. From this test, it is confirmed that the reactor 1 </ b> A according to the first embodiment including a specific heat radiating member at a specific location can reduce a temperature difference between the bottom side region and the opening side region of the case in the winding portions 2 a and 2 b of the coil 2. It was done.

本発明は、これらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。例えば、巻回部が一つのみのコイルを備えるリアクトルとすることができる。   The present invention is not limited to these exemplifications, but is defined by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims. For example, it can be set as the reactor provided with a coil with only one winding part.

本発明のリアクトルは、ハイブリッド自動車、プラグインハイブリッド自動車、電気自動車、燃料電池自動車などの車両に搭載される車載用コンバータ(代表的にはDC−DCコンバータ)や空調機のコンバータなどの種々のコンバータ、電力変換装置の構成部品に利用することができる。   The reactor of the present invention includes various converters such as an in-vehicle converter (typically a DC-DC converter) and an air conditioner converter mounted on a vehicle such as a hybrid vehicle, a plug-in hybrid vehicle, an electric vehicle, and a fuel cell vehicle. It can be used as a component of a power conversion device.

1A,1B リアクトル 10 組合体 100 封止樹脂 1000 設置対象
2 コイル 2w 巻線 2a,2b 巻回部 2r 連結部 20 角R部
20u 上面(ケースの開口側面)
3 磁性コア 31m,32m コア片 31g ギャップ材 32e 内端面
4 ケース 4d 底面 4i 内底面 40 底板部 41 側壁部 42 樹脂層
5 介在部材 50a,50b 分割材 51 内側介在部 52 端面介在部
52h 貫通孔
7 センサ部材 70 温度センサ 72 保護部 78 配線
8A,8B,8C,8D 放熱部材 80 基部 82 放熱用突起 84 介在突起
87 センサ配置部 87h 挿通孔
1A, 1B Reactor 10 Combination 100 Sealing resin 1000 Installation object 2 Coil 2w Winding 2a, 2b Winding part 2r Connecting part 20 Corner R part 20u Upper surface (opening side of case)
3 Magnetic core 31m, 32m Core piece 31g Gap material 32e Inner end face 4 Case 4d Bottom face 4i Inner bottom face 40 Bottom plate part 41 Side wall part 42 Resin layer 5 Interposition member 50a, 50b Dividing material 51 Inner interposition part 52 End face interposition part 52h Through hole 7 Sensor member 70 Temperature sensor 72 Protection part 78 Wiring 8A, 8B, 8C, 8D Heat radiation member 80 Base 82 Heat radiation protrusion 84 Interposition protrusion 87 Sensor arrangement part 87h Insertion hole

Claims (5)

巻線を螺旋状に巻回してなる巻回部を有するコイルと、
前記巻回部内に配置される部分を有する磁性コアと、
前記コイルと前記磁性コアとを含む組合体を収納するケースと、
前記巻回部における前記ケースの開口側領域の少なくとも一部を覆うように配置される放熱部材とを備え、
前記ケースの底部は、前記組合体が載置される金属領域を含み、
前記放熱部材は、基部と、前記基部の外側面から前記ケース外に向かって突設される複数の放熱用突起とを備え、
前記基部の内側面のうち前記巻回部との対向領域と、前記放熱用突起とは樹脂を含むリアクトル。
A coil having a winding portion formed by spirally winding a winding;
A magnetic core having a portion disposed in the winding portion;
A case for housing a combination including the coil and the magnetic core;
A heat dissipating member arranged to cover at least a part of the opening side region of the case in the winding part,
The bottom of the case includes a metal region on which the combination is placed,
The heat dissipating member includes a base and a plurality of heat dissipating protrusions protruding from the outer surface of the base toward the outside of the case,
Of the inner side surface of the base portion, a region facing the winding portion and the heat dissipation protrusion are a reactor including a resin.
前記ケース内に充填され、前記巻回部と前記放熱部材とを固定する部分を有する封止樹脂を備える請求項1に記載のリアクトル。   The reactor of Claim 1 provided with the sealing resin with which the said case is filled and which has a part which fixes the said winding part and the said heat radiating member. 前記放熱部材は、前記基部の内側面のうち前記巻回部との対向領域から突設されて、前記巻回部のターン間に介在される複数の介在突起を備える請求項1又は請求項2に記載のリアクトル。   The said heat radiating member is provided in the inner surface of the said base part from the opposing area | region with the said winding part, and is provided with the some interposition protrusion interposed between the turns of the said winding part. The reactor described in. 前記コイルの温度を測定する温度センサを備え、
前記コイルは、互いの軸が平行するように並列に配置される一対の前記巻回部を有し、
前記放熱部材は、前記温度センサを前記一対の巻回部間に位置決めするセンサ配置部を備える請求項1〜請求項3のいずれか1項に記載のリアクトル。
A temperature sensor for measuring the temperature of the coil;
The coil has a pair of the winding portions arranged in parallel so that the axes thereof are parallel to each other,
The reactor according to any one of claims 1 to 3, wherein the heat radiating member includes a sensor arrangement portion that positions the temperature sensor between the pair of winding portions.
前記放熱部材は、熱伝導率が1W/m・K以上である高熱伝導性樹脂の一体成形物である請求項1〜請求項4のいずれか1項に記載のリアクトル。   The reactor according to any one of claims 1 to 4, wherein the heat radiating member is an integrally molded product of a high thermal conductive resin having a thermal conductivity of 1 W / m · K or more.
JP2014232041A 2014-11-14 2014-11-14 Reactor Pending JP2016096271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014232041A JP2016096271A (en) 2014-11-14 2014-11-14 Reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014232041A JP2016096271A (en) 2014-11-14 2014-11-14 Reactor

Publications (1)

Publication Number Publication Date
JP2016096271A true JP2016096271A (en) 2016-05-26

Family

ID=56071898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014232041A Pending JP2016096271A (en) 2014-11-14 2014-11-14 Reactor

Country Status (1)

Country Link
JP (1) JP2016096271A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110491644A (en) * 2019-07-29 2019-11-22 江苏星驰变压器有限公司 A method of accelerating the heat dissipation of oil-immersed transformer iron core
JP2020053479A (en) * 2018-09-25 2020-04-02 トヨタ自動車株式会社 Reactor
CN112530664A (en) * 2019-09-18 2021-03-19 株式会社自动网络技术研究所 Electric reactor
CN113287179A (en) * 2019-01-10 2021-08-20 株式会社自动网络技术研究所 Electric reactor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020053479A (en) * 2018-09-25 2020-04-02 トヨタ自動車株式会社 Reactor
CN113287179A (en) * 2019-01-10 2021-08-20 株式会社自动网络技术研究所 Electric reactor
CN113287179B (en) * 2019-01-10 2023-03-21 株式会社自动网络技术研究所 Electric reactor
CN110491644A (en) * 2019-07-29 2019-11-22 江苏星驰变压器有限公司 A method of accelerating the heat dissipation of oil-immersed transformer iron core
CN112530664A (en) * 2019-09-18 2021-03-19 株式会社自动网络技术研究所 Electric reactor

Similar Documents

Publication Publication Date Title
JP5246502B2 (en) Reactor and converter
JP5267240B2 (en) Reactor and converter
JP6376461B2 (en) Reactor
CN110326071B (en) Electric reactor
JP2009194198A (en) Reactor
JP6585888B2 (en) Reactor
JP2016096271A (en) Reactor
US20210358671A1 (en) Reactor
JP2016092199A (en) Reactor
JP5099523B2 (en) Reactor
WO2015178208A1 (en) Reactor
JP7110863B2 (en) Reactor
JP2016092200A (en) Reactor
CN111788646B (en) Electric reactor
WO2016208441A1 (en) Reactor and method for manufacturing reactor
US20210383962A1 (en) Reactor
JP2011009791A (en) Reactor
JP6610903B2 (en) Reactor
JP6468466B2 (en) Reactor
JP6570982B2 (en) Reactor
JP2011009660A (en) Reactor
WO2019171940A1 (en) Reactor
JP7104897B2 (en) Reactor
JP7089671B2 (en) Reactor
WO2020105469A1 (en) Reactor