JP2016184623A - Semiconductor light emission device - Google Patents

Semiconductor light emission device Download PDF

Info

Publication number
JP2016184623A
JP2016184623A JP2015063356A JP2015063356A JP2016184623A JP 2016184623 A JP2016184623 A JP 2016184623A JP 2015063356 A JP2015063356 A JP 2015063356A JP 2015063356 A JP2015063356 A JP 2015063356A JP 2016184623 A JP2016184623 A JP 2016184623A
Authority
JP
Japan
Prior art keywords
substrate
light emitting
emitting device
semiconductor light
support base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015063356A
Other languages
Japanese (ja)
Inventor
佐野 寛幸
Hiroyuki Sano
寛幸 佐野
玲 式部
Rei Shikibu
玲 式部
和与至 谷口
Kazuyoshi Taniguchi
和与至 谷口
康広 多田
Yasuhiro Tada
康広 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2015063356A priority Critical patent/JP2016184623A/en
Publication of JP2016184623A publication Critical patent/JP2016184623A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48464Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area also being a ball bond, i.e. ball-to-ball
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a structure for preventing exfoliation of sealing resin from a substrate in a semiconductor light emission device sealed with resin.SOLUTION: A semiconductor light emission device includes a substrate on which a wiring pattern is formed, a light emission element mounted on the substrate, a resin layer covering the light emission element, and a heat radiation support table which is disposed just below the light emission element and radiates heat generated by the light emission element. The heat radiation support table has a base portion which is fitted in a hole provided in the substrate, and a projection portion projecting from the surface of the substrate to the light emission element side. In the projection portion, the cross-sectional area of a cross-section parallel to the surface of the substrate increases in at least a part in the height direction of the range from the surface of the substrate to the upper surface of the heat radiation support table.SELECTED DRAWING: Figure 1

Description

本発明は、半導体発光素子を樹脂で覆った構造の半導体発光装置に関する。   The present invention relates to a semiconductor light emitting device having a structure in which a semiconductor light emitting element is covered with a resin.

現在実用化されている半導体発光装置には、ステムタイプや所謂LEDパッケージと呼ばれるタイプのものなど種々の形態があるが、いずれも、基板上に実装した半導体発光素子を封止樹脂で覆った構造を有している。封止樹脂は、半導体発光素子を外界から保護するとともに光取出し媒体としても機能するものであり、透明性、耐光性、耐熱性などの性能、さらには基板や発光素子との接着性がよいことが求められる。封止樹脂としては、シリコーン樹脂やエポキシ樹脂が用いられている。   There are various forms of semiconductor light emitting devices that are currently in practical use, such as a stem type or a so-called LED package type, all of which have a structure in which a semiconductor light emitting element mounted on a substrate is covered with a sealing resin have. The sealing resin protects the semiconductor light emitting device from the outside and functions as a light extraction medium, and has good performance such as transparency, light resistance, heat resistance, and adhesion to the substrate and the light emitting device. Is required. As the sealing resin, a silicone resin or an epoxy resin is used.

半導体発光装置において、封止樹脂や基板を劣化させる一因である発光素子からの熱を放熱させることは重要な課題であるが、現在広く用いられている封止樹脂は熱伝導性が良好ではないため、基板側に熱伝導性のよい材料を配置するなどの工夫がなされている。   In semiconductor light-emitting devices, it is an important issue to dissipate heat from the light-emitting element, which is a cause of deterioration of the sealing resin and the substrate. However, the sealing resin widely used at present does not have good thermal conductivity. For this reason, a device such as arranging a material having good thermal conductivity on the substrate side has been devised.

また特許文献1に記載された技術では、周囲に枠体が固定された基体の中央部を凸部とし、この凸部に発光素子を載置するとともに凸部の周囲を囲むように絶縁性部材を枠体に充填し、さらに絶縁性部材と発光素子の上側を蛍光体含有透光部材で覆った構造の発光素子パッケージが提案されている。この特許文献1に記載された技術では、基体の凸部の周囲に絶縁性部材を配置することによって、発光素子が発する熱を、絶縁性部材を介して枠体に伝達拡散することで放熱性の向上を図っている。   Moreover, in the technique described in Patent Document 1, the central portion of the base body around which the frame body is fixed is a convex portion, and the light emitting element is placed on the convex portion, and the insulating member is surrounded so as to surround the convex portion. A light emitting device package having a structure in which a frame body is filled and an insulating member and a light emitting device are covered with a phosphor-containing light transmitting member has been proposed. In the technique described in Patent Document 1, by disposing an insulating member around the convex portion of the base, heat generated by the light emitting element is transmitted and diffused to the frame body through the insulating member to dissipate heat. We are trying to improve.

特許第4443188号公報Japanese Patent No. 4443188

半導体発光装置が置かれる環境は、その用途によって様々であるが、振動する機体に搭載される場合も多い。外部環境による振動は、発光装置自体の発熱に加えて樹脂劣化の原因となる。また、樹脂とパッケージ壁面や基板との接着面に対し振動が加えられることで樹脂が脱落すると、それが、素子配線の断線や素子の載置面からの剥離を引き起こす原因となる。従来の技術では、樹脂とパッケージ壁面との接着性は、専ら樹脂の性質に委ねられ、振動に対する接着性の強化について考慮されていない。   The environment in which the semiconductor light emitting device is placed varies depending on the application, but is often mounted on a vibrating body. Vibration due to the external environment causes resin deterioration in addition to heat generation of the light emitting device itself. Further, if the resin falls off due to vibration applied to the bonding surface between the resin and the package wall surface or the substrate, this causes disconnection of the element wiring or peeling from the element mounting surface. In the conventional technique, the adhesiveness between the resin and the package wall surface is exclusively left to the properties of the resin, and no consideration is given to the enhancement of the adhesiveness against vibration.

本発明は、振動のある環境に置かれた場合にも、封止樹脂が剥離するのを防止する構造を持つ半導体発光装置を提供することを課題とする。   An object of the present invention is to provide a semiconductor light emitting device having a structure that prevents the sealing resin from peeling even when placed in an environment with vibration.

上記課題を解決するため本発明の半導体発光装置は、発光素子が載置される基板の領域に、放熱機能と樹脂に対するアンカー機能とを兼ね備えた放熱支持台を配置したことを特徴とする。   In order to solve the above-described problems, the semiconductor light emitting device of the present invention is characterized in that a heat radiation support base having both a heat radiation function and an anchor function for a resin is disposed in a region of a substrate on which the light emitting element is placed.

すなわち、本発明の半導体発光装置は、配線パターンが形成された基板と、前記基板上に搭載される発光素子と、前記発光素子を覆う樹脂層と、前記発光素子の直下に配置され、前記発光素子が発する熱を放熱する放熱支持台とを備え、前記放熱支持台は、前記基板に設けられた穴に嵌合する基部と前記基板の表面から発光素子側に突出する突出部とを有し、前記突出部は、前記基板の表面から前記放熱支持台上面までの高さ方向の少なくとも一部範囲において、前記基板の表面に平行な断面の断面積が増加している。   That is, the semiconductor light emitting device of the present invention is disposed immediately below the light emitting element, the substrate on which a wiring pattern is formed, the light emitting element mounted on the substrate, the resin layer covering the light emitting element, and the light emitting element. A heat dissipation support that dissipates heat generated by the element, and the heat dissipation support includes a base that fits into a hole provided in the substrate and a protrusion that protrudes from the surface of the substrate toward the light emitting element. The protrusion has an increased cross-sectional area parallel to the surface of the substrate in at least a partial range in the height direction from the surface of the substrate to the upper surface of the heat dissipation support base.

本発明によれば、放熱支持台の断面積が上に向かって増加している、即ち、放熱支持台が基板表面から上面に向かって広がる形状を有していることにより、放熱支持台と発光素子を覆って充填される封止樹脂に対し、上に移動するのを食い止める効果すなわちアンカー効果を発揮し、基板底面や側面から樹脂が剥離するのを防止し、それによって配線の断線や発光素子の剥離を防止することができる。   According to the present invention, the cross-sectional area of the heat radiating support base increases upward, that is, the heat radiating support base has a shape spreading from the substrate surface toward the upper surface, so that The sealing resin that covers and fills the element has an effect of stopping the movement, that is, an anchor effect, and prevents the resin from peeling from the bottom and side surfaces of the substrate. Can be prevented.

第一実施形態の半導体発光装置の側断面図Side sectional view of the semiconductor light emitting device of the first embodiment 図1の半導体発光装置の上面図Top view of the semiconductor light emitting device of FIG. 図1の半導体発光装置の放熱支持台の形状を説明する図The figure explaining the shape of the thermal radiation support stand of the semiconductor light-emitting device of FIG. 図1の半導体発光装置の製造工程を示す図The figure which shows the manufacturing process of the semiconductor light-emitting device of FIG. 図1の半導体発光装置の製造工程を示す図The figure which shows the manufacturing process of the semiconductor light-emitting device of FIG. 図1の半導体発光装置の製造工程の変更例を示す側面図The side view which shows the example of a change of the manufacturing process of the semiconductor light-emitting device of FIG. 図1の半導体発光装置の製造工程の変更例を示す上面図FIG. 3 is a top view showing a modification of the manufacturing process of the semiconductor light emitting device of FIG. (a)〜(c)は、放熱支持台の形状の例を示す斜視図(A)-(c) is a perspective view which shows the example of the shape of a thermal radiation support stand. (a)は第二実施形態の半導体発光装置の側断面図、(b)は第三実施形態の半導体発光装置の側断面図(A) is a sectional side view of the semiconductor light emitting device of the second embodiment, (b) is a sectional side view of the semiconductor light emitting device of the third embodiment. 第二実施形態の放熱支持台の形状を説明する図The figure explaining the shape of the thermal radiation support stand of 2nd embodiment 第三実施形態の放熱支持台の形状を説明する図The figure explaining the shape of the radiation support stand of a third embodiment 第四実施形態の半導体発光装置の側断面図Side sectional view of the semiconductor light emitting device of the fourth embodiment 第五実施形態の半導体発光装置の側断面図Side sectional view of the semiconductor light emitting device of the fifth embodiment 第六実施形態の半導体発光装置の側断面図Side sectional view of the semiconductor light emitting device of the sixth embodiment

以下、本発明の半導体発光装置の実施形態を、図面を参照して説明する。   Hereinafter, embodiments of a semiconductor light emitting device of the present invention will be described with reference to the drawings.

<第一実施形態>
本実施形態は、本発明を所謂LEDパッケージと呼ばれる半導体発光装置に適用した例である。この半導体発光装置は、基本的な構成として、図1に示すように、底面部11と側壁部12とを有するパッケージ基板(以下、単に基板ともいう)10と、基板10の底面部11の中央に配置された放熱支持台20と、放熱支持台20の上面に固定される半導体発光素子30と、基板10に充填されたモールド樹脂40とを備える。なお以下の説明において、本実施形態の半導体発光装置について、基板10の底面側を下側、モールド樹脂40側を上側とする。基板10の底面部11と側壁部12で囲まれる空間が、発光素子が実装され、モールド樹脂によって封止される空間(以下、実装空間という)である。
<First embodiment>
This embodiment is an example in which the present invention is applied to a semiconductor light emitting device called a so-called LED package. As shown in FIG. 1, this semiconductor light emitting device basically has a package substrate (hereinafter simply referred to as a substrate) 10 having a bottom surface portion 11 and a side wall portion 12 and a center of the bottom surface portion 11 of the substrate 10. And the semiconductor light emitting element 30 fixed to the upper surface of the heat dissipation support base 20 and the mold resin 40 filled in the substrate 10. In the following description, in the semiconductor light emitting device of this embodiment, the bottom surface side of the substrate 10 is the lower side, and the mold resin 40 side is the upper side. A space surrounded by the bottom surface portion 11 and the side wall portion 12 of the substrate 10 is a space (hereinafter referred to as a mounting space) in which the light emitting element is mounted and sealed with a mold resin.

基板10を構成する材料は特に限定されないが、アルミナ、窒化アルミニウム等のセラミックスやガラスとセラミックスの複合体などを使用することができる。また基板10の底面部11の中央には、その上面から底面に貫通する貫通孔10aが形成されており、この貫通孔10aに放熱支持台20が固定される。   Although the material which comprises the board | substrate 10 is not specifically limited, Ceramics, such as an alumina and aluminum nitride, the composite_body | complex of glass and ceramics, etc. can be used. A through hole 10a is formed in the center of the bottom surface portion 11 of the substrate 10 so as to penetrate from the top surface to the bottom surface, and the heat radiation support base 20 is fixed to the through hole 10a.

基板10は、例えば、グリーンシートと呼ばれるセラミックシートを積層して製造されたもので、裏面に電極パターンが形成されるとともに、その厚み方向(積層方向)と直交する方向に形成されたビアに電極用の導電材料が充填され、裏面の電極パターンと上面の電極を電気的に接続している。   The substrate 10 is manufactured, for example, by laminating ceramic sheets called green sheets. An electrode pattern is formed on the back surface, and electrodes are formed in vias formed in a direction perpendicular to the thickness direction (lamination direction). The back electrode pattern is electrically connected to the upper electrode.

例えば基板10を構成する材料がセラミックス或いはセラミックス複合体の場合、焼成後の硬度が極めて高いため、スルーホール等の加工が困難であるが、焼成前の加工しやすいグリーンシートを重ねて焼成する技術(LTCC:Low Temperature Co−fired Ceramics)を用いることにより、電極用のスルーホールや貫通孔10aを持つ基板パッケージを作製することができる。   For example, when the material constituting the substrate 10 is ceramics or a ceramic composite, since the hardness after firing is extremely high, it is difficult to process through-holes, etc., but a technique of stacking and firing green sheets that are easy to process before firing By using (LTCC: Low Temperature Co-fired Ceramics), a substrate package having through holes for electrodes and through holes 10a can be manufactured.

基板パッケージ10の形状は、限定されないが、本実施形態では、上面が開放された直方体の筐状であり、図2に示すように、上面から見た形状が四角形である。   Although the shape of the substrate package 10 is not limited, in the present embodiment, the shape is a rectangular parallelepiped housing having an open top surface, and the shape viewed from the top surface is a quadrangle as shown in FIG.

放熱支持台20は、半導体発光素子30が発する熱を放熱するとともに、後述するモールド樹脂40が基板10から剥離するのを防止する機能(アンカー効果)を持つもので、前者の機能を発揮させるために、熱伝導性のよい材料からなる。具体的には、銅やアルミニウムなどの金属などを用いることができる。   The heat radiating support 20 radiates heat generated by the semiconductor light emitting element 30 and has a function (anchor effect) for preventing the mold resin 40 described later from peeling from the substrate 10, in order to exhibit the former function. Further, it is made of a material having good thermal conductivity. Specifically, metals such as copper and aluminum can be used.

放熱支持台20は、貫通孔10aに嵌合する基部21と、基板10の底面の表面から突出する突出部22とからなり、両者は連続した一つの材料から構成されている。放熱支持台20の形状は、概ね、貫通孔10aの形状に合わせた柱状であるが、突出部22はその基板10の底面に平行な断面の面積が、下から上に向かって増加する領域を有している。即ち、放熱支持台20を図1に示すように側面から見た場合、突出部22の側面は、内側に曲面状の切欠部が形成され、上側に向かって突出部22の幅が広がる領域を有している。このように突出部22が基部21に対し上側が広がる形状を有していることにより、放熱支持台20は、それを覆って形成されるモールド樹脂40が剥がれるのを防止する効果、すなわちアンカー効果を奏することができる。   The heat dissipation support 20 includes a base 21 that fits into the through hole 10a and a protrusion 22 that protrudes from the bottom surface of the substrate 10, and both are made of a single continuous material. The shape of the heat dissipation support 20 is generally a columnar shape that matches the shape of the through hole 10a, but the protrusion 22 has a region in which the area of the cross section parallel to the bottom surface of the substrate 10 increases from the bottom to the top. Have. That is, when the heat radiating support 20 is viewed from the side as shown in FIG. 1, the side surface of the projecting portion 22 has a curved cutout portion formed on the inner side and a region in which the width of the projecting portion 22 increases toward the upper side. Have. Thus, since the protrusion part 22 has the shape which the upper side expands with respect to the base part 21, the heat radiation support base 20 has an effect of preventing the mold resin 40 formed covering it from being peeled, that is, an anchor effect. Can be played.

また放熱支持台20は側面が曲面状に凹んでいるので、硬化前のモールド樹脂を基板10内に充填する際に空気の巻き込みを防止するとともに、樹脂内に気泡が含まれたとしても気泡を側面の凹み部分に留めることなく上面から逃がすことができる。   Further, since the side surface of the heat radiation support base 20 is recessed in a curved shape, air is prevented from being entrained when the mold resin before curing is filled in the substrate 10, and even if air bubbles are included in the resin, the air bubbles are generated. It is possible to escape from the upper surface without being retained in the recessed portion on the side surface.

上述した効果を得るための、突出部22の側面形状を、図3を参照して、詳細に説明する。図3は突出部22を図2のA−A線で切断した側断面図である。図示するように、放熱支持台20の基部21は、発光素子30の幅Dとほぼ同じ幅W1の柱状である。それに続く突出部22は、幅がW1より大きい幅W2の柱状体の下側に曲面状の切欠部20cを形成した形状を有し、基板10の表面における幅は基部21の幅W1と一致している。突出部22の上面の幅W2は、W2>W1であれば特に限定されないが、確実なアンカー効果を得るためには、W2≧1.5×W1程度であることが好ましい。一方、発光素子30とワイヤボンディングされる基板10表面の電極パッドの位置や、放熱支持台20に搭載された発光素子30を基板10にワイヤボンディングする際の作業性などの観点からは、W2≦3×W1であることが好ましい。つまり基部21の柱状体から横に張り出した部分の幅W3(W3=(W2−W1)/2)は、好ましくは、表面における幅W1の0.125倍以上、1倍以下であり、0.5倍程度が最も好ましい。このような範囲とすることにより、ワイヤボンディングする際の支障がなく、且つモールド樹脂40に対するアンカー効果を与えることができる。   The side shape of the protrusion 22 for obtaining the above-described effect will be described in detail with reference to FIG. FIG. 3 is a sectional side view of the protrusion 22 taken along the line AA in FIG. As shown in the figure, the base 21 of the heat dissipation support 20 is a column having a width W1 that is substantially the same as the width D of the light emitting element 30. The subsequent protrusion 22 has a shape in which a curved notch 20c is formed on the lower side of the columnar body having a width W2 larger than W1, and the width on the surface of the substrate 10 coincides with the width W1 of the base 21. ing. The width W2 of the upper surface of the protrusion 22 is not particularly limited as long as W2> W1, but in order to obtain a reliable anchor effect, it is preferable that W2 ≧ 1.5 × W1. On the other hand, from the viewpoint of the position of the electrode pad on the surface of the substrate 10 to be wire-bonded to the light-emitting element 30 and workability when wire-bonding the light-emitting element 30 mounted on the heat dissipation support 20 to the substrate 10, W2 ≦ 3 × W1 is preferred. That is, the width W3 (W3 = (W2−W1) / 2) of the portion of the base portion 21 that extends laterally from the columnar body is preferably 0.125 times or more and 1 time or less of the width W1 on the surface. About 5 times is most preferable. By setting it as such a range, there is no trouble at the time of wire bonding, and the anchor effect with respect to the mold resin 40 can be given.

一方、切欠部20cの高さとの関係では、張り出し部分の幅W3が大きすぎると、切欠部20cが曲面状であっても、樹脂内に含まれる気泡を逃がしにくくなるため、張り出し部分の幅W3は切欠部20cの高さhと同程度かそれ以下であることが好ましい。切欠部20cの高さhは、突出部22の高さHと発光素子30の厚みTとの合計が、基板10の実装空間の深さL(図1)の半分程度かそれ以下であることが好ましい。なお突出部22の切欠部20cの上端から突出部22上面までの厚み(H−h)は、切欠部20cを作製する際の加工精度に依存し、特に限定されない。   On the other hand, in relation to the height of the cutout portion 20c, if the width W3 of the overhang portion is too large, even if the cutout portion 20c is curved, it is difficult for air bubbles contained in the resin to escape. Is preferably equal to or less than the height h of the notch 20c. The height h of the notch 20 c is such that the sum of the height H of the protrusion 22 and the thickness T of the light emitting element 30 is about half or less than the depth L (FIG. 1) of the mounting space of the substrate 10. Is preferred. In addition, the thickness (Hh) from the upper end of the notch part 20c of the protrusion part 22 to the upper surface of the protrusion part 22 is dependent on the processing precision at the time of producing the notch part 20c, and is not specifically limited.

以上のことを総合すると、アンカー効果、気泡溜まり防止効果及びワイヤボンディング作業性などをすべて満たす突出部22の形状の好適な条件は、次式のとおりである。
(0.125×W1)≦W3≦(1×W1)
W3≦h<((L/2)−T)
In summary of the above, the preferable condition of the shape of the protruding portion 22 that satisfies all of the anchor effect, the bubble accumulation preventing effect, the wire bonding workability, and the like is as follows.
(0.125 × W1) ≦ W3 ≦ (1 × W1)
W3 ≦ h <((L / 2) −T)

上述の通り基部21の幅W1は、良好な放熱性を得るために発光素子の幅Dと同程度以上とすることが好ましいが、幅Dが比較的大きな発光素子を用いる場合には、幅W1を発光素子の幅Dよりも小さくして上述した式を満たすようにしてもよい。   As described above, the width W1 of the base 21 is preferably equal to or larger than the width D of the light emitting element in order to obtain good heat dissipation. However, when a light emitting element having a relatively large width D is used, the width W1. May be made smaller than the width D of the light emitting element to satisfy the above-described formula.

発光素子30は、半導体発光装置の用途に応じて、所定の波長範囲の光を発する半導体素子であり、上記のような形状を持つ放熱支持台20の上面に耐熱性接着剤を介して固定される。発光素子30が発する光は、特に限定されず、例えば殺菌や滅菌に用いられる発光波長約200〜350nmの深紫外光、波長350nm以上の紫外〜可視光などが含まれる。本実施形態の発光装置は、発光素子30が発する光自体を発光装置の出射光として利用するものの他、例えばモールド樹脂中に含有せしめた蛍光体が発光素子30からの光によって発する光も利用するものも含まれる。   The light-emitting element 30 is a semiconductor element that emits light in a predetermined wavelength range according to the use of the semiconductor light-emitting device, and is fixed to the upper surface of the heat dissipation support 20 having the above-described shape via a heat-resistant adhesive. The The light emitted from the light emitting element 30 is not particularly limited, and includes, for example, deep ultraviolet light having an emission wavelength of about 200 to 350 nm and ultraviolet to visible light having a wavelength of 350 nm or more used for sterilization and sterilization. The light emitting device of the present embodiment uses light emitted from the light emitting element 30 by a phosphor contained in a mold resin, for example, in addition to the light emitted from the light emitting element 30 as light emitted from the light emitting device. Also included.

また発光素子30には、上面に2つの電極部が形成されたフェイスアップタイプやフリップチップタイプ、裏面に電極が形成されサブマウント基板上に搭載されたサブマウント基板付の発光素子など種々の形態の素子があるが、本実施形態では、基板10底面に形成された電極に電気的接続できる構造のものであれば、特に限定されず種々のタイプを使用することができる。なお図1では、フェイスアップタイプの発光素子30を例示している。サブマウント基板付の発光素子30は、表面に電極パターンが形成されたサブマウント基板に発光素子30を金バンプ等の導電性接合材料で実装した発光素子であり、サブマウント基板上に形成された電極と基板パッケージ10底面に形成された電極とがボンディングワイヤ50によって接続される。   Further, the light emitting element 30 has various forms such as a face-up type and a flip chip type in which two electrode portions are formed on the upper surface, and a light emitting element with a submount substrate on which an electrode is formed on the back surface and mounted on the submount substrate. However, in the present embodiment, various types can be used as long as they have a structure that can be electrically connected to the electrode formed on the bottom surface of the substrate 10. In FIG. 1, a face-up type light emitting element 30 is illustrated. The light-emitting element 30 with a submount substrate is a light-emitting element in which the light-emitting element 30 is mounted on a submount substrate having an electrode pattern formed on its surface with a conductive bonding material such as a gold bump, and is formed on the submount substrate. The electrode and the electrode formed on the bottom surface of the substrate package 10 are connected by a bonding wire 50.

モールド樹脂40は、シリコーン樹脂やエポキシ樹脂などの透光性が高く耐熱性のある材料からなる。また前述したように発光素子30からの光を波長変換する材料、例えば蛍光体を含んでいてもよい。蛍光体は、発光素子30が発する光及び半導体発光装置に求められる光の波長によって適宜選択され、YAG系、SiAlON系など公知の蛍光体を用いることができる。蛍光体は、通常、粒子の状態でモールド樹脂40に添加されるが、それに限定されない。   The mold resin 40 is made of a material having high translucency such as silicone resin and epoxy resin and heat resistance. Further, as described above, a material that converts the wavelength of light from the light emitting element 30, for example, a phosphor may be included. The phosphor is appropriately selected according to the wavelength of the light emitted from the light emitting element 30 and the light required for the semiconductor light emitting device, and a known phosphor such as a YAG system or a SiAlON system can be used. The phosphor is usually added to the mold resin 40 in the form of particles, but is not limited thereto.

以上、本実施形態の半導体発光装置(LEDパッケージ)を構成する各要素について説明したが、本実施形態の半導体発光装置は上述した要素の他に、用途に応じて付属の部品や部材が追加される場合もあるが、それらは公知のLEDパッケージと同様であり、ここでは説明を省略する。   As mentioned above, although each element which comprises the semiconductor light-emitting device (LED package) of this embodiment was demonstrated, in addition to the element mentioned above, the semiconductor light-emitting device of this embodiment adds an attached component and member according to a use. However, they are the same as known LED packages, and the description thereof is omitted here.

次に本実施形態の半導体発光装置の製造方法の一例を、図4及び図5に示す工程説明図を参照しながら説明する。   Next, an example of a method for manufacturing the semiconductor light emitting device of the present embodiment will be described with reference to process explanatory diagrams shown in FIGS.

まずパッケージ基板10を作製する。基板は、例えば、図示はしないが、複数枚のグリーンシートを積層し焼成することより作製する。この際、基板パッケージの底面部を構成するグリーンシートに、電極用ビアと貫通孔のための穴を形成する。貫通孔用の穴は、焼成後に形成される貫通孔が、放熱支持台20の基部21と同じ形状/サイズとなるように設計される。さらにグリーンシートに銅、銀、タングステンなどの金属を用いて、電極取出し用の導体パターン110を形成する。このとき、貫通孔用の穴あるいはその周囲に、放熱支持台を貫通孔に固定するための銀ロウ付け用の導体パターン110を形成する。基板パッケージの側壁部用には、モールド樹脂が充填される空間に相当する部分が開口となった枠だけのグリーンシートを用いる。   First, the package substrate 10 is produced. For example, although not shown, the substrate is manufactured by laminating and baking a plurality of green sheets. At this time, electrode vias and holes for through holes are formed in the green sheet constituting the bottom portion of the substrate package. The through hole is designed so that the through hole formed after firing has the same shape / size as the base portion 21 of the heat dissipation support base 20. Further, a conductive pattern 110 for extracting an electrode is formed on the green sheet using a metal such as copper, silver, or tungsten. At this time, a silver brazing conductor pattern 110 for fixing the heat radiation support base to the through hole is formed in or around the through hole. For the side wall portion of the substrate package, a green sheet having only a frame in which a portion corresponding to the space filled with the mold resin is opened is used.

穴及び導体パターンを形成したグリーンシート及び枠体だけのグリーンシートを積層し、900℃付近の高温で焼成し、セラミック基板を作製する。次いで電極取出し用及び銀ロウ付け用の各導体パターンに金めっき120を施し、パッケージ基板10を完成する(図4:S401)。   A green sheet having a hole and a conductor pattern and a green sheet having only a frame are stacked and fired at a high temperature around 900 ° C. to produce a ceramic substrate. Next, gold plating 120 is applied to the conductor patterns for electrode extraction and silver brazing to complete the package substrate 10 (FIG. 4: S401).

パッケージ基板10とは別に、放熱支持台20を作製する(S402)。放熱支持台は、銅、アルミニウム等の金属を用いて、切削、鋳造或いは鍛造などの公知の方法で作製することができ、図3を用いて説明したような形状、サイズとする。   Separately from the package substrate 10, the heat dissipation support 20 is produced (S402). The heat radiating support base can be manufactured by a known method such as cutting, casting, or forging using a metal such as copper or aluminum, and has the shape and size described with reference to FIG.

工程S401で作成したパッケージ基板10の、金メッキされた銀ロウ付け用導体パターンに銀ロウ材料130を配置した後、工程S402で作製した放熱支持台を貫通孔10aに嵌めこみ、銀ロウを加熱溶融して放熱支持台20を基板10に固定する(S403)。上述した導体パターン110、金めっき120及び銀ロウ材料130で構成される放熱支持台固定部150の詳細を図4中に部分拡大図として示す。   After the silver brazing material 130 is arranged on the gold-plated silver brazing conductor pattern of the package substrate 10 created in step S401, the heat radiation support base produced in step S402 is fitted into the through hole 10a, and the silver brazing is heated and melted. Then, the heat radiation support base 20 is fixed to the substrate 10 (S403). The details of the heat radiation support base fixing part 150 composed of the conductor pattern 110, the gold plating 120 and the silver brazing material 130 described above are shown as a partially enlarged view in FIG.

その後、図5に示すように、放熱支持台20の突出部22上面に発光素子30、ここではフェイスアップ素子をシリコーン系接着剤(ダイアタッチ剤)等で接着・硬化して固定した後、その表面の電極を基板10の給電パッドにボンディングワイヤ50で電気的に接続する(S404)。最後に、基板10の側壁部で囲まれた空間に硬化前の樹脂を注入し、発光素子30及びボンディングワイヤ50を覆った後、樹脂を加熱或いはUV照射により硬化する(S405)。以上の工程により図1に示すLEDパッケージが製造される。   Thereafter, as shown in FIG. 5, after fixing the light emitting element 30, here the face-up element, with a silicone adhesive (die attach agent) or the like on the upper surface of the protruding portion 22 of the heat radiation support base 20, The surface electrode is electrically connected to the power supply pad of the substrate 10 by the bonding wire 50 (S404). Finally, a resin before curing is injected into the space surrounded by the side wall of the substrate 10 to cover the light emitting element 30 and the bonding wire 50, and then the resin is cured by heating or UV irradiation (S405). The LED package shown in FIG. 1 is manufactured through the above steps.

なお上述した製造方法では、発光素子30と基板10との電気的接続を、ワイヤボンディングによって行う場合を示したが、発光素子30がフリップチップタイプの場合には、アレイ状に並んだバンプと呼ばれる突起状の端子によって接続してもよい。また裏面が金などでメタライズされているサブマウント基板に実装された発光素子の場合には、Au−Sn共晶による接合も可能である。   In the manufacturing method described above, the case where the electrical connection between the light emitting element 30 and the substrate 10 is performed by wire bonding is shown. However, when the light emitting element 30 is a flip chip type, it is called a bump arranged in an array. You may connect by a projecting terminal. In the case of a light-emitting element mounted on a submount substrate whose back surface is metallized with gold or the like, bonding by Au—Sn eutectic is also possible.

また上述した製造方法では、単独のLEDパッケージを作製する場合を示したが、図示する基板を底面に沿って一又は二方向に配列した大きさのグリーンシートを用いて、複数のLEDパッケージを製造することも可能である。複数のLEDパッケージを形成した場合、複数個並んだ基板を分割して所望の大きさのLEDパッケージを製造することが可能である。   In the manufacturing method described above, a case where a single LED package is manufactured has been shown, but a plurality of LED packages are manufactured using a green sheet having a size in which the illustrated substrate is arranged in one or two directions along the bottom surface. It is also possible to do. When a plurality of LED packages are formed, it is possible to manufacture an LED package having a desired size by dividing a plurality of arranged substrates.

また図4では、放熱支持台を固定するために基板10に形成した貫通孔内に銀ロウ付けを行う場合を示したが、貫通孔10aの周囲に銀ロウ付けを行ってもよい。その場合は、グリーンシートに導体パターンを形成する工程で、図6及び図7に示すように、貫通孔10aの周囲に導体パターン110を形成し、グリーンシート焼成後にこの導体パターンにも金めっき120を施す(S501、S502)。放熱支持台の取付工程では、貫通孔10aの周囲の金めっき部分に銀ロウ材130を配置した後、放熱支持台を貫通孔10aに取り付け、銀ロウを加熱溶融する(S503)。上述した導体パターン110、金めっき120及び銀ロウ材料130で構成される放熱支持台固定部150の詳細を図6中に部分拡大図として示す。なお図6では、貫通孔10a周囲の銀ロウ付けを基板10の上面側で行ったが、下面側でもよいし、両面側でもよい。銀ロウとして箔を使用する場合には、貫通孔に銀ロウを配置するのは難しいが、この方法を採ることにより容易に銀ロウ付けを行うことができる。なお、この製造方法による場合、放熱支持台に突起部を設け、当該突起部と基板10との間に放熱支持台固定部150を挟み込む構造が好ましい。   4 shows a case where silver brazing is performed in the through hole formed in the substrate 10 in order to fix the heat radiation support base, but silver brazing may be performed around the through hole 10a. In that case, in the step of forming a conductor pattern on the green sheet, as shown in FIGS. 6 and 7, a conductor pattern 110 is formed around the through hole 10a, and the conductor pattern is also plated with gold 120 after the green sheet is fired. (S501, S502). In the mounting step of the heat dissipation support, after the silver brazing material 130 is disposed on the gold-plated portion around the through hole 10a, the heat dissipation support is attached to the through hole 10a and the silver solder is heated and melted (S503). The details of the heat radiation support base fixing part 150 composed of the conductor pattern 110, the gold plating 120 and the silver brazing material 130 described above are shown as a partially enlarged view in FIG. In FIG. 6, silver brazing around the through hole 10 a is performed on the upper surface side of the substrate 10, but it may be performed on the lower surface side or on both surfaces side. When foil is used as the silver brazing, it is difficult to dispose silver brazing in the through hole, but silver brazing can be easily performed by adopting this method. In the case of this manufacturing method, a structure in which a protrusion is provided on the heat dissipation support base and the heat dissipation support base fixing part 150 is sandwiched between the protrusion and the substrate 10 is preferable.

以上、図4〜図7を参照して、本実施形態の半導体発光装置の製造例を説明したが、本実施形態の半導体発光装置の製造方法は図示するものに限定されない。また上記製造方法で例示した材料や数値は一例であって、本実施形態を限定するものではない。また半導体発光装置の形状として、パッケージ基板の形状が直方体である場合を例示したが、円筒状や四角形以外の多角形の柱状体であってもよい。   The manufacturing example of the semiconductor light emitting device of the present embodiment has been described above with reference to FIGS. 4 to 7. However, the method of manufacturing the semiconductor light emitting device of the present embodiment is not limited to the illustrated one. In addition, the materials and numerical values exemplified in the above manufacturing method are merely examples, and do not limit the present embodiment. Moreover, although the case where the shape of the package substrate was a rectangular parallelepiped was illustrated as the shape of the semiconductor light emitting device, it may be a cylindrical columnar body other than a cylinder or a rectangle.

放熱支持台20についても、同様に種々の変更が可能である。図8に変形例を示す。図8(a)、(b)は、それぞれ上面の形状が四角形であるが、(a)の放熱支持台20は4つの側面全部に曲面状の切欠部を形成したもの、(b)は2つの側面のみ曲面状の切欠部を形成したものである。また(c)は上面及び底面の形状が円形の放熱支持台20である。その他、放熱支持台20の上面の形状は、多角形や星型などに適宜形成することが出来る。   Various modifications can be similarly made on the heat radiation support base 20. FIG. 8 shows a modification. 8A and 8B, the shape of the upper surface is a quadrangle, but the heat radiation support base 20 of FIG. 8A has a curved notch formed on all four side surfaces, and FIG. A curved notch is formed on only one side. Further, (c) is a heat radiation support base 20 whose top and bottom shapes are circular. In addition, the shape of the upper surface of the heat radiation support base 20 can be appropriately formed in a polygonal shape or a star shape.

本実施形態によれば、半導体発光素子を固定する放熱支持台を、基板表面から突出させるとともに基板側で径が小さくなるように曲面状切欠き部を設けたことにより、樹脂充填時に気泡が溜まることがなく、且つ硬化後のモールド樹脂に対しアンカー効果を与え、モールド樹脂がパッケージ基板から剥離するのを防止することができる。これにより半導体発光装置の安定した駆動が可能となる。   According to the present embodiment, the heat radiation support base for fixing the semiconductor light emitting element is protruded from the substrate surface, and the curved cutout portion is provided so that the diameter is reduced on the substrate side, so that bubbles are accumulated when the resin is filled. In addition, an anchor effect can be given to the cured mold resin, and the mold resin can be prevented from peeling from the package substrate. As a result, the semiconductor light emitting device can be driven stably.

<第二実施形態>
本実施形態の半導体発光装置においても、半導体発光素子を固定するための放熱支持台を基板中央部に設けたこと、放熱支持台が基板から突出する凸部を有することは第一実施形態と同様である。ただし本実施形態の半導体発光素子は、放熱支持台の凸部の形状が第一実施形態とは異なる。
<Second embodiment>
Also in the semiconductor light emitting device of this embodiment, the heat radiation support base for fixing the semiconductor light emitting element is provided in the center of the substrate, and the heat radiation support base has a convex portion protruding from the substrate, as in the first embodiment. It is. However, the semiconductor light emitting device of this embodiment is different from the first embodiment in the shape of the convex portion of the heat dissipation support base.

以下、図9(a)及び図10を参照して本実施形態の半導体発光素子について説明するが、図9(a)及び図10において図1と同じ要素は同じ符号で示し、重複する説明は省略する。   Hereinafter, the semiconductor light emitting device of this embodiment will be described with reference to FIG. 9A and FIG. 10. In FIG. 9A and FIG. 10, the same elements as those in FIG. Omitted.

本実施形態の放熱支持台20は、図9(a)に示すように、基板10の貫通孔10aに嵌合する基部21と基板10の表面から突出する突出部22とを有する。突出部22は、側面がテーパ状(傾斜面)になっており、その幅が基板10表面の位置で最も小さく、半導体素子30が固定される上面で最も大きい。このような放熱支持台20も、第一実施形態の曲面状切欠部を設けた放熱支持台と同様に、気泡溜まりを防止する効果と樹脂に対するアンカー効果を持つ。以下、これら効果を得るために好適な形状を、図10を参照して説明する。   As shown in FIG. 9A, the heat dissipation support 20 of this embodiment has a base portion 21 that fits into the through hole 10 a of the substrate 10 and a protruding portion 22 that protrudes from the surface of the substrate 10. The protrusion 22 has a tapered side surface (inclined surface), and the width thereof is the smallest at the position of the surface of the substrate 10 and the largest at the upper surface to which the semiconductor element 30 is fixed. Such a heat radiation support base 20 also has an effect of preventing bubble accumulation and an anchor effect on the resin, similarly to the heat radiation support base provided with the curved notch portion of the first embodiment. Hereinafter, a suitable shape for obtaining these effects will be described with reference to FIG.

放熱支持台20の、基板表面における幅をW1、上面の幅をW2、突出部22の高さをh2、としたとき、まず幅W1は、放熱特性の点で、発光素子30の底面の幅D(図3)と同程度であることが好ましい。また凸部20の高さh2は、発光素子30とボンディングワイヤ50を確実にモールド樹脂で封止するため、発光素子の厚みとの合計が、基板側壁部の高さ即ちパッケージ基板10の実装空間の高さL(図1)の半分程度であることが好ましい。   When the width of the heat radiation support base 20 on the substrate surface is W1, the width of the upper surface is W2, and the height of the protrusion 22 is h2, the width W1 is the width of the bottom surface of the light emitting element 30 in terms of heat radiation characteristics. It is preferable that it is comparable to D (FIG. 3). The height h2 of the convex portion 20 is such that the light emitting element 30 and the bonding wire 50 are surely sealed with the mold resin, so that the sum of the thickness of the light emitting element is the height of the substrate side wall, that is, the mounting space of the package substrate 10. It is preferably about half of the height L (FIG. 1).

次に放熱支持台20の、基板表面における幅W1と上面の幅W2との差(W2−W1)の1/2(張り出し部の幅)をW3とするとき、突出部22の高さh2と張り出し部の幅W3で決まる凸部傾斜面の傾斜角度θは、小さいほどアンカー効果が高く、大きいほど気泡溜まりを防止する効果が高い。具体的には、θは40度以上、70度以下が好ましく、45度以上60度以下がより好ましい。従って、放熱支持台20の設計に際しては、基板10の実装空間の高さLから突出部22の高さh2が決まり、また基部21の幅W1が決まれば、凸部傾斜面の傾斜角度θが適切な範囲となるように、その上面の幅W2を決めればよい。なお上面の幅W2については、基板10の電極パッドの位置やワイヤボンディング時の作業性を考慮した制限があることは第一実施形態と同様である。   Next, when ½ of the difference (W2−W1) between the width W1 on the substrate surface and the width W2 on the upper surface of the heat radiation support base 20 (the width of the protruding portion) is W3, the height h2 of the protrusion 22 The smaller the inclination angle θ of the convex inclined surface determined by the overhang width W3, the higher the anchor effect, and the higher the inclination angle θ, the higher the effect of preventing bubble accumulation. Specifically, θ is preferably 40 degrees or greater and 70 degrees or less, and more preferably 45 degrees or greater and 60 degrees or less. Therefore, when designing the heat radiation support base 20, if the height h2 of the protrusion 22 is determined from the height L of the mounting space of the substrate 10 and the width W1 of the base 21 is determined, the inclination angle θ of the convex inclined surface can be determined. What is necessary is just to determine the width W2 of the upper surface so that it may become an appropriate range. As with the first embodiment, the width W2 of the upper surface is limited in consideration of the position of the electrode pad of the substrate 10 and workability at the time of wire bonding.

本実施形態の半導体発光装置も、放熱支持台20及びその他の要素は同様の材料を用いることができ、また第一実施形態の半導体発光装置と同様の方法で製造することができる。本実施形態及び以下の実施形態において、基板10の貫通孔10aの孔内或いは周囲に設けられる放熱支持台固定部の構造や位置についても、図示は省略するが第一実施形態の半導体発光装置と同様である。   The semiconductor light-emitting device of this embodiment can also use the same material for the heat dissipation support 20 and other elements, and can be manufactured by the same method as the semiconductor light-emitting device of the first embodiment. In the present embodiment and the following embodiments, the structure and position of the heat radiation support base fixing portion provided in or around the through hole 10a of the substrate 10 are not shown, but the semiconductor light emitting device of the first embodiment is omitted. It is the same.

<第三実施形態>
第二実施形態の半導体発光装置においては、基板10の貫通孔10aと放熱支持台20の基部21の径が一定であったが、本実施形態では、放熱支持台20の側面が、底面から上面までテーパ状(一様な傾斜面)である点が第二実施形態と異なる。その他の構成は第二実施形態と同様であり、以下、異なる点を説明する。
<Third embodiment>
In the semiconductor light emitting device of the second embodiment, the diameters of the through hole 10a of the substrate 10 and the base portion 21 of the heat dissipation support base 20 are constant. It is different from the second embodiment in that it is tapered (uniformly inclined surface). Other configurations are the same as those of the second embodiment, and different points will be described below.

本実施形態の半導体発光装置は、図9(b)及び図11に示すように、基板10の中央に、下に向かって径(幅)が小さくなるテーパ状の貫通孔10aが形成されており、このテーパ状貫通孔10aに、側面が傾斜面である放熱支持台20が取り付けられている。放熱支持台20の上面に発光素子30が固定され、基板10にワイヤボンディングされた後、モールド樹脂40で封止されていることは第一及び第二実施形態と同様である。   In the semiconductor light emitting device of this embodiment, as shown in FIGS. 9B and 11, a tapered through-hole 10 a whose diameter (width) decreases downward is formed in the center of the substrate 10. The heat radiation support base 20 whose side surface is an inclined surface is attached to the tapered through hole 10a. As in the first and second embodiments, the light emitting element 30 is fixed to the upper surface of the heat dissipation support 20, wire-bonded to the substrate 10, and then sealed with the mold resin 40.

本実施形態の放熱支持台20の傾斜面の角度Θは、第二実施形態の放熱支持台20(突出部22)の、基板10の底面部表面からの傾斜角度θと同様に、底面部表面から放熱支持台上面までの高さh2と、基板表面における幅Wと上面の幅W2との差(W2−W)の1/2(W3=(W2−W)/2)との関係で決まる。放熱支持台20のアンカー効果を高めるためには、傾斜角度Θが小さいほうがよく、気泡溜まりを確実に防止するためには、傾斜角度Θはある程度大きいほうがよいと言える。しかし本実施形態では、傾斜面は放熱支持台20の下面まで連続しているため、傾斜角度が小さくなると、放熱支持台20上面の幅W2に対し、放熱支持台20の下面の幅W1が小さくなり、即ち下面の面積が小さくなり放熱効果が低下する。従って本実施形態の放熱支持台20の設計に際しては、基板10の底面部11の厚みと基板10から突出する放熱支持台20の突出部22の高さh2とから放熱支持台20の高さを決定した後、放熱効果を確保できる放熱支持台20のボリューム或いは下面の幅W1を決定し、さらにアンカー効果と気泡溜まり防止効果が得られる範囲の傾斜角度Θを決めればよい。   The angle Θ of the inclined surface of the heat dissipation support 20 of the present embodiment is the same as the angle θ of the heat dissipation support 20 (projecting portion 22) of the second embodiment from the surface of the bottom surface of the substrate 10. Is determined by the relationship between the height h2 from the heat radiation support base to the upper surface of the heat dissipation support and 1/2 of the difference (W2-W) between the width W of the substrate surface and the width W2 of the upper surface (W3 = (W2-W) / 2). . In order to enhance the anchor effect of the heat radiation support base 20, it is better that the inclination angle Θ is small, and in order to reliably prevent bubble accumulation, it can be said that the inclination angle Θ should be large to some extent. However, in this embodiment, since the inclined surface continues to the lower surface of the heat radiation support base 20, when the inclination angle becomes smaller, the width W1 of the lower surface of the heat radiation support base 20 is smaller than the width W2 of the upper surface of the heat radiation support base 20. That is, the area of the lower surface is reduced and the heat dissipation effect is reduced. Therefore, when designing the heat dissipation support 20 of this embodiment, the height of the heat dissipation support 20 is determined from the thickness of the bottom surface 11 of the substrate 10 and the height h2 of the protrusion 22 of the heat dissipation support 20 protruding from the substrate 10. After the determination, the volume of the heat dissipation support 20 or the width W1 of the lower surface that can ensure the heat dissipation effect is determined, and the inclination angle Θ in a range where the anchor effect and the bubble accumulation preventing effect can be obtained.

本実施形態の半導体発光装置の製造方法も、第一或いは第二実施形態の製造方法とほぼ同じであるが、本実施形態では、パッケージ基板10を作製する際に、例えば、材料となるグリーンシートに穿設する貫通孔用穴のサイズを下から上に向かって大きくなるように設計し、積層して焼成した後にテーパ状貫通孔10aを持つ基板とする。また放熱支持台としては、貫通孔10aの形状に合わせて、例えば四角錐台の部品を用意する。この放熱支持台を貫通孔10aに銀ロウ付けによって固定すること、及びその後の工程は第一実施形態と同様である。   The manufacturing method of the semiconductor light emitting device of the present embodiment is also substantially the same as the manufacturing method of the first or second embodiment. However, in the present embodiment, when the package substrate 10 is manufactured, for example, a green sheet as a material The size of the through-hole for drilling is designed to increase from the bottom to the top, and after laminating and firing, a substrate having a tapered through-hole 10a is obtained. In addition, as the heat radiation support base, for example, a quadrangular pyramid part is prepared in accordance with the shape of the through hole 10a. The heat radiation support base is fixed to the through hole 10a by silver brazing and the subsequent steps are the same as in the first embodiment.

<第四実施形態>
第1〜第三実施形態では、本発明をLEDパッケージ型の発光装置に適用した実施形態を説明したが、以下、基板がフラットであって側壁部を持たないLEDチップタイプの発光装置に適用した実施形態を説明する。
<Fourth embodiment>
In the first to third embodiments, the embodiment in which the present invention is applied to an LED package type light emitting device has been described. Hereinafter, the present invention is applied to an LED chip type light emitting device having a flat substrate and no side wall portion. An embodiment will be described.

図12に示すように、第四実施形態の発光装置は、トランスファー成形(モールド成形)により発光素子を実装した基板を樹脂で封止したもので、導体パターン110が形成された基板10と、基板10の貫通孔10aに固定された放熱支持台20と、放熱支持台20の上に固定された半導体発光素子30と、発光素子30と基板10上の導体パターンを電気的に接続するボンディングワイヤ50と、放熱支持台20、発光素子30及びボンディングワイヤ50を含む基板上面を覆うモールド樹脂40と、を備えている。   As shown in FIG. 12, the light emitting device of the fourth embodiment is obtained by sealing a substrate on which a light emitting element is mounted by transfer molding (molding) with a resin, a substrate 10 on which a conductor pattern 110 is formed, and a substrate 10, a heat dissipation support 20 fixed to the through hole 10 a, a semiconductor light emitting element 30 fixed on the heat dissipation support 20, and a bonding wire 50 that electrically connects the light emitting element 30 and the conductor pattern on the substrate 10. And a mold resin 40 covering the upper surface of the substrate including the heat radiation support base 20, the light emitting element 30, and the bonding wires 50.

本実施形態の発光装置を構成する各部材は、基板10が平板状であることを除き、材料やタイプは第一実施形態と同様であり、説明を省略する。基板10には側壁部とそれによって形成される空間がないため、モールド樹脂40は金型を用いたトランスファー成型によって基板10上に設けられている。   Each member constituting the light emitting device of this embodiment is the same as that of the first embodiment except that the substrate 10 has a flat plate shape, and the description thereof is omitted. Since the substrate 10 does not have a side wall portion and a space formed thereby, the mold resin 40 is provided on the substrate 10 by transfer molding using a mold.

本実施形態の発光装置においても、放熱支持台20は基部21と突出部22とからなり、基部21は、基板10に形成された貫通孔10aに銀ロウ等により固定されている。基板上面から突出した部分である突出部22は、第一実施形態と同様に基板上面における幅が高さ方向の上に向かって変化し、発光素子30が搭載される上面(素子搭載面)の幅が最も広い。すなわち柱状の突出部22として見たとき、その側面に曲面状の切欠部20cが設けられている。この形状により、第一実施形態と同様に、基板10上面を封止する樹脂に対しアンカー効果を与え、樹脂40が基板10から剥がれるのを防止する。   Also in the light emitting device of the present embodiment, the heat radiation support base 20 includes a base portion 21 and a protruding portion 22, and the base portion 21 is fixed to a through hole 10 a formed in the substrate 10 with silver solder or the like. As in the first embodiment, the protruding portion 22 that is a portion protruding from the upper surface of the substrate has a width on the upper surface of the substrate that changes upward in the height direction, and is an upper surface (element mounting surface) on which the light emitting element 30 is mounted. The widest. That is, when viewed as the columnar protrusion 22, a curved notch 20 c is provided on the side surface. As in the first embodiment, this shape gives an anchor effect to the resin that seals the upper surface of the substrate 10 and prevents the resin 40 from being peeled off from the substrate 10.

放熱支持台20の基板上面における幅(W1)と素子搭載面の幅(W2)との関係や切欠部11cの形状については第一実施形態と同様に設計することができる。   The relationship between the width (W1) of the heat radiation support base 20 on the upper surface of the substrate and the width (W2) of the element mounting surface and the shape of the notch 11c can be designed in the same manner as in the first embodiment.

本実施形態の発光装置は、樹脂の封止工程を除き、第一〜第三実施形態の発光装置と同様の工程で製造することができ、放熱支持台20の基板10への固定も、貫通孔10aに銀ロウやメッキ等で固定する方法、基板上面で銀ロウ付けする方法のいずれを採用してもよい。   The light emitting device of this embodiment can be manufactured in the same process as the light emitting device of the first to third embodiments except for the resin sealing step, and the fixing of the heat dissipation support 20 to the substrate 10 is also performed through. Either a method of fixing the hole 10a by silver brazing or plating or a method of brazing silver on the upper surface of the substrate may be adopted.

<第五、第六の実施形態>
第五実施形態と第六実施形態の発光装置は、第四実施形態の放熱支持台20の形状を、それぞれ、第二実施形態及び第三実施形態の発光装置の放熱支持台20の形状に変えた以外は第四実施形態と同様である。即ち、第五実施形態の発光装置では、図13に示すように、放熱支持台20は、基部21の幅が一定で、基板10の上面から上の突出部22の側面が傾斜面になっている。また第六実施形態の発光装置では、図14に示すように、放熱支持台20は、その底面から上面(素子搭載面)までの側面が傾斜面になっている。その他の構成は、第四実施形態と同様である。
<Fifth and sixth embodiments>
In the light emitting devices of the fifth embodiment and the sixth embodiment, the shape of the heat dissipation support base 20 of the fourth embodiment is changed to the shape of the heat dissipation support base 20 of the light emitting device of the second embodiment and the third embodiment, respectively. Except for the above, the fourth embodiment is the same as the fourth embodiment. That is, in the light emitting device of the fifth embodiment, as shown in FIG. 13, the heat radiation support base 20 has a base 21 with a constant width, and the side surface of the protruding portion 22 above the upper surface of the substrate 10 is inclined. Yes. In the light emitting device of the sixth embodiment, as shown in FIG. 14, the side surface from the bottom surface to the upper surface (element mounting surface) of the heat radiation support base 20 is an inclined surface. Other configurations are the same as those of the fourth embodiment.

また、これら実施形態における放熱支持台20の傾斜面の傾斜角度や、底面或いは基板上面における幅と素子搭載面の幅との関係は、第二実施形態及び第三実施形態の発光装置について図10及び図11を参照して説明した関係と同様であり、重複する説明は省略する。   Further, the inclination angle of the inclined surface of the heat radiation support base 20 in these embodiments and the relationship between the width of the bottom surface or the top surface of the substrate and the width of the element mounting surface are shown in FIG. 10 for the light emitting devices of the second embodiment and the third embodiment. The relationship is the same as that described with reference to FIG.

これら実施形態においても、他の実施形態と同様に、放熱支持台20の形状により、モールド樹脂封止の際の気泡溜まりを防止しながら、樹脂硬化後の樹脂の剥離を防止することができる。また高い放熱効果を奏する。   Also in these embodiments, as in the other embodiments, the shape of the heat radiation support base 20 can prevent the resin from being peeled after the resin is cured while preventing the air bubbles from being accumulated at the time of molding resin sealing. Also, a high heat dissipation effect is achieved.

本発明によれば、半導体発光装置が外部環境によって劣化するのを防止し、安定した動作を可能にする。   According to the present invention, it is possible to prevent the semiconductor light emitting device from deteriorating due to the external environment and to enable stable operation.

10、100・・・基板、10a・・・貫通孔、11・・・底面部、12・・・側壁部、20・・・放熱支持台、20C・・・切欠部、21・・・基部、22・・・凸部、30・・・発光素子、40・・・モールド樹脂、50・・・ボンディングワイヤ、110・・・導体パターン、120・・・金メッキ、130・・・銀ロウ材、150・・・放熱支持台固定部。

DESCRIPTION OF SYMBOLS 10,100 ... Board | substrate, 10a ... Through-hole, 11 ... Bottom face part, 12 ... Side wall part, 20 ... Radiation support base, 20C ... Notch part, 21 ... Base part, 22 ... convex part, 30 ... light emitting element, 40 ... mold resin, 50 ... bonding wire, 110 ... conductor pattern, 120 ... gold plating, 130 ... silver brazing material, 150 ... Heat dissipation support fixing part.

Claims (7)

配線パターンが形成された基板と、前記基板上に搭載される発光素子と、前記発光素子を覆う樹脂層と、前記発光素子の直下に配置され、前記発光素子が発する熱を放熱する放熱支持台とを備え、前記放熱支持台は、前記基板に設けられた穴に嵌合する基部と前記基板の表面から発光素子側に突出する突出部とを有し、前記突出部は、前記基板の表面から前記放熱支持台上面までの高さ方向の少なくとも一部範囲において、前記基板の表面に平行な断面の断面積が増加していることを特徴とする半導体発光装置。   A substrate on which a wiring pattern is formed, a light emitting element mounted on the substrate, a resin layer covering the light emitting element, and a heat dissipation support base that is disposed immediately below the light emitting element and dissipates heat generated by the light emitting element. The heat radiation support base has a base portion that fits into a hole provided in the substrate, and a protrusion portion that protrudes from the surface of the substrate toward the light emitting element, and the protrusion portion is a surface of the substrate. A cross-sectional area of a cross section parallel to the surface of the substrate is increased in at least a partial range in the height direction from the upper surface to the upper surface of the heat radiation support base. 請求項1に記載の半導体発光装置であって、
前記放熱支持台は、側面の少なくとも一部に曲面状の切欠部を有することを特徴とする半導体発光装置。
The semiconductor light emitting device according to claim 1,
2. The semiconductor light emitting device according to claim 1, wherein the heat radiation support base has a curved notch at least at a part of a side surface.
請求項1に記載の半導体発光装置であって、
前記放熱支持台は、側面の少なくとも一部が傾斜面であることを特徴とする半導体発光装置。
The semiconductor light emitting device according to claim 1,
In the semiconductor light emitting device, at least a part of a side surface of the heat dissipation support base is an inclined surface.
請求項1に記載の半導体発光装置であって、
前記放熱支持台は、前記基板を貫通して前記基板と一体化していることを特徴とする半導体発光装置。
The semiconductor light emitting device according to claim 1,
The semiconductor heat-emitting device, wherein the heat radiation support base penetrates the substrate and is integrated with the substrate.
請求項1に記載の半導体発光装置であって、
前記放熱支持台は、前記基板の表面における前記断面積が、前記素子の底面積と同じかそれ以上であることを特徴とする半導体発光装置。
The semiconductor light emitting device according to claim 1,
The semiconductor light emitting device according to claim 1, wherein the heat dissipation support has a cross sectional area equal to or larger than a bottom area of the element.
請求項1ないし5のいずれか一項に記載の半導体発光装置であって、
前記基板は、底面部と側壁部とを有し、底面部及び側壁部で囲まれる空間に前記発光素子が実装され且つ前記樹脂層が形成されていることを特徴とする半導体発光装置。
A semiconductor light emitting device according to any one of claims 1 to 5,
The substrate has a bottom surface portion and a side wall portion, and the light emitting element is mounted and the resin layer is formed in a space surrounded by the bottom surface portion and the side wall portion.
請求項1ないし5のいずれか一項に記載の半導体発光装置であって、
前記基板は、平板状であることを特徴とする半導体発光装置。

A semiconductor light emitting device according to any one of claims 1 to 5,
The semiconductor light-emitting device, wherein the substrate has a flat plate shape.

JP2015063356A 2015-03-25 2015-03-25 Semiconductor light emission device Pending JP2016184623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015063356A JP2016184623A (en) 2015-03-25 2015-03-25 Semiconductor light emission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015063356A JP2016184623A (en) 2015-03-25 2015-03-25 Semiconductor light emission device

Publications (1)

Publication Number Publication Date
JP2016184623A true JP2016184623A (en) 2016-10-20

Family

ID=57243275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015063356A Pending JP2016184623A (en) 2015-03-25 2015-03-25 Semiconductor light emission device

Country Status (1)

Country Link
JP (1) JP2016184623A (en)

Similar Documents

Publication Publication Date Title
JP4123105B2 (en) Light emitting device
JP5940799B2 (en) Electronic component mounting package, electronic component package, and manufacturing method thereof
JP4910220B1 (en) LED module device and manufacturing method thereof
WO2010050067A1 (en) Substrate for light emitting element package, and light emitting element package
JP4309030B2 (en) Light emitting device
JP2019071412A (en) Chip package
CN114204405A (en) Package for mounting optical element, electronic device, and electronic module
US20130099275A1 (en) Led package and method of making the same
US11276617B2 (en) Electronic device mounting board, electronic package, and electronic module
JP2008172113A (en) Wiring substrate
JP5097372B2 (en) High-current, high-efficiency surface-mount light-emitting diode lamp and method for manufacturing the same
KR101173800B1 (en) Printed circuit board for light emitting diode and manufacturing method thereof
JP2017199842A (en) LED light source device
CN107690714B (en) Substrate for mounting light-emitting element, light-emitting device, and light-emitting module
JP2016072408A (en) Light source, method of manufacturing the same, and mounting method
JP5400290B2 (en) Light emitting device
JP2008135526A (en) Light-emitting element coupling substrate and light-emitting device coupling substrate
JP6605973B2 (en) Electronic component mounting package, electronic device and electronic module
JP5400289B2 (en) Light emitting device
JP2009071004A (en) Semiconductor device and manufacturing method thereof
JP2016184623A (en) Semiconductor light emission device
KR101056903B1 (en) Board for light emitting device package and light emitting device package using same
KR100966744B1 (en) Ceramic package and method for manufacturing the same
KR101156699B1 (en) Method of preparing metal substrate for electronic device and package of the same
JP2009123823A (en) Light emitting element package, and light emitting device mounted with the same