JP2016183795A - Unit start method for electric power plant - Google Patents

Unit start method for electric power plant Download PDF

Info

Publication number
JP2016183795A
JP2016183795A JP2015063340A JP2015063340A JP2016183795A JP 2016183795 A JP2016183795 A JP 2016183795A JP 2015063340 A JP2015063340 A JP 2015063340A JP 2015063340 A JP2015063340 A JP 2015063340A JP 2016183795 A JP2016183795 A JP 2016183795A
Authority
JP
Japan
Prior art keywords
boiler
steam
flow rate
deaerator
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015063340A
Other languages
Japanese (ja)
Other versions
JP6520285B2 (en
Inventor
昌則 佐田
Masanori Sada
昌則 佐田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2015063340A priority Critical patent/JP6520285B2/en
Publication of JP2016183795A publication Critical patent/JP2016183795A/en
Application granted granted Critical
Publication of JP6520285B2 publication Critical patent/JP6520285B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a unit start method for electric power plant enabling auxiliary steam required at the time of starting-up of a power generation unit to be assured at No.2 plant boiler.SOLUTION: This invention includes a first stage before starting-up to perform stopping of a boiler soot blow and stopping of a water demineralizer in order to start a power generation unit by No.2 plant boiler HB, a second stage for performing a condensed water clean-up, a third stage for performing a clean-up of a deaerator, a fourth stage for preparing a boiler ignition, and a fifth stage for igniting the boiler and increasing its temperature. At the second stage, B*C tank yard bottom surface heating steam master valve is closed after starting the clean-up. At the third stage, after starting the clean-up for the deaerator, a flow rate of steam of the plant boiler is reduced by a pressure adjustment valve PCV-502-1 in the deaerator, and after this operation, the flow rate of steam in the plant boiler is reduced by a high pressure turbine worming valve AS-12V and at the fourth stage, the flow rate of steam in the plant boiler is reduced by temperature adjustment valves TCV-005A, TCV-005B for a steam type air-preheater unit.SELECTED DRAWING: Figure 3

Description

この発明は、発電用ユニットのコールド起動を行うための発電所のユニット起動方法に関する。   The present invention relates to a unit starting method for a power plant for cold starting a power generating unit.

火力発電等の発電プラントには、所内ボイラ(補助ボイラ)が設置されている。所内ボイラは、プラントのユニットの起動時や停止時に必要となる補助蒸気を生成する(例えば、特許文献1参照。)。ユニットは、ボイラ、タービン、発電機等のような、発電用の設備である。所内ボイラで生成された補助蒸気は必要とする装置に供給される。例えば、ユニットを起動するときや停止するときに、所内ボイラはタービン軸封部へ蒸気を供給する。その他に、補助蒸気を必要とする装置には、復水系統にて水に含まれる空気を脱気する装置、通風系統を起動するために予め空気を予熱する装置や燃料配管を加温するためのスチームトレース装置などがある。   In-house boilers (auxiliary boilers) are installed in power plants such as thermal power generation. The in-house boiler generates auxiliary steam that is required when the plant unit is started or stopped (for example, see Patent Document 1). A unit is a facility for power generation, such as a boiler, a turbine, a generator or the like. The auxiliary steam generated in the in-house boiler is supplied to the necessary equipment. For example, when starting or stopping the unit, the in-house boiler supplies steam to the turbine shaft seal. In addition, for devices that require auxiliary steam, a device that degass the air contained in the water in the condensate system, a device that preheats air in order to start the ventilation system, and a fuel pipe are heated. There is a steam trace device.

例えば、ユニットとしての3号機コールド起動時(車室ウォーミング有り)の場合、補助蒸気を確保するために1号所内ボイラと2号所内ボイラとを起動して、ユニットの起動操作を行っている。   For example, when Unit 3 cold starts as a unit (with cabin warming), the Unit 1 and Unit 2 boilers are started to start the unit in order to secure auxiliary steam. .

特開2010−169367号公報JP 2010-169367 A

先に述べたユニットの起動方法には次の課題がある。ユニットの起動操作を行う場合に、1号所内ボイラと2号所内ボイラとを起動して、補助蒸気を確保している。しかし、例えば1号所内ボイラが定期検査等で使えない場合がある。この場合には、ユニットのコールド起動の際に、補助蒸気確保のために使用できるのは2号所内ボイラのみとなる。この結果、補助蒸気の蒸気流量が足りなくなり、ユニットの起動に支障をきたす恐れがある。   The unit activation method described above has the following problems. When performing the start-up operation of the unit, the boiler in the No. 1 station and the boiler in the No. 2 office are started to secure auxiliary steam. However, for example, the No. 1 boiler may not be used for periodic inspections. In this case, when the unit is cold started, only the boiler in the No. 2 station can be used to secure auxiliary steam. As a result, the steam flow rate of the auxiliary steam is insufficient, which may hinder the start-up of the unit.

この発明の目的は、前記の課題を解決し、発電ユニットの起動時に必要とする補助蒸気を、2号所内ボイラのみで確保することを可能にする、発電所のユニット起動方法を提供することにある。   An object of the present invention is to provide a unit starting method for a power plant that solves the above-mentioned problems and makes it possible to secure auxiliary steam required at the time of starting the power generating unit only with the boiler in the No. 2 station. is there.

前記の課題を解決するために、請求項1の発明は、所内ボイラで発電用のユニットを起動させるために、ボイラスートブローの引停と純水装置の停止とを行う起動前の第1の過程と、この第1の過程に続く過程であり、復水クリーンアップを行うための第2の過程と、この第2の過程に続く過程であり、脱気器のクリーンアップを行う第3の過程と、この第3の過程に続く過程であり、ボイラ点火準備のための第4の過程と、この第4の過程に続く過程であり、ボイラの点火と昇温のための第5の過程とを含み、前記第2の過程では、クリーンアップの開始後にタンクヤードの底面加熱蒸気の元弁を閉止し、前記第3の過程では、前記脱気器のクリーンアップ開始後に、脱気器器内圧力調整弁により前記所内ボイラの蒸気流量を現在の流量から減らし、この後、高圧タービンウォーミング弁により前記所内ボイラの蒸気流量を現在の流量から減らし、前記第4の過程では、蒸気式空気予熱器用の温度調節弁により前記所内ボイラの蒸気流量を現在の流量から減らす、ことを特徴とする発電所のユニット起動方法である。   In order to solve the above-mentioned problems, the invention of claim 1 is the first process before starting, in which the boiler soot blow is stopped and the pure water device is stopped in order to start the power generation unit in the in-house boiler. And a second process for performing the condensate cleanup, and a third process for cleaning the deaerator, which is a process following the second process. And a process following the third process, a fourth process for preparing the boiler ignition, a process following the fourth process, and a fifth process for ignition and heating of the boiler, In the second process, the main valve of the bottom heated steam of the tank yard is closed after the start of cleanup, and in the third process, the cleanup of the deaerator is started in the deaerator. Whether the steam flow rate in the in-house boiler is current After that, the steam flow rate of the in-house boiler is reduced from the current flow rate by the high-pressure turbine warming valve. In the fourth process, the steam flow rate of the in-house boiler is reduced by the temperature control valve for the steam air preheater. It is a unit starting method of a power plant characterized by reducing from the flow rate.

請求項2の発明は、請求項1に記載の発電所のユニット起動方法において、前記第4の過程に続く過程であり、前記高圧タービンウォーミング弁による所内ボイラの蒸気流量を元に戻し、この後、前記蒸気式空気予熱器用の温度調節弁により前記所内ボイラの蒸気流量を元に戻し、この後、前記脱気器器内圧力調整弁による前記所内ボイラの蒸気流量を元に戻し、この後、前記純水装置による採水を行い、ボイラスートブローを自動にして、通常の起動操作を行う、ことを特徴とする。   The invention of claim 2 is the unit startup method of the power plant according to claim 1, which is a process following the fourth process, wherein the steam flow rate of the in-house boiler by the high-pressure turbine warming valve is restored, Thereafter, the steam flow rate of the in-house boiler is restored by the temperature control valve for the steam type air preheater, and then the steam flow rate of the in-house boiler is restored by the pressure regulating valve in the deaerator. The water is collected by the pure water device, the boiler soot blow is automatically performed, and the normal starting operation is performed.

請求項1の発明によれば、第1の過程〜第4の過程を行うことにより、起動時の所内ボイラの蒸気流量を減らすことができる。   According to the first aspect of the present invention, the steam flow rate of the in-house boiler at the time of startup can be reduced by performing the first to fourth steps.

請求項2の発明によれば、通常起動操作(復旧)を終わらせて、以降の並列・給電渡しに向けた操作を可能にする。   According to the second aspect of the present invention, the normal startup operation (recovery) is terminated, and the subsequent operation for paralleling and feeding is enabled.

この発明の実施の形態による発電所のユニット起動方法を示すフローチャートである。It is a flowchart which shows the unit starting method of the power plant by embodiment of this invention. この発明の実施の形態による発電所のユニット起動方法を示すフローチャートである。It is a flowchart which shows the unit starting method of the power plant by embodiment of this invention. 補助蒸気系統を示す概略構成図である。It is a schematic block diagram which shows an auxiliary steam system. 補助蒸気系統を示す概略構成図である。It is a schematic block diagram which shows an auxiliary steam system. 補助蒸気系統を示す概略構成図である。It is a schematic block diagram which shows an auxiliary steam system.

次に、この発明の実施の形態について、図面を用いて詳しく説明する。   Next, embodiments of the present invention will be described in detail with reference to the drawings.

この実施の形態による発電所のユニット起動方法は、例えば1号所内ボイラが定期検査で使用できない場合に、ユニットとして3号機コールド起動時に、2号所内ボイラが発生する蒸気のみでユニットを起動させる。この実施の形態では、所内ボイラ蒸気流量の上限が30t/hである。ユニットのタービンの起動モードは、タービン起動時の第1段蒸気室内面メタル温度によって違う。モードが違うことによって、タービン昇速率(0〜3600回転までの昇速率)、負荷変化率等が変わってくる。また、温度が低いほど負荷上昇に時間がかかる。蒸気室内面メタル温度は、例えば次のような値である。
ベリーホット 350℃以上
ホット 250℃以上350℃未満
ウォーム 180℃以上250℃未満
コールド 180度未満
In the power plant unit activation method according to this embodiment, for example, when the No. 1 boiler cannot be used in periodic inspection, the unit is activated only with steam generated by the No. 2 boiler when the Unit No. 3 cold is activated as a unit. In this embodiment, the upper limit of the in-house boiler steam flow rate is 30 t / h. The start mode of the turbine of the unit differs depending on the metal temperature inside the first stage steam chamber when the turbine is started. Different modes change the turbine speed increase rate (speed increase rate from 0 to 3600 rpm), load change rate, and the like. Also, the lower the temperature, the longer it takes to increase the load. The metal temperature inside the steam chamber is, for example, the following value.
Very hot 350 ° C or higher Hot 250 ° C or higher and lower than 350 ° C Warm 180 ° C or higher and lower than 250 ° C Cold Less than 180 ° C

3号機コールド起動のための発電所のユニット起動方法を図1と図2とに示す。この発電所のユニット起動方法は、図3の補助蒸気系統に示すように、1号所内ボイラ1HBが使用できない場合に、2号所内ボイラ2HBを使用するための起動前の操作を行う。具体的には、2号所内ボイラスートブロー現地CS(コントロールスイッチ:制御スイッチ)を引停(不動作)にする(ステップS1)。スートブローが入ると蒸気流量が4t/h程度増える。ステップS1の後、起動操作を所定時間、例えば1時間前倒しで開始する(ステップS2)。ステップS2では、中圧排気室メタル温度T1が、
T1<20℃以下
であれば、3時間前倒しで起動する。ステップS2の後、復水器等に供給する純水を生成する純水装置の停止を依頼する(ステップS3)。ステップS3で、所内ボイラ蒸気流量が8t/h以上の場合は、停止可能なトレスを作業(または委託)部門へ停止依頼する。トレスは油輸送管などに蒸気管を沿わせて暖管する方法である。ステップS3では、補助蒸気の蒸気増減量が−0.2t/hである。これらのステップS1〜S3がユニットの起動前の操作である。
1 and 2 show the unit startup method of the power plant for the No. 3 cold start. As shown in the auxiliary steam system of FIG. 3, this power plant unit starting method performs an operation before starting to use the No. 2 boiler 2HB when the No. 1 boiler 1HB cannot be used. Specifically, the boiler soot blow local CS (control switch: control switch) in the No. 2 station is suspended (non-operating) (step S1). When soot blow enters, the steam flow rate increases by about 4 t / h. After step S1, the starting operation is started a predetermined time, for example, one hour ahead (step S2). In step S2, the medium pressure exhaust chamber metal temperature T1 is
If T1 <20 ° C. or less, start up 3 hours ahead of schedule. After step S2, a request is made to stop the pure water device that generates pure water to be supplied to a condenser or the like (step S3). In step S3, if the in-house boiler steam flow rate is 8 t / h or more, a stop request is made to the work (or consignment) department for a stopable tress. Torres is a method of warming a steam pipe along an oil transport pipe. In step S3, the steam increase / decrease amount of the auxiliary steam is -0.2 t / h. These steps S1 to S3 are operations before starting the unit.

ステップS3が終わって起動前の操作が終了すると、復水クリーンアップの操作を行う。具体的には、復水クリーンアップ開始で、マスター系統を自動で動作させるための「復水器真空上昇」マスタが起動するので、2号所内ボイラの蒸気流量に注意する(ステップS4)。ステップS4では、蒸気増減量が+10t/hである。ステップS4の後、サービスタンク加熱用蒸気を止めるために、B・Cタンクヤード底面加熱蒸気元弁(図3ではB・Cヤード蒸気元弁と表示)を閉止する(ステップS5)。ステップS5では、蒸気増減量が−4t/hである。これらのステップS4、S5が復水クリーンアップの操作である。   When step S3 is completed and the operation before activation is completed, a condensate cleanup operation is performed. Specifically, since the “condenser vacuum rise” master for automatically operating the master system is started at the start of the condensate cleanup, attention is paid to the steam flow rate in the No. 2 boiler (step S4). In step S4, the steam increase / decrease amount is +10 t / h. After step S4, in order to stop the steam for heating the service tank, the B / C tank yard bottom heating steam source valve (indicated as B / C yard steam source valve in FIG. 3) is closed (step S5). In step S5, the steam increase / decrease amount is −4 t / h. These steps S4 and S5 are condensate cleanup operations.

ステップS5が終わって復水クリーンアップの操作が終了すると、脱気器クリーンアップの操作を行う。具体的には、脱気器クリーンアップ開始で、脱気器器内圧力調整弁PCV−502−1(図4)によりボイラ補助蒸気母管ABから脱気器加熱蒸気が入るのを確認する(ステップS6)。ステップS6で、
復水器真空<−66.7kPa
で、図4に示す脱気器補助蒸気入口弁AS−4Vが全開し、脱気器器内圧力調整弁PCV−502−1が10%開く。ステップS6では、蒸気増減量が+3t/hである。ステップS6の後、脱気器ACの脱気器器内圧力調節弁PCV−502−1を手動にし、所内ボイラ蒸気流量を現在の流量から1t/h減少させる(ステップS7)。ステップS7では、蒸気増減量が−1t/hである。ステップS7の後、先のステップS5の操作安定後に「タービン車室ウォーミング起動」マスタを計算機除外にて起動する(ステップS8)。通常は、「低圧クリーンアップ」で起動するが、タービン車室のウォーミング量を低減するため、早めに起動する。これによる高圧タービンウォーミング弁AS−12V(図5)の調整で、ステップS8では、蒸気増減量が+5t/hである。ステップS8の後、先のステップS6の起動完了後に、図5に示すタービン室2階のPC−501の圧力セットを0.45MPaからセットをゆっくり下げ、先に述べた高圧タービンウォーミング弁AS−12Vにより、所内ボイラ蒸気流量を現在の流量から2t/h減少させる(ステップS9)。ウォーミング量を低減することで、昇温率が、
3.6℃/h→3.3℃/h
になる。ステップS9では、蒸気増減量が−2t/hである。これらのステップS6〜S9が脱気器クリーンアップの操作である。
When step S5 is completed and the condensate cleanup operation is completed, the deaerator cleanup operation is performed. Specifically, at the start of the deaerator cleanup, it is confirmed that deaerator heating steam enters from the boiler auxiliary steam mother pipe AB by the deaerator internal pressure regulating valve PCV-502-1 (FIG. 4) ( Step S6). In step S6,
Condenser vacuum <-66.7kPa
Thus, the deaerator auxiliary steam inlet valve AS-4V shown in FIG. 4 is fully opened, and the deaerator pressure regulating valve PCV-502-1 is opened 10%. In step S6, the steam increase / decrease amount is +3 t / h. After step S6, the deaerator internal pressure control valve PCV-502-1 of the deaerator AC is manually operated, and the in-house boiler steam flow rate is reduced by 1 t / h from the current flow rate (step S7). In step S7, the steam increase / decrease amount is -1 t / h. After step S7, after the operation is stabilized in step S5, the “turbine casing warming activation” master is activated without the computer (step S8). Normally, it starts with “low pressure cleanup”, but it starts early to reduce the warming amount of the turbine casing. With this adjustment of the high pressure turbine warming valve AS-12V (FIG. 5), in step S8, the steam increase / decrease amount is +5 t / h. After step S8, after the start of the previous step S6 is completed, the pressure set of PC-501 on the second floor of the turbine chamber shown in FIG. 5 is slowly lowered from 0.45 MPa, and the high-pressure turbine warming valve AS- The in-house boiler steam flow rate is reduced by 2 t / h from the current flow rate by 12 V (step S9). By reducing the amount of warming, the temperature rise rate is
3.6 ° C./h→3.3° C./h
become. In step S9, the steam increase / decrease amount is -2 t / h. These steps S6 to S9 are deaerator cleanup operations.

ステップS9が終わって、脱気器クリーンアップの操作が終了すると、ボイラ点火準備の操作を行う。具体的には、ボイラ点火準備で、SAH(蒸気式空気予熱器)用の「SAH系統起動」マスタが起動するので、圧力調節弁出口弁の全開時に、所内ボイラ蒸気流量上限に注意する(ステップS10)。ボイラ点火準備の条件が成立したことをフリッカ(点滅)で表示するボイラ点火準備フリッカ条件は、
中圧排気室メタル温度≧63℃
である。ステップS10では、蒸気増減量が+2t/hである。ステップS10の後、SAH起動マスタウォーミング完了(GL(緑色ランプ)点灯)で、OWS(オペレータワークステーション:制御装置)にてSAH温度調節弁TCV−005A、TCV−005B(図3)を手動にし、所内ボイラ蒸気流量を現在の流量から1t/h絞る(ステップS11)。ステップS11により、「SAH系統起動」マスタが除外となり、ブロー開始となる。ステップS11で、2号所内ボイラの蒸気流量が厳しい場合は、1t/hに限定しない。ステップS11では、蒸気増減量が−1t/hである。ステップS11の後、「BFP真空上昇」マスタが起動するので、所内ボイラ蒸気流量上限に注意する(ステップS12)。ステップS12では、蒸気増減量が+1t/hである。ステップS12の後、MFT(Master Fuel Trip:マスターフューエルトリップ)リセット時に、弁AS−210、PCV−054(図3)によりバーナ噴霧蒸気管チャージ(蒸気供給)およびバーナクーリング蒸気(点火していないバーナチップの詰まりと過熱防止のために流す少量の蒸気)が入るので、所内ボイラ蒸気流量上限に注意する(ステップS13)。ステップS13では、蒸気増減量が+6t/hである。これらのステップS10〜S13がボイラ点火準備の操作である。
When step S9 is completed and the deaerator cleanup operation is completed, the boiler ignition preparation operation is performed. Specifically, since the “SAH system activation” master for SAH (steam air preheater) is activated in preparation for boiler ignition, pay attention to the upper limit of the steam flow rate in the in-house boiler when the pressure control valve outlet valve is fully opened (step S10). The boiler ignition preparation flicker condition, which displays flickering (flashing) that the conditions for boiler ignition preparation are satisfied,
Medium pressure exhaust chamber metal temperature ≧ 63 ℃
It is. In step S10, the steam increase / decrease amount is +2 t / h. After step S10, SAH start master warming is completed (GL (green lamp) is lit), and SAH temperature control valves TCV-005A and TCV-005B (FIG. 3) are set manually in OWS (operator workstation: controller). The in-house boiler steam flow rate is reduced by 1 t / h from the current flow rate (step S11). In step S11, the “SAH system activation” master is excluded, and blow starts. In step S11, when the steam flow rate in the No. 2 boiler is severe, it is not limited to 1 t / h. In step S11, the steam increase / decrease amount is -1 t / h. After step S11, the “BFP vacuum rise” master starts, so pay attention to the upper limit of the steam flow rate in the in-house boiler (step S12). In step S12, the steam increase / decrease amount is +1 t / h. After step S12, when MFT (Master Fuel Trip) is reset, burner spray steam pipe charge (steam supply) and burner cooling steam (non-ignited burner) are performed by valves AS-210 and PCV-054 (FIG. 3). Since a small amount of steam that flows to prevent clogging and overheating of the chip enters, pay attention to the upper limit of the steam flow rate in the in-house boiler (step S13). In step S13, the steam increase / decrease amount is +6 t / h. These steps S10 to S13 are operations for preparing the boiler ignition.

ステップS13が終わってボイラ点火準備の操作が終了すると、点火昇温の操作を行う。具体的には、フラッシュタンク圧力が2MPa付近(B弁開)で、蒸気流量がハンチングするため、所内ボイラ蒸気流量上限に注意する(ステップS14)。ステップS14は、起動時にB弁シート漏れの可能性があるために行う。ステップS14の後、ボイラ点火・昇温(ホットクリーンアップ)後に、B弁が制御に入り、2号所内ボイラの蒸気流量が約16t/hになることを確認する(ステップS15)。加温を停止していたトレスの加温再開を作業(または委託)部門へ依頼する。B弁補助蒸気圧力制御は、フラッシュタンク圧力P1が、
P1≧2.0MPa
である。ステップS15では、蒸気増減量が−11t/hである。ステップS15の後、「SC系統起動」マスタが起動するので、所内ボイラ蒸気流量上限に注意する(ステップS16)。フラッシュタンク圧力P2が、
P2>3.92MPa
であるか、または、再熱器入口蒸気圧力P3が、
P3>1.18MPa
である。ステップS16では、蒸気増減量が+5t/hである。これらのステップS14〜S16が点火昇温の操作である。
When step S13 is finished and the operation for preparing the boiler ignition is completed, the ignition temperature raising operation is performed. Specifically, since the steam flow rate is hunting when the flash tank pressure is around 2 MPa (B valve opened), attention is paid to the upper limit of the steam flow rate in the in-house boiler (step S14). Step S14 is performed because there is a possibility of B valve seat leakage at the time of activation. After step S14, after the boiler is ignited and heated (hot cleanup), the B valve is controlled and it is confirmed that the steam flow rate in the No. 2 boiler is about 16 t / h (step S15). Ask the work (or consignment) department to resume heating for the tresses that have stopped heating. For the B valve auxiliary steam pressure control, the flash tank pressure P1 is
P1 ≧ 2.0 MPa
It is. In step S15, the steam increase / decrease amount is -11 t / h. After step S15, the “SC system activation” master is activated, so pay attention to the upper limit of the steam flow rate in the in-house boiler (step S16). The flash tank pressure P2 is
P2> 3.92 MPa
Or the reheater inlet steam pressure P3 is
P3> 1.18 MPa
It is. In step S16, the steam increase / decrease amount is +5 t / h. These steps S14 to S16 are ignition temperature raising operations.

ステップS16が終わって点火昇温の操作が終了すると、通常起動操作(復旧)を行う。具体的には、PC−501の圧力セットをゆっくり0.45MPaに戻す(ステップS17)。ステップS17では、蒸気増減量が+2t/hである。ステップS17の後、SAH温度調節弁を手動から自動に入れ、「SAH系統起動」マスタを計算機使用とする(ステップS18)。ステップS18では、SAH系外ブロー時間の保持時間を修正する。通常ブロー開始から2時間である。ステップS18の後、脱気器器内圧力調節弁を手動から自動に入れる(ステップS19)。ステップS19の後、純水装置の採水を依頼する(ステップS20)。ステップS20の後、2号所内ボイラスートブロー現地CS(現地のCS)を自動にする(ステップS21)。これらのステップS17〜S21が通常起動操作(復旧)である。   When step S16 ends and the ignition temperature raising operation ends, a normal startup operation (recovery) is performed. Specifically, the pressure set of PC-501 is slowly returned to 0.45 MPa (step S17). In step S17, the steam increase / decrease amount is +2 t / h. After step S17, the SAH temperature control valve is switched from manual to automatic, and the “SAH system activation” master is used as a computer (step S18). In step S18, the holding time of the SAH system outside blow time is corrected. Usually 2 hours from the start of blow. After step S18, the deaerator pressure control valve is switched from manual to automatic (step S19). After step S19, a request is made to collect water from the pure water device (step S20). After step S20, the boiler soot blow local CS (local CS) in No. 2 is made automatic (step S21). These steps S17 to S21 are normal activation operations (recovery).

通常起動操作(復旧)が終わると、発電所のユニット起動方法が終了し、以降は並列・給電渡しに向けて操作を行う。   When the normal startup operation (recovery) is completed, the unit startup method of the power plant is completed, and thereafter, the operation is performed for parallel and power delivery.

こうして、この実施の形態によれば、ステップS5による操作により、サービスタンク側管寄(サービスタンク補助蒸気ヘッダ)の使用量が減り、2号所内ボイラの蒸気流量が確保できる。また、ステップS7の操作により、脱気器器内圧力の上昇を抑えることで、ボイラ補助蒸気ヘッダの使用量が減り、2号所内ボイラの蒸気流量が確保できる。また、ステップS9の操作により、圧力セットを下げることで、ボイラ補助蒸気ヘッダの使用量が減り、2号所内ボイラの蒸気流量が確保できる。さらに、ステップS11の操作により、補助蒸気ヘッダの使用量を抑えることで、ボイラ補助蒸気ヘッダの使用量が減り、2号所内ボイラの蒸気流量が確保できる。そして、一連のステップを行うことにより、2号所内ボイラ蒸気流量が上限値を超えることなくユニットのコールド起動ができ、また、誤操作防止が可能になる。   Thus, according to this embodiment, the amount of use of the service tank side header (service tank auxiliary steam header) is reduced by the operation in step S5, and the steam flow rate of the No. 2 boiler can be secured. In addition, by suppressing the increase in the pressure in the deaerator by the operation in step S7, the amount of boiler auxiliary steam header used is reduced, and the steam flow rate in the No. 2 boiler can be secured. Further, by lowering the pressure set by the operation of step S9, the amount of boiler auxiliary steam header used is reduced, and the steam flow rate of the boiler in the No. 2 station can be secured. Furthermore, the usage-amount of an auxiliary steam header is suppressed by operation of step S11, the usage-amount of a boiler auxiliary | assistant steam header reduces, and the steam flow rate of the No. 2 boiler can be ensured. Then, by performing a series of steps, the unit can be cold-started without the steam flow rate in the No. 2 boiler exceeding the upper limit, and erroneous operation can be prevented.

S1〜S21 処理のステップ
AB 補助蒸気母管
AC 脱気器
AS−4V 脱気器補助蒸気入口弁
AS−12V 高圧タービンウォーミング弁
PCV−502−1 脱気器器内圧力制御弁
TCV−005A、TCV−005B SAH温度調節弁
S1 to S21 Process Step AB Auxiliary Steam Bus AC Deaerator AS-4V Deaerator Auxiliary Steam Inlet Valve AS-12V High Pressure Turbine Warming Valve PCV-502-1 Deaerator Pressure Control Valve TCV-005A, TCV-005B SAH temperature control valve

Claims (2)

所内ボイラで発電用のユニットを起動させるために、ボイラスートブローの引停と純水装置の停止とを行う起動前の第1の過程と、この第1の過程に続く過程であり、復水クリーンアップを行うための第2の過程と、この第2の過程に続く過程であり、脱気器のクリーンアップを行う第3の過程と、この第3の過程に続く過程であり、ボイラ点火準備のための第4の過程と、この第4の過程に続く過程であり、ボイラの点火と昇温のための第5の過程とを含み、
前記第2の過程では、クリーンアップの開始後にタンクヤードの底面加熱蒸気の元弁を閉止し、
前記第3の過程では、前記脱気器のクリーンアップ開始後に、脱気器器内圧力調整弁により前記所内ボイラの蒸気流量を現在の流量から減らし、この後、高圧タービンウォーミング弁により前記所内ボイラの蒸気流量を現在の流量から減らし、
前記第4の過程では、蒸気式空気予熱器用の温度調節弁により前記所内ボイラの蒸気流量を現在の流量から減らす、
ことを特徴とする発電所のユニット起動方法。
In order to start the power generation unit in the in-house boiler, there is a first process before starting to stop the boiler soot blow and stop the deionized water device, and a process following this first process. The second process for performing the up-up process, the process following the second process, the third process for cleaning up the deaerator, and the process following the third process, and preparing for the boiler ignition A fourth process for the process and a process following the fourth process, including a fifth process for ignition and temperature rise of the boiler,
In the second process, after the start of the cleanup, the main valve of the bottom heated steam of the tank yard is closed,
In the third step, after the start of the deaerator cleanup, the steam flow rate of the in-house boiler is reduced from the current flow rate by the pressure regulator valve in the deaerator, and thereafter, the internal flow rate is increased by the high-pressure turbine warming valve. Reduce boiler steam flow from current flow,
In the fourth step, the steam flow rate of the in-house boiler is reduced from the current flow rate by the temperature control valve for the steam type air preheater.
The unit starting method of the power plant characterized by the above-mentioned.
前記第4の過程に続く過程であり、前記高圧タービンウォーミング弁による所内ボイラの蒸気流量を元に戻し、この後、前記蒸気式空気予熱器用の温度調節弁により前記所内ボイラの蒸気流量を元に戻し、この後、前記脱気器器内圧力調整弁による前記所内ボイラの蒸気流量を元に戻し、この後、前記純水装置による採水を行い、ボイラスートブローを自動にして、通常の起動操作を行う、
ことを特徴とする請求項1に記載の発電所のユニット起動方法。
This is a process following the fourth process, in which the steam flow rate in the in-house boiler is restored by the high-pressure turbine warming valve, and then the steam flow rate in the in-house boiler is restored by the temperature control valve for the steam air preheater. After that, the steam flow of the in-house boiler is returned to the original by the pressure regulating valve in the deaerator, and then water is collected by the pure water device, the boiler soot blow is automatically performed, and the normal start-up is performed. Do the operation,
The unit starting method of the power plant according to claim 1 characterized by things.
JP2015063340A 2015-03-25 2015-03-25 Power plant unit startup method Active JP6520285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015063340A JP6520285B2 (en) 2015-03-25 2015-03-25 Power plant unit startup method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015063340A JP6520285B2 (en) 2015-03-25 2015-03-25 Power plant unit startup method

Publications (2)

Publication Number Publication Date
JP2016183795A true JP2016183795A (en) 2016-10-20
JP6520285B2 JP6520285B2 (en) 2019-05-29

Family

ID=57242914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015063340A Active JP6520285B2 (en) 2015-03-25 2015-03-25 Power plant unit startup method

Country Status (1)

Country Link
JP (1) JP6520285B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106369280A (en) * 2016-11-25 2017-02-01 江苏中能电力设备有限公司 Fast steam turbine starting device
CN107327321A (en) * 2017-09-04 2017-11-07 中国电力工程顾问集团西南电力设计院有限公司 A kind of back pressure turbine body drained water recovery system
CN108758599A (en) * 2018-04-24 2018-11-06 安徽创力生产力促进中心有限公司 It is a kind of that there are double evaporator circulatory systems for declining tube loop
CN111255536A (en) * 2020-01-22 2020-06-09 中国能源建设集团广东省电力设计研究院有限公司 FCB operation method of gas-steam unit power plant
CN111256105A (en) * 2020-01-20 2020-06-09 上海发电设备成套设计研究院有限责任公司 Micro-furnace heating system and method for quickly starting ultra-supercritical unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56108003A (en) * 1980-01-29 1981-08-27 Tokyo Shibaura Electric Co Auxiliary steam controlling system
JPH02225901A (en) * 1989-02-28 1990-09-07 Toshiba Corp Pressure control device for pressure in deaerator
JP2008014142A (en) * 2006-07-03 2008-01-24 Chugoku Electric Power Co Inc:The Method for responding to trip of auxiliary boiler during start of boiler unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56108003A (en) * 1980-01-29 1981-08-27 Tokyo Shibaura Electric Co Auxiliary steam controlling system
JPH02225901A (en) * 1989-02-28 1990-09-07 Toshiba Corp Pressure control device for pressure in deaerator
JP2008014142A (en) * 2006-07-03 2008-01-24 Chugoku Electric Power Co Inc:The Method for responding to trip of auxiliary boiler during start of boiler unit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106369280A (en) * 2016-11-25 2017-02-01 江苏中能电力设备有限公司 Fast steam turbine starting device
CN107327321A (en) * 2017-09-04 2017-11-07 中国电力工程顾问集团西南电力设计院有限公司 A kind of back pressure turbine body drained water recovery system
CN108758599A (en) * 2018-04-24 2018-11-06 安徽创力生产力促进中心有限公司 It is a kind of that there are double evaporator circulatory systems for declining tube loop
CN111256105A (en) * 2020-01-20 2020-06-09 上海发电设备成套设计研究院有限责任公司 Micro-furnace heating system and method for quickly starting ultra-supercritical unit
CN111256105B (en) * 2020-01-20 2022-01-07 上海发电设备成套设计研究院有限责任公司 Micro-furnace heating system and method for quickly starting ultra-supercritical unit
CN111255536A (en) * 2020-01-22 2020-06-09 中国能源建设集团广东省电力设计研究院有限公司 FCB operation method of gas-steam unit power plant

Also Published As

Publication number Publication date
JP6520285B2 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
JP2016183795A (en) Unit start method for electric power plant
JPS6149485B2 (en)
RU2674302C2 (en) Thermal integration of system for supplying air into power plant with oxygen-fired boiler
JP6034154B2 (en) Waste heat recovery equipment, waste heat recovery method and waste treatment furnace
JP2009150392A (en) Method and device for starting combined cycle power generating system
JP2011025878A (en) Fuel oil heating supply system of small ship
CN103712197A (en) Energy-saving type quick start method for supercritical unit or ultra-supercritical unit
JP2009293871A (en) Start bypass system in steam power generation facility and its operating method
JP2007187352A (en) Starting method of boiler
CN103438419B (en) Pulverized coal preparation system method is started before the red switch of a kind of 1000MW one-level large bypath system unit
WO2019010992A1 (en) Turbine cooling control method and device for gas turbine, and storage medium
JP5164580B2 (en) Control method of power generator when power generation is stopped
EP2993398B1 (en) Flue-gas treatment apparatus and its method of operation
KR20160082370A (en) Waste heat recovery apparatus for combustion furnace and method thereof
JP2009281597A (en) Water supply system in steam-power generation facility, and its operating method
CN107795985B (en) A kind of fluidized-bed combustion boiler returning charge, the technique for putting ash
JP3670791B2 (en) Steam supply method and apparatus for coke dry fire extinguishing equipment
WO2019042020A1 (en) Heat recovery device
RU2238414C1 (en) Method for regulating electric power of combined-cycle heating unit incorporating exhaust-heat boiler
JP6604167B2 (en) Hot water storage water heater
JP2014112017A (en) Method for forcedly cooling boiler after boiler extinction in power-generating facility
JP2016005830A (en) Flue gas treatment apparatus, and operational method of flue gas treatment apparatus
CN112513442A (en) Method for operating a gas turbine plant with gaseous fuel
RU2600655C2 (en) Method of operating thermal power plant with open heat extraction system and device therefor
JP5497139B2 (en) Operation method of water supply system in steam power plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190415

R150 Certificate of patent or registration of utility model

Ref document number: 6520285

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250