JP2016182686A - Thermal transfer image receiving sheet and method for producing thermal transfer image receiving sheet - Google Patents

Thermal transfer image receiving sheet and method for producing thermal transfer image receiving sheet Download PDF

Info

Publication number
JP2016182686A
JP2016182686A JP2015063031A JP2015063031A JP2016182686A JP 2016182686 A JP2016182686 A JP 2016182686A JP 2015063031 A JP2015063031 A JP 2015063031A JP 2015063031 A JP2015063031 A JP 2015063031A JP 2016182686 A JP2016182686 A JP 2016182686A
Authority
JP
Japan
Prior art keywords
layer
thermal transfer
transfer image
less
receiving sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015063031A
Other languages
Japanese (ja)
Inventor
晋也 小出
Shinya Koide
晋也 小出
康寛 宮内
Yasuhiro Miyauchi
康寛 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2015063031A priority Critical patent/JP2016182686A/en
Publication of JP2016182686A publication Critical patent/JP2016182686A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermal transfer image receiving sheet which can be produced at low cost and is excellent in image quality; and to provide a method for producing the thermal transfer image receiving sheet.SOLUTION: There is provided a thermal transfer image receiving sheet which has: a paer base material; a porous film layer that is stuck onto one surface of the paper base material through a polyolefin resin layer by extrusion sandwich lamination, and has a thickness of 10 μm or more and 60 μm or less and arithmetic average roughness (SRa) in an opposite side of a surface facing the paper base material is 0.8 μm or less; an undercoat layer which is formed on the surface of the porous film layer, contains at least a white pigment and a binder resin, has total light transmittance of 20% or more and 65% or less when an undercoat layer coating liquid having a mass ratio of a white pigment to a binder resin of 1/3 or more and 3 or less is applied onto a biaxially oriented polypropylene film, is dried, and is formed so as to have a thickness of 0.2 μm or more and 5.0 μm or less, and has arithmetic average roughness (SRa) of the surface of 0.6 μm or less; and a dye receiving layer formed on the surface of the undercoat layer.SELECTED DRAWING: Figure 1

Description

本発明は、熱転写方式のプリンタに使用される熱転写受像シート及び熱転写受像シートの製造方法に関する。   The present invention relates to a thermal transfer image receiving sheet used in a thermal transfer printer and a method for manufacturing the thermal transfer image receiving sheet.

従来、種々の熱転写方法が公知であるが、それらの中で昇華性染料を記録材とし、これを紙やプラスチックシート等の基材シートに担持させて熱転写記録体とし、昇華性染料で染着可能な熱転写受像シート上に各種のフルカラー画像を形成する方法(昇華型熱転写方式)が提案されている。熱転写受像シートは、例えば、紙やプラスチックフイルムの表面に染料受容層が設けられている。   Conventionally, various thermal transfer methods are known. Among them, a sublimation dye is used as a recording material, and this is supported on a substrate sheet such as paper or a plastic sheet to form a thermal transfer recording material, and dyed with a sublimation dye. A method (sublimation thermal transfer method) for forming various full-color images on a possible thermal transfer image-receiving sheet has been proposed. In the thermal transfer image receiving sheet, for example, a dye receiving layer is provided on the surface of paper or a plastic film.

このような熱転写記録体と熱転写受像シートとを使用する場合には、加熱手段としてプリンタのサーマルヘッドが使用される。サーマルヘッドを使用することにより、極めて短時間の加熱によって3色又は4色の多数の色ドットを熱転写受像シートに転移させ、該多数の色ドットにより原稿のフルカラー画像を形成することができる。この様にして形成された画像は、使用する色材が染料であることから非常に鮮明であり、且つ透明性が高い為、中間色の再現性や階調性に優れている。このため、熱転写記録体と熱転写受像シートとを使用して得た画像は、従来のオフセット印刷やグラビア印刷による画像と同様に画質が優れて、且つフルカラー写真画像に匹敵する高品質の画像が形成可能となっている。   When such a thermal transfer recording material and a thermal transfer image receiving sheet are used, a thermal head of a printer is used as a heating means. By using the thermal head, a large number of three or four color dots can be transferred to the thermal transfer image receiving sheet by heating for a very short time, and a full color image of the original can be formed by the large number of color dots. The image formed in this way is very clear because the color material used is a dye, and has high transparency, so it has excellent reproducibility and gradation of intermediate colors. For this reason, the image obtained using the thermal transfer recording material and the thermal transfer image-receiving sheet is excellent in image quality as the image by the conventional offset printing or gravure printing, and a high quality image comparable to a full-color photographic image is formed. It is possible.

上述の様な昇華型熱転写方式に使用される熱転写受像シート(以下受像シートと記載する場合がある)は、画像に濃度むらやドット抜けがなく高濃度及び高解像度の画像が得られる様に、サーマルドットの印字エネルギーに正確に対応した発色及び濃度が要求される。
受像シートが硬くクッション性が欠ける場合には、サーマルヘッド−熱転写シート−受像シートの合計の厚みが均一でなくなり、サーマルヘッドの印圧が不均一になって、印字のドット抜けや濃度むらが発生する。
The thermal transfer image-receiving sheet used in the sublimation type thermal transfer system as described above (hereinafter sometimes referred to as an image-receiving sheet) has a high-density and high-resolution image without uneven density and missing dots in the image. Color development and density that accurately correspond to the printing energy of thermal dots are required.
If the image-receiving sheet is hard and lacks cushioning properties, the total thickness of the thermal head, thermal transfer sheet, and image-receiving sheet will not be uniform, the printing pressure of the thermal head will be uneven, and printing dots will be missing or uneven density will occur. To do.

このため、紙等からなる基材シートの一方又は両方の面にクッション層を積層する方法が知られ、クッション材として多孔質フィルムを使用する受像シートが提案されている。
上述の様な受像シートを形成する際には、有機溶剤を溶媒として含有する接着剤を基材上に塗工して接着剤層を形成し、基材の一方の面又は両方の面と発泡樹脂フィルムとを積層した積層体を形成していた。この積層体は、いわゆるドライラミネート法又はウェットラミネート法などの塗工工程を含む貼合方式で積層貼合されて形成されていた。
For this reason, a method of laminating a cushion layer on one or both surfaces of a base material sheet made of paper or the like is known, and an image receiving sheet using a porous film as a cushioning material has been proposed.
When forming the image receiving sheet as described above, an adhesive containing an organic solvent as a solvent is coated on the substrate to form an adhesive layer, and one or both surfaces of the substrate are foamed. The laminated body which laminated | stacked the resin film was formed. This laminate was formed by laminating and laminating by a laminating method including a coating process such as a so-called dry laminating method or wet laminating method.

しかしながら、このような貼合方式では、接着剤の溶剤や接着時の加熱によって得られる積層体にカール、波打ち等が発生しやすい。このため、カール、波打ち等が発生した積層体の表面に染料受容層を形成する際に、染料受容層の平滑性やブリスター等の問題が発生していた。
また、上述のような貼合方式では、溶剤の問題や加熱工程、熟成時間等、生産性にも大きな問題がある。また接着剤の硬化に時間を要する等の生産性の問題もあり、製造コストの改善が要請されている。
However, in such a bonding method, curling, corrugation and the like are likely to occur in the laminate obtained by the solvent of the adhesive or by heating at the time of bonding. For this reason, problems such as smoothness of the dye receiving layer and blistering have occurred when the dye receiving layer is formed on the surface of the laminate on which curling, undulation or the like has occurred.
Moreover, in the pasting method as described above, there are significant problems in productivity, such as a solvent problem, a heating process, and an aging time. In addition, there is a problem of productivity such as that it takes time to cure the adhesive, and there is a demand for improvement in manufacturing cost.

このような問題を解決する、溶剤を使用しない既存の積層貼合方法としては、押出サンドイッチラミネーション法がある。
例えば、ポリエチレン樹脂、ポリプロピレン樹脂等を用いて、樹脂フィルム貼り合わせる方法などが、以下の特許文献1及び2が提案されている。
As an existing laminating and bonding method that does not use a solvent and solves such a problem, there is an extrusion sandwich lamination method.
For example, the following Patent Documents 1 and 2 have been proposed as a method of laminating resin films using polyethylene resin, polypropylene resin, or the like.

特開平11−227343号公報JP-A-11-227343 特開2007−98926号公報JP 2007-98926 A

上述の特許文献1及び2に記載された積層貼合方法を用いることで、溶剤の使用を抑え、低コストで受像シートを形成することが可能となる。しかしながら、多孔質フィルムを紙等の基材シートに張り合わせると、紙の地合いが多孔質フィルムに現れ、多孔質フィルムの基材シート対向面とは反対側の表面に設けられる染料受容層表面の平滑性が不十分となる。これにより、受像シートの画像均一性が悪化するおそれがある。   By using the lamination | stacking bonding method described in the above-mentioned patent documents 1 and 2, it becomes possible to suppress use of a solvent and to form an image receiving sheet at low cost. However, when the porous film is laminated to a substrate sheet such as paper, the texture of the paper appears in the porous film, and the surface of the dye-receiving layer provided on the surface opposite to the substrate sheet-facing surface of the porous film. Smoothness becomes insufficient. As a result, the image uniformity of the image receiving sheet may be deteriorated.

また、紙の地合いを隠蔽するために、染料受容層の下に、白色顔料を含んだ下引き層が設けられる場合がある。しかしながら、下引き層が設けられた場合、白色顔料による凹凸で画質が悪化するおそれがある。
本発明は、このような点に着目してなされたもので、高感度、高画質であり、鮮明な画像を形成でき、且つ低コストにて製造できる熱転写受像シート及び熱転写受像シートの製造方法を提供することを目的としている。
In order to conceal the texture of the paper, an undercoat layer containing a white pigment may be provided under the dye receiving layer. However, when the undercoat layer is provided, the image quality may deteriorate due to the unevenness caused by the white pigment.
The present invention has been made paying attention to such points, and provides a thermal transfer image-receiving sheet and a method for producing the thermal transfer image-receiving sheet that can form a clear image with high sensitivity and high image quality and that can be manufactured at low cost. It is intended to provide.

本発明の一態様に係る熱転写受像シートは、紙基材と、前記紙基材の一方の面上に形成されたポリオレフィン樹脂層と、前記紙基材と、前記ポリオレフィン樹脂層を介して押出サンドイッチラミネーションにて貼り合わされ、厚さが10μm以上60μm以下であり、かつ前記紙基材に対向する面の反対側の面の算術平均粗さ(SRa)が0.8μm以下である多孔質フィルム層と、前記多孔質フィルム層の表面に形成され、少なくとも白色顔料とバインダ樹脂とを含み、前記バインダ樹脂に対する前記白色顔料の質量比が1/3以上3以下であり、厚さが0.2μm以上5.0μm以下であり、二軸延伸ポリプロピレンフィルム上に形成した際の全光線透過率が20%以上65%以下であり、表面の算術平均粗さ(SRa)が0.6μm以下となる下引き層と、前記下引き層の表面に形成される染料受容層と、を備えることを特徴とする。   A thermal transfer image-receiving sheet according to an aspect of the present invention includes a paper base material, a polyolefin resin layer formed on one surface of the paper base material, the paper base material, and an extrusion sandwich through the polyolefin resin layer. A porous film layer laminated by lamination, having a thickness of 10 μm or more and 60 μm or less, and an arithmetic average roughness (SRa) of a surface opposite to the surface facing the paper substrate of 0.8 μm or less; Formed on the surface of the porous film layer, including at least a white pigment and a binder resin, wherein a mass ratio of the white pigment to the binder resin is from 1/3 to 3 and a thickness of from 0.2 μm to 5 0.0 μm or less, the total light transmittance when formed on a biaxially oriented polypropylene film is 20% or more and 65% or less, and the arithmetic average roughness (SRa) of the surface is 0.6 μm or less. And the undercoat layer that is characterized by and a dye-receiving layer formed on a surface of the undercoat layer.

本発明の一態様に係る熱転写受像シートの製造方法は、紙基材の一方の面と厚さ10μm以上60μm以下の多孔質フィルム層とを、前記多孔質フィルム層の前記紙基材に対向する面の反対側の面の算術平均粗さ(SRa)が0.8μm以下となるように、前記ポリオレフィン樹脂層を介した押出サンドイッチラミネーションにて貼り合わせる貼り合わせ工程と、少なくとも白色顔料とバインダ樹脂とを含み、前記バインダ樹脂に対する前記白色顔料の質量比が1/3以上3以下である下引き層塗布液を二軸延伸ポリプロピレンフィルム上に塗布して乾燥させ、厚さが0.2μm以上5.0μm以下に形成した際の、全光線透過率が20%以上65%以下、かつ表面の算術平均粗さ(SRa)が0.6μm以下となる下引き層を形成する下引き層形成工程と、前記下引き層上に染料受容層を形成する染料受容層形成工程とを備えることを特徴とする。   In the method for producing a thermal transfer image-receiving sheet according to one aspect of the present invention, one surface of a paper substrate and a porous film layer having a thickness of 10 μm to 60 μm are opposed to the paper substrate of the porous film layer. A laminating step of laminating by extrusion sandwich lamination via the polyolefin resin layer so that the arithmetic mean roughness (SRa) of the surface opposite to the surface is 0.8 μm or less, and at least a white pigment and a binder resin An undercoat layer coating solution having a mass ratio of the white pigment to the binder resin of 1/3 or more and 3 or less is applied on a biaxially stretched polypropylene film and dried, and the thickness is 0.2 μm or more and 5. Undercoat layer for forming an undercoat layer having a total light transmittance of 20% to 65% and an arithmetic average roughness (SRa) of 0.6 μm or less when formed to 0 μm or less And forming step, characterized in that it comprises a dye receiving layer forming step of forming a dye-receiving layer on the undercoat layer.

本発明の態様によれば、高感度、高画質であり、鮮明な画像を形成でき、且つ低コストにて製造できる熱転写受像シート及び熱転写受像シートを得ることができる。   According to the aspects of the present invention, it is possible to obtain a thermal transfer image receiving sheet and a thermal transfer image receiving sheet that can form a clear image with high sensitivity and high image quality and can be manufactured at low cost.

本発明の一実施形態に係る熱転写受像シートを模式的に示す断面図である。It is sectional drawing which shows typically the thermal transfer image receiving sheet which concerns on one Embodiment of this invention. 本発明の一実施形態に係る熱転写受像シート1の製造工程を示す製造工程断面図である。It is manufacturing process sectional drawing which shows the manufacturing process of the thermal transfer image receiving sheet 1 which concerns on one Embodiment of this invention.

1.熱転写受像シートの構成
以下、本発明の一実施形態に係る熱転写受像シートについて詳細に説明する。
図1は、本発明の一実施形態に係る熱転写受像シート1を模式的に示す断面図である。本発明の一実施形態に係る熱転写受像シート1は、少なくとも、紙基材2、ポリオレフィン樹脂層3、多孔質フィルム層4、下引き層5及び染料受容層6がこの順に積層されて構成されてなる。本発明の一実施形態に係る熱転写受像シート1は、例えば、紙基材2の一方の面に、ポリオレフィン樹脂層3、多孔質フィルム層4、下引き層5及び染料受容層6をこの順に積層された状態で備えている。
1. Configuration of Thermal Transfer Image Receiving Sheet Hereinafter, a thermal transfer image receiving sheet according to an embodiment of the present invention will be described in detail.
FIG. 1 is a cross-sectional view schematically showing a thermal transfer image receiving sheet 1 according to an embodiment of the present invention. The thermal transfer image-receiving sheet 1 according to an embodiment of the present invention is configured by laminating at least a paper substrate 2, a polyolefin resin layer 3, a porous film layer 4, an undercoat layer 5, and a dye receiving layer 6 in this order. Become. A thermal transfer image-receiving sheet 1 according to an embodiment of the present invention includes, for example, a polyolefin resin layer 3, a porous film layer 4, an undercoat layer 5, and a dye-receiving layer 6 laminated in this order on one surface of a paper substrate 2. It is prepared in the state that was done.

紙基材2及び多孔質フィルム層4は、ポリオレフィン樹脂を主成分とする溶融押出樹脂をダイから押出ラミネートして形成されるポリオレフィン樹脂層3を介して貼り合わされている。すなわち、熱転写受像シート1は、いわゆる押出サンドイッチラミネート工程により形成されている点に特徴を有している。
押出サンドイッチラミネート工程により、接着剤が無用であり、有機溶剤を使用しないため、環境に対して悪影響がなく安全性にも優れている。また、接着剤の乾燥工程が不要であり加工速度が速いため、生産性にも優れている。さらに、溶融押出樹脂の価格も従来の溶剤型接着剤と比較して安価であり、熱転写受像シート1の製造コストを低減することが可能となる。
The paper substrate 2 and the porous film layer 4 are bonded to each other via a polyolefin resin layer 3 formed by extruding and laminating a melt-extruded resin mainly composed of a polyolefin resin from a die. That is, the thermal transfer image receiving sheet 1 is characterized by being formed by a so-called extrusion sandwich lamination process.
The extrusion sandwich laminating process eliminates the need for an adhesive and does not use an organic solvent. Moreover, since the drying process of an adhesive agent is unnecessary and the processing speed is high, it is excellent in productivity. Furthermore, the price of the melt-extruded resin is also lower than that of the conventional solvent-type adhesive, and the manufacturing cost of the thermal transfer image receiving sheet 1 can be reduced.

紙基材2は、従来公知の材料が用いられる。紙基材2としては、例えば、上質紙、中質紙、コート紙、アート紙、キャストコート紙、片面コート紙、壁紙、裏打用紙、合成樹脂又はエマルジョン含浸紙、合成ゴムラテックス含浸紙、合成樹脂内添紙、板紙等が用いられる。
押出ラミネート及び、押出サンドイッチラミネート法を行なう場合は、押出された溶融樹脂が紙目の凹凸に浸透することにより物理的接着が得られる。このため、紙基材2としては、ラミネートされる面が非塗工紙である上質紙や、中質紙、片面コート紙(非塗工側をラミネート面とする)を用いるのが好ましい。
A conventionally known material is used for the paper base 2. Examples of the paper base 2 include high-quality paper, medium-quality paper, coated paper, art paper, cast-coated paper, single-sided coated paper, wallpaper, backing paper, synthetic resin or emulsion-impregnated paper, synthetic rubber latex-impregnated paper, and synthetic resin. Internal paper, paperboard, etc. are used.
In the case of performing extrusion lamination and extrusion sandwich lamination, physical adhesion is obtained by the extruded molten resin penetrating into the irregularities of the paper grain. For this reason, as the paper base material 2, it is preferable to use high-quality paper whose surface to be laminated is non-coated paper, medium-quality paper, or single-side coated paper (the non-coated side is the laminated surface).

紙基材2の厚さは、印画物としてのコシ、強度や耐熱性等を考慮し、25μm以上250μm以下とすることが好ましく、50μm以上200μm以下とすることがより好ましい。紙基材2の厚さが25μm以上である場合、紙基材2の強度や耐熱性が向上するとともに、印画物として必要なコシがあるため熱収縮等に起因するしわができにくい。また、紙基材2の厚さが250μm以下である場合、得られる熱転写受像シート1が厚くなりすぎないため、熱転写方式のプリンタでの熱転写受像シート1の搬送時に不具合が生じにくくなる。   The thickness of the paper substrate 2 is preferably 25 μm or more and 250 μm or less, and more preferably 50 μm or more and 200 μm or less in consideration of the stiffness, strength, heat resistance, etc. of the printed material. When the thickness of the paper base material 2 is 25 μm or more, the strength and heat resistance of the paper base material 2 are improved, and wrinkles due to heat shrinkage and the like are difficult to occur due to the stiffness necessary for the printed matter. In addition, when the thickness of the paper substrate 2 is 250 μm or less, the obtained thermal transfer image receiving sheet 1 does not become too thick, so that problems are less likely to occur when the thermal transfer image receiving sheet 1 is conveyed in a thermal transfer type printer.

ポリオレフィン樹脂層3は、従来公知の材料で形成される。ポリオレフィン樹脂層3は、紙基材2と多孔質フィルム層4とを押出サンドイッチラミネーションにて貼り合せるための接着層である。
ポリオレフィン樹脂層3で使用されるポリオレフィン系樹脂の具体例としては、低密度ポリエチレン(LDPE)、中密度ポリエチレン(MDPE)、高密度ポリエチレン(HDPE)、線状低密度ポリエチレン(LLDPE)、ポリプロピレン、ポリブデン、ポリメチルペンテン、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸共重合体、エチレン−エチルアクリレート共重合体、エチレンとα、β−不飽和カルボン酸との共重合体を金属イオンで中和したいわゆるアイオノマー樹脂が挙げられ、これらのポリオレフィン系樹脂のうちでも、特にポリエチレン樹脂が安価であることから好ましく使用される。また、これらのポリオレフィン樹脂は単独あるいは、2種類以上を混合して使用することができる。
The polyolefin resin layer 3 is formed of a conventionally known material. The polyolefin resin layer 3 is an adhesive layer for bonding the paper substrate 2 and the porous film layer 4 together by extrusion sandwich lamination.
Specific examples of the polyolefin-based resin used in the polyolefin resin layer 3 include low density polyethylene (LDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), linear low density polyethylene (LLDPE), polypropylene, and polybudene. , Polymethylpentene, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-ethyl acrylate copolymer, copolymer of ethylene and α, β-unsaturated carboxylic acid with metal ions Among these polyolefin resins, polyethylene resins are particularly preferred because they are inexpensive. Moreover, these polyolefin resins can be used individually or in mixture of 2 or more types.

また、ポリオレフィン樹脂層3には、熱安定剤、酸化防止剤、帯電防止剤、紫外線吸収剤、光安定剤、無機微粒子、有機微粒子等各種の添加剤に1種類あるいは、2種類以上を併用して使用してもよい。
ポリオレフィン樹脂層3の厚さは、10μm以上50μm以下とすることが好ましい。ポリオレフィン樹脂層3の厚みが10μm未満である場合、紙基材2の紙目の凹凸にポリオレフィン系樹脂が浸み込み、接着に寄与する樹脂が減るため、紙基材2と多孔質フィルム層4との間の十分な接着が得られない。また、ポリオレフィン樹脂層3の厚みが10μm未満である場合、紙目の凹凸や地合いが、多孔質フィルム層4の表面に現れ、熱転写受像シート1の表面平滑性が低下する。一方、ポリオレフィン樹脂層3の厚みが50μmを越える場合、得られる熱転写受像シート1全体の厚みが過大となり、プリンタにおける収容枚数の低下を招き好ましくない。
In addition, the polyolefin resin layer 3 includes one or more kinds of various additives such as a heat stabilizer, an antioxidant, an antistatic agent, an ultraviolet absorber, a light stabilizer, inorganic fine particles, and organic fine particles. May be used.
The thickness of the polyolefin resin layer 3 is preferably 10 μm or more and 50 μm or less. When the thickness of the polyolefin resin layer 3 is less than 10 μm, the polyolefin-based resin soaks into the irregularities of the paper of the paper base 2 and the resin contributing to adhesion decreases, so the paper base 2 and the porous film layer 4 Adequate adhesion between the two cannot be obtained. Moreover, when the thickness of the polyolefin resin layer 3 is less than 10 μm, unevenness and texture of the paper pattern appear on the surface of the porous film layer 4 and the surface smoothness of the thermal transfer image receiving sheet 1 is lowered. On the other hand, when the thickness of the polyolefin resin layer 3 exceeds 50 μm, the thickness of the entire thermal transfer image-receiving sheet 1 to be obtained becomes excessive, which is not preferable because the number of sheets accommodated in the printer is reduced.

多孔質フィルム層4は、多孔質フィルム層4の下引き層5に対向する面の算術平均粗さ(SRa)が0.8μm以下に調整される。理由は後述する。
多孔質フィルム層4は、従来公知の材料で形成される。多孔質フィルム層4としては、例えば、発泡ポリプロピレンフィルムや発泡ポリエチレンテレフタレートフィルム等の発泡フィルムなどを用いたもの、さらに発泡フィルムの片面又は両面にスキン層を設けた複合フィルムを挙げることができる。この中でも特に、画質に影響を与える平滑性や光沢性等を考慮し、発泡フィルムの片面又は両面にスキン層を設けた複合フィルムを用いることが好ましい。
In the porous film layer 4, the arithmetic average roughness (SRa) of the surface facing the undercoat layer 5 of the porous film layer 4 is adjusted to 0.8 μm or less. The reason will be described later.
The porous film layer 4 is formed of a conventionally known material. Examples of the porous film layer 4 include a film using a foamed film such as a foamed polypropylene film or a foamed polyethylene terephthalate film, and a composite film in which a skin layer is provided on one or both sides of the foamed film. Among these, it is particularly preferable to use a composite film in which a skin layer is provided on one or both sides of a foamed film in consideration of smoothness and glossiness that affect the image quality.

多孔質フィルム層4の厚さは、10μm以上60μm以下とすることが好ましく、20μm以上50μm以下とすることがより好ましい。
なお、紙基材2、ポリオレフィン樹脂層3及び多孔質フィルム層4には、接着性向上のため、必要に応じて従来公知の各種処理を施しても良い。例えば、紙基材2にはコロナ処理、ポリオレフィン樹脂層3にはオゾン処理、多孔質フィルム層4には易接着処理を施すことで、互いの接着性を向上させることができる。
The thickness of the porous film layer 4 is preferably 10 μm or more and 60 μm or less, and more preferably 20 μm or more and 50 μm or less.
The paper base 2, the polyolefin resin layer 3, and the porous film layer 4 may be subjected to various conventionally known treatments as necessary for improving the adhesion. For example, the paper substrate 2 can be corona treated, the polyolefin resin layer 3 can be subjected to ozone treatment, and the porous film layer 4 can be subjected to easy adhesion treatment, thereby improving the mutual adhesiveness.

下引き層5は、染料受容層6と多孔質フィルム層4との間の接着性の改善、及び紙基材2の紙目の凹凸や地合いを目立たなくする働きがあり、主に、白色顔料とバインダ樹脂とを含有する。
下引き層5に用いられるバインダ樹脂としては、例えばポリ塩化ビニル樹脂、ポリ酢酸ビニル樹脂、塩化ビニル−酢酸ビニル共重合体樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、ポリビニルアルコール樹脂、エポキシ樹脂、エチレン−酢酸ビニル共重合体樹脂、ポリウレタン系樹脂、アクリル系樹脂、ポリエステル系樹脂、セルロース系樹脂、ポリカーボネート系樹脂、ポリスチレン系樹脂、ポリアミド系樹脂、ポリオレフィン系樹脂が挙げられる。
The undercoat layer 5 functions to improve the adhesion between the dye receiving layer 6 and the porous film layer 4 and to make the unevenness and texture of the paper substrate 2 inconspicuous. And a binder resin.
Examples of the binder resin used for the undercoat layer 5 include polyvinyl chloride resin, polyvinyl acetate resin, vinyl chloride-vinyl acetate copolymer resin, polyvinyl acetal resin, polyvinyl butyral resin, polyvinyl alcohol resin, epoxy resin, ethylene- Examples thereof include vinyl acetate copolymer resins, polyurethane resins, acrylic resins, polyester resins, cellulose resins, polycarbonate resins, polystyrene resins, polyamide resins, and polyolefin resins.

また公知の帯電防止剤及び/ 又は架橋剤を単独でもしくはその2種以上の混合物として上述の樹脂材料と併用することもできる。
下引き層5に用いられる白色顔料としては、例えば、炭酸カルシウム、酸化マグネシウム、酸化チタン、炭酸マグネシウム、水酸化アルミニウム、アルミノ珪酸ナトリウム、アルミノ珪酸カリウム、クレー、マイカ、タルク、硫酸バリウム、硫酸カルシウムなどが挙げられるが、この中でも特に、酸化チタンが好ましい。また、これらは単独、もしくは二種類以上の混合物でもよい。
Further, known antistatic agents and / or crosslinking agents can be used in combination with the above-described resin materials alone or as a mixture of two or more thereof.
Examples of the white pigment used for the undercoat layer 5 include calcium carbonate, magnesium oxide, titanium oxide, magnesium carbonate, aluminum hydroxide, sodium aluminosilicate, potassium aluminosilicate, clay, mica, talc, barium sulfate, calcium sulfate, and the like. Among these, titanium oxide is particularly preferable. These may be used alone or as a mixture of two or more.

下引き層5は、白色顔料とバインダ樹脂との混合割合(バインダ樹脂に対する白色顔料の質量比(PV比))及び下引き層5の厚みを調整することにより、透過光を抑え、紙基材2の地合いを隠蔽することが可能となる。PV比は、(白色顔料の質量)/(バインダ樹脂の質量)で算出される。
透過光は、二軸延伸ポリプロピレンフィルム上に、バインダ樹脂に対する白色顔料の質量比(PV比)を1/3以上3以下とした下引き層塗布液を塗工・乾燥し、乾燥状態での厚さが0.2μm以上5.0μm以下の範囲となるように下引き層5を形成することにより調節される。すなわち、JIS規格 K7105で規定する全光線透過率を20%以上65%以下とすることで、紙基材2の地合いを隠蔽することが可能となる。
The undercoat layer 5 suppresses transmitted light by adjusting the mixing ratio of the white pigment and the binder resin (mass ratio (PV ratio) of the white pigment to the binder resin) and the thickness of the undercoat layer 5, thereby reducing the transmitted light. It becomes possible to conceal the two textures. The PV ratio is calculated by (mass of white pigment) / (mass of binder resin).
The transmitted light is applied on a biaxially stretched polypropylene film by applying and drying an undercoat layer coating solution having a mass ratio (PV ratio) of the white pigment to the binder resin of 1/3 or more and 3 or less. Is adjusted by forming the undercoat layer 5 so as to be in the range of 0.2 μm to 5.0 μm. That is, by making the total light transmittance defined in JIS standard K7105 20% or more and 65% or less, it is possible to hide the texture of the paper base material 2.

また、上述の範囲内においてバインダ樹脂に対する白色顔料の質量比(PV比)が低い場合(例えばPV比が1/3の場合)には、下引き層5の膜厚を薄く形成し、上述の範囲内において白色顔料とバインダ樹脂とのPV比が高い場合(例えばPV比が3の場合)には、下引き層5の膜厚を厚く形成する。これにより、下引き層5の表面の算術平均粗さ(SRa)を0.6μm以下に調整することが可能となる。   When the mass ratio (PV ratio) of the white pigment to the binder resin is low within the above range (for example, when the PV ratio is 1/3), the undercoat layer 5 is formed thin, When the PV ratio between the white pigment and the binder resin is high within the range (for example, when the PV ratio is 3), the undercoat layer 5 is formed thick. Thereby, the arithmetic average roughness (SRa) of the surface of the undercoat layer 5 can be adjusted to 0.6 μm or less.

下引き層5の厚さは、上述したように、0.2μm以上5.0μm以下とすることが好ましい。下引き層5の厚さが0.2μm以上である場合、下引き層5の膜厚調整が容易となり、厚みにばらつきが生じにくくなる。このため、熱転写受像シート1を用いて印画した場合の印画濃度にばらつきが発生しにくくなる。また、下引き層5の厚さが0.1μm以上である場合、下引き層5と、多孔質フィルム層4及び/又は染料受容層6との密着性が向上する。一方、下引き層5の厚さが5μm以下であると、印画時に印画濃度が飽和しにくくなる。また、コストの観点からも、下引き層5の厚さが5μm以下であることが好ましい。   As described above, the thickness of the undercoat layer 5 is preferably 0.2 μm or more and 5.0 μm or less. When the thickness of the undercoat layer 5 is 0.2 μm or more, it is easy to adjust the film thickness of the undercoat layer 5 and variations in thickness are less likely to occur. For this reason, it is difficult for the printing density to vary when printing is performed using the thermal transfer image receiving sheet 1. Moreover, when the thickness of the undercoat layer 5 is 0.1 μm or more, the adhesion between the undercoat layer 5 and the porous film layer 4 and / or the dye receiving layer 6 is improved. On the other hand, when the thickness of the undercoat layer 5 is 5 μm or less, the print density is hardly saturated during printing. Also, from the viewpoint of cost, the thickness of the undercoat layer 5 is preferably 5 μm or less.

染料受容層6は、従来公知の材料で形成される。染料受容層6は、少なくともバインダ樹脂と離型剤を含有する。
染料受容層6に用いられるバインダ樹脂としては、例えばポリビニルブチラール、ポリビニルアセトアセタール、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル、ポリ塩化ビニル、ポリ酢酸ビニル、塩化ビニル−酢酸ビニル共重合体、ポリエチレン、エチレン−酢酸ビニル共重合体、塩化ビニル−アクリル共重合体、スチレン−アクリル共重合体、ポリブタジエン、ポリプロピレンやポリエチレン等のポリオレフィン、ポリウレタン、ポリアミド、ポリスチレン、ポリカプロラクトン、エポキシ樹脂、ケトン樹脂、あるいはこれらの変性樹脂等を挙げることができるが、特に塩化ビニル−酢酸ビニル共重合体を用いることが好ましい。
The dye receiving layer 6 is formed of a conventionally known material. The dye receiving layer 6 contains at least a binder resin and a release agent.
Examples of the binder resin used for the dye receiving layer 6 include polyvinyl butyral, polyvinyl acetoacetal, polyester such as polyethylene terephthalate and polyethylene naphthalate, polyvinyl chloride, polyvinyl acetate, vinyl chloride-vinyl acetate copolymer, polyethylene, and ethylene. -Vinyl acetate copolymer, vinyl chloride-acrylic copolymer, styrene-acrylic copolymer, polybutadiene, polyolefins such as polypropylene and polyethylene, polyurethane, polyamide, polystyrene, polycaprolactone, epoxy resin, ketone resin, or modifications thereof Examples of the resin include vinyl chloride-vinyl acetate copolymer.

染料受容層6に用いられる離型剤としては、例えば、シリコーン系、フッ素系、リン酸エステル系といった各種オイルや、界面活性剤や、金属酸化物、シリカ等の各種フィラー、ワックス類等が使用できる。これらは単独、あるいは2種以上を混合しても良い。中でも、シリコーンオイルを使用することが好ましい。
染料受容層6の厚さは、0.1μm以上10μm以下とすることが好ましく、0.2μm以上8μm以下とすることがより好ましい。また、染料受容層6は、必要に応じて架橋剤や酸化防止剤、蛍光染料や、公知の添加剤を含有しても良い。
As a mold release agent used for the dye receiving layer 6, for example, various oils such as silicone, fluorine, and phosphate, surfactants, various fillers such as metal oxides and silica, waxes, and the like are used. it can. These may be used alone or in combination of two or more. Among these, it is preferable to use silicone oil.
The thickness of the dye receiving layer 6 is preferably 0.1 μm or more and 10 μm or less, and more preferably 0.2 μm or more and 8 μm or less. Moreover, the dye receiving layer 6 may contain a crosslinking agent, an antioxidant, a fluorescent dye, and a known additive as necessary.

また、熱転写受像シート1には、必要に応じて、紙基材2のポリオレフィン樹脂層3に対向する対向面とは逆側の面に、背面押出樹脂層、背面フィルム層、背面層、文字や図柄等を付与する印刷を設けても良い。背面押出樹脂層、背面フィルム層、背面層、文字や図柄等を付与する印刷の各層の積層順等は、適宜選択される。また、背面押出樹脂層、背面フィルム層、背面層、文字や図柄等を付与する印刷の材料は、従来公知の材料を用いることができる。   In addition, the thermal transfer image-receiving sheet 1 has a back extrusion resin layer, a back film layer, a back layer, characters, characters, and the like on the surface opposite to the facing surface facing the polyolefin resin layer 3 of the paper substrate 2 as necessary. You may provide the printing which gives a pattern etc. The order of lamination of the back-extruded resin layer, the back film layer, the back layer, and the printing layers to which characters, designs, etc. are applied is appropriately selected. Moreover, a conventionally well-known material can be used for the printing material which provides a back extrusion resin layer, a back film layer, a back layer, a character, a design, etc.

上述したように、本実施形態の一態様に係る熱転写受像シート1が、紙基材2と、紙基材2の一方の面上に形成されたポリオレフィン樹脂層3と、ポリオレフィン樹脂層3を介して押出サンドイッチラミネーションにて紙基材2と貼り合わされ、厚さが10μm以上60μm以下であり、かつ紙基材に対向する面の反対側の面(すなわち下引き層5と対向する面)の算術平均粗さ(SRa)が0.8μm以下である多孔質フィルム層4と、多孔質フィルム層4の表面に形成され、少なくとも白色顔料とバインダ樹脂とを含み、バインダ樹脂に対する白色顔料の質量比が1/3以上3以下である下引き層塗布液を二軸延伸ポリプロピレンフィルム上に塗布して乾燥させ、厚さが0.2μm以上5.0μm以下に形成した際の全光線透過率が20%以上65%以下であり、表面の算術平均粗さ(SRa)が0.6μm以下となる下引き層5と、下引き層5の表面に形成される染料受容層6と、を備えることにより、画質に優れた熱転写受像シート1を得ることができる。   As described above, the thermal transfer image receiving sheet 1 according to one aspect of the present embodiment includes the paper base 2, the polyolefin resin layer 3 formed on one surface of the paper base 2, and the polyolefin resin layer 3. Arithmetic of the surface opposite to the surface facing the paper substrate (that is, the surface facing the undercoat layer 5) which is bonded to the paper substrate 2 by extrusion sandwich lamination and has a thickness of 10 μm to 60 μm. The porous film layer 4 having an average roughness (SRa) of 0.8 μm or less, and formed on the surface of the porous film layer 4 includes at least a white pigment and a binder resin, and the mass ratio of the white pigment to the binder resin is An undercoat layer coating solution of 1/3 or more and 3 or less is applied on a biaxially stretched polypropylene film and dried to give a total light transmittance of 20% when formed to a thickness of 0.2 μm to 5.0 μm. Less than By providing the undercoat layer 5 having an upper surface of 65% or less and an arithmetic average roughness (SRa) of 0.6 μm or less, and the dye receiving layer 6 formed on the surface of the undercoat layer 5, A thermal transfer image receiving sheet 1 having excellent image quality can be obtained.

[多孔質フィルム層表面の算術平均粗さ(SRa)]
以下、曲面の算術平均粗さ(SRa)及び二次元の輪郭曲線の算術平均粗さ(Ra)について説明する。
曲面の算術平均粗さ(SRa)とは、JIS B 0601にて記載されている、二次元の輪郭曲線の算術平均粗さ(Ra)を、三次元に拡張したものである。粗さ曲面の中心面上に直交座標軸X,Y軸を置き、中心面に直交する軸をZ軸とした時、表面形状の曲面をf(x,y)、LxをX軸方向の測定長、LyをY軸方向の測定長とすると、算術平均粗さ(SRa)は以下の式(I)にて表される。
[Arithmetic mean roughness (SRa) of porous film layer surface]
Hereinafter, the arithmetic average roughness (SRa) of the curved surface and the arithmetic average roughness (Ra) of the two-dimensional contour curve will be described.
The arithmetic average roughness (SRa) of a curved surface is obtained by extending the arithmetic average roughness (Ra) of a two-dimensional contour curve described in JIS B 0601 to three dimensions. When the orthogonal coordinate axes X and Y axes are placed on the center plane of the roughness curved surface, and the axis orthogonal to the center plane is the Z axis, the surface shape curved surface is f (x, y), and Lx is the measurement length in the X axis direction. , Ly is the measurement length in the Y-axis direction, the arithmetic average roughness (SRa) is expressed by the following formula (I).

Figure 2016182686
Figure 2016182686

多孔質フィルム層4の下引き層に対向する面の算術平均粗さ(SRa)は、0.8μm以下に調整される。多孔質フィルム層4の下引き層5対向面の算術平均粗さ(SRa)を0.8μmより大きくした場合、熱転写受像シート1を染料受容層6側から見た際に凹凸が目立ち、ゆず肌状に見える。このため、画質に優れた熱転写受像シート1を得ることができない。   The arithmetic average roughness (SRa) of the surface facing the undercoat layer of the porous film layer 4 is adjusted to 0.8 μm or less. When the arithmetic average roughness (SRa) of the surface opposite the undercoat layer 5 of the porous film layer 4 is larger than 0.8 μm, the unevenness is conspicuous when the thermal transfer image receiving sheet 1 is viewed from the dye receiving layer 6 side, It looks like a shape. For this reason, the thermal transfer image receiving sheet 1 excellent in image quality cannot be obtained.

多孔質フィルム層4の表面の算術平均粗さ(SRa)を0.8μm以下に調整する方法としては、押出サンドイッチラミネーション時に用いる冷却ロールの表面における算術平均粗さ(Ra)が0.8μm以下であること、ポリオレフィン樹脂層3を均一に押出すことにより、ポリオレフィン樹脂層3の厚さを均一且つ10μm以上50μm以下とすること、ニップ圧を4kg重/cm以上50kg重/cm以下に調整することが挙げられる。
なお、多孔質フィルム層4の表面の算術平均粗さ(SRa)は、一般的に用いられる接触式表面粗さ計により計測することができる。
As a method for adjusting the arithmetic average roughness (SRa) of the surface of the porous film layer 4 to 0.8 μm or less, the arithmetic average roughness (Ra) on the surface of the cooling roll used during extrusion sandwich lamination is 0.8 μm or less. The thickness of the polyolefin resin layer 3 is made uniform and 10 μm or more and 50 μm or less by extruding the polyolefin resin layer 3 uniformly, and the nip pressure is adjusted to 4 kg weight / cm 2 or more and 50 kg weight / cm 2 or less. To do.
In addition, the arithmetic mean roughness (SRa) of the surface of the porous film layer 4 can be measured with a commonly used contact-type surface roughness meter.

従来の熱転写受像シートでは、多孔質フィルム層等の貼り合わせに、ドライラミネート法が用いられてきた。しかしながら、ドライラミネート法では、ラミネート後も反応を促進し、完了させるためのエージング工程が必要であるため、製造コストを押し上げる要因となっていた。また、接着層の膜厚を5μm未満とすると、紙基材2の凹凸を埋めることができず、画質の悪化につながり、逆に接着層の膜厚を5μm以上とすると、画質は優れるものの、残留溶剤やコストの問題が発生していた。
そこで、本発明者らは、紙基材2と多孔質フィルム層4とを、ポリオレフィン樹脂層3を介した押出サンドイッチラミネーションにて貼り合わせることで、上述のような問題を解決できることを見出した。
In a conventional thermal transfer image receiving sheet, a dry laminating method has been used for laminating a porous film layer or the like. However, in the dry laminating method, an aging process for accelerating and completing the reaction after lamination is necessary, which has been a factor in increasing manufacturing costs. Moreover, if the film thickness of the adhesive layer is less than 5 μm, the unevenness of the paper substrate 2 cannot be filled, leading to deterioration of the image quality. Conversely, if the film thickness of the adhesive layer is 5 μm or more, the image quality is excellent, Residual solvent and cost problems occurred.
Therefore, the present inventors have found that the above-mentioned problems can be solved by bonding the paper substrate 2 and the porous film layer 4 together by extrusion sandwich lamination via the polyolefin resin layer 3.

[下引き層の全光線透過率]
下引き層5の二軸延伸ポリプロピレンフィルムに塗布した際の全光線透過率は、20%以上65%以下の範囲に調整される。下引き層5の全光線透過率は、下引き層5の厚さが0.2μm以上5.0μm以下である場合の全光線透過率である。下引き層5の全光線透過率が20%より小さい場合、下引き層5に含有される白色顔料による凹凸が目立ち、画質に優れた熱転写受像シートを得ることができない。また、下引き層5の全光線透過率が65%より大きい場合、白色顔料による隠蔽性能が不足するため、紙基材2の地合いが目立ち、画質に優れた熱転写受像シートを得ることができない。また、下引き層5の全光線透過率が20%以上65%以下の範囲に入っていても、下引き層5の染料受容層6に対向する表面の算術平均粗さ(SRa)が0.6μmより大きくなると、熱転写受像シート1を染料受容層6から見た際に、ゆず肌状に見えるため、画質に優れた熱転写受像シート1を得ることができない。
[Total light transmittance of undercoat layer]
The total light transmittance when applied to the biaxially oriented polypropylene film of the undercoat layer 5 is adjusted to a range of 20% to 65%. The total light transmittance of the undercoat layer 5 is the total light transmittance when the thickness of the undercoat layer 5 is 0.2 μm or more and 5.0 μm or less. When the total light transmittance of the undercoat layer 5 is less than 20%, unevenness due to the white pigment contained in the undercoat layer 5 is conspicuous, and a thermal transfer image-receiving sheet excellent in image quality cannot be obtained. Further, when the total light transmittance of the undercoat layer 5 is larger than 65%, the hiding performance by the white pigment is insufficient, so that the texture of the paper base material 2 is conspicuous and a thermal transfer image-receiving sheet excellent in image quality cannot be obtained. Even if the total light transmittance of the undercoat layer 5 falls within the range of 20% to 65%, the arithmetic average roughness (SRa) of the surface of the undercoat layer 5 facing the dye-receiving layer 6 is 0. When the thickness is larger than 6 μm, the thermal transfer image-receiving sheet 1 looks like a skin when viewed from the dye-receiving layer 6, so that the thermal transfer image-receiving sheet 1 with excellent image quality cannot be obtained.

上述の範囲に下引き層5の全光線透過率を調整する理由としては、表面が一定以上の平滑性を保ちつつ、白色顔料による光透過性を調整することにより、隠蔽性を高めるためである。白色顔料による隠蔽性を高めることで、紙基材2の地合いを目立たなくすることができる。
下引き層5の、二軸延伸ポリプロピレンフィルムに塗布した際の全光線透過率を20%以上65%以下に調整する方法としては、上述したように、下引き層5に含有される白色顔料とバインダ樹脂との混合割合(バインダ樹脂に対する白色顔料の質量比(PV比))に合わせて下引き層5の膜厚を調整する方法がある。
The reason for adjusting the total light transmittance of the undercoat layer 5 in the above-mentioned range is to improve the concealment property by adjusting the light transmittance by the white pigment while keeping the surface smoothness above a certain level. . The texture of the paper substrate 2 can be made inconspicuous by enhancing the concealing property by the white pigment.
As a method of adjusting the total light transmittance of the undercoat layer 5 when applied to the biaxially stretched polypropylene film to 20% or more and 65% or less, as described above, the white pigment contained in the undercoat layer 5 and There is a method of adjusting the film thickness of the undercoat layer 5 in accordance with the mixing ratio with the binder resin (the mass ratio of the white pigment to the binder resin (PV ratio)).

2.熱転写受像シートの製造方法
以下、図2(a)から図2(d)を参照して、熱転写受像シート1の製造方法について説明する。図2(a)から図2(d)は、本発明の一実施形態に係る熱転写受像シート1の製造工程を示す製造工程断面図である。
2. Method for Manufacturing Thermal Transfer Image Receiving Sheet Hereinafter, a method for manufacturing the thermal transfer image receiving sheet 1 will be described with reference to FIGS. 2 (a) to 2 (d). FIG. 2A to FIG. 2D are manufacturing process cross-sectional views showing the manufacturing process of the thermal transfer image-receiving sheet 1 according to one embodiment of the present invention.

本発明の一実施形態に係る熱転写受像シート1の製造方法は、紙基材2の一方の面と厚さ10μm以上60μm以下の多孔質フィルム層4とを、多孔質フィルム層4の紙基材2に対向する面の反対側の面(すなわち下引き層5に対向する面)の算術平均粗さ(SRa)が0.8μm以下となるように、ポリオレフィン樹脂層3を介した押出サンドイッチラミネーションにて貼り合わせる貼り合わせ工程と、少なくとも白色顔料とバインダ樹脂とを含み、バインダ樹脂に対する白色顔料の質量比が1/3以上3以下である下引き層塗布液を二軸延伸ポリプロピレンフィルム上に塗布して乾燥させて、厚さが0.2μm以上5.0μm以下になるように形成した際の全光線透過率が20%以上65%以下、かつ表面の算術平均粗さ(SRa)が0.6μm以下となる下引き層を形成する下引き層形成工程と、下引き層5上に染料受容層6を形成する染料受容層形成工程とを備えている。これにより、低コスト且つ画質に優れた熱転写受像シートを製造することができる。   The method for producing a thermal transfer image-receiving sheet 1 according to an embodiment of the present invention includes a paper substrate of a porous film layer 4 comprising one surface of a paper substrate 2 and a porous film layer 4 having a thickness of 10 μm or more and 60 μm or less. 2 for extrusion sandwich lamination through the polyolefin resin layer 3 so that the arithmetic mean roughness (SRa) of the surface opposite to the surface facing 2 (ie, the surface facing the undercoat layer 5) is 0.8 μm or less. An undercoating layer coating solution containing at least a white pigment and a binder resin and having a mass ratio of the white pigment to the binder resin of 1/3 or more and 3 or less on the biaxially stretched polypropylene film. The total light transmittance is 20% or more and 65% or less, and the surface arithmetic average roughness (SRa) is 0.6. an undercoat layer forming step of forming an undercoat layer of μm or less, and a dye receiving layer forming step of forming the dye receiving layer 6 on the undercoat layer 5. This makes it possible to produce a thermal transfer image receiving sheet that is low in cost and excellent in image quality.

[貼り合わせ工程]
図2(a)に示すように、紙基材2と多孔質フィルム層4とが、ポリオレフィン樹脂層3を介して貼り合わされる。紙基材2と多孔質フィルム層4とは、ポリオレフィン樹脂層3を介した押出サンドイッチラミネーションにて貼り合わされる。具体的には、溶融したポリオレフィン樹脂がフィルム状に押出されるとともに、溶融したポリオレフィン樹脂を介して多孔質フィルム層4が供給され、冷却ロールにて冷却されることにより、ポリオレフィン樹脂が固化してポリオレフィン樹脂層3が形成される。
[Lamination process]
As shown in FIG. 2A, the paper substrate 2 and the porous film layer 4 are bonded together via the polyolefin resin layer 3. The paper substrate 2 and the porous film layer 4 are bonded together by extrusion sandwich lamination via the polyolefin resin layer 3. Specifically, the molten polyolefin resin is extruded into a film, and the porous film layer 4 is supplied through the melted polyolefin resin and cooled by a cooling roll, so that the polyolefin resin is solidified. A polyolefin resin layer 3 is formed.

冷却ロールとしては、鏡面ロール又はセミマットロール等が用いられる。冷却ロールの多孔質フィルム層4と対向する表面の算術平均粗さ(Ra)は0.8μm以下とされる。これにより、多孔質フィルム層4の下引き層5に対向する面の算術平均粗さ(SRa)が0.8μm以下とされる。
また、下引き層5が少なくとも白色顔料とバインダ樹脂とを含み、バインダ樹脂に対する白色顔料の質量比(PV比)が1/3以上3以下となり、下引き層5の厚さが0.2μm以上5.0μm以下となり、二軸延伸ポリプロピレンフィルム上の全光線透過率が20%以上65%以下となり、下引き層5の表面の算術平均粗さ(SRa)が0.6μm以下となるように、ポリオレフィン樹脂層3、多孔質フィルム層4、下引き層5及び染料受容層6を形成する。これにより、低コスト且つ画質に優れた熱転写受像シート1を得ることができる。
As the cooling roll, a mirror roll or a semi-matt roll is used. The arithmetic average roughness (Ra) of the surface of the cooling roll facing the porous film layer 4 is 0.8 μm or less. Thereby, the arithmetic mean roughness (SRa) of the surface facing the undercoat layer 5 of the porous film layer 4 is set to 0.8 μm or less.
The undercoat layer 5 includes at least a white pigment and a binder resin, and the mass ratio (PV ratio) of the white pigment to the binder resin is 1/3 or more and 3 or less, and the thickness of the undercoat layer 5 is 0.2 μm or more. 5.0 μm or less, the total light transmittance on the biaxially oriented polypropylene film is 20% or more and 65% or less, and the arithmetic average roughness (SRa) of the surface of the undercoat layer 5 is 0.6 μm or less. A polyolefin resin layer 3, a porous film layer 4, an undercoat layer 5 and a dye receiving layer 6 are formed. Thereby, the thermal transfer image receiving sheet 1 excellent in image quality at low cost can be obtained.

[下引き層形成工程]
図2(b)に示すように下引き層形成工程において、バインダ樹脂、白色顔料を含む下引き層塗布液5aを作製し、多孔質フィルム層4の表面に下引き層塗布液5aを塗布・乾燥する。これにより、図2(c)に示すように下引き層5が形成される。
[Undercoat layer forming step]
As shown in FIG. 2 (b), in the undercoat layer forming step, an undercoat layer coating solution 5a containing a binder resin and a white pigment is prepared, and the undercoat layer coating solution 5a is applied to the surface of the porous film layer 4. dry. Thereby, the undercoat layer 5 is formed as shown in FIG.

[染料受容層形成工程]
図2(c)に示すように染料受容層形成工程において、バインダ樹脂、離型剤を含む染料受容層塗布液6aを作製し、下引き層5上に染料受容層塗布液6aを塗布・乾燥する。これにより、図2(d)に示すように染料受容層6が形成される。なお、染料受容層塗布液6aは、多孔質フィルム層4上に塗工された乾燥前の下引き層塗布液5a上に塗布してもよい。
[Dye-receiving layer forming step]
As shown in FIG. 2C, in the dye receiving layer forming step, a dye receiving layer coating solution 6a containing a binder resin and a release agent is prepared, and the dye receiving layer coating solution 6a is applied onto the undercoat layer 5 and dried. To do. As a result, the dye receiving layer 6 is formed as shown in FIG. In addition, you may apply | coat the dye receiving layer coating liquid 6a on the undercoat layer coating liquid 5a before apply | coating on the porous film layer 4 before drying.

このとき、下引き層塗布液及び染料受容層塗布液には、一般の塗被紙製造において使用される濡れ剤、分散剤、増粘剤、消泡剤、着色剤、帯電防止剤、防腐剤等の各種補助剤が適宜添加される。また、下引き層塗布液及び染料受容層塗布液は、バーコート、ブレードコート、エアナイフコート、グラビアコート、ロールコート、ダイコート等の公知のウェットコーティング法によって、多孔質フィルム層4、下引き層5又は多孔質フィルム層4上に塗工された乾燥前の下引き層塗布液の表面にそれぞれ塗布される。   At this time, the undercoat layer coating solution and the dye-receiving layer coating solution include a wetting agent, a dispersing agent, a thickener, an antifoaming agent, a colorant, an antistatic agent, and an antiseptic used in general coated paper production. Etc. are appropriately added. The undercoat layer coating solution and the dye-receiving layer coating solution are prepared by a known wet coating method such as bar coating, blade coating, air knife coating, gravure coating, roll coating, die coating, and the like. Or it is apply | coated to the surface of the undercoat layer coating liquid before the drying coated on the porous film layer 4, respectively.

また、下引き層塗布液及び染料受容層塗布液の塗布時には、下引き層塗布液及び染料受容層塗布液を各層毎、あるいは2層以上を同時に塗工、乾燥してもよい。
以上により、紙基材2の一方の面上に、ポリオレフィン樹脂層3、多孔質フィルム層4、下引き層5及び染料受容層6をこの順で有してなる熱転写受像シート1が形成される。
Further, when the undercoat layer coating solution and the dye receiving layer coating solution are applied, the undercoat layer coating solution and the dye receiving layer coating solution may be applied to each layer, or two or more layers may be coated and dried simultaneously.
As described above, the thermal transfer image receiving sheet 1 having the polyolefin resin layer 3, the porous film layer 4, the undercoat layer 5, and the dye receiving layer 6 in this order is formed on one surface of the paper substrate 2. .

上述した熱転写受像シートについて、具体的な実施例及び比較例を用いて説明する。
以下に、各実施例および各比較例に用いた材料を示す。なお、文中で「部」とあるのは、特に断りのない限り質量基準である。また、本発明は以下の実施例に限定されるものではない。
The above-described thermal transfer image receiving sheet will be described using specific examples and comparative examples.
Below, the material used for each Example and each comparative example is shown. In the text, “part” is based on mass unless otherwise specified. The present invention is not limited to the following examples.

(実施例1)
紙基材として両面にコロナ処理を施した、厚さ約149μmの上質紙(しらおい 坪量127.9g/m 日本製紙株式会社製)を使用し、紙基材の一方の面に溶融押し出し法により、厚さ30μmの背面押出樹脂層を形成した。背面押出樹脂層の形成には、低密度ポリエチレン樹脂(ペトロセン204 東ソー株式会社製)を用いた。
Example 1
Using high-quality paper (Shiraoi basis weight 127.9 g / m 2 manufactured by Nippon Paper Industries Co., Ltd.) with corona treatment on both sides as a paper base, melt extrusion on one side of the paper base By this method, a back extruded resin layer having a thickness of 30 μm was formed. A low density polyethylene resin (Petrocene 204 manufactured by Tosoh Corporation) was used to form the back extrusion resin layer.

次に、紙基材の背面押出樹脂層形成面とは反対側の面と、多孔質フィルム層である厚さ35μmの発泡ポリプロピレンフィルム(トヨパールP4255 東洋紡株式会社製)の一方の面とを、低密度ポリエチレン樹脂(ペトロセン204 東ソー株式会社製)の押出サンドイッチラミネーションにて貼り合わせた。このとき、低密度ポリエチレンの塗布厚さ(すなわち、ポリオレフィン樹脂層の厚さ)が10μmとなるように調整した。また、押出サンドイッチラミネーション時に用いる冷却ロールには、表面の算術平均粗さ(Ra)が0.2μmの鏡面ロールを用いた。また、冷却ロール周面におけるニップ圧を5kg重/cmとした。
紙基材に発泡ポリプロピレンフィルムを貼り合わせた後、発泡ポリプロピレンフィルム(多孔質フィルム層)の紙基材側とは反対側の表面の算術平均粗さ(SRa)を実施例1と同様の装置・条件にて測定したところ、0.7μmであった。
Next, a surface opposite to the back extrusion resin layer forming surface of the paper substrate and one surface of a 35 μm thick foamed polypropylene film (Toyopearl P4255 manufactured by Toyobo Co., Ltd.) which is a porous film layer are It bonded together by the extrusion sandwich lamination of the density polyethylene resin (Petrocene 204 Tosoh Corporation make). At this time, the coating thickness of the low density polyethylene (that is, the thickness of the polyolefin resin layer) was adjusted to 10 μm. A mirror roll having a surface arithmetic average roughness (Ra) of 0.2 μm was used as a cooling roll used during extrusion sandwich lamination. Further, the nip pressure on the circumferential surface of the cooling roll was set to 5 kgf / cm 2 .
After pasting the foamed polypropylene film on the paper base material, the arithmetic average roughness (SRa) of the surface of the foamed polypropylene film (porous film layer) opposite to the paper base side is the same as in Example 1. It was 0.7 μm when measured under the conditions.

<表面粗さ評価方法>
接触式表面粗さ計:Wyko NT3300 Bruker社製
測定範囲:1mm×1mm
測定ピッチ:X方向0.1μm、Y方向20μm
発泡ポリプロピレンフィルムの紙基材側とは反対側の表面に、以下の下引き層塗布液−1(PV比1/3)を、乾燥後の厚みが4.0μmとなるように塗布、乾燥することで下引き層を形成した。このような条件で、厚み40μmの二軸延伸ポリプロピレンフィルム上に形成した下引き層の全光線透過率を以下の装置・条件にて測定したところ60%であった。また、二軸延伸ポリプロピレンフィルム上に形成した下引き層の表面の算術平均粗さ(SRa)の測定時と同様の装置・条件にて下引き層表面の算術平均粗さ(SRa)を測定したところ0.4μmであった。
<Surface roughness evaluation method>
Contact type surface roughness meter: Wyko NT3300 Bruker, Inc. Measurement range: 1 mm x 1 mm
Measurement pitch: 0.1 μm in X direction, 20 μm in Y direction
The following undercoat layer coating solution-1 (PV ratio 1/3) is applied on the surface of the foamed polypropylene film opposite to the paper base so that the thickness after drying is 4.0 μm and dried. As a result, an undercoat layer was formed. Under these conditions, the total light transmittance of the undercoat layer formed on the biaxially stretched polypropylene film having a thickness of 40 μm was measured with the following apparatus and conditions, and it was 60%. Further, the arithmetic average roughness (SRa) of the surface of the undercoat layer was measured using the same apparatus and conditions as those used for measuring the arithmetic average roughness (SRa) of the surface of the undercoat layer formed on the biaxially stretched polypropylene film. However, it was 0.4 μm.

更に、下引き層の表面に以下の染料受容層塗布液を、乾燥後の厚みが3μmとなるように塗布、乾燥することで染料受容層を形成し、実施例1の熱転写受像シートを得た。
<下引き層塗布液−1>
ポリウレタン樹脂 9.0部
(TA24−412A 日立化成株式会社製)
酸化チタン 3.0部
(R25 堺化学工業株式会社製 粒径0.2μm)
メチルエチルケトン(MEK) 42.5部
トルエン 42.5部
Further, the following dye-receiving layer coating solution was applied on the surface of the undercoat layer so that the thickness after drying was 3 μm and dried to form a dye-receiving layer, whereby the thermal transfer image-receiving sheet of Example 1 was obtained. .
<Undercoat layer coating solution-1>
9.0 parts of polyurethane resin (TA24-412A manufactured by Hitachi Chemical Co., Ltd.)
Titanium oxide 3.0 parts (R25 Sakai Chemical Industry Co., Ltd. particle size 0.2 μm)
Methyl ethyl ketone (MEK) 42.5 parts Toluene 42.5 parts

<染料受容層塗布液>
塩化ビニル−酢酸ビニル共重合体 19.5部
(ソルバインC、日信化学工業株式会社製)
アミノ変性シリコーン 0.5部
(KF−393、信越化学工業株式会社製)
メチルエチルケトン 40.0部
トルエン 40.0部
<全光線透過率評価方法>
ヘーズメーター:NDH2000、日本電色工業株式会社製
光源:D65
全光線透過率測定(JISK7361)
<Dye-receiving layer coating solution>
19.5 parts of vinyl chloride-vinyl acetate copolymer (Solvine C, manufactured by Nissin Chemical Industry Co., Ltd.)
Amino-modified silicone 0.5 part (KF-393, manufactured by Shin-Etsu Chemical Co., Ltd.)
Methyl ethyl ketone 40.0 parts Toluene 40.0 parts <Total light transmittance evaluation method>
Haze meter: NDH2000, manufactured by Nippon Denshoku Industries Co., Ltd. Light source: D65
Total light transmittance measurement (JISK 7361)

(実施例2)
発泡ポリプロピレンフィルムの紙基材に対向する面とは反対側の表面に、下引き層塗布液−1(PV比1/3)を、乾燥後の厚みが2.0μmとなるように塗布、乾燥することで下引き層を形成した以外は、実施例1と同様にして、実施例2の熱転写受像シートを得た。紙基材に発泡ポリプロピレンフィルムを貼り合わせた後、発泡ポリプロピレンフィルム(多孔質フィルム層)の紙基材側とは反対側の表面の算術平均粗さ(SRa)を実施例1と同様の装置・条件にて測定したところ、0.7μmであった。
このような条件で、厚み40μmの二軸延伸ポリプロピレンフィルム上に形成した下引き層の全光線透過率を実施例1と同様に、装置・条件にて測定したところ65%であった。また、実施例1と同様の装置・条件にて下引き層表面の算術平均粗さ(SRa)を測定したところ0.3μmであった。
(Example 2)
The undercoat layer coating solution-1 (PV ratio 1/3) is applied to the surface of the foamed polypropylene film opposite to the surface facing the paper substrate so that the thickness after drying is 2.0 μm and dried. Thus, a thermal transfer image receiving sheet of Example 2 was obtained in the same manner as Example 1 except that the undercoat layer was formed. After pasting the foamed polypropylene film on the paper base material, the arithmetic average roughness (SRa) of the surface of the foamed polypropylene film (porous film layer) opposite to the paper base side is the same as in Example 1. It was 0.7 μm when measured under the conditions.
Under such conditions, the total light transmittance of the undercoat layer formed on the biaxially stretched polypropylene film having a thickness of 40 μm was measured with the apparatus and conditions in the same manner as in Example 1. As a result, it was 65%. Further, the arithmetic average roughness (SRa) of the surface of the undercoat layer was measured under the same apparatus and conditions as in Example 1, and it was 0.3 μm.

(実施例3)
発泡ポリプロピレンフィルムの紙基材に対向する面とは反対側の表面に、下引き層塗布液−2(PV比3)を、乾燥後の厚みが0.5μmとなるように塗布、乾燥することで下引き層を形成した以外は、実施例1と同様にして、実施例3の熱転写受像シートを得た。紙基材に発泡ポリプロピレンフィルムを貼り合わせた後、発泡ポリプロピレンフィルム(多孔質フィルム層)の紙基材側とは反対側の表面の算術平均粗さ(SRa)を実施例1と同様の装置・条件にて測定したところ、0.7μmであった。
このような条件で、厚み40μmの二軸延伸ポリプロピレンフィルム上に形成した下引き層の全光線透過率を実施例1と同様の装置・条件にて測定したところ20%であった。また、実施例1と同様の装置・条件にて下引き層表面の算術平均粗さ(SRa)を測定したところ0.4μmであった。
Example 3
Apply and dry undercoat layer coating solution-2 (PV ratio 3) on the surface opposite to the surface of the foamed polypropylene film opposite to the paper substrate so that the thickness after drying is 0.5 μm. The thermal transfer image-receiving sheet of Example 3 was obtained in the same manner as in Example 1 except that the undercoat layer was formed. After pasting the foamed polypropylene film on the paper base material, the arithmetic average roughness (SRa) of the surface of the foamed polypropylene film (porous film layer) opposite to the paper base side is the same as in Example 1. It was 0.7 μm when measured under the conditions.
Under these conditions, the total light transmittance of the undercoat layer formed on the 40 μm-thick biaxially stretched polypropylene film was measured by the same apparatus and conditions as in Example 1, and was 20%. Moreover, it was 0.4 micrometer when the arithmetic mean roughness (SRa) of the surface of undercoat was measured on the apparatus and conditions similar to Example 1. FIG.

<下引き層塗布液−2>
ポリウレタン樹脂 3.0部
(TA24−412A 日立化成株式会社製)
酸化チタン 9.0部
(R25 堺化学工業株式会社製 粒径0.2μm)
メチルエチルケトン(MEK) 42.5部
トルエン 42.5部
<Undercoat layer coating solution-2>
Polyurethane resin 3.0 parts (TA24-412A manufactured by Hitachi Chemical Co., Ltd.)
Titanium oxide 9.0 parts (R25 Sakai Chemical Industry Co., Ltd. particle size 0.2 μm)
Methyl ethyl ketone (MEK) 42.5 parts Toluene 42.5 parts

(実施例4)
押出サンドイッチラミレーション時に用いる冷却ロールとして、表面の算術平均粗さ(Ra)が0.8μmの鏡面ロールを用いた以外は、実施例1と同様にして、実施例4の熱転写受像シートを得た。紙基材に発泡ポリプロピレンフィルムを貼り合わせた後、発泡ポリプロピレンフィルム(多孔質フィルム層)の紙基材側とは反対側の表面の算術平均粗さ(SRa)を測定したところ0.8μmであった
このような条件で、厚み40μmの二軸延伸ポリプロピレンフィルム上に形成した下引き層の全光線透過率を実施例1と同様の装置・条件にて測定したところ60%であった。また、実施例1と同様の装置・条件にて下引き層表面の算術平均粗さ(SRa)を測定したところ0.4μmであった。
Example 4
A thermal transfer image-receiving sheet of Example 4 was obtained in the same manner as in Example 1 except that a mirror roll having a surface arithmetic average roughness (Ra) of 0.8 μm was used as a cooling roll used during extrusion sandwich lamination. . After bonding the foamed polypropylene film to the paper substrate, the arithmetic average roughness (SRa) of the surface of the foamed polypropylene film (porous film layer) opposite to the paper substrate side was measured and found to be 0.8 μm. Under such conditions, the total light transmittance of the undercoat layer formed on the biaxially stretched polypropylene film having a thickness of 40 μm was measured by the same apparatus and conditions as in Example 1, and found to be 60%. Further, the arithmetic average roughness (SRa) of the surface of the undercoat layer was measured under the same apparatus and conditions as in Example 1. As a result, it was 0.4 μm.

(実施例5)
押出サンドイッチラミレーション時に、低密度ポリエチレンの厚さが30μmとなるように調整し、冷却ロールとして表面の算術平均粗さ(Ra)が0.8μmの鏡面ロールを用いた以外は、実施例1と同様にして、実施例5の熱転写受像シートを得た。紙基材に発泡ポリプロピレンフィルムを貼り合わせた後、発泡ポリプロピレンフィルム(多孔質フィルム層)の紙基材側とは反対側の表面の算術平均粗さ(SRa)を実施例1と同様の装置・条件にて測定したところ、0.8μmであった。
(Example 5)
Example 1 except that the thickness of the low density polyethylene was adjusted to 30 μm during extrusion sandwich lamination, and a mirror roll having a surface arithmetic average roughness (Ra) of 0.8 μm was used as the cooling roll. Similarly, a thermal transfer image receiving sheet of Example 5 was obtained. After pasting the foamed polypropylene film on the paper base material, the arithmetic average roughness (SRa) of the surface of the foamed polypropylene film (porous film layer) opposite to the paper base side is the same as in Example 1. It was 0.8 μm when measured under the conditions.

このような条件で、厚み40μmの二軸延伸ポリプロピレンフィルム上に形成した下引き層の全光線透過率を実施例1と同様の装置・条件にて測定したところ60%であった。また、実施例1と同様の装置・条件にて下引き層表面の算術平均粗さ(SRa)を測定したところ0.4μmであった。   Under these conditions, the total light transmittance of the undercoat layer formed on the 40 μm-thick biaxially stretched polypropylene film was measured using the same apparatus and conditions as in Example 1, and was 60%. Further, the arithmetic average roughness (SRa) of the surface of the undercoat layer was measured under the same apparatus and conditions as in Example 1. As a result, it was 0.4 μm.

(実施例6)
押出サンドイッチラミレーション時のニップ圧を15kg/cmとし、冷却ロールとして表面の算術平均粗さ(Ra)が0.8μmの鏡面ロールを用いた以外は、実施例1と同様にして、実施例6の熱転写受像シートを得た。紙基材に発泡ポリプロピレンフィルムを貼り合わせた後、発泡ポリプロピレンフィルム(多孔質フィルム層)の紙基材側とは反対側の表面の算術平均粗さ(SRa)を実施例1と同様の装置・条件にて測定したところ、0.8μmであった
このような条件で、厚み40μmの二軸延伸ポリプロピレンフィルム上に形成した下引き層の全光線透過率を実施例1と同様の装置・条件にて測定したところ60%であった。また、実施例1と同様の装置・条件にて下引き層表面の算術平均粗さ(SRa)を測定したところ0.4μmであった。
(Example 6)
Example 1 was carried out in the same manner as Example 1 except that the nip pressure during extrusion sandwich lamination was 15 kg / cm 2 and a mirror roll having a surface arithmetic average roughness (Ra) of 0.8 μm was used as the cooling roll. No. 6 thermal transfer image-receiving sheet was obtained. After pasting the foamed polypropylene film on the paper base material, the arithmetic average roughness (SRa) of the surface of the foamed polypropylene film (porous film layer) opposite to the paper base side is the same as in Example 1. It was 0.8 μm when measured under the conditions. Under such conditions, the total light transmittance of the undercoat layer formed on the biaxially stretched polypropylene film having a thickness of 40 μm was set to the same apparatus and conditions as in Example 1. It was 60% when measured. Further, the arithmetic average roughness (SRa) of the surface of the undercoat layer was measured under the same apparatus and conditions as in Example 1. As a result, it was 0.4 μm.

(実施例7)
多孔質フィルム層として厚さ50μmの発泡ポリプロピレンフィルム(トヨパールP4256 東洋紡製)を用い、押出サンドイッチラミレーション時に、冷却ロールとして表面の算術平均粗さ(Ra)が0.8μmの鏡面ロールを用いた以外は、実施例1と同様にして、実施例6の熱転写受像シートを得た。紙基材に発泡ポリプロピレンフィルムを貼り合わせた後、発泡ポリプロピレンフィルム(多孔質フィルム層)の紙基材側とは反対側の表面の算術平均粗さ(SRa)を実施例1と同様の装置・条件にて測定したところ、0.7μmであった
(Example 7)
A foamed polypropylene film (Toyopearl P4256 manufactured by Toyobo Co., Ltd.) having a thickness of 50 μm was used as the porous film layer, and a mirror surface roll having a surface arithmetic average roughness (Ra) of 0.8 μm was used as a cooling roll during extrusion sandwich lamination. In the same manner as in Example 1, the thermal transfer image receiving sheet of Example 6 was obtained. After pasting the foamed polypropylene film on the paper base material, the arithmetic average roughness (SRa) of the surface of the foamed polypropylene film (porous film layer) opposite to the paper base side is the same as in Example 1. It was 0.7 μm when measured under the conditions.

このような条件で、厚み40μmの二軸延伸ポリプロピレンフィルム上に形成した下引き層の全光線透過率を実施例1と同様の装置・条件にて測定したところ60%であった。また、実施例1と同様の装置・条件にて下引き層表面の算術平均粗さ(SRa)を測定したところ0.4μmであった。   Under these conditions, the total light transmittance of the undercoat layer formed on the 40 μm-thick biaxially stretched polypropylene film was measured using the same apparatus and conditions as in Example 1, and was 60%. Further, the arithmetic average roughness (SRa) of the surface of the undercoat layer was measured under the same apparatus and conditions as in Example 1. As a result, it was 0.4 μm.

(比較例1)
発泡ポリプロピレンフィルムの紙基材に対向する面とは反対側の表面に、下引き層塗布液−1(PV比1/3)を、乾燥後の厚みが0.2μmとなるように塗布、乾燥することで下引き層を形成した以外は、実施例1と同様にして、比較例1の熱転写受像シートを得た。紙基材に発泡ポリプロピレンフィルムを貼り合わせた後、発泡ポリプロピレンフィルム(多孔質フィルム層)の紙基材側とは反対側の表面の算術平均粗さ(SRa)を実施例1と同様の装置・条件にて測定したところ、0.7μmであった。
(Comparative Example 1)
The undercoat layer coating solution-1 (PV ratio 1/3) is applied to the surface of the foamed polypropylene film opposite to the surface facing the paper substrate so that the thickness after drying is 0.2 μm, and dried. Thus, a thermal transfer image receiving sheet of Comparative Example 1 was obtained in the same manner as in Example 1 except that the undercoat layer was formed. After pasting the foamed polypropylene film on the paper base material, the arithmetic average roughness (SRa) of the surface of the foamed polypropylene film (porous film layer) opposite to the paper base side is the same as in Example 1. It was 0.7 μm when measured under the conditions.

このような条件で、厚み40μmの二軸延伸ポリプロピレンフィルム上に形成した下引き層の全光線透過率を実施例1と同様の装置・条件にて測定したところ68%であった。また、実施例1と同様の装置・条件にて下引き層表面の算術平均粗さ(SRa)を測定したところ0.3μmであった。   Under such conditions, the total light transmittance of the undercoat layer formed on the 40 μm-thick biaxially stretched polypropylene film was measured by the same apparatus and conditions as in Example 1 and found to be 68%. Further, the arithmetic average roughness (SRa) of the surface of the undercoat layer was measured under the same apparatus and conditions as in Example 1, and it was 0.3 μm.

(比較例2)
発泡ポリプロピレンフィルムの紙基材に対向する面とは反対側の表面に、下引き層塗布液−1(PV比1/3)を、乾燥後の厚みが6.0μmとなるように塗布、乾燥することで下引き層を形成した以外は、実施例1と同様にして、比較例2の熱転写受像シートを得た。紙基材に発泡ポリプロピレンフィルムを貼り合わせた後、発泡ポリプロピレンフィルム(多孔質フィルム層)の紙基材側とは反対側の表面の算術平均粗さ(SRa)を実施例1と同様の装置・条件にて測定したところ、0.7μmであった。
このような条件で、厚み40μmの二軸延伸ポリプロピレンフィルム上に形成した下引き層の全光線透過率を実施例1と同様の装置・条件にて測定したところ63%であった。また、実施例1と同様の装置・条件にて下引き層表面の算術平均粗さ(SRa)を測定したところ0.4μmであった。
(Comparative Example 2)
The undercoat layer coating solution-1 (PV ratio 1/3) is applied to the surface of the foamed polypropylene film opposite to the surface facing the paper substrate so that the thickness after drying is 6.0 μm and dried. Thus, a thermal transfer image receiving sheet of Comparative Example 2 was obtained in the same manner as in Example 1 except that the undercoat layer was formed. After pasting the foamed polypropylene film on the paper base material, the arithmetic average roughness (SRa) of the surface of the foamed polypropylene film (porous film layer) opposite to the paper base side is the same as in Example 1. It was 0.7 μm when measured under the conditions.
Under such conditions, the total light transmittance of the undercoat layer formed on the biaxially stretched polypropylene film having a thickness of 40 μm was measured by the same apparatus and conditions as in Example 1 and found to be 63%. Further, the arithmetic average roughness (SRa) of the surface of the undercoat layer was measured under the same apparatus and conditions as in Example 1. As a result, it was 0.4 μm.

(比較例3)
発泡ポリプロピレンフィルムの紙基材に対向する面とは反対側の表面に、下引き層塗布液−2(PV比3)を、乾燥後の厚みが6.0μmとなるように塗布、乾燥することで下引き層を形成した以外は、実施例1と同様にして、比較例3の熱転写受像シートを得た。紙基材に発泡ポリプロピレンフィルムを貼り合わせた後、発泡ポリプロピレンフィルム(多孔質フィルム層)の紙基材側とは反対側の表面の算術平均粗さ(SRa)を実施例1と同様の装置・条件にて測定したところ、0.7μmであった。
このような条件で、厚み40μmの二軸延伸ポリプロピレンフィルム上に形成した下引き層の全光線透過率を実施例1と同様の装置・条件にて測定したところ15%であった。また、実施例1と同様の装置・条件にて下引き層表面の算術平均粗さ(SRa)を測定したところ0.6μmであった。
(Comparative Example 3)
Applying and drying undercoat layer coating liquid-2 (PV ratio 3) on the surface of the foamed polypropylene film opposite to the surface facing the paper substrate so that the thickness after drying is 6.0 μm. The thermal transfer image-receiving sheet of Comparative Example 3 was obtained in the same manner as in Example 1 except that the undercoat layer was formed in step 1. After pasting the foamed polypropylene film on the paper base material, the arithmetic average roughness (SRa) of the surface of the foamed polypropylene film (porous film layer) opposite to the paper base side is the same as in Example 1. It was 0.7 μm when measured under the conditions.
Under such conditions, the total light transmittance of the undercoat layer formed on the biaxially stretched polypropylene film having a thickness of 40 μm was measured by the same apparatus and conditions as in Example 1, and found to be 15%. Moreover, it was 0.6 micrometer when the arithmetic mean roughness (SRa) of the surface of the undercoat layer was measured on the same apparatus and conditions as Example 1.

(比較例4)
発泡ポリプロピレンフィルムの紙基材に対向する面とは反対側の表面に、下引き層塗布液−3(PV比1/4)を、乾燥後の厚みが5.0μmとなるように塗布、乾燥することで下引き層を形成した以外は、実施例1と同様にして、比較例1の熱転写受像シートを得た。紙基材に発泡ポリプロピレンフィルムを貼り合わせた後、発泡ポリプロピレンフィルム(多孔質フィルム層)の紙基材側とは反対側の表面の算術平均粗さ(SRa)を実施例1と同様の装置・条件にて測定したところ、0.7μmであった。
このような条件で、厚み40μmの二軸延伸ポリプロピレンフィルム上に形成した下引き層の全光線透過率を実施例1と同様の装置・条件にて測定したところ70%であった。また、実施例1と同様の装置・条件にて下引き層表面の算術平均粗さ(SRa)を測定したところ0.2μmであった。
(Comparative Example 4)
On the surface of the foamed polypropylene film opposite to the surface facing the paper substrate, the undercoat layer coating solution-3 (PV ratio 1/4) was applied and dried so that the thickness after drying was 5.0 μm. Thus, a thermal transfer image receiving sheet of Comparative Example 1 was obtained in the same manner as in Example 1 except that the undercoat layer was formed. After pasting the foamed polypropylene film on the paper base material, the arithmetic average roughness (SRa) of the surface of the foamed polypropylene film (porous film layer) opposite to the paper base side is the same as in Example 1. It was 0.7 μm when measured under the conditions.
Under these conditions, the total light transmittance of the undercoat layer formed on the 40 μm-thick biaxially stretched polypropylene film was measured by the same apparatus and conditions as in Example 1, and found to be 70%. Moreover, it was 0.2 micrometer when the arithmetic mean roughness (SRa) of the surface of undercoat was measured on the apparatus and the conditions similar to Example 1. FIG.

<下引き層塗布液−3>
ポリウレタン樹脂 12.0部
(TA24−412A 日立化成株式会社製)
酸化チタン 3.0部
(R25 堺化学工業株式会社製 粒径0.2μm)
メチルエチルケトン(MEK) 42.5部
トルエン 42.5部
<Undercoat layer coating solution-3>
12.0 parts of polyurethane resin (TA24-412A manufactured by Hitachi Chemical Co., Ltd.)
Titanium oxide 3.0 parts (R25 Sakai Chemical Industry Co., Ltd. particle size 0.2 μm)
Methyl ethyl ketone (MEK) 42.5 parts Toluene 42.5 parts

(比較例5)
発泡ポリプロピレンフィルムの紙基材に対向する面とは反対側の表面に、下引き層塗布液−4(PV比4)を、乾燥後の厚みが0.2μmとなるように塗布、乾燥することで下引き層を形成した以外は、実施例1と同様にして、比較例5の熱転写受像シートを得た。紙基材に発泡ポリプロピレンフィルムを貼り合わせた後、発泡ポリプロピレンフィルム(多孔質フィルム層)の紙基材側とは反対側の表面の算術平均粗さ(SRa)を実施例1と同様の装置・条件にて測定したところ、0.7μmであった。
このような条件で、厚み40μmの二軸延伸ポリプロピレンフィルム上に形成した下引き層の全光線透過率を実施例1と同様の装置・条件にて測定したところ20%であった。また、実施例1と同様の装置・条件にて下引き層表面の算術平均粗さ(SRa)を測定したところ0.6μmであった。
(Comparative Example 5)
Applying and drying undercoat layer coating liquid-4 (PV ratio 4) on the surface opposite to the surface of the foamed polypropylene film opposite to the paper substrate so that the thickness after drying is 0.2 μm. A thermal transfer image-receiving sheet of Comparative Example 5 was obtained in the same manner as in Example 1 except that the undercoat layer was formed in step 1. After pasting the foamed polypropylene film on the paper base material, the arithmetic average roughness (SRa) of the surface of the foamed polypropylene film (porous film layer) opposite to the paper base side is the same as in Example 1. It was 0.7 μm when measured under the conditions.
Under these conditions, the total light transmittance of the undercoat layer formed on the 40 μm-thick biaxially stretched polypropylene film was measured by the same apparatus and conditions as in Example 1, and was 20%. Moreover, it was 0.6 micrometer when the arithmetic mean roughness (SRa) of the surface of the undercoat layer was measured on the same apparatus and conditions as Example 1.

<下引き層塗布液−4>
ポリウレタン樹脂 3.0部
(TA24−412A 日立化成株式会社製)
酸化チタン 12.0部
(R25 堺化学工業株式会社製 粒径0.2μm)
メチルエチルケトン(MEK) 42.5部
トルエン 42.5部
<Undercoat layer coating solution-4>
Polyurethane resin 3.0 parts (TA24-412A manufactured by Hitachi Chemical Co., Ltd.)
Titanium oxide 12.0 parts (R25 Sakai Chemical Industry Co., Ltd. particle size 0.2 μm)
Methyl ethyl ketone (MEK) 42.5 parts Toluene 42.5 parts

(比較例6)
発泡ポリプロピレンフィルムの紙基材に対向する面とは反対側の表面に、下引き層塗布液−4(PV比4)を、乾燥後の厚みが3.0μmとなるように塗布、乾燥することで下引き層を形成した以外は、実施例1と同様にして、比較例1の熱転写受像シートを得た。紙基材に発泡ポリプロピレンフィルムを貼り合わせた後、発泡ポリプロピレンフィルム(多孔質フィルム層)の紙基材側とは反対側の表面の算術平均粗さ(SRa)を実施例1と同様の装置・条件にて測定したところ、0.7μmであった。
このような条件で、厚み40μmの二軸延伸ポリプロピレンフィルム上に形成した下引き層の全光線透過率を実施例1と同様の装置・条件にて測定したところ17%であった。また、実施例1と同様の装置・条件にて下引き層表面の算術平均粗さ(SRa)を測定したところ0.8μmであった。
(Comparative Example 6)
Applying and drying undercoat layer coating solution-4 (PV ratio 4) on the surface of the foamed polypropylene film opposite to the surface facing the paper substrate so that the thickness after drying is 3.0 μm. The thermal transfer image-receiving sheet of Comparative Example 1 was obtained in the same manner as in Example 1 except that the undercoat layer was formed in step 1. After pasting the foamed polypropylene film on the paper base material, the arithmetic average roughness (SRa) of the surface of the foamed polypropylene film (porous film layer) opposite to the paper base side is the same as in Example 1. It was 0.7 μm when measured under the conditions.
Under such conditions, the total light transmittance of the undercoat layer formed on the biaxially stretched polypropylene film having a thickness of 40 μm was measured by the same apparatus and conditions as in Example 1, and found to be 17%. Further, the arithmetic average roughness (SRa) of the surface of the undercoat layer was measured under the same apparatus and conditions as in Example 1, and found to be 0.8 μm.

(比較例7)
多孔質フィルム層として厚さ80μmの発泡ポリプロピレンフィルム(トヨパールP4257 東洋紡製)を用いた以外は、実施例1と同様にして、比較例7の熱転写受像シートを得た。紙基材に発泡ポリプロピレンフィルムを貼り合わせた後、発泡ポリプロピレンフィルム(多孔質フィルム層)の紙基材側とは反対側の表面の算術平均粗さ(SRa)を実施例1と同様の装置・条件にて測定したところ、0.6μmであった。
このような条件で、厚み40μmの二軸延伸ポリプロピレンフィルム上に形成した下引き層の全光線透過率を実施例1と同様の装置・条件にて測定したところ60%であった。また、実施例1と同様の装置・条件にて下引き層表面の算術平均粗さ(SRa)を測定したところ0.4μmであった。
(Comparative Example 7)
A thermal transfer image-receiving sheet of Comparative Example 7 was obtained in the same manner as in Example 1 except that a foamed polypropylene film having a thickness of 80 μm (Toyopearl P4257 manufactured by Toyobo Co., Ltd.) was used as the porous film layer. After pasting the foamed polypropylene film on the paper base material, the arithmetic average roughness (SRa) of the surface of the foamed polypropylene film (porous film layer) opposite to the paper base side is the same as in Example 1. It was 0.6 μm when measured under the conditions.
Under these conditions, the total light transmittance of the undercoat layer formed on the 40 μm-thick biaxially stretched polypropylene film was measured using the same apparatus and conditions as in Example 1, and was 60%. Further, the arithmetic average roughness (SRa) of the surface of the undercoat layer was measured under the same apparatus and conditions as in Example 1. As a result, it was 0.4 μm.

(比較例8)
押出サンドイッチラミレーション時に低密度ポリエチレンの厚さが5μmとなるように調整した以外は、実施例1と同様にして、比較例8の熱転写受像シートを得た。紙基材に発泡ポリプロピレンフィルムを貼り合わせた後、発泡ポリプロピレンフィルム(多孔質フィルム層)の紙基材側とは反対側の表面の算術平均粗さ(SRa)を実施例1と同様の装置・条件にて測定したところ、1.3μmであった。
このような条件で、厚み40μmの二軸延伸ポリプロピレンフィルム上に形成した下引き層の全光線透過率を実施例1と同様の装置・条件にて測定したところ60%であった。また、実施例1と同様の装置・条件にて下引き層表面の算術平均粗さ(SRa)を測定したところ0.4μmであった。
(Comparative Example 8)
A thermal transfer image-receiving sheet of Comparative Example 8 was obtained in the same manner as in Example 1 except that the thickness of the low density polyethylene was adjusted to 5 μm during extrusion sandwich lamination. After pasting the foamed polypropylene film on the paper base material, the arithmetic average roughness (SRa) of the surface of the foamed polypropylene film (porous film layer) opposite to the paper base side is the same as in Example 1. It was 1.3 μm when measured under the conditions.
Under these conditions, the total light transmittance of the undercoat layer formed on the 40 μm-thick biaxially stretched polypropylene film was measured using the same apparatus and conditions as in Example 1, and was 60%. Further, the arithmetic average roughness (SRa) of the surface of the undercoat layer was measured under the same apparatus and conditions as in Example 1. As a result, it was 0.4 μm.

(比較例9)
押出サンドイッチラミレーション時に低密度ポリエチレンの厚さを60μmとなるように調整した以外は、実施例1と同様にして、比較例9の熱転写受像シートを得た。紙基材に発泡ポリプロピレンフィルムを貼り合わせた後、発泡ポリプロピレンフィルム(多孔質フィルム層)の紙基材側とは反対側の表面の算術平均粗さ(SRa)を実施例1と同様の装置・条件にて測定したところ、1.2μmであった
このような条件で、厚み40μmの二軸延伸ポリプロピレンフィルム上に形成した下引き層の全光線透過率を実施例1と同様の装置・条件にて測定したところ60%であった。また、実施例1と同様の装置・条件にて下引き層表面の算術平均粗さ(SRa)を測定したところ0.4μmであった。
(Comparative Example 9)
A thermal transfer image-receiving sheet of Comparative Example 9 was obtained in the same manner as in Example 1 except that the thickness of the low density polyethylene was adjusted to 60 μm during extrusion sandwich lamination. After pasting the foamed polypropylene film on the paper base material, the arithmetic average roughness (SRa) of the surface of the foamed polypropylene film (porous film layer) opposite to the paper base side is the same as in Example 1. It was 1.2 μm when measured under the conditions. Under such conditions, the total light transmittance of the undercoat layer formed on the 40 μm-thick biaxially stretched polypropylene film was set to the same apparatus and conditions as in Example 1. It was 60% when measured. Further, the arithmetic average roughness (SRa) of the surface of the undercoat layer was measured under the same apparatus and conditions as in Example 1. As a result, it was 0.4 μm.

(比較例10)
押出サンドイッチラミレーション時に用いる冷却ロールとして、表面の算術平均粗さ(Ra)が1.3μmのセミマットロールを用いた以外は、実施例1と同様にして、比較例10の熱転写受像シートを得た。紙基材に発泡ポリプロピレンフィルムを貼り合わせた後、発泡ポリプロピレンフィルム(多孔質フィルム層)の紙基材側とは反対側の表面の算術平均粗さ(SRa)を実施例1と同様の装置・条件にて測定したところ、1.1μmであった。
(Comparative Example 10)
A thermal transfer image-receiving sheet of Comparative Example 10 was obtained in the same manner as in Example 1 except that a semi-matt roll having a surface arithmetic average roughness (Ra) of 1.3 μm was used as a cooling roll used during extrusion sandwich lamination. . After pasting the foamed polypropylene film on the paper base material, the arithmetic average roughness (SRa) of the surface of the foamed polypropylene film (porous film layer) opposite to the paper base side is the same as in Example 1. It was 1.1 μm when measured under the conditions.

このような条件で、厚み40μmの二軸延伸ポリプロピレンフィルム上に形成した下引き層の全光線透過率を実施例1と同様の装置・条件にて測定したところ60%であった。また、実施例1と同様の装置・条件にて下引き層表面の算術平均粗さ(SRa)を測定したところ0.4μmであった。   Under these conditions, the total light transmittance of the undercoat layer formed on the 40 μm-thick biaxially stretched polypropylene film was measured using the same apparatus and conditions as in Example 1, and was 60%. Further, the arithmetic average roughness (SRa) of the surface of the undercoat layer was measured under the same apparatus and conditions as in Example 1. As a result, it was 0.4 μm.

(比較例11)
発泡ポリプロピレンフィルムの紙基材に対向する面とは反対側の表面に、下引き層塗布液−4(PV比4)を、乾燥後の厚みが3.0μmとなるように塗布、乾燥することで下引き層を形成した以外は、比較例10と同様にして、比較例11の熱転写受像シートを得た。紙基材に発泡ポリプロピレンフィルムを貼り合わせた後、発泡ポリプロピレンフィルム(多孔質フィルム層)の紙基材側とは反対側の表面の算術平均粗さ(SRa)を実施例1と同様の装置・条件にて測定したところ、1.1μmであった。
このような条件で、厚み40μmの二軸延伸ポリプロピレンフィルム上に形成した下引き層の全光線透過率を実施例1と同様の装置・条件にて測定したところ17%であった。また、実施例1と同様の装置・条件にて下引き層表面の算術平均粗さ(SRa)を測定したところ0.8μmであった。
(Comparative Example 11)
Applying and drying undercoat layer coating solution-4 (PV ratio 4) on the surface of the foamed polypropylene film opposite to the surface facing the paper substrate so that the thickness after drying is 3.0 μm. The thermal transfer image-receiving sheet of Comparative Example 11 was obtained in the same manner as Comparative Example 10 except that the undercoat layer was formed by the same method as in Comparative Example 10. After pasting the foamed polypropylene film on the paper base material, the arithmetic average roughness (SRa) of the surface of the foamed polypropylene film (porous film layer) opposite to the paper base side is the same as in Example 1. It was 1.1 μm when measured under the conditions.
Under such conditions, the total light transmittance of the undercoat layer formed on the biaxially stretched polypropylene film having a thickness of 40 μm was measured by the same apparatus and conditions as in Example 1, and found to be 17%. Further, the arithmetic average roughness (SRa) of the surface of the undercoat layer was measured under the same apparatus and conditions as in Example 1, and found to be 0.8 μm.

(比較例12)
押出サンドイッチラミレーション時のニップ圧を55kg/cmに変更した以外は、実施例4と同様にして、比較例12の熱転写受像シートを得た。紙基材に発泡ポリプロピレンフィルムを貼り合わせた後、発泡ポリプロピレンフィルム(多孔質フィルム層)の紙基材側とは反対側の表面の算術平均粗さ(SRa)を実施例1と同様の装置・条件にて測定したところ、1.2μmであった。
このような条件で、厚み40μmの二軸延伸ポリプロピレンフィルム上に形成した下引き層の全光線透過率を実施例1と同様の装置・条件にて測定したところ60%であった。また、実施例1と同様の装置・条件にて下引き層表面の算術平均粗さ(SRa)を測定したところ0.4μmであった。
(Comparative Example 12)
A thermal transfer image-receiving sheet of Comparative Example 12 was obtained in the same manner as in Example 4 except that the nip pressure during extrusion sandwich lamination was changed to 55 kg / cm 2 . After pasting the foamed polypropylene film on the paper base material, the arithmetic average roughness (SRa) of the surface of the foamed polypropylene film (porous film layer) opposite to the paper base side is the same as in Example 1. It was 1.2 μm when measured under the conditions.
Under these conditions, the total light transmittance of the undercoat layer formed on the 40 μm-thick biaxially stretched polypropylene film was measured using the same apparatus and conditions as in Example 1, and was 60%. Further, the arithmetic average roughness (SRa) of the surface of the undercoat layer was measured under the same apparatus and conditions as in Example 1. As a result, it was 0.4 μm.

(比較例13)
紙基材の背面押出樹脂層側とは反対側の面と、厚さ35μmの発泡ポリプロピレンフィルム(トヨパールP4255 東洋紡製)の一方の面とを、以下の組成のドライラミネート用接着剤層塗布液にて貼り合わせた。このとき、接着剤層の乾燥後の厚さが4μmとなるように調整した。紙基材に発泡ポリプロピレンフィルムを貼り合わせた後、発泡ポリプロピレンフィルム(多孔質フィルム層)の紙基材側とは反対側の表面の算術平均粗さ(SRa)を実施例1と同様の装置・条件にて測定したところ、1.5μmであった。これ以外は実施例1と同様にして、下引き層及び染料受容層を形成した後、反応を促進し完了させるためのエージング工程を経て、比較例13の熱転写受像シートを得た。
このような条件で、厚み40μmの二軸延伸ポリプロピレンフィルム上に形成した下引き層の全光線透過率を実施例1と同様の装置・条件にて測定したところ60%であった。また、実施例1と同様の装置・条件にて下引き層表面の算術平均粗さ(SRa)を測定したところ0.4μmであった。
(Comparative Example 13)
A surface of the paper substrate opposite to the side of the back-extruded resin layer and one surface of a foamed polypropylene film having a thickness of 35 μm (Toyopearl P4255, manufactured by Toyobo Co., Ltd.) were used as an adhesive layer coating solution for dry lamination having the following composition: And pasted together. At this time, it adjusted so that the thickness after drying of an adhesive bond layer might be set to 4 micrometers. After pasting the foamed polypropylene film on the paper base material, the arithmetic average roughness (SRa) of the surface of the foamed polypropylene film (porous film layer) opposite to the paper base side is the same as in Example 1. It was 1.5 micrometers when measured on conditions. Except for this, the undercoat layer and the dye-receiving layer were formed in the same manner as in Example 1, and then an aging process for accelerating and completing the reaction was performed to obtain the thermal transfer image-receiving sheet of Comparative Example 13.
Under these conditions, the total light transmittance of the undercoat layer formed on the 40 μm-thick biaxially stretched polypropylene film was measured using the same apparatus and conditions as in Example 1, and was 60%. Further, the arithmetic average roughness (SRa) of the surface of the undercoat layer was measured under the same apparatus and conditions as in Example 1. As a result, it was 0.4 μm.

<ドライラミネート用接着剤層塗布液>
ポリエステル系樹脂 45.0部
(タケラックA606 武田薬品工業株式会社製)
イソシアネート系硬化剤 5.0部
(タケネートA12 武田薬品工業株式会社製)
酢酸エチル 50.0部
<Adhesive layer coating solution for dry lamination>
45.0 parts of polyester resin (Takelac A606 Takeda Pharmaceutical Company Limited)
Isocyanate curing agent 5.0 parts (Takenate A12, Takeda Pharmaceutical Company Limited)
Ethyl acetate 50.0 parts

(比較例14)
接着剤層の乾燥後の厚さを15μmとなるように調整した以外は、比較例13と同様にして、比較例14の熱転写受像シートを得た。紙基材に発泡ポリプロピレンフィルムを貼り合わせた後、発泡ポリプロピレンフィルムの接着剤層側とは反対側の表面の算術平均粗さ(SRa)を実施例1と同様に測定したところ、0.8μmであった。
このような条件で、厚み40μmの二軸延伸ポリプロピレンフィルム上に形成した下引き層の全光線透過率を実施例1と同様の装置・条件にて測定したところ60%であった。また、実施例1と同様の装置・条件にて下引き層表面の算術平均粗さ(SRa)を測定したところ0.4μmであった。
(Comparative Example 14)
A thermal transfer image-receiving sheet of Comparative Example 14 was obtained in the same manner as Comparative Example 13, except that the thickness of the adhesive layer after drying was adjusted to 15 μm. After bonding the foamed polypropylene film to the paper substrate, the arithmetic average roughness (SRa) of the surface of the foamed polypropylene film opposite to the adhesive layer side was measured in the same manner as in Example 1. there were.
Under these conditions, the total light transmittance of the undercoat layer formed on the 40 μm-thick biaxially stretched polypropylene film was measured using the same apparatus and conditions as in Example 1, and was 60%. Moreover, it was 0.4 micrometer when the arithmetic mean roughness (SRa) of the surface of undercoat was measured on the apparatus and conditions similar to Example 1. FIG.

[熱転写記録媒体の作製]
基材として、厚さ4.5μmの片面易接着処理付きポリエチレンテレフタレートフィルムを使用した。この基材の非易接着処理面に、以下の組成の耐熱滑性層塗布液を、乾燥後の塗布量が1.0g/mとなるように塗布、乾燥して耐熱滑性層付き基材を得た。次に、耐熱滑性層付き基材の易接着処理面に、以下の組成の熱転写層塗布液を、乾燥後の塗布量が1.0g/mとなるように塗布、乾燥して熱転写層を形成し、熱転写記録媒体を得た。
[Preparation of thermal transfer recording medium]
As the substrate, a polyethylene terephthalate film with a single-sided easy adhesion treatment having a thickness of 4.5 μm was used. A heat-resistant slipping layer coating solution having the following composition is applied to the non-easy-adhesion treated surface of the substrate and dried so that the coating amount after drying is 1.0 g / m 2. The material was obtained. Next, a heat transfer layer coating solution having the following composition is applied to the surface of the substrate having a heat resistant slipping layer and dried so that the coating amount after drying is 1.0 g / m 2 and dried. To obtain a thermal transfer recording medium.

<耐熱滑性層塗布液>
シリコーン系アクリルグラフトポリマー 50.0部
(東亞合成株式会社製US−350)
メチルエチルケトン 50.0部
<熱転写層塗布液>
C.I.ソルベントブルー36 2.5部
C.I.ソルベントブルー63 2.5部
ポリビニルアセタール樹脂 5.0部
トルエン 45.0部
メチルエチルケトン 45.0部
以下、実施例1〜8及び比較例1〜7の熱転写受像シートのそれぞれを評価する。
<Heat resistant slipping layer coating solution>
Silicone acrylic graft polymer 50.0 parts (US-350 manufactured by Toagosei Co., Ltd.)
Methyl ethyl ketone 50.0 parts <Coating solution for thermal transfer layer>
C. I. Solvent Blue 36 2.5 parts C.I. I. Solvent Blue 63 2.5 parts Polyvinyl acetal resin 5.0 parts Toluene 45.0 parts Methyl ethyl ketone 45.0 parts Each of the thermal transfer image receiving sheets of Examples 1 to 8 and Comparative Examples 1 to 7 is evaluated below.

[印画評価]
実施例1〜8、比較例1〜14の熱転写受像シート及び熱転写記録媒体を使用し、解像度が300×300DPIの、評価用サーマルプリンタにて風景画の印画を行い、画質の評価を行った。
画質の評価は、以下の基準で実施した。
○:熱転写受像シート表面に凹凸がなく、画質に優れている
×:熱転写受像シート表面の凹凸が少し目立ち、画像にムラが発生し、実用上問題がある
[Print evaluation]
Using the thermal transfer image receiving sheets and thermal transfer recording media of Examples 1 to 8 and Comparative Examples 1 to 14, landscape images were printed with an evaluation thermal printer having a resolution of 300 × 300 DPI, and the image quality was evaluated.
The image quality was evaluated according to the following criteria.
○: There is no unevenness on the surface of the thermal transfer image-receiving sheet, and the image quality is excellent. ×: The unevenness on the surface of the thermal transfer image-receiving sheet is slightly conspicuous, unevenness occurs in the image, and there are practical problems

[製造コスト評価]
実施例1〜8、比較例1〜7の熱転写受像シートの製造コストは、以下の基準で評価した。
○:材料費及び製造コストの観点において、従来より低コストで製造することができる
×:材料費及び製造コストの観点において、従来より低コストで製造することができない
[Production cost evaluation]
The production costs of the thermal transfer image-receiving sheets of Examples 1 to 8 and Comparative Examples 1 to 7 were evaluated according to the following criteria.
○: Can be manufactured at a lower cost than conventional in terms of material cost and manufacturing cost ×: Cannot be manufactured at a lower cost than conventional in terms of material cost and manufacturing cost

Figure 2016182686
Figure 2016182686

表1に示す結果から分かるように、実施例1〜8の熱転写受像シートは、押出サンドラミネーション時の多孔質フィルム層の厚み、冷却ロール表面の算術平均粗さ(SRa)、ポリオレフィン樹脂層の厚み、ニップ圧の条件を満たしている。このため、実施例1〜8の熱転写受像シートは、多孔質フィルム層の下引き層に対向する面の算術平均粗さ(SRa)が0.8μm以下となった。   As can be seen from the results shown in Table 1, the thermal transfer image-receiving sheets of Examples 1 to 8 have the thickness of the porous film layer during extrusion sand lamination, the arithmetic average roughness (SRa) of the surface of the cooling roll, and the thickness of the polyolefin resin layer. The nip pressure condition is satisfied. For this reason, the thermal transfer image receiving sheets of Examples 1 to 8 had an arithmetic average roughness (SRa) of 0.8 μm or less on the surface facing the undercoat layer of the porous film layer.

また、下引き層に含まれる白色顔料とバインダ樹脂との混合割合(PV比)が1/3のときは、乾燥後の厚みを2μm以上4μm以下とし、PV比が3のときは、乾燥後の厚みを0.5μmに調整することにより、熱転写受像シートの全光線透過率が20%以上65%以下、下引き層の表面の算術平均粗さ(SRa)が0.4μm以下となった。
上述した多孔質フィルム層における条件と、下引き層における条件を組み合わせることにより、低コスト且つ、画質に優れた熱転写受像シートを作製でき、本発明による効果が確認できた。
Moreover, when the mixing ratio (PV ratio) of the white pigment and binder resin contained in the undercoat layer is 1/3, the thickness after drying is set to 2 μm or more and 4 μm or less, and when the PV ratio is 3, after drying By adjusting the thickness to 0.5 μm, the total light transmittance of the thermal transfer image-receiving sheet was 20% to 65%, and the arithmetic average roughness (SRa) of the surface of the undercoat layer was 0.4 μm or less.
By combining the conditions for the porous film layer described above and the conditions for the undercoat layer, a thermal transfer image-receiving sheet having low cost and excellent image quality could be produced, and the effects of the present invention could be confirmed.

これに対し、比較例1〜6の熱転写受像シートは、多孔質フィルム層の下引き層に対向する面の算術平均粗さ(SRa)が0.8μm以下という条件を満たしているが、下引き層における条件を満たさなかったことにより、低コスト且つ、画質に優れた熱転写受像シートを作製できなかった。下記に詳細を記す。
比較例1の熱転写受像シートは、下引き層の膜厚及びとバインダ樹脂との混合割合は条件の範囲に入っている。しかしながら、比較例1では、白色顔料の割合の下限条件(PV比が1/3)において、下引き層の膜厚を0.2μmと薄膜で形成したことにより、全光線透過率が68%と好ましい全光線透過率の範囲外となった。このため、比較例1の熱転写受像シートは、下引き層による紙基材の地合いの隠蔽性が低下し、画質にムラのある結果となった。
In contrast, the thermal transfer image-receiving sheets of Comparative Examples 1 to 6 satisfy the condition that the arithmetic average roughness (SRa) of the surface facing the undercoat layer of the porous film layer is 0.8 μm or less. Since the conditions in the layer were not satisfied, a thermal transfer image-receiving sheet having low cost and excellent image quality could not be produced. Details are given below.
In the thermal transfer image-receiving sheet of Comparative Example 1, the thickness of the undercoat layer and the mixing ratio of the binder resin are within the range of conditions. However, in Comparative Example 1, under the lower limit condition of the ratio of the white pigment (PV ratio is 1/3), the thickness of the undercoat layer was 0.2 μm, and the total light transmittance was 68%. It was out of the range of preferable total light transmittance. For this reason, in the thermal transfer image receiving sheet of Comparative Example 1, the concealability of the paper base texture by the undercoat layer was lowered, resulting in uneven image quality.

比較例2の熱転写受像シートは、下引き層におけるPV比を1/3とし、下引き層の乾燥後の厚みを6.0μmと厚膜化することで、全光線透過率が63%となり、紙基材の地合い隠蔽性が十分となった。しかしながら、比較例2の熱転写受像シートは、下引き層の厚膜化により低階調の発色感度が低下し、画質が低下した。
比較例3の熱転写受像シートは、下引き層におけるPV比を3とし、下引き層の乾燥後の厚みを6.0μmとしたことで、全光線透過率が15%と低くなり、紙の地合いが隠蔽された。しかしながら、比較例3の熱転写受像シートは、白色顔料の混合量が多いことにより下引き層の凹凸が大きくなり、また下引き層の厚膜化により、低階調の発色感度が低下し、画質が低下した。
In the thermal transfer image-receiving sheet of Comparative Example 2, the PV ratio in the undercoat layer was 1/3, and the thickness of the undercoat layer after drying was increased to 6.0 μm, whereby the total light transmittance was 63%. The paper substrate has sufficient surface concealment. However, in the thermal transfer image-receiving sheet of Comparative Example 2, the color development sensitivity of the low gradation was lowered and the image quality was lowered by increasing the thickness of the undercoat layer.
The thermal transfer image-receiving sheet of Comparative Example 3 has a PV ratio in the undercoat layer of 3 and a thickness after drying of the undercoat layer of 6.0 μm, so that the total light transmittance is as low as 15%, and the texture of the paper Was hidden. However, in the thermal transfer image-receiving sheet of Comparative Example 3, the unevenness of the undercoat layer becomes large due to the large amount of white pigment mixed, and the color development sensitivity of the low gradation decreases due to the thickening of the undercoat layer, and the image quality Decreased.

比較例4の熱転写受像シートでは、下引き層におけるPV比を1/4としたことにより、白色顔料の混合割合が小さくなった。これにより、比較例4の熱転写受像シートは、膜厚を5μmとしても全光線透過率が70%と高く、紙基材の地合いが目立ち画質が低下した。
比較例5,6の熱転写受像シートでは、下引き層におけるPV比を4としたことにより、白色顔料の混合割合が大きくなった。これにより、比較例5,6の熱転写受像シートは、0.2μm以上の膜厚において白色顔料による凹凸により画質が低下した。
In the thermal transfer image-receiving sheet of Comparative Example 4, the mixing ratio of the white pigment was reduced by setting the PV ratio in the undercoat layer to 1/4. As a result, the thermal transfer image-receiving sheet of Comparative Example 4 had a high total light transmittance of 70% even when the film thickness was 5 μm, and the texture of the paper substrate was conspicuous and the image quality was lowered.
In the thermal transfer image-receiving sheets of Comparative Examples 5 and 6, when the PV ratio in the undercoat layer was set to 4, the mixing ratio of the white pigment was increased. As a result, the image quality of the thermal transfer image-receiving sheets of Comparative Examples 5 and 6 deteriorated due to the unevenness caused by the white pigment at a film thickness of 0.2 μm or more.

比較例7の熱転写受像シートでは、厚さ80μmの発泡ポリプロピレンフィルムを用いることにより、多孔質フィルム層の下引き層に対向する面の算術平均粗さ(SRa)が0.6μmと低くなった。これにより、比較例7の熱転写受像シートは、画質が向上した。しかしながら、比較例7の熱転写受像シートでは、多孔質フィルム層が厚膜化されることで材料コストが引き上がるばかりか、プリンタにおける収容枚数の低下をまねく結果となった。   In the thermal transfer image-receiving sheet of Comparative Example 7, by using a foamed polypropylene film having a thickness of 80 μm, the arithmetic average roughness (SRa) of the surface facing the undercoat layer of the porous film layer was as low as 0.6 μm. Thereby, the image quality of the thermal transfer image receiving sheet of Comparative Example 7 was improved. However, in the thermal transfer image receiving sheet of Comparative Example 7, not only the material cost was increased by increasing the thickness of the porous film layer, but also the result was a decrease in the number of sheets accommodated in the printer.

比較例8〜12の熱転写受像シートは、押出サンドイッチラミレーション時に、多孔質フィルム層の厚み、冷却ロール表面の算術平均粗さ(SRa)、ポリオレフィン樹脂の厚み、ニップ条件のいずれかの条件を満たさなかった。これにより、比較例8〜12の熱転写受像シートは、多孔質フィルム層の下引き層に対向する面の算術平均粗さ(SRa)が0.8μm以下とならず、低コスト且つ、画質に優れた熱転写受像シートを作製できなかった。以下に詳細を示す。   The thermal transfer image-receiving sheets of Comparative Examples 8 to 12 satisfy any one of the thickness of the porous film layer, the arithmetic average roughness (SRa) of the cooling roll surface, the thickness of the polyolefin resin, and the nip condition during extrusion sandwich lamination. There wasn't. Thereby, in the thermal transfer image receiving sheets of Comparative Examples 8 to 12, the arithmetic average roughness (SRa) of the surface facing the undercoat layer of the porous film layer is not less than 0.8 μm, and the cost is low and the image quality is excellent. A thermal transfer image-receiving sheet could not be produced. Details are shown below.

比較例8の熱転写受像シートでは、ポリオレフィン樹脂が薄く、紙基材にポリオレフィン樹脂が浸み込んで紙基材の地合いを覆いきれなかったため、ポリオレフィン樹脂を介して紙基材と貼り合わされた多孔質フィルム層の下引き層に対向する面の算術平均粗さ(SRa)が1.3μmと高くなり、低コスト且つ、画質に優れた熱転写受像シートを作製できなかった。   In the thermal transfer image-receiving sheet of Comparative Example 8, since the polyolefin resin was thin and the polyolefin resin soaked into the paper base material and could not cover the texture of the paper base material, the porous material bonded to the paper base material through the polyolefin resin The arithmetic average roughness (SRa) of the surface facing the undercoat layer of the film layer was as high as 1.3 μm, and a thermal transfer image-receiving sheet excellent in image quality could not be produced at low cost.

比較例9の熱転写受像シートでは、ポリオレフィン樹脂が厚くなったことにより、押出サンドイッチラミレーションで紙基材と多孔質フィルム層とを貼り合わせる際に、樹脂の温度が下がり切らず、多孔質フィルム層の表面が熱で荒らされてしまった。このため、比較例9の熱転写受像シートは、孔質フィルム層の下引き層に対向する面の算術平均粗さ(SRa)が0.8μmを超えてしまい、画質が低下した。   In the thermal transfer image-receiving sheet of Comparative Example 9, when the polyolefin resin is thick, the temperature of the resin is not lowered when the paper substrate and the porous film layer are bonded together by extrusion sandwich lamination. The surface of was damaged by heat. For this reason, in the thermal transfer image receiving sheet of Comparative Example 9, the arithmetic average roughness (SRa) of the surface facing the undercoat layer of the porous film layer exceeded 0.8 μm, and the image quality was deteriorated.

比較例10,11の熱転写受像シートでは、押出サンドイッチラミレーションにより紙基材と多孔質フィルム層とを貼り合わせる際に、表面の算術平均粗さ(Ra)が条件範囲外の1.3μmの冷却ロールを用いた。これにより、比較例10,11の熱転写受像シートは、冷却ロールの表面粗さが多孔質フィルム層表面に転写され、孔質フィルム層の下引き層に対向する面の算術平均粗さ(SRa)が0.8μmを超えて、画質が低下した。   In the thermal transfer image-receiving sheets of Comparative Examples 10 and 11, when the paper base material and the porous film layer were bonded together by extrusion sandwich lamination, the arithmetic average roughness (Ra) of the surface was 1.3 μm which was out of the condition range. A roll was used. Thus, in the thermal transfer image-receiving sheets of Comparative Examples 10 and 11, the surface roughness of the cooling roll is transferred to the surface of the porous film layer, and the arithmetic average roughness (SRa) of the surface facing the undercoat layer of the porous film layer Was over 0.8 μm, and the image quality deteriorated.

比較例12の熱転写受像シートでは、押出サンドイッチラミレーションにより紙基材と多孔質フィルム層とを貼り合わせる際に、冷却ロールのニップ圧を好ましい範囲より高くした。このため、比較例12の熱転写受像シートは、ポリオレフィン樹脂の紙基材への浸み込みが大きくなることでポリオレフィン樹脂が紙基材の地合いを覆いきれなくなり、画質が低下した。   In the thermal transfer image-receiving sheet of Comparative Example 12, when the paper substrate and the porous film layer were bonded together by extrusion sandwich lamination, the nip pressure of the cooling roll was set higher than the preferred range. For this reason, in the thermal transfer image receiving sheet of Comparative Example 12, the polyolefin resin could not cover the texture of the paper substrate due to the large penetration of the polyolefin resin into the paper substrate, and the image quality was deteriorated.

比較例13の熱転写受像シートは、紙基材と多孔質フィルム層とを、ドライラミネート用接着剤にて貼り合わせて形成したものである。このとき、接着剤層の乾燥後の厚さを4μmとしている。この場合、多孔質フィルム層の下引き層と対向する面の算術平均粗さ(SRa)が1.5μmとなり、画質に優れた熱転写受像シートを得ることができなかった。また、比較例13の熱転写受像シートでは、下引き層及び染料受容層を形成後に、反応を促進し完了させるためのエージング工程を設けたため、製造コストを押し上げる結果となり、熱転写受像シートを低コストで製造することができなかった。   The thermal transfer image-receiving sheet of Comparative Example 13 is formed by laminating a paper base material and a porous film layer with an adhesive for dry lamination. At this time, the thickness of the adhesive layer after drying is set to 4 μm. In this case, the arithmetic average roughness (SRa) of the surface facing the undercoat layer of the porous film layer was 1.5 μm, and a thermal transfer image-receiving sheet excellent in image quality could not be obtained. Further, in the thermal transfer image-receiving sheet of Comparative Example 13, since an aging process for accelerating and completing the reaction was provided after forming the undercoat layer and the dye-receiving layer, the manufacturing cost was increased, and the thermal transfer image-receiving sheet was reduced in cost. Could not be manufactured.

比較例14の熱転写受像シートは、比較例13と同様にドライラミネート用接着剤にて紙基材と多孔質フィルム層とを貼り合わせ形成したものであり、接着剤層の乾燥後の厚さを比較例13よりも厚い15μmとしている。このため、多孔質フィルム層の下引き層と対向する面の算術平均粗さ(SRa)が0.8μmとなり、画質に優れた熱転写受像シートを得ることができた。しかしながら、比較例13と同様にエージング工程を設けたことと、接着剤層の厚さを大きくしたために低コストで製造することができないばかりか、残留溶剤が多量に残り、ブロッキングや異臭がする結果となってしまった。   The thermal transfer image-receiving sheet of Comparative Example 14 is formed by laminating and forming a paper base material and a porous film layer with an adhesive for dry lamination as in Comparative Example 13, and the thickness of the adhesive layer after drying is adjusted. The thickness is 15 μm, which is thicker than Comparative Example 13. For this reason, the arithmetic average roughness (SRa) of the surface facing the undercoat layer of the porous film layer was 0.8 μm, and a thermal transfer image-receiving sheet excellent in image quality could be obtained. However, as in Comparative Example 13, the aging process was provided and the thickness of the adhesive layer was increased so that it could not be produced at a low cost, and a large amount of residual solvent remained, resulting in blocking and off-flavors. It has become.

以上から、紙基材と、紙基材の一方の面上に形成されたポリオレフィン樹脂層と、紙基材と、ポリオレフィン樹脂層を介して押出サンドイッチラミネーションにて貼り合わされ、厚さが10μm以上60μm以下であり、かつ紙基材に対向する面の反対側の面の算術平均粗さ(SRa)が0.8μm以下である多孔質フィルム層と、多孔質フィルム層の表面に形成され、少なくとも白色顔料とバインダ樹脂とを含み、バインダ樹脂に対する白色顔料の質量比が1/3以上3以下であり、厚さが0.2μm以上5.0μm以下であり、二軸延伸ポリプロピレンフィルム上に形成した際の全光線透過率が20%以上65%以下であり、表面の算術平均粗さ(SRa)が0.6μm以下である下引き層と、下引き層の表面に形成される染料受容層と、を備える熱転写受像シートは、低コストにて製造でき、画質に優れることが分かった。   From the above, the paper base material, the polyolefin resin layer formed on one side of the paper base material, the paper base material, and the polyolefin resin layer are bonded together by extrusion sandwich lamination, and the thickness is 10 μm or more and 60 μm. A porous film layer having an arithmetic average roughness (SRa) of 0.8 μm or less on the surface opposite to the surface facing the paper substrate, and at least white When formed on a biaxially stretched polypropylene film, including a pigment and a binder resin, wherein the mass ratio of the white pigment to the binder resin is 1/3 or more and 3 or less, and the thickness is 0.2 μm or more and 5.0 μm or less. An undercoat layer having a total light transmittance of 20% or more and 65% or less and a surface arithmetic average roughness (SRa) of 0.6 μm or less, a dye-receiving layer formed on the surface of the undercoat layer, The Obtain a thermal transfer image-receiving sheet can be produced at a low cost, it has been found that excellent image quality.

また、このような熱転写受像シートは、紙基材の一方の面と厚さ10μm以上60μm以下の多孔質フィルム層とを、多孔質フィルム層の紙基材に対向する面の反対側の面の算術平均粗さ(SRa)が0.8μm以下となるように、ポリオレフィン樹脂層を介した押出サンドイッチラミネーションにて貼り合わせる貼り合わせ工程と、少なくとも白色顔料とバインダ樹脂とを含み、バインダ樹脂に対する白色顔料の質量比が1/3以上3以下である下引き層塗布液を多孔質フィルム層上に塗布して乾燥させ、厚さが0.2μm以上5.0μm以下、二軸延伸ポリプロピレンフィルム上に形成した際の全光線透過率が20%以上65%以下、かつ表面の算術平均粗さ(SRa)が0.6μm以下である下引き層を形成する下引き層形成工程と、下引き層上に染料受容層を形成する染料受容層形成工程とにより得ることができる。   In addition, such a thermal transfer image-receiving sheet has one surface of a paper substrate and a porous film layer having a thickness of 10 μm or more and 60 μm or less on a surface opposite to the surface of the porous film layer facing the paper substrate. A white pigment for the binder resin, comprising a laminating step for bonding by extrusion sandwich lamination via a polyolefin resin layer, and at least a white pigment and a binder resin so that the arithmetic average roughness (SRa) is 0.8 μm or less. An undercoat layer coating solution having a mass ratio of 1/3 to 3 is applied onto the porous film layer and dried to form a biaxially oriented polypropylene film having a thickness of 0.2 μm to 5.0 μm. An undercoat layer forming step for forming an undercoat layer having a total light transmittance of 20% to 65% and an arithmetic average roughness (SRa) of 0.6 μm or less, It can be obtained by a dye receiving layer forming step of forming a dye-receiving layer on the layer.

本発明に基づき得られる熱転写受像シートは、昇華転写方式のプリンタに使用することができ、プリンタの高速・高機能化と併せて、各種画像を簡便にフルカラーで形成できる。このため、デジタルカメラのセルフプリント、身分証明書などのカード類、アミューズメント用出力物等に広く利用できる。   The thermal transfer image-receiving sheet obtained in accordance with the present invention can be used in a sublimation transfer type printer, and various images can be easily formed in full color together with the high speed and high functionality of the printer. For this reason, it can be widely used for self-printing of digital cameras, cards such as identification cards, output materials for amusement, and the like.

1 熱転写受像シート
2 紙基材
3 ポリオレフィン樹脂層
4 多孔質フィルム層
5 下引き層
5a 下引き層塗布液
6 染料受容層
6a 染料受容層塗布液
DESCRIPTION OF SYMBOLS 1 Thermal transfer image receiving sheet 2 Paper base material 3 Polyolefin resin layer 4 Porous film layer 5 Undercoat layer 5a Undercoat layer coating solution 6 Dye receiving layer 6a Dye receiving layer coating solution

Claims (6)

紙基材と、
前記紙基材の一方の面上に形成されたポリオレフィン樹脂層と、
前記紙基材と、前記ポリオレフィン樹脂層を介して押出サンドイッチラミネーションにて貼り合わされ、厚さが10μm以上60μm以下であり、かつ前記紙基材に対向する面の反対側の面の算術平均粗さ(SRa)が0.8μm以下である多孔質フィルム層と、
前記多孔質フィルム層の表面に形成され、少なくとも白色顔料とバインダ樹脂とを含み、前記バインダ樹脂に対する前記白色顔料の質量比が1/3以上3以下である下引き層塗布液を二軸延伸ポリプロピレンフィルム上に塗布して乾燥させ、厚さが0.2μm以上5.0μm以下に形成した際の全光線透過率が20%以上65%以下であり、表面の算術平均粗さ(SRa)が0.6μm以下となる下引き層と、
前記下引き層の表面に形成される染料受容層と、
を備える
熱転写受像シート。
A paper substrate;
A polyolefin resin layer formed on one side of the paper substrate;
The arithmetic average roughness of the surface opposite to the surface facing the paper substrate, the thickness being 10 μm or more and 60 μm or less, which is bonded to the paper substrate through the polyolefin resin layer by extrusion sandwich lamination. A porous film layer having (SRa) of 0.8 μm or less;
A biaxially stretched polypropylene is formed on the surface of the porous film layer, and includes at least a white pigment and a binder resin, and a mass ratio of the white pigment to the binder resin is 1/3 or more and 3 or less. The total light transmittance is 20% to 65% and the arithmetic average roughness (SRa) of the surface is 0 when applied to a film and dried to form a thickness of 0.2 μm or more and 5.0 μm or less. An undercoat layer of 6 μm or less;
A dye-receiving layer formed on the surface of the undercoat layer;
A thermal transfer image receiving sheet.
前記ポリオレフィン樹脂層の厚さは、10μm以上50μm以下である
請求項1に記載の熱転写受像シート。
The thermal transfer image receiving sheet according to claim 1, wherein the polyolefin resin layer has a thickness of 10 μm to 50 μm.
紙基材の一方の面と厚さ10μm以上60μm以下の多孔質フィルム層とを、前記多孔質フィルム層の前記紙基材に対向する面の反対側の面の算術平均粗さ(SRa)が0.8μm以下となるように、前記ポリオレフィン樹脂層を介した押出サンドイッチラミネーションにて貼り合わせる貼り合わせ工程と、
少なくとも白色顔料とバインダ樹脂とを含み、前記バインダ樹脂に対する前記白色顔料の質量比が1/3以上3以下である下引き層塗布液を二軸延伸ポリプロピレンフィルム上に塗布して乾燥させ、厚さが0.2μm以上5.0μm以下に形成した際の全光線透過率が20%以上65%以下、かつ表面の算術平均粗さ(SRa)が0.6μm以下となる下引き層を形成する下引き層形成工程と、
前記下引き層上に染料受容層を形成する染料受容層形成工程と
を備える
熱転写受像シートの製造方法。
Arithmetic mean roughness (SRa) of one surface of the paper substrate and a porous film layer having a thickness of 10 μm or more and 60 μm or less on the surface opposite to the surface of the porous film layer facing the paper substrate. A bonding step of bonding by extrusion sandwich lamination through the polyolefin resin layer so as to be 0.8 μm or less;
An undercoat layer coating solution containing at least a white pigment and a binder resin and having a mass ratio of the white pigment to the binder resin of 1/3 or more and 3 or less is applied on a biaxially stretched polypropylene film and dried. Forming an undercoat layer having a total light transmittance of 20% to 65% and an arithmetic average roughness (SRa) of 0.6 μm or less. A pulling layer forming step;
A method for producing a thermal transfer image receiving sheet, comprising: a dye receiving layer forming step of forming a dye receiving layer on the undercoat layer.
前記貼り合わせ工程において、表面の算術平均粗さ(SRa)が0.8μm以下の冷却ロールを使用して前記押出サンドイッチラミネーションを行う
請求項3に記載の熱転写受像シートの製造方法。
The manufacturing method of the thermal transfer image receiving sheet of Claim 3 which performs the said extrusion sandwich lamination using the cooling roll whose surface average arithmetic roughness (SRa) is 0.8 micrometer or less in the said bonding process.
前記貼り合わせ工程において、前記ポリオレフィン樹脂層の厚さを10μm以上50μm以下に形成する
請求項3又は4に記載の熱転写受像シートの製造方法。
The manufacturing method of the thermal transfer image receiving sheet of Claim 3 or 4 which forms the thickness of the said polyolefin resin layer in 10 to 50 micrometers in the said bonding process.
前記貼り合わせ工程において、前記押出サンドイッチラミネーション時におけるニップ圧を4kg重/cm以上50kg重/cm以下に調整する
請求項3から5のいずれか一項に記載の熱転写受像シートの製造方法。
6. The method for producing a thermal transfer image receiving sheet according to claim 3, wherein, in the bonding step, a nip pressure during the extrusion sandwich lamination is adjusted to 4 kg / cm 2 or more and 50 kg / cm 2 or less.
JP2015063031A 2015-03-25 2015-03-25 Thermal transfer image receiving sheet and method for producing thermal transfer image receiving sheet Pending JP2016182686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015063031A JP2016182686A (en) 2015-03-25 2015-03-25 Thermal transfer image receiving sheet and method for producing thermal transfer image receiving sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015063031A JP2016182686A (en) 2015-03-25 2015-03-25 Thermal transfer image receiving sheet and method for producing thermal transfer image receiving sheet

Publications (1)

Publication Number Publication Date
JP2016182686A true JP2016182686A (en) 2016-10-20

Family

ID=57241430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015063031A Pending JP2016182686A (en) 2015-03-25 2015-03-25 Thermal transfer image receiving sheet and method for producing thermal transfer image receiving sheet

Country Status (1)

Country Link
JP (1) JP2016182686A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019089230A (en) * 2017-11-13 2019-06-13 凸版印刷株式会社 Heat transfer image receiving sheet
JP2020032703A (en) * 2018-08-31 2020-03-05 凸版印刷株式会社 Thermal transfer image receiving sheet
JP2020066169A (en) * 2018-10-24 2020-04-30 凸版印刷株式会社 Thermal transfer image receiving sheet
JP7465444B2 (en) 2020-04-01 2024-04-11 大日本印刷株式会社 Support for thermal transfer image receiving sheet, thermal transfer image receiving sheet, method for manufacturing thermal transfer image receiving sheet, method for manufacturing support for thermal transfer image receiving sheet, and sheet laminating device
JP7505354B2 (en) 2020-09-30 2024-06-25 大日本印刷株式会社 Support for thermal transfer image receiving sheet, thermal transfer image receiving sheet, substrate, printed matter, method for manufacturing support for thermal transfer image receiving sheet, method for manufacturing thermal transfer image receiving sheet, method for manufacturing substrate, and method for manufacturing printed matter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08132747A (en) * 1994-11-04 1996-05-28 Dainippon Printing Co Ltd Thermal transfer image receiving sheet and method of gloss adjustment thereof
JPH1029378A (en) * 1996-07-15 1998-02-03 Dainippon Printing Co Ltd Thermal transfer image receiving sheet
JP2002103826A (en) * 2000-09-27 2002-04-09 Dainippon Printing Co Ltd Thermal transfer image receiving sheet and its manufacturing method
JP2005349824A (en) * 2004-05-13 2005-12-22 Fuji Photo Film Co Ltd Base for image recording material, and image recording material
JP2007098926A (en) * 2005-09-30 2007-04-19 Dainippon Printing Co Ltd Thermal transfer image-receiving sheet and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08132747A (en) * 1994-11-04 1996-05-28 Dainippon Printing Co Ltd Thermal transfer image receiving sheet and method of gloss adjustment thereof
JPH1029378A (en) * 1996-07-15 1998-02-03 Dainippon Printing Co Ltd Thermal transfer image receiving sheet
JP2002103826A (en) * 2000-09-27 2002-04-09 Dainippon Printing Co Ltd Thermal transfer image receiving sheet and its manufacturing method
JP2005349824A (en) * 2004-05-13 2005-12-22 Fuji Photo Film Co Ltd Base for image recording material, and image recording material
JP2007098926A (en) * 2005-09-30 2007-04-19 Dainippon Printing Co Ltd Thermal transfer image-receiving sheet and its manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019089230A (en) * 2017-11-13 2019-06-13 凸版印刷株式会社 Heat transfer image receiving sheet
JP7035468B2 (en) 2017-11-13 2022-03-15 凸版印刷株式会社 Thermal transfer image receiving sheet
JP2020032703A (en) * 2018-08-31 2020-03-05 凸版印刷株式会社 Thermal transfer image receiving sheet
JP7302149B2 (en) 2018-08-31 2023-07-04 凸版印刷株式会社 thermal transfer image receiving sheet
JP2020066169A (en) * 2018-10-24 2020-04-30 凸版印刷株式会社 Thermal transfer image receiving sheet
JP7465444B2 (en) 2020-04-01 2024-04-11 大日本印刷株式会社 Support for thermal transfer image receiving sheet, thermal transfer image receiving sheet, method for manufacturing thermal transfer image receiving sheet, method for manufacturing support for thermal transfer image receiving sheet, and sheet laminating device
JP7505354B2 (en) 2020-09-30 2024-06-25 大日本印刷株式会社 Support for thermal transfer image receiving sheet, thermal transfer image receiving sheet, substrate, printed matter, method for manufacturing support for thermal transfer image receiving sheet, method for manufacturing thermal transfer image receiving sheet, method for manufacturing substrate, and method for manufacturing printed matter

Similar Documents

Publication Publication Date Title
JPH04241993A (en) Heat-transfer image-receiving sheet
JP2016182686A (en) Thermal transfer image receiving sheet and method for producing thermal transfer image receiving sheet
JP2000127303A (en) Substrate and thermal transfer image receiving body
WO2015147288A1 (en) Thermal transfer image receiving sheet support , thermal transfer image receiving sheet, and process for producing same
JP2016182682A (en) Thermal transfer image receiving sheet and method for producing thermal transfer image receiving sheet
JP2012158121A (en) Thermal transfer image-receiving sheet
JP2018111286A (en) Thermal transfer image-receiving sheet
WO2015147289A1 (en) Process for producing thermal transfer image receiving sheet support and process for producing thermal transfer image receiving sheet
JP6601087B2 (en) Base substrate for thermal transfer image-receiving sheet and method for producing the same
JP2015134429A (en) Thermal transfer image-receiving sheet, method for production thereof, and printed matter
JP4073852B2 (en) Thermal transfer image-receiving sheet and method for producing the same
JP7069824B2 (en) Thermal transfer image receiving sheet
JPH0811444A (en) Thermal transfer image receiving sheet
JP2020055271A (en) Thermal transfer image-receiving sheet
JP2015178240A (en) Intermediate transfer recording medium and image formation method
JPH09240159A (en) Heat transfer film
JP4073866B2 (en) Thermal transfer image-receiving sheet and method for producing the same
JP2016182683A (en) Thermal transfer image receiving sheet and method for producing thermal transfer image receiving sheet
JP7302157B2 (en) thermal transfer image receiving sheet
JPH09150585A (en) Thermal transfer receptor sheet
JP5757400B2 (en) Thermal transfer image-receiving sheet for sublimation transfer
JP4073853B2 (en) Thermal transfer image-receiving sheet and method for producing the same
JP4118214B2 (en) Thermal transfer image-receiving sheet and method for producing the same
JP2004058403A (en) Thermal transfer receptive sheet
JPH10329434A (en) Thermal transfer photographic sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190320

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190806