JP4073852B2 - Thermal transfer image-receiving sheet and method for producing the same - Google Patents

Thermal transfer image-receiving sheet and method for producing the same Download PDF

Info

Publication number
JP4073852B2
JP4073852B2 JP2003332064A JP2003332064A JP4073852B2 JP 4073852 B2 JP4073852 B2 JP 4073852B2 JP 2003332064 A JP2003332064 A JP 2003332064A JP 2003332064 A JP2003332064 A JP 2003332064A JP 4073852 B2 JP4073852 B2 JP 4073852B2
Authority
JP
Japan
Prior art keywords
layer
thermal transfer
receiving sheet
resin
transfer image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003332064A
Other languages
Japanese (ja)
Other versions
JP2005096206A (en
Inventor
猛憲 小俣
太郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2003332064A priority Critical patent/JP4073852B2/en
Publication of JP2005096206A publication Critical patent/JP2005096206A/en
Application granted granted Critical
Publication of JP4073852B2 publication Critical patent/JP4073852B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、熱転写シートと重ね合わせて使用される熱転写受像シートおよびその製造方法に関する。   The present invention relates to a thermal transfer image-receiving sheet that is used by being superimposed on a thermal transfer sheet, and a method for manufacturing the same.

熱転写を利用した画像の形成方法として、記録材としての昇華性染料を紙やプラスチックフィルム等の基材シートに担持させた熱転写シートと、紙やプラスチックフィルムの一方の面に昇華性染料の受容層を設けた熱転写受像シートとを互いに重ね合わせてフルカラー画像を形成する方法が知られている。この方法は昇華性染料を色材としているためドット単位で濃度階調を自由に調節でき、原稿通りのフルカラー画像を受像シート上にて表現することができる。染料によって形成された画像は非常に鮮明でかつ透明性に優れているため、中間色や階調の再現性にも優れ、銀塩写真に匹敵する高品質の画像を形成することができる。   As a method of forming an image using thermal transfer, a thermal transfer sheet in which a sublimation dye as a recording material is supported on a base sheet such as paper or plastic film, and a sublimation dye receiving layer on one side of the paper or plastic film There is known a method of forming a full-color image by superimposing them on a thermal transfer image-receiving sheet provided with. Since this method uses a sublimation dye as a color material, the density gradation can be freely adjusted in dot units, and a full-color image as in the original can be expressed on the image receiving sheet. Since the image formed with the dye is very clear and excellent in transparency, it is excellent in reproducibility of intermediate colors and gradations, and a high-quality image comparable to a silver salt photograph can be formed.

昇華型熱転写方式のプリンタにおいて高画質のプリント画像を高速で受像シート上に形成するためには、その受像シートの基材上に染料染着性樹脂(染料に染まり易い性質を有する樹脂)を主成分とする染料受容層を設けることが望ましいが、受像シートの基材にコート紙やアート紙の紙材を用いると、これらの素材の熱伝導度が比較的高いために受容層において染料を受容する感度が低くなる。   In order to form a high-quality print image on an image receiving sheet at a high speed in a sublimation type thermal transfer printer, a dye-dyeing resin (resin that easily dyes) is mainly used on the base of the image receiving sheet. It is desirable to provide a dye-receiving layer as a component. However, when coated paper or art paper is used as the base material of the image-receiving sheet, the thermal conductivity of these materials is relatively high, so that the dye is received in the receiving layer. Sensitivity is low.

そこで、受像シートの基材としてポリオレフィン等の熱可塑性樹脂を主成分とし、内部に空隙を有している二軸延伸の発泡フィルムを用いることがある。このようなフィルムを基材に用いた受像シートは厚さが均一であり、柔軟性があり、セルロース繊維からなる紙等と比べて熱伝導度が小さいため、均一で濃度の高い画像が得られるという利点がある。しかし、二軸延伸フィルムを受像シートの基材に用いた場合、延伸時の残留応力がプリント時の熱で緩和され、延伸方向にフィルムが収縮する。その結果、受像シートにカールやシワが発生し、プリンタ内を受像シートが走行する際に紙詰まり等のトラブルが生じることがある。   Therefore, a biaxially stretched foam film having a thermoplastic resin such as polyolefin as a main component and having voids inside may be used as the base material of the image receiving sheet. An image-receiving sheet using such a film as a base material has a uniform thickness, flexibility, and low thermal conductivity compared to paper made of cellulose fibers, so that a uniform and high-density image can be obtained. There is an advantage. However, when a biaxially stretched film is used as the substrate of the image receiving sheet, the residual stress during stretching is relaxed by heat during printing, and the film contracts in the stretching direction. As a result, the image receiving sheet may be curled or wrinkled, and a trouble such as a paper jam may occur when the image receiving sheet travels in the printer.

こうした欠点を改善するために、比較的熱収縮率が小さい芯材や弾性率の大きい芯材に、空隙を有する二軸延伸の発泡フィルムを貼り合わせて積層したラミネートシートを受像シートの基材として用いる例もある。芯材に発泡剤が含まれた接着剤を介して非発泡プラスチックフィルムを重ね合わせ、その状態で発泡剤を発泡させて接着剤層を多孔質構造とした熱転写受像シートも存在する(特許文献1参照)。中空粒子をバインダ樹脂に混ぜた多孔層塗工液を基材シートに塗布することにより、断熱性とクッション性とを兼ね備えた多孔層を形成する技術も知られている(特許文献2参照)。
特開平6−239040号公報 特開2002−212890号公報
In order to remedy these drawbacks, a laminate sheet in which a biaxially stretched foam film having voids is bonded to a core material having a relatively small thermal shrinkage rate or a core material having a large elastic modulus is used as a base material for the image receiving sheet. There is also an example to use. There is also a thermal transfer image-receiving sheet in which a non-foamed plastic film is superposed through an adhesive containing a foaming agent in the core, and the foaming agent is foamed in that state to make the adhesive layer have a porous structure (Patent Document 1). reference). A technique for forming a porous layer having both heat insulating properties and cushioning properties by applying a porous layer coating liquid in which hollow particles are mixed with a binder resin to a base sheet is also known (see Patent Document 2).
JP-A-6-239040 JP 2002-212890 A

しかしながら、空隙を有する二軸延伸フィルムは伸縮性が大きくてラミネート時のテンションの制御が難しくて生産性に劣る。製造コストも大幅に上昇する。また、紙基材に多孔層塗工液を塗布して多孔層を形成する場合、紙基材の材質やバインダ樹脂の種類によっては、塗工液の水分が紙基材に浸透して乾燥後の多孔層表面に凹凸が生じ、その影響で染料受容層の表面にも凹凸が現われて画像形成時に濃度ムラやドット抜けといった欠陥を生じさせることがある。   However, a biaxially stretched film having voids is highly stretchable, and it is difficult to control the tension during lamination, resulting in poor productivity. Manufacturing costs also increase significantly. Also, when a porous layer is formed by applying a porous layer coating solution to a paper substrate, depending on the material of the paper substrate and the type of binder resin, the moisture of the coating solution may penetrate the paper substrate and dry. Concavities and convexities are generated on the surface of the porous layer, and as a result, irregularities appear on the surface of the dye receiving layer, which may cause defects such as density unevenness and missing dots during image formation.

そこで、本発明は、発泡フィルムの貼り合わせに伴う生産上の諸問題を回避でき、しかも、多孔層塗工液に含まれる水分が紙基材に浸透する恐れがなくて濃度ムラやドット抜けのない高品質な画像を得ることが可能な熱転写受像シート及びその製造方法を提供することを目的とする。   Therefore, the present invention can avoid various production problems associated with the bonding of the foam film, and the moisture contained in the porous layer coating liquid does not have a risk of penetrating into the paper base material. It is an object of the present invention to provide a thermal transfer image receiving sheet capable of obtaining a high quality image and a method for producing the same.

本発明の熱転写受像シートは、クレイムの複写であることを特徴とする。   The thermal transfer image receiving sheet of the present invention is characterized by being a claim copy.

この熱転写受像シートによれば、紙基材とは別の基材フィルムの一方の面側に染料受容層を他方の面側に多孔層をそれぞれ設けており、多孔層塗工時に基材フィルムには水分が浸透しないか、または浸透したとしても紙基材に対する浸透よりは遥かに浸透の程度が少ないので、多孔層を形成する基材の凹凸を抑えて染料受容層を高い平滑度で形成することができる。また、基材フィルムに設けられた多孔層と紙基材とを接着層を介して貼り合わせているから、多孔層の塗工液を乾燥させてから紙基材を貼り合わせれば、水分の紙基材に浸透するおそれがなく、紙基材の種類を問わず凹凸の出現を防止して染料受容層の平滑度を高く維持することができる。これにより、画像形成時において濃度ムラやドット抜けのない高品質な画像を得ることができる。   According to this thermal transfer image-receiving sheet, a dye-receiving layer is provided on one surface side of a substrate film different from the paper substrate, and a porous layer is provided on the other surface side. Since water does not penetrate, or even if it penetrates, the penetration level is far less than the penetration to the paper substrate, so the unevenness of the substrate forming the porous layer is suppressed and the dye receiving layer is formed with high smoothness be able to. Also, since the porous layer provided on the substrate film and the paper substrate are bonded together via an adhesive layer, if the paper substrate is bonded after drying the porous layer coating liquid, There is no possibility of penetrating into the substrate, and the appearance of irregularities can be prevented regardless of the type of paper substrate, and the smoothness of the dye-receiving layer can be maintained high. Thereby, it is possible to obtain a high-quality image free from density unevenness and missing dots during image formation.

本発明の一実施形態に係る熱転写受像シート1の模式的断面構成図を図1Aに示す。本発明の一実施形態に係る熱転写受像シート1の模式的断面構成図を図1Aに示す。基材フィルム2、該基材フィルム2の一方の面側に中間層4、染料受容層5、および他方の面側に多孔層3からなり、該多孔層3が、高耐熱粒子とバインダー樹脂からなる高耐熱粒子層および中空粒子とバインダー樹脂からなる中空粒子層の2層からなり、該多孔層3が接着7層を介して紙基材上に積層されてなる。   A schematic cross-sectional configuration diagram of a thermal transfer image receiving sheet 1 according to an embodiment of the present invention is shown in FIG. 1A. A schematic cross-sectional configuration diagram of a thermal transfer image receiving sheet 1 according to an embodiment of the present invention is shown in FIG. 1A. The base film 2 is composed of an intermediate layer 4 and a dye receiving layer 5 on one surface side of the base film 2 and a porous layer 3 on the other surface side. The porous layer 3 is composed of high heat resistant particles and a binder resin. The high heat-resistant particle layer and the hollow particle layer composed of a hollow particle and a binder resin are composed of two layers, and the porous layer 3 is laminated on a paper substrate through seven adhesive layers.

基材フィルム2は多孔層3の塗工時に水分を吸収しないか、殆ど吸収しないものが好ましく、好適にはプラスチックフィルムが使用される。ここで使用されるプラスチックフィルムとしては、例えばPETフィルム、ポリエチレン、ポリプロピレン等の各種の樹脂にて構成されたフィルムが使用できる。基材フィルム2の物性が染料受容層5に与える影響を小さくするため、基材フィルム2はなるべく薄いことが望ましい。好適には基材フィルム2の厚さを20μm以下にする。基材フィルムの厚さが20μmを超えると、基材フィルムの物性の影響が多孔層のクッション性や断熱性による影響に比して無視できなくなり、基材フィルムの不均一性に起因して画像形成時の濃度ムラ等が生じるおそれがある。基材フィルムの厚さの下限は、上記要求特性を満たす限り特に制限はないが、あまり薄すぎると多孔層3の塗工時に水分がフィルムを透過するおそれが生じ、またフィルムの入手又は製造的制限から、2.5μm程度以上になる。   The base film 2 is preferably one that does not absorb or hardly absorbs moisture when the porous layer 3 is applied, and a plastic film is preferably used. As a plastic film used here, the film comprised, for example with various resin, such as PET film, polyethylene, a polypropylene, can be used. In order to reduce the influence of the physical properties of the base film 2 on the dye-receiving layer 5, the base film 2 is desirably as thin as possible. Preferably, the thickness of the base film 2 is 20 μm or less. When the thickness of the base film exceeds 20 μm, the influence of the physical properties of the base film cannot be ignored compared with the influence of the cushioning property and heat insulating property of the porous layer, and the image is caused by the non-uniformity of the base film. There is a risk of density unevenness during formation. The lower limit of the thickness of the base film is not particularly limited as long as the above required characteristics are satisfied. However, if it is too thin, moisture may permeate through the film when the porous layer 3 is applied, and the film may be obtained or manufactured. Due to the limitation, it becomes about 2.5 μm or more.

多孔層3は、高耐熱粒子とバインダー樹脂からなる高耐熱粒子層31および中空粒子とバインダー樹脂からなる中空粒子層32の2層からなる。このように高耐熱粒子層を設けることにより、中空粒子層のみを設けた場合に生じる問題、すなわち、3色混色の濃度が単色に比べて低くなるという問題、そして3色混色印画部分に凹みが生じ、画像にエンボスが生じる問題を回避できる。図1Aにおいては、基材フィルム上に高耐熱粒子層31および中空粒子層32を順次形成しているが、高耐熱粒子層31と中空粒子層32の形成順序は逆でもよい。画像のエンボスを回避するには、サーマルヘッドに近い位置に耐熱粒子層を設けることが効果的であり、その観点で基材フィルム上に高耐熱粒子層31および中空粒子層32をこの順に形成することが好ましい。   The porous layer 3 includes two layers, a high heat resistant particle layer 31 made of high heat resistant particles and a binder resin, and a hollow particle layer 32 made of hollow particles and a binder resin. By providing the high heat-resistant particle layer in this way, there are problems that occur when only the hollow particle layer is provided, that is, the problem that the density of the three-color mixed color is lower than that of the single color, and there is a dent in the three-color mixed color print portion. And the problem of embossing in the image can be avoided. In FIG. 1A, the high heat resistant particle layer 31 and the hollow particle layer 32 are sequentially formed on the base film, but the formation order of the high heat resistant particle layer 31 and the hollow particle layer 32 may be reversed. In order to avoid embossing of the image, it is effective to provide a heat-resistant particle layer at a position close to the thermal head. From this viewpoint, the high heat-resistant particle layer 31 and the hollow particle layer 32 are formed in this order on the base film. It is preferable.

高耐熱粒子層31は、少なくとも高耐熱粒子をバインダ樹脂に結着させて形成されたものである。具体的には、バインダ樹脂と高耐熱粒子とを溶媒に溶解、分散させた塗工液を基材フィルム2の下面側に塗工し、これを乾燥させることにより、乾燥後の膜厚が4〜12μm、好ましくは5〜10μmとなるように形成される。ただし、後述する中空粒子層との合計膜厚(多孔層の膜厚)が、5〜40μmの範囲となるように形成することが好ましい。5μm未満であると十分な断熱性及びクッション性が得られないおそれがあり、他方で40μmを超えると断熱性が飽和に達し、コスト的に無駄が生じるおそれがある。   The high heat resistant particle layer 31 is formed by binding at least high heat resistant particles to a binder resin. Specifically, a coating solution in which a binder resin and high heat-resistant particles are dissolved and dispersed in a solvent is applied to the lower surface side of the base film 2 and dried, so that the film thickness after drying is 4 It is formed to be -12 μm, preferably 5-10 μm. However, it is preferable to form so that the total film thickness (film thickness of a porous layer) with the hollow particle layer mentioned later may become the range of 5-40 micrometers. If the thickness is less than 5 μm, sufficient heat insulating properties and cushioning properties may not be obtained. On the other hand, if it exceeds 40 μm, the heat insulating properties may reach saturation, resulting in cost waste.

高耐熱粒子は、耐熱温度200℃以上、好ましくは300℃以上を有し、断熱性を有するるものを使用する。粒子の耐熱温度は、粒子の構成物質、製造条件あるいは入手可能性等に依存するが、高いほど好ましく、係る観点から粒子の耐熱温度の上限は特に限定されない。なお、粒子の耐熱温度は粒子が熱により破壊あるいは潰れることなく耐え得る最大の温度であり、本発明においては熱応力歪み測定装置(TMA)(セイコー電子工業(株)製)により測定した値で表して、上記耐熱温度以上を有していればよい。高耐熱粒子の体積平均粒径は0.1〜10μm、好ましくは0.1〜5μmである。10μmより大きいと画像に粒子由来のヌケが生じ、0.1μmより小さいと十分な空隙率を確保できないし、またコストが高くなってしまう。   The high heat resistant particles have a heat resistant temperature of 200 ° C. or higher, preferably 300 ° C. or higher, and have heat insulation properties. The heat resistant temperature of the particles depends on the constituent material of the particles, production conditions, availability, etc., but it is preferably as high as possible. From this viewpoint, the upper limit of the heat resistant temperature of the particles is not particularly limited. The heat-resistant temperature of the particles is the maximum temperature at which the particles can withstand without being destroyed or crushed by heat. In the present invention, the heat-resistant temperature is a value measured by a thermal stress strain measuring device (TMA) (manufactured by Seiko Electronics Co., Ltd.). It is only necessary to represent and have the above heat-resistant temperature. The volume average particle diameter of the high heat-resistant particles is 0.1 to 10 μm, preferably 0.1 to 5 μm. If it is larger than 10 μm, particles will be lost in the image, and if it is smaller than 0.1 μm, a sufficient porosity cannot be secured and the cost will be increased.

高耐熱粒子は、樹脂あるいはガラス等で構成されていてよい。樹脂の場合、その種類は特に限定されるものではないが、例えばスチレン系樹脂、(メタ)アクリル系樹脂、スチレン−(メタ)アクリル系樹脂、フェノール系樹脂、フッ素系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリカーボネート系樹脂、ポリーテル系樹脂、その他の公知の種々の樹脂であってよい。   The high heat resistant particles may be made of resin or glass. In the case of resin, the kind is not particularly limited, but for example, styrene resin, (meth) acrylic resin, styrene- (meth) acrylic resin, phenolic resin, fluorine resin, polyamide resin, polyimide Resin, polycarbonate resin, polyether resin, and other various known resins.

高耐熱粒子は、中空粒子であってもよい。このような高耐熱中空粒子は、例えば上記中空粒子を構成する樹脂の架橋度をさらに高めて耐熱性を高めた中空粒子であり、上記した耐熱性を有するものである。高耐熱中空粒子の空隙率は、中空粒子の空隙率よりも小さくてよい。市販品としては、高架橋スチレン−アクリル系中空樹脂(SX−866;JSR社製)、シリカ系中空粒子(ゴッドボールB−6C;鈴木油脂工業(株)製)等として入手可能である。   The high heat resistant particles may be hollow particles. Such a high heat-resistant hollow particle is, for example, a hollow particle in which the degree of crosslinking of the resin constituting the hollow particle is further increased to increase the heat resistance, and has the heat resistance described above. The porosity of the high heat-resistant hollow particles may be smaller than the porosity of the hollow particles. Commercially available products are available as highly crosslinked styrene-acrylic hollow resin (SX-866; manufactured by JSR), silica-based hollow particles (Godball B-6C; manufactured by Suzuki Oil & Fats Co., Ltd.), and the like.

高耐熱粒子層における高耐熱粒子の含有比率は70〜90重量%の範囲が好ましい。70重量%未満であれば十分な耐熱性が得られないおそれがあり、90重量%を超えるときは結着力が不足して多孔層の基材フィルムからの剥離が生じるおそれがある。   The content ratio of the high heat-resistant particles in the high heat-resistant particle layer is preferably in the range of 70 to 90% by weight. If it is less than 70% by weight, sufficient heat resistance may not be obtained, and if it exceeds 90% by weight, the binding force may be insufficient and the porous layer may be peeled off from the substrate film.

高耐熱粒子層に使用するバインダー樹脂としては、ポリエステル樹脂、ウレタン樹脂、酢酸ビニル樹脂、アクリル樹脂およびその共重合体、あるいはそれらをブレンドした樹脂を水に溶解するかまたは分散させるかまたはエマルジョンにしたものや、ポリビニルアルコール、カルボキシメチルセルロース、デンプン、ポリアクリル酸ナトリウムなどの水溶性樹脂が用いられる。基材フィルムにポリエステルが使用される場合は、多孔層バインダーとしてポリエステル樹脂を使用することは、基材フィルムと多孔層の接着性の点から好ましい。例えばポリエステル樹脂(バイロナールMD−1480;東洋紡績社製)が使用可能である。ポリビニルアルコール、カルボキシメチルセルロース、ポリアクリル酸ナトリウム等の水溶性樹脂は、粘度が高く、保水性に優れるため、基材フィルム2への水分の浸透を防ぐ上で好ましい。   As the binder resin used for the high heat-resistant particle layer, a polyester resin, a urethane resin, a vinyl acetate resin, an acrylic resin and a copolymer thereof, or a resin blended with them is dissolved in water, dispersed, or made into an emulsion. And water-soluble resins such as polyvinyl alcohol, carboxymethylcellulose, starch and sodium polyacrylate are used. When polyester is used for the base film, it is preferable to use a polyester resin as the porous layer binder from the viewpoint of adhesion between the base film and the porous layer. For example, a polyester resin (Vylonal MD-1480; manufactured by Toyobo Co., Ltd.) can be used. Water-soluble resins such as polyvinyl alcohol, carboxymethyl cellulose, and sodium polyacrylate have a high viscosity and are excellent in water retention, and thus are preferable in preventing moisture from penetrating into the base film 2.

中空粒子層32は、少なくとも中空粒子をバインダ樹脂に結着させて形成されたものである。具体的には、バインダ樹脂と中空粒子とを溶媒に溶解、分散させた塗工液を図1Aの構成の場合は、高耐熱粒子層31の下面側に塗工し、これを乾燥させることにより乾燥後の膜厚が5〜40μm、好ましくは10〜20μmとなるように形成される。ただし、上記したように高耐熱粒子層との合計膜厚(多孔層の膜厚)が、5〜40μmの範囲となるように形成するようにする。   The hollow particle layer 32 is formed by binding at least hollow particles to a binder resin. Specifically, in the case of the configuration of FIG. 1A, a coating liquid in which a binder resin and hollow particles are dissolved and dispersed in a solvent is applied to the lower surface side of the high heat resistant particle layer 31 and dried. The film thickness after drying is 5 to 40 μm, preferably 10 to 20 μm. However, as described above, the total film thickness (the film thickness of the porous layer) with the high heat-resistant particle layer is formed in the range of 5 to 40 μm.

中空粒子層32に使用する中空粒子としては、発泡粒子、非発泡粒子のいずれでもよく、例えば架橋スチレン−アクリル等の有機系中空粒子、無機中空ガラス体等が中空粒子として使用できる。発泡粒子を使用する場合には、独立発泡又は連続発泡のいずれでもよい。中空粒子の体積平均粒径は0.1〜10μm、好ましくは0.1〜5μmである。
10μmより大きいと画像に粒子由来のヌケが生じ、0.1μより小さいと十分な空隙率を確保できないし、またコストが高くなってしまう。中空粒子の空隙率は50%以上が好ましい。空隙率が50%に満たないと多孔層3に十分な断熱性およびクッション性を与えることができないおそれがある。また、中空粒子層32における中空粒子の含有比率は、70〜90重量%の範囲が好ましい。70重量%未満であれば十分な断熱性及びクッション性が得られないおそれがあり、90重量%を超えるときは結着力が不足して中空粒子層の剥離が生じるおそれがある。
The hollow particles used in the hollow particle layer 32 may be either expanded particles or non-expanded particles. For example, organic hollow particles such as crosslinked styrene-acryl, inorganic hollow glass bodies, and the like can be used as the hollow particles. When foamed particles are used, either closed foaming or continuous foaming may be used. The volume average particle diameter of the hollow particles is 0.1 to 10 μm, preferably 0.1 to 5 μm.
If it is larger than 10 μm, particles will be lost in the image, and if it is smaller than 0.1 μm, a sufficient porosity cannot be secured and the cost will be increased. The void ratio of the hollow particles is preferably 50% or more. If the porosity is less than 50%, the porous layer 3 may not be able to be provided with sufficient heat insulation and cushioning properties. Moreover, the content ratio of the hollow particles in the hollow particle layer 32 is preferably in the range of 70 to 90% by weight. If it is less than 70% by weight, sufficient heat insulating properties and cushioning properties may not be obtained, and if it exceeds 90% by weight, the binding force may be insufficient and the hollow particle layer may be peeled off.

中空粒子層に使用するバインダー樹脂は、高耐熱粒子層に使用する同様のバインダー樹脂を同様に使用できる。   As the binder resin used for the hollow particle layer, the same binder resin used for the high heat-resistant particle layer can be similarly used.

多孔層を構成する高耐熱粒子層および中空粒子層はグラビアコート、グラビアリバースコート、コンマコート、ダイコート、リップコート等の一般的な塗工方法で形成できる。   The high heat-resistant particle layer and the hollow particle layer constituting the porous layer can be formed by a general coating method such as gravure coating, gravure reverse coating, comma coating, die coating, and lip coating.

上記においては、多孔層が高耐熱粒子層および中空粒子層の2層からなる場合を説明したが、高耐熱粒子層/中空粒子層/高耐熱粒子層3層構成、高耐熱粒子層/汎用樹脂層/中空粒子層の3層構成等の多層構成としてもよい。このように3層以上の多層構成の場合も、上記した高耐熱粒子層、中空粒子層を適用できる。   In the above, the case where the porous layer is composed of two layers of the high heat resistant particle layer and the hollow particle layer has been described. However, the structure of the high heat resistant particle layer / hollow particle layer / three high heat resistant particle layers, the high heat resistant particle layer / general purpose resin A multilayer structure such as a three-layer structure of layers / hollow particle layers may be employed. Thus, the above-mentioned high heat-resistant particle layer and hollow particle layer can also be applied in the case of a multilayer structure of three or more layers.

中間層4は、基材フィルム2と染料受容層5との間に介在する全ての層を指す。中間層4は単層構造または複層構造のいずれでもよい。なお、中間層4は必要に応じて設ければよく、これを省略してもよい。また中間層は多孔層構成バインダ樹脂と同様のものを使用することができる。   The intermediate layer 4 refers to all the layers interposed between the base film 2 and the dye receiving layer 5. The intermediate layer 4 may have either a single layer structure or a multilayer structure. The intermediate layer 4 may be provided as necessary and may be omitted. The intermediate layer may be the same as the porous layer constituting binder resin.

中間層4には、隠蔽性や白色性を付与するために、また、熱転写受像シート1全体の質感を調整するために、無機顔料として、炭酸カルシウム、タルク、カオリン、酸化チタン、酸化亜鉛その他公知の無機顔料や蛍光増白剤を含有させてもよい。それらの配合比は、樹脂固形分比100重量部に対して10〜200重量部が好ましい。10重量部よりも少ないと効果が十分に発揮されず、200重量部を超えると分散安定性に欠け、樹脂の性能が得られないおそれがある。中間層は、その形成の目的にもよるが、0.5〜5g/m程度の厚さに形成される。形成は、グラビアコート、グラビアリバースコート、コンマコート、ダイコート、リップコート等の一般的な塗工方法で行えばよい。 For the intermediate layer 4, calcium carbonate, talc, kaolin, titanium oxide, zinc oxide, etc. are known as inorganic pigments in order to impart concealability and whiteness, and to adjust the overall texture of the thermal transfer image-receiving sheet 1. Inorganic pigments and fluorescent brighteners may be included. Their blending ratio is preferably 10 to 200 parts by weight with respect to 100 parts by weight of the resin solid content ratio. If the amount is less than 10 parts by weight, the effect is not sufficiently exhibited. If the amount exceeds 200 parts by weight, the dispersion stability is insufficient and the performance of the resin may not be obtained. The intermediate layer is formed to a thickness of about 0.5 to 5 g / m 2 depending on the purpose of formation. The formation may be performed by a general coating method such as gravure coating, gravure reverse coating, comma coating, die coating, and lip coating.

染料受容層5は、染料によって染め易い樹脂を主成分とするワニスに、必要に応じて離型剤等の各種添加剤を加えて構成する。染料によって染め易い樹脂としては、ポリプロピレン等のポリオレフィン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン等のハロゲン化樹脂、ポリ酢酸ビニル、ポリアクリル酸エステル等のビニル系樹脂、およびその共重合体、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル樹脂、ポリスチレン系樹脂、ポリアミド系樹脂、エチレンやプロピレン等のオレフィンと他のビニル系モノマーとの共重合体、アイオノマー、セルロール誘導体の単体、または混合物を用いることができる。これらの中でも、ポリエステル系樹脂、およびビニル系樹脂が好ましい。   The dye receiving layer 5 is constituted by adding various additives such as a release agent to a varnish mainly composed of a resin that can be easily dyed with a dye as necessary. Examples of resins that can be easily dyed with dyes include polyolefin resins such as polypropylene, halogenated resins such as polyvinyl chloride resin and polyvinylidene chloride, vinyl resins such as polyvinyl acetate and polyacrylate, and copolymers thereof, polyethylene terephthalate Polyester resins such as polybutylene terephthalate, polystyrene resins, polyamide resins, copolymers of olefins such as ethylene and propylene and other vinyl monomers, ionomers, cellulose derivatives alone, or mixtures thereof can be used. Among these, polyester resins and vinyl resins are preferable.

染料受容層5には、画像形成時に熱転写シートとの熱融着を防ぐために離型剤を配合することもできる。離型剤は、シリコーンオイル、リン酸エステル系可塑剤フッ素系化合物を用いることができるが、特にはシリコーンオイルが好ましく用いられる。シリコーンオイルとしては、エポキシ変性、アルキル変性、アミノ変性、フッ素変性、フェニル変性、エポキシ・ポリエーテル変性等の変性シリコーンが好ましく用いられる。中でも、ビニル変性シリコーンオイルおよびハイドロジェン変性シリコーンオイルとの反応物がよい。離型剤の添加量(合計量)は染料受容層5を形成する樹脂100重量部に対して0.2〜30重量部程度でよい。   In the dye receiving layer 5, a release agent can also be blended to prevent thermal fusion with the thermal transfer sheet during image formation. As the mold release agent, silicone oil and phosphoric ester plasticizer fluorine-based compound can be used, and silicone oil is particularly preferably used. As the silicone oil, modified silicones such as epoxy modification, alkyl modification, amino modification, fluorine modification, phenyl modification, and epoxy / polyether modification are preferably used. Among them, a reaction product with vinyl-modified silicone oil and hydrogen-modified silicone oil is preferable. The addition amount (total amount) of the release agent may be about 0.2 to 30 parts by weight with respect to 100 parts by weight of the resin forming the dye receiving layer 5.

染料受容層5はロールコート、バーコート、グラビアコート、グラビアリバースコート等の一般的なコート方法により形成される。染料受容層5の塗布量は0.5〜10g/m程度である。 The dye receiving layer 5 is formed by a general coating method such as roll coating, bar coating, gravure coating, or gravure reverse coating. The coating amount of the dye receiving layer 5 is about 0.5 to 10 g / m 2 .

紙基材6は熱転写受像シート1の全体に、銀塩写真に匹敵する質感や剛性感を与えるために使用される。紙基材6としては、例えば坪量78〜400g/m、好ましくは150〜300g/mの上質紙またはアート紙を使用することができる。紙基材6の厚さは40〜300μmの範囲が好適に用いられ、さらに好ましくは60〜200μm範囲に設定される。銀塩写真の印画紙と同等の質感を熱転写受像シート1に与えるためには、熱転写受像シート1の全体の厚さを150〜250μmの範囲に設定するとよい。 The paper base 6 is used to give the entire thermal transfer image-receiving sheet 1 a texture and rigidity comparable to a silver salt photograph. As the paper substrate 6, for example, high-quality paper or art paper having a basis weight of 78 to 400 g / m 2 , preferably 150 to 300 g / m 2 can be used. The thickness of the paper substrate 6 is preferably in the range of 40 to 300 μm, more preferably in the range of 60 to 200 μm. In order to give the thermal transfer image-receiving sheet 1 a texture equivalent to that of silver halide photographic printing paper, the overall thickness of the thermal transfer image-receiving sheet 1 is preferably set in the range of 150 to 250 μm.

接着層7は紙基材6と多孔層3とを接合できるものであれば種類を問わないが、典型的にはウレタン系、ポリオレフィン系、ポリエステル系、アクリル系またはエポキシ系の接着性樹脂を用いることができる。また、多孔層3と紙基材6とを接着する方法として、接着層を構成する樹脂を押出しつつその押出し樹脂を挟んで多孔層3と紙基材6とを貼り合わせる、いわゆるECラミネート法を用いて接着層7を形成しつつ多孔層3と紙基材6とを貼り合わせることもできる。このECラミネート法にて使用される押出し樹脂としては、ポリオレフィン系の汎用の樹脂が挙げられる。接着層7は通常10g/m程度の範囲で形成される。 The adhesive layer 7 may be of any type as long as it can join the paper substrate 6 and the porous layer 3, but typically, urethane, polyolefin, polyester, acrylic or epoxy adhesive resin is used. be able to. In addition, as a method of adhering the porous layer 3 and the paper base material 6, a so-called EC laminating method in which the porous layer 3 and the paper base material 6 are bonded together while extruding the resin constituting the adhesive layer and sandwiching the extruded resin. The porous layer 3 and the paper base material 6 can be bonded together while forming the adhesive layer 7 by using it. Examples of the extrusion resin used in the EC lamination method include polyolefin-based general-purpose resins. The adhesive layer 7 is usually formed in a range of about 10 g / m 2 .

図2に示すように、紙基材6の下面に樹脂コート層8を設けることにより、紙基材6のカールを防止する保湿性を付与し、あるいは熱転写受像シート1がプリンタにて搬送される際の摩擦抵抗を低減する滑性を付与してもよい。保湿性を付与する目的を達成するためには、樹脂コート層8の材料としてポリビニルアルコール、ポリエチレングリコール等のホイールコントロールスイッチ効果を有する樹脂を利用できる。また、滑性を付与するためには、樹脂コート層8の材料として無機または有機フィラーを分散させた樹脂を用いるとよい。さらに、樹脂コート層8にシリコーン等の滑剤、または離型剤を添加してもよい。   As shown in FIG. 2, by providing a resin coat layer 8 on the lower surface of the paper substrate 6, the paper substrate 6 is given moisture retention to prevent curling, or the thermal transfer image receiving sheet 1 is conveyed by a printer. You may provide the slipperiness which reduces the frictional resistance at the time. In order to achieve the purpose of imparting moisture retention, a resin having a wheel control switch effect such as polyvinyl alcohol or polyethylene glycol can be used as the material of the resin coat layer 8. In order to impart lubricity, a resin in which an inorganic or organic filler is dispersed may be used as the material of the resin coat layer 8. Further, a lubricant such as silicone or a release agent may be added to the resin coat layer 8.

本発明の熱転写受像シート1の形成途中の状態を示す模式的断面構成図を図1Bに示す。図1Bに示すように、熱転写受像シート1は、基材フィルム2の下面側に多孔層3を、上面側に必要により中間層4および染料受容層5を順次形成して積層体を構成し、その積層体の多孔層3の下面に接着層7を介して紙基材6を貼り合わせるようにする。なお、本発明の熱転写受像シートにおいて、基材フィルムに対する染料受容層および多孔層の形成順序は特に問わない。   FIG. 1B shows a schematic cross-sectional configuration diagram showing a state during the formation of the thermal transfer image receiving sheet 1 of the present invention. As shown in FIG. 1B, the thermal transfer image-receiving sheet 1 comprises a laminate by sequentially forming a porous layer 3 on the lower surface side of the base film 2 and optionally an intermediate layer 4 and a dye-receiving layer 5 on the upper surface side, A paper substrate 6 is bonded to the lower surface of the porous layer 3 of the laminate through an adhesive layer 7. In the thermal transfer image receiving sheet of the present invention, the order in which the dye receiving layer and the porous layer are formed on the base film is not particularly limited.

本発明の熱転写受像シート及びその製造方法によれば、紙基材とは別の基材フィルムの一方の面側に染料受容層を、他方の面側に多孔層をそれぞれ設けており、多孔層塗工時に基材フィルムには水分が浸透しないか、または浸透したとしても紙基材に対する浸透よりは遥かに浸透の程度が少ないので、多孔層を形成する基材の凹凸を抑えて染料受容層を高い平滑度で形成することができる。また、多孔層の塗工液を乾燥させてから紙基材を貼り合わせれば、水分の紙基材に浸透するおそれがなく、紙基材の種類を問わず凹凸の出現を防止して染料受容層の平滑度を高く維持することができる。これにより、画像形成時において濃度ムラやドット抜けのない高品質な画像を得ることができる。   According to the thermal transfer image-receiving sheet and the method for producing the same of the present invention, a dye-receiving layer is provided on one surface side of a substrate film different from the paper substrate, and a porous layer is provided on the other surface side. Even if moisture does not penetrate into the base film during coating, or even if it penetrates, the degree of penetration is far less than the penetration into the paper base, so the unevenness of the base that forms the porous layer is suppressed, and the dye receiving layer Can be formed with high smoothness. In addition, if the paper base material is pasted after drying the coating liquid for the porous layer, there is no risk of moisture penetrating into the paper base material, preventing the appearance of irregularities regardless of the type of paper base material and accepting the dye. The smoothness of the layer can be kept high. Thereby, it is possible to obtain a high-quality image free from density unevenness and missing dots during image formation.

以下に実施例をあげて、本発明をさらに具体的に説明する。なお、本実施例中、「部」または「%」とあるのは特に断りない限り、質量基準(重量部、重量%)である。
以下に実施例を示し、本発明をより具体的に説明する。
The present invention will be described more specifically with reference to the following examples. In this example, “parts” or “%” is based on mass (parts by weight,% by weight) unless otherwise specified.
Hereinafter, the present invention will be described in more detail with reference to examples.

(実施例1)
4μmのポリエステルフィルム(ルミラー4F56;東レ(株)製)上の一方の面に下記組成からなる中間層、受容層をグラビアコートで、それぞれ乾燥後1.0g/m、4.0g/mとなるように塗工および乾燥し、中間層、受容層を形成した。
・中間層
ポリステル樹脂(バイロナールMD-1480;東洋紡績(株)製) 20重量部
水/IPA=1/1(IPA=イソプロビルアルコール) 100重量部
・受容層
塩化ビニル−酢酸ビニル共重合体(#1000A;電気化学工業(株)製) 120重量部
エポキシ変性シリコーン(X22-3000T;信越化学工業(株)製) 12重量部
フェニル変性シリコーン(X24-510;信越化学工業(株)製) 6重量部
メチルエチルケトン/トルエン=8/2 50重量部
Example 1
Polyester film 4 [mu] m; intermediate layer, the receiving layer by a gravure coating, respectively after drying 1.0 g / m 2 having the following composition on one surface of the (Lumirror 4F56 manufactured by Toray Industries (Ltd.)), 4.0g / m 2 Coating and drying were performed to form an intermediate layer and a receiving layer.
・ Intermediate layer Polyster resin (Vylonal MD-1480; manufactured by Toyobo Co., Ltd.) 20 parts by weight Water / IPA = 1/1 (IPA = Isopropyl alcohol) 100 parts by weight Receptor layer Vinyl chloride-vinyl acetate copolymer ( # 1000A; manufactured by Denki Kagaku Kogyo Co., Ltd.) 120 parts by weight Epoxy-modified silicone (X22-3000T; manufactured by Shin-Etsu Chemical Co., Ltd.) 12 parts by weight Phenyl-modified silicone (X24-510; manufactured by Shin-Etsu Chemical Co., Ltd.) 6 Parts by weight methyl ethyl ketone / toluene = 8/2 50 parts by weight

上記ポリエステルフィルムの受容層とは反対の面に下記組成からなる高耐熱粒子層、中空粒子層をグラビアコートで、それぞれ乾燥後の厚みが8μm、15μmとなるように塗工および乾燥し、多孔層を形成した。
・高耐熱粒子層1
高架橋スチレン−アクリル系中空粒子(SX-866;JSR社製) 80重量部
(体積平均粒径=0.3μm、中空率30%、耐熱温度300〜330℃)
ポリエステル樹脂(バイロナールMD-1480;東洋紡績(株)製) 20重量部
水 400重量部
・中空粒子層1
アクリル系中空粒子(ローペイクHP-1055;ロームアンドハーム社製) 80重量部
(体積平均粒径=1μm、中空率50%)
ポリエステル樹脂(バイロナールMD-1480;東洋紡績(株)製) 20重量部
水 400重量部
A high heat resistant particle layer and a hollow particle layer having the following composition are coated on the surface opposite to the receiving layer of the polyester film by gravure coating, dried and dried so that the thickness after drying is 8 μm and 15 μm, respectively. Formed.
・ High heat resistant particle layer 1
Highly crosslinked styrene-acrylic hollow particles (SX-866; manufactured by JSR) 80 parts by weight (volume average particle size = 0.3 μm, hollow rate 30%, heat-resistant temperature 300 to 330 ° C.)
Polyester resin (Vylonal MD-1480; manufactured by Toyobo Co., Ltd.) 20 parts by weight Water 400 parts by weight, hollow particle layer 1
Acrylic hollow particles (Ropeke HP-1055; manufactured by Rohm and Harm) 80 parts by weight (volume average particle diameter = 1 μm, hollow ratio 50%)
Polyester resin (Vylonal MD-1480; manufactured by Toyobo Co., Ltd.) 20 parts by weight Water 400 parts by weight

次いで、上記塗工済みポリエステルフィルムの多孔層側と、坪量158g/mのコート紙(基材シート)を下記組成の押出し樹脂にて、Tダイ法によりECラミネートを行ない熱転写受像シート1を得た。なお、押出し樹脂による接着剤層の厚さは10g/m(固形分)である。
・押出し樹脂
ポリエチレン樹脂(スミカセン10P;三井住友ポリオレフィン(株)製)
Next, EC lamination is performed on the porous layer side of the coated polyester film and a coated paper (base sheet) having a basis weight of 158 g / m 2 with an extrusion resin having the following composition by a T-die method to form a thermal transfer image-receiving sheet 1. Obtained. In addition, the thickness of the adhesive bond layer by extrusion resin is 10 g / m < 2 > (solid content).
Extruded resin Polyethylene resin (Sumikasen 10P; manufactured by Sumitomo Mitsui Polyolefin Co., Ltd.)

(実施例2)
実施例1の高耐熱粒子層1の厚みを5μmにした以外は、実施例1と同様にして、熱転写受像シート2を得た。
(Example 2)
A thermal transfer image receiving sheet 2 was obtained in the same manner as in Example 1 except that the thickness of the high heat resistant particle layer 1 in Example 1 was changed to 5 μm.

(実施例3)
実施例1の高耐熱粒子層1の厚みを10μmにした以外は、実施例1と同様にして、熱転写受像シート3を得た。
(Example 3)
A thermal transfer image receiving sheet 3 was obtained in the same manner as in Example 1 except that the thickness of the high heat resistant particle layer 1 in Example 1 was changed to 10 μm.

(実施例4)
実施例1の高耐熱粒子層を、下記組成の高耐熱粒子層2にした以外は、実施例1と同様にして、熱転写受像シート4を得た。
・高耐熱粒子層2
アクリル系中空粒子(ローペイクHP-1055;ロームアンドハーム社製) 10重量部
架橋アクリル粒子(MX150;総研化学社製) 70重量部
(体積平均粒径=1.5μm、中空度なし、耐熱温度200℃)
ポリエステル樹脂(バイロナールMD-1480;東洋紡績(株)製) 20重量部
水 400重量部
Example 4
A thermal transfer image receiving sheet 4 was obtained in the same manner as in Example 1 except that the high heat resistant particle layer of Example 1 was changed to the high heat resistant particle layer 2 having the following composition.
・ High heat resistant particle layer 2
Acrylic hollow particles (Ropeke HP-1055; manufactured by Rohm and Harm) 10 parts by weight Cross-linked acrylic particles (MX150; manufactured by Soken Chemical Co., Ltd.) 70 parts by weight (volume average particle size = 1.5 μm, no hollowness, heat resistant temperature 200 ° C. )
Polyester resin (Vylonal MD-1480; manufactured by Toyobo Co., Ltd.) 20 parts by weight Water 400 parts by weight

(実施例5)
実施例1で作成した多孔層を、高耐熱粒子層1/中空粒子層/高耐熱粒子層1の3層構成にした以外は、実施例1と同様にして、熱転写受像シート5を得た。
(Example 5)
A thermal transfer image-receiving sheet 5 was obtained in the same manner as in Example 1 except that the porous layer prepared in Example 1 had a three-layer structure of high heat-resistant particle layer 1 / hollow particle layer / high heat-resistant particle layer 1.

(比較例1)
実施例1の多孔層を、層厚23μmの中空粒子層のみから構成した以外、実施例1と同様にして、熱転写受像シート6を得た。
(Comparative Example 1)
A thermal transfer image receiving sheet 6 was obtained in the same manner as in Example 1 except that the porous layer of Example 1 was composed only of a hollow particle layer having a layer thickness of 23 μm.

(比較例2)
実施例1の多孔層を、層厚23μmの高耐熱粒子層のみから構成した以外、実施例1と同様にして、熱転写受像シート7を得た。
(Comparative Example 2)
A thermal transfer image-receiving sheet 7 was obtained in the same manner as in Example 1 except that the porous layer of Example 1 was composed of only a high heat-resistant particle layer having a layer thickness of 23 μm.

(比較例3)
実施例1の多孔層を、層厚23μmの下記組成の高耐熱粒子層のみから構成した以外、実施例1と同様にして、熱転写受像シート8を得た。
・高耐熱粒子層3
架橋アクリル粒子((MX150;総研化学社製) 80重量部
ポリエステル樹脂(バイロナールMD-1480;東洋紡績(株)製) 20重量部
水 400重量部
(Comparative Example 3)
A thermal transfer image-receiving sheet 8 was obtained in the same manner as in Example 1 except that the porous layer of Example 1 was composed only of the high heat-resistant particle layer having the following composition having a layer thickness of 23 μm.
・ High heat-resistant particle layer 3
Cross-linked acrylic particles (MX150; manufactured by Soken Chemical Co., Ltd.) 80 parts by weight Polyester resin (Vylonal MD-1480; manufactured by Toyobo Co., Ltd.) 20 parts by weight Water 400 parts by weight

<評価>
次に、下記のようにして実施例及び比較例の熱転写受像シートの評価を行なった。
<プリント物外観評価>
キャノン(株)製昇華転写プリンターCP−100およびCP−100用転写フィルムを使用し、実施例及び比較例の熱転写受像シートを用いて実画をプリントし、プリント物の外観を評価した。
○:画像に凹みなし。
×:画像に凹みあり。特にブラック印画部。
評価結果を下記の表1にまとめた。
<Evaluation>
Next, the thermal transfer image receiving sheets of Examples and Comparative Examples were evaluated as follows.
<Appearance evaluation of printed matter>
Using Canon sublimation transfer printer CP-100 and transfer film for CP-100, actual images were printed using the thermal transfer image-receiving sheets of Examples and Comparative Examples, and the appearance of the printed matter was evaluated.
○: No depression in the image.
X: The image has a dent. Especially the black print part.
The evaluation results are summarized in Table 1 below.

<プリント濃度評価>
熱転写記録
熱転写フィルムとして、ソニー(株)製昇華転写プリンターUP−D70A用転写フィルムUPC−740を使用した。上記の実施例及び比較例の熱転写受像シートを用い、染料層と染料受容層面とを対向させて重ね合わせ、Y、M、C、保護層の順番で熱転写フィルムの裏面から下記条件でサーマルヘッドを用い熱転写記録を行った。
<Print density evaluation>
Thermal Transfer Recording As a thermal transfer film, a transfer film UPC-740 for sublimation transfer printer UP-D70A manufactured by Sony Corporation was used. Using the thermal transfer image-receiving sheets of the above examples and comparative examples, the dye layer and the dye-receiving layer surface are overlapped with each other, and Y, M, C, and a protective layer are arranged in the order of Y, M, C, and protective layer from the back surface of the thermal transfer film under the following conditions. Thermal transfer recording was performed.

下記の条件にて、熱転写記録によりグラデーション画像を形成した。
・サーマルヘッド:KYT-86-12MFW11(京セラ(株)製)
・発熱体平均抵抗値:4412(Ω)
・主走査方向印字密度:300dpi
・副走査方向印字密度:300dpi
・印加電力:0.136(w/dot)
・1ライン周期:6(msec.)
・印字開始温度:30(℃)
・プリントサイズ:100mm×150mm
・階調プリント:1ライン周期中に、1ライン周期を256に等分割したパルス長を持つ分割パルスの数を0から255個まで可変できるマルチパルス方式のテストプリンターを用い、各分割パルスのDuty比を40%固定とし、階調によって、ライン周期あたりのパルス数を1ステップでは0個、2ステップでは17個、3ステップでは34個というふうに、0から255個まで17個毎に順次増加させることにより、1ステップから16ステップまでの16階調を制御した。
・保護層転写:1ライン周期中に、1ライン周期を256に等分割したパルス長を持つ分割パルスの数を0から255個まで可変できるマルチパルス方式のテストプリンターを用い、各分割パルスのDuty比を50%固定、ライン周期あたりのパルス数を210個固定とし、ベタプリントを行ない、プリント面全面に保護層を転写した。
A gradation image was formed by thermal transfer recording under the following conditions.
・ Thermal head: KYT-86-12MFW11 (manufactured by Kyocera Corporation)
-Heating element average resistance: 4412 (Ω)
・ Main scanning direction printing density: 300dpi
-Sub-scanning direction printing density: 300 dpi
・ Applied power: 0.136 (w / dot)
・ One line cycle: 6 (msec.)
・ Printing start temperature: 30 (℃)
-Print size: 100mm x 150mm
・ Gradation printing: Using a multi-pulse test printer that can vary the number of divided pulses from 0 to 255 with a pulse length that equally divides one line period into 256 within one line period, the duty of each divided pulse The ratio is fixed at 40%, and the number of pulses per line cycle is increased from 0 to 255 in increments of 17 from 0 to 255, such as 0 for 1 step, 17 for 3 steps, 34 for 3 steps, etc. Thus, 16 gradations from 1 step to 16 steps were controlled.
・ Protective layer transfer: Using a multi-pulse test printer that can vary the number of divided pulses from 0 to 255 in a line cycle with a pulse length obtained by equally dividing one line cycle into 256, the duty of each divided pulse The ratio was fixed at 50%, the number of pulses per line period was fixed at 210, solid printing was performed, and the protective layer was transferred to the entire printed surface.

上記のプリント物を光学反射濃度計(マクベスRD-918:マクベス社製)を用いてビジュアルフィルターで、最大反射濃度を測定した。
○:最大反射濃度2.0以上
×:最大反射濃度2.0未満
The maximum reflection density of the printed matter was measured with a visual filter using an optical reflection densitometer (Macbeth RD-918: manufactured by Macbeth).
○: Maximum reflection density 2.0 or more ×: Maximum reflection density less than 2.0

Figure 0004073852
Figure 0004073852

表1中の総合評価は、プリント濃度およびプリント物外観の両者評者が「○」の場合に「○」と、いずれか一方が「×」の場合は「×」と評価した。   The overall evaluation in Table 1 was evaluated as “◯” when both the print density and the printed product appearance were “◯”, and “X” when either one was “X”.

(発明の効果)
本発明の熱転写受像シートは、濃度ムラ、ドット抜け、エンボスのない高品質な画像を形成することができる。
本発明の熱転写受像シートの製造方法に従うと、紙基材の種類を問わず、染料受容層を高い平滑度で形成することができる。
(The invention's effect)
The thermal transfer image receiving sheet of the present invention can form a high-quality image without density unevenness, missing dots, and embossing.
According to the method for producing a thermal transfer image receiving sheet of the present invention, the dye receiving layer can be formed with high smoothness regardless of the type of paper substrate.

本発明の熱転写受像シートの模式的断面構成図。FIG. 3 is a schematic cross-sectional configuration diagram of the thermal transfer image receiving sheet of the present invention. 本発明の熱転写受像シートの模式的断面構成図。FIG. 3 is a schematic cross-sectional configuration diagram of the thermal transfer image receiving sheet of the present invention. 本発明の熱転写受像シートの形成途中の状態を表す模式的断面構成図。The typical cross-section block diagram showing the state in the middle of formation of the thermal transfer image receiving sheet of this invention.

符号の説明Explanation of symbols

1 熱転写受像シート
2 基材フィルム
3 多孔層
4 中間層
5 染料受容層
6 紙基材
7 接着層
8 樹脂コート層
31 高耐熱粒子層
32 中空粒子層
DESCRIPTION OF SYMBOLS 1 Thermal transfer image receiving sheet 2 Base film 3 Porous layer 4 Intermediate layer 5 Dye receiving layer 6 Paper base material 7 Adhesive layer 8 Resin coat layer 31 High heat-resistant particle layer 32 Hollow particle layer

Claims (4)

少なくとも、基材フィルム、該基材フィルムの一方の面側に染料受容層、および他方の面側に多孔層からなり、該多孔層が接着剤層を介して紙基材上に積層されてなる熱転写受像シートであって、該多孔層が、耐熱温度が200℃以上の高耐熱粒子とバインダー樹脂からなる高耐熱粒子層および中空粒子とバインダー樹脂からなる中空粒子層の少なくとも2層からなることを特徴とする、熱転写受像シート。 At least a base film, a dye receiving layer on one side of the base film, and a porous layer on the other side, and the porous layer is laminated on a paper base via an adhesive layer A thermal transfer image-receiving sheet, wherein the porous layer comprises at least two layers of a high heat-resistant particle layer comprising a high heat-resistant particle having a heat-resistant temperature of 200 ° C. or higher and a binder resin, and a hollow particle layer comprising a hollow particle and a binder resin. Characteristic thermal transfer image receiving sheet. 高耐熱粒子が樹脂粒子である、請求項1に記載の熱転写受像シート。   The thermal transfer image receiving sheet according to claim 1, wherein the high heat resistant particles are resin particles. 高耐熱粒子が高耐熱中空粒子である、請求項1に記載の熱転写受像シート。   The thermal transfer image receiving sheet according to claim 1, wherein the high heat resistant particles are high heat resistant hollow particles. 請求項1から3のいずれか一つに記載の熱転写受像シートの製造方法であって、
基材フィルムの一方の面側に染料受容層および他方の面側に多孔層を設け、その後に、該多孔層と紙基材を接着層を介して貼り合わせることを特徴とする、熱転写受像シートの製造方法。
A method for producing a thermal transfer image-receiving sheet according to any one of claims 1 to 3,
A thermal transfer image-receiving sheet comprising a dye-receiving layer on one side of a base film and a porous layer on the other side, and then bonding the porous layer and a paper base through an adhesive layer Manufacturing method.
JP2003332064A 2003-09-24 2003-09-24 Thermal transfer image-receiving sheet and method for producing the same Expired - Fee Related JP4073852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003332064A JP4073852B2 (en) 2003-09-24 2003-09-24 Thermal transfer image-receiving sheet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003332064A JP4073852B2 (en) 2003-09-24 2003-09-24 Thermal transfer image-receiving sheet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005096206A JP2005096206A (en) 2005-04-14
JP4073852B2 true JP4073852B2 (en) 2008-04-09

Family

ID=34460525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003332064A Expired - Fee Related JP4073852B2 (en) 2003-09-24 2003-09-24 Thermal transfer image-receiving sheet and method for producing the same

Country Status (1)

Country Link
JP (1) JP4073852B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098693A (en) * 2005-09-30 2007-04-19 Dainippon Printing Co Ltd Thermal transfer image receiving sheet
JP2009233974A (en) * 2008-03-26 2009-10-15 Dainippon Printing Co Ltd Thermal transfer image-receiving sheet and manufacturing method
JP2010125714A (en) 2008-11-27 2010-06-10 Fujifilm Corp Image forming method by heat-sensitive transfer system
JP5516851B2 (en) * 2009-09-01 2014-06-11 大日本印刷株式会社 Thermal transfer image receiving sheet
JP5549916B2 (en) * 2009-09-30 2014-07-16 大日本印刷株式会社 Thermal transfer image-receiving sheet and method for producing the same
JP5505774B2 (en) * 2009-11-20 2014-05-28 大日本印刷株式会社 Thermal transfer image receiving sheet
JP5793965B2 (en) * 2011-05-30 2015-10-14 大日本印刷株式会社 Thermal transfer double-sided image-receiving sheet

Also Published As

Publication number Publication date
JP2005096206A (en) 2005-04-14

Similar Documents

Publication Publication Date Title
JP3440344B2 (en) Recorded sheet for creating transparent manuscript and method of manufacturing the same
JP2004345267A (en) Thermal transfer image receiving sheet and its manufacturing method
WO2006038711A1 (en) Thermal transfer reception sheet
JP4073852B2 (en) Thermal transfer image-receiving sheet and method for producing the same
JP5742551B2 (en) Thermal transfer image-receiving sheet for sealing
JP2006264091A (en) Thermal transfer image receiving sheet
JP5505774B2 (en) Thermal transfer image receiving sheet
JP4073866B2 (en) Thermal transfer image-receiving sheet and method for producing the same
JP6601087B2 (en) Base substrate for thermal transfer image-receiving sheet and method for producing the same
JP4073853B2 (en) Thermal transfer image-receiving sheet and method for producing the same
JP4118214B2 (en) Thermal transfer image-receiving sheet and method for producing the same
JP3701399B2 (en) Thermal transfer image receiving sheet
JP2002192842A (en) Thermal transfer image receiving sheet
JP2018118389A (en) Thermal transfer image receiving sheet
JPH0811444A (en) Thermal transfer image receiving sheet
JP2004330442A (en) Thermal-transfer image-receiving sheet and manufacturing method therefor
JP2009061733A (en) Thermal transfer image accepting sheet
JP2007125778A (en) Thermal transfer receiving sheet and its manufacturing method
JP7274128B2 (en) THERMAL TRANSFER IMAGE RECEIVER SHEET, METHOD FOR MANUFACTURING PRINTED MATERIAL AND PRINTED MATERIAL
US7244690B2 (en) Thermal transfer image receiving sheet and method for manufacturing the same
JP2019147310A (en) Heat transfer image receiving sheet
JP7302157B2 (en) thermal transfer image receiving sheet
JP5659482B2 (en) Thermal transfer image receiving sheet
JP4373201B2 (en) Thermal transfer image-receiving sheet and method for producing the same
JP4660265B2 (en) Thermal transfer image-receiving sheet and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071207

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees