JP2016182620A - Pipe laser welding method and coil manufactured using welding method - Google Patents

Pipe laser welding method and coil manufactured using welding method Download PDF

Info

Publication number
JP2016182620A
JP2016182620A JP2015063524A JP2015063524A JP2016182620A JP 2016182620 A JP2016182620 A JP 2016182620A JP 2015063524 A JP2015063524 A JP 2015063524A JP 2015063524 A JP2015063524 A JP 2015063524A JP 2016182620 A JP2016182620 A JP 2016182620A
Authority
JP
Japan
Prior art keywords
pipe
welding
adjacent
welding method
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015063524A
Other languages
Japanese (ja)
Other versions
JP6425596B2 (en
Inventor
洋輔 山▲崎▼
Yosuke Yamazaki
洋輔 山▲崎▼
阿部 洋平
Yohei Abe
洋平 阿部
光良 中谷
Mitsuyoshi Nakatani
光良 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2015063524A priority Critical patent/JP6425596B2/en
Publication of JP2016182620A publication Critical patent/JP2016182620A/en
Application granted granted Critical
Publication of JP6425596B2 publication Critical patent/JP6425596B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pipe laser welding method and a coil manufactured using the welding method, capable of ensuring a process welding length for a crater process and sufficiently performing the crater process when laser welding is performed on a plurality of pipes disposed to be adjacent in parallel.SOLUTION: At least one adjacent pipe adjacent to a to-be-welded pipe in parallel is disposed, and each position where the to-be-welded pipe is closest to the adjacent pipe in a joint part is defined as a closest position. Welding is performed in a predetermined laser output state clockwise and counterclockwise from a starting end near the closest position. A plurality of paths each starts from a portion near the adjacent or single closest position, a distance between a connection point where each path is connected to the facing path in the predetermined laser output state and the closest position forward in a welding progress direction is equal to or larger than a process welding length at which a crater process is performed toward a terminal end while gradually reducing a laser output.SELECTED DRAWING: Figure 1

Description

本発明は、管と管の接合部を複数のパスで溶接する管のレーザ溶接方法に関し、特に、互いに平行に隣接して配置された複数の管のうちの1本にU字管や短管等を接合する際の管のレーザ溶接方法、及び、その溶接方法を用いて製造されるコイルに関する。   The present invention relates to a laser welding method for a pipe that welds pipe-to-tube joints in a plurality of passes, and in particular, one of a plurality of pipes arranged adjacent to each other in parallel is a U-shaped pipe or a short pipe. The present invention relates to a laser welding method for pipes when joining the like, and a coil manufactured using the welding method.

ボイラの製造等の分野において、具体的には、直管にU字管や短管等を接合し、隣接する直管同士を連結してコイルを製造する際、又は、管板に固定された管に別の管を接合する際に、互いに平行に隣接して配置された複数の管のうちの一本において溶接を行う必要が生じる。従来、そのような管の溶接において、レーザを熱源として用いた全周溶接が提案されているが、被溶接管に、平行に隣り合う管(以下、隣接管と称す)が接近して配置されている場合には、被溶接管と隣接管との間にレーザヘッドを配置して溶接を行うことは困難である。   In the field of boiler production, etc., specifically, a U-shaped tube or a short tube is joined to a straight pipe, and adjacent straight pipes are joined together to produce a coil, or fixed to a tube sheet. When joining another pipe to a pipe, it is necessary to perform welding on one of a plurality of pipes arranged adjacent to each other in parallel. Conventionally, in such pipe welding, all-around welding using a laser as a heat source has been proposed, but a pipe adjacent to the welded pipe (hereinafter referred to as an adjacent pipe) is arranged close to the welded pipe. In this case, it is difficult to perform welding by arranging a laser head between the welded pipe and the adjacent pipe.

近年、被溶接管と隣接管の外面同士の距離(以下、隣接管間隔と称す)が狭い場合にも適用可能ないくつかの溶接方法が提案されている。例えば、隣接管間隔が40〜50mm程度よりも小さいコイルを製造するための一つの手段として、被溶接管と隣接管との間に配置可能であって被溶接管の外面に沿って回転可能な小型のレーザヘッドを用いたレーザ溶接装置(例えば、特許文献1)が提案されている。特許文献1記載のレーザ溶接装置に用いられるような小型のレーザヘッドには冷却能等の制限があるため、特許文献1記載のレーザ溶接装置は、高出力レーザの照射を必要とする厚板の裏波溶接や高速溶接等には適用困難である。   In recent years, several welding methods that can be applied even when the distance between the outer surfaces of the welded pipe and the adjacent pipe (hereinafter referred to as an adjacent pipe interval) is narrow have been proposed. For example, as one means for manufacturing a coil having an interval between adjacent pipes smaller than about 40 to 50 mm, the coil can be disposed between the welded pipe and the adjacent pipe and can be rotated along the outer surface of the welded pipe. A laser welding apparatus (for example, Patent Document 1) using a small laser head has been proposed. Since a small laser head such as that used in the laser welding apparatus described in Patent Document 1 is limited in cooling capacity, the laser welding apparatus described in Patent Document 1 is a thick plate that requires irradiation with a high-power laser. It is difficult to apply to back wave welding and high-speed welding.

隣接管間隔が40〜50mm程度よりも小さいコイルを製造するための別の手段として、接合部において被溶接管と隣接管とが最も接近する位置(以下、最接近位置と称す)を結ぶ直線で溶接範囲を二分し、2台のレーザヘッドを用いて半周ずつ溶接を行う、コイルの製造装置及び製造方法(例えば、特許文献2)が提案されている。2台のレーザヘッドを用いて半周ずつ溶接を行うコイルの製造方法においては、被溶接管と隣接管との間に配置可能であるようにレーザヘッドを小型化する必要がないために高出力レーザを用いることができ、深溶込みが可能な管の肉厚を増加させ、また、溶接速度を向上させることが可能になる。   As another means for manufacturing a coil having an interval between adjacent pipes smaller than about 40 to 50 mm, a straight line connecting a position where the welded pipe and the adjacent pipe are closest to each other (hereinafter referred to as the closest approach position) at the joint. There has been proposed a coil manufacturing apparatus and manufacturing method (for example, Patent Document 2) in which a welding range is divided into two, and welding is performed half a cycle using two laser heads. In the coil manufacturing method in which welding is performed half a turn using two laser heads, it is not necessary to reduce the size of the laser head so that the laser head can be arranged between the welded pipe and the adjacent pipe. It is possible to increase the wall thickness of the tube that can be deeply penetrated and to improve the welding speed.

特開平9−52186号公報JP-A-9-52186 特許第5523045号公報Japanese Patent No. 5523045

レーザ溶接において、パスの終端部にはクレータという凹みが発生する。クレータは溶接割れ等の原因となるため、終端部においてレーザ出力を緩やかに低下させるダウンスロープ制御などによりクレータを埋める、クレータ処理を行う必要がある。   In laser welding, a crater dent is generated at the end of the path. Since the crater causes welding cracks and the like, it is necessary to perform crater processing that fills the crater by down-slope control or the like that gently lowers the laser output at the terminal portion.

特許文献2記載のコイルの製造方法において、最接近位置近傍を始端とする2回のパスで半周溶接を行う場合、溶接進行方向前方にある別の最接近位置まで所定のレーザ出力状態を保っておき、その最接近位置を過ぎてからレーザ出力を漸次低下させクレータ処理を行うことになる。しかしながら、後述するように、各レーザヘッドのレーザ光源から、レーザ光を隣接管に遮られずに被溶接管に照射できる範囲には限界があるため、溶接進行方向前方の最接近位置を過ぎてから、照射可能範囲内でレーザ出力を緩やかに低下させ十分にクレータ処理を行うことは困難であった。すなわち、最接近位置近傍を始端とする2回のパスでの半周溶接においては、クレータ処理のための処理溶接長が十分に確保されず、結果クレータ処理が十分に行われないおそれがあった。   In the coil manufacturing method described in Patent Document 2, when half-circular welding is performed in two passes starting from the vicinity of the closest approach position, a predetermined laser output state is maintained up to another closest position ahead in the welding progress direction. Then, after passing the closest approach position, the laser output is gradually reduced to perform crater processing. However, as will be described later, since there is a limit to the range in which the laser beam can be irradiated from the laser light source of each laser head to the welded pipe without being blocked by the adjacent pipe, it passes past the closest approach position in the welding progress direction. Therefore, it has been difficult to sufficiently perform the crater process by gradually reducing the laser output within the irradiation possible range. That is, in the half-circular welding in two passes starting from the vicinity of the closest approach position, the processing weld length for crater processing is not sufficiently secured, and as a result, there is a possibility that the crater processing is not sufficiently performed.

本発明は、上記の課題に鑑みてなされたものであり、互いに平行に隣接して配置された複数の管におけるレーザ溶接の際に、クレータ処理のための処理溶接長を確保し、十分なクレータ処理を行うことが可能な管のレーザ溶接方法、及びその溶接方法を用いて製造されるコイルを提供することを目的とする。   The present invention has been made in view of the above-mentioned problems, and ensures sufficient processing weld length for crater processing when laser welding is performed on a plurality of tubes arranged adjacent to each other in parallel with each other. It is an object of the present invention to provide a laser welding method for a tube that can be processed and a coil manufactured by using the welding method.

上記の課題を解決するための第1発明にかかる管のレーザ溶接方法は、管と管の接合部を複数のパスで溶接する管のレーザ溶接方法であって、被溶接管に平行に隣り合う隣接管が少なくとも1本配置されており、接合部において前記被溶接管と前記隣接管とが最も接近する各位置を最接近位置とし、前記最接近位置近傍の始端から時計回り及び反時計回りに所定のレーザ出力状態で溶接を行い、前記複数のパスはそれぞれ、隣接する又は単独の最接近位置近傍から進行し、かつ対向するパスと前記レーザ出力状態で接続する接続点と、溶接進行方向前方の最接近位置との距離が、終端に向けて漸次レーザ出力を低下させてクレータ処理を行う処理溶接長以上であることを特徴とする。   A tube laser welding method according to a first aspect of the present invention for solving the above-described problem is a tube laser welding method in which a joint between a tube and a tube is welded in a plurality of passes, and is adjacent to a welded tube in parallel. At least one adjacent pipe is arranged, and each position where the welded pipe and the adjacent pipe are closest to each other at the joint is defined as the closest position, and clockwise and counterclockwise from the starting end near the closest position. Welding is performed in a predetermined laser output state, and each of the plurality of passes proceeds from the vicinity of an adjacent or single closest approach position, and a connection point connected to the opposite path in the laser output state, and a welding progress direction front The distance from the closest approach position is equal to or longer than the processing welding length in which the laser output is gradually reduced toward the end to perform crater processing.

第2発明に係る管のレーザ溶接方法は、第1発明に係る管のレーザ溶接方法において、前記隣接管が前記被溶接管の同一平面上に両側に2本配置されており、2つの前記最接近位置近傍から進行する4回のパスにより溶接を行うことを特徴とする。   The tube laser welding method according to the second invention is the tube laser welding method according to the first invention, wherein two of the adjacent tubes are arranged on both sides on the same plane of the welded tube. Welding is performed by four passes that proceed from the vicinity of the approach position.

第3発明に係る管のレーザ溶接方法は、第1発明又は第2発明に係る管のレーザ溶接方法において、前記被溶接管が、質量%でAlを0.005〜2.0%含むことを特徴とする。   A tube laser welding method according to a third aspect of the present invention is the tube laser welding method according to the first or second aspect of the present invention, wherein the welded tube contains 0.005 to 2.0% of Al by mass%. Features.

第4発明に係る管のレーザ溶接方法は、第1発明乃至第3発明いずれかに係る管のレーザ溶接方法において、脱酸剤を含む溶加材を用いることを特徴とする。
第5発明に係るコイルは、第2発明に係る管のレーザ溶接方法により、少なくとも直管とU字管とを接合し、同一平面上に連結又は独立したU字状に製造される。
According to a fourth aspect of the present invention, there is provided a tube laser welding method according to any one of the first to third aspects, wherein a filler material containing a deoxidizer is used.
The coil which concerns on 5th invention joins at least a straight pipe and a U-shaped pipe | tube with the laser welding method of the pipe | tube which concerns on 2nd invention, and is manufactured in the same U-shape connected or independent on the same plane.

上述した第1発明に係る管のレーザ溶接方法においては、各最接近位置近傍の始端から時計回り及び反時計回りに所定のレーザ出力状態で溶接を行い、終端に向けて漸次レーザ出力を低下させてクレータ処理を行う。各パスは、隣接する又は単独の最接近位置近傍から進行し、かつ対向するパスと所定のレーザ出力状態、つまりクレータ処理のためのダウンスロープ制御がなされていないレーザ出力状態で接続するため、切れ目のない溶接ビード(裏波溶接の場合、特に、裏波ビード)が形成される。各パスにおいて、対向するパスと所定のレーザ出力状態で接続する点(以下、接続点と称す)から漸次レーザ出力を低下させてクレータ処理を行うが、第1発明に係る管のレーザ溶接方法の最も重要な効果は、その接続点と溶接進行方向前方の最接近位置との距離が、クレータ処理のための処理溶接長よりも長いために、十分な処理溶接長に亘って十分にクレータ処理が行える点にある。   In the pipe laser welding method according to the first invention described above, welding is performed in a predetermined laser output state clockwise and counterclockwise from the start end in the vicinity of each closest approach position, and the laser output is gradually reduced toward the end. Crater processing. Each path travels from the vicinity of an adjacent or single closest approach position and connects to the opposite path in a predetermined laser output state, that is, a laser output state that is not subjected to downslope control for crater processing. A weld bead having no crack (in particular, in the case of reverse wave welding, the reverse wave bead) is formed. In each pass, crater treatment is performed by gradually reducing the laser output from a point (hereinafter referred to as a connection point) that connects with the opposite path in a predetermined laser output state. The most important effect is that the distance between the connection point and the closest approach position in front of the welding direction is longer than the treatment weld length for crater treatment. There is in point to be able to do.

本発明の実施例1における、管のレーザ溶接方法を示す図である。It is a figure which shows the laser welding method of the pipe | tube in Example 1 of this invention. 本発明の実施例1における、管のレーザ溶接方法を順を追って示す図である。It is a figure which shows step by step the laser welding method of the pipe | tube in Example 1 of this invention. 本発明の実施例1における、レーザ出力の増減を示すグラフである。It is a graph which shows increase / decrease in the laser output in Example 1 of this invention. 本発明の実施例1における、レーザ光の照射方法を示す図である。It is a figure which shows the irradiation method of the laser beam in Example 1 of this invention. 本発明の実施例2における、管のレーザ溶接方法を示す図である。It is a figure which shows the laser welding method of the pipe | tube in Example 2 of this invention. 本発明の実施例3における、管のレーザ溶接方法を示す図である。It is a figure which shows the laser welding method of the pipe | tube in Example 3 of this invention. 本発明の実施例4における、管のレーザ溶接方法を示す図である。It is a figure which shows the laser welding method of the pipe | tube in Example 4 of this invention.

以下、本発明の実施例について、図面に基づき具体的に説明する。
各図において、1は被溶接管であり、2は隣接管である。P1からP4は、被溶接管1と各隣接管2との最接近位置を示す。矢印はパスを示しており、パスA〜Hは、各矢印の基端から先端に向かって進行する。各矢印のうち、実線部は所定のレーザ出力状態、つまりクレータ処理のためのダウンスロープ制御がなされていないレーザ出力状態での溶接を示し、破線部は、終端側に移動するほどレーザ出力を漸次低下させて行われるクレータ処理を示している。
Embodiments of the present invention will be specifically described below with reference to the drawings.
In each figure, 1 is a pipe to be welded and 2 is an adjacent pipe. P1 to P4 indicate the closest positions of the welded pipe 1 and each adjacent pipe 2. Arrows indicate paths, and paths A to H progress from the base end of each arrow toward the tip. Of each arrow, the solid line portion indicates welding in a predetermined laser output state, that is, a laser output state in which downslope control for crater processing is not performed. The crater process performed by reducing is shown.

図1〜4に示される実施例1は、隣接管2が被溶接管1の同一平面上に両側に2本配置されている場合に、2つの最接近位置P1及びP2の近傍から進行する4回のパスにより溶接を行う、管のレーザ溶接方法である。図4(a)〜(b)に示すごとく、被溶接管1と図中上方の隣接管2との最接近位置をP1、被溶接管1と図中下方の隣接管2との最接近位置をP2とし、P1は12時の位置、P2は6時の位置にあるものとする。図1及び図2において、被溶接管1中のハッチング部分は接合部に形成された溶接ビードを表しており、同一のパスで形成された一連の溶接ビードには同一方向のハッチングが施されている。なお、実施例1においては接合部を一層で裏波溶接する場合について説明するが、本発明の適用対象は初層裏波溶接に限定されず、多層盛溶接等にも適用可能である。   1-4 proceeds from the vicinity of the two closest approach positions P1 and P2 when two adjacent pipes 2 are arranged on both sides on the same plane of the pipe 1 to be welded. This is a pipe laser welding method in which welding is performed by one pass. As shown in FIGS. 4A to 4B, the closest approach position between the welded pipe 1 and the upper adjacent pipe 2 in the figure is P1, and the closest approach position between the welded pipe 1 and the lower adjacent pipe 2 in the figure. Is P2, P1 is at the 12 o'clock position, and P2 is at the 6 o'clock position. 1 and 2, the hatched portion in the welded pipe 1 represents a weld bead formed at the joint, and a series of weld beads formed in the same pass are hatched in the same direction. Yes. In addition, although Example 1 demonstrates the case where a joining part carries out back-surface welding by one layer, the application object of this invention is not limited to first layer back-surface welding, It can apply also to multilayer overlay welding etc.

パスAは、P1近傍の11時半の位置を始端とし、パスBとの接続点となる3時の位置まで所定のレーザ出力状態で溶接を行い、その3時の位置からレーザ出力を漸次低下させクレータ処理を行い、4時の位置においてレーザ出力を切り終端とする。パスAによる溶接の際のレーザ出力の増減は図3(a)に示されており、レーザ出力は、11時半の位置から3時の位置まで一定に保たれ、3時の位置から4時の位置まで緩やかに低下するよう調整される。図1及び図2に示すように、被溶接管1の接合部には溶接ビードが形成されるが、パスの始端部から一定の溶接速度で溶接を行う場合、完全溶込みが実現され裏波が形成されるのは一定程度溶接が進行してからである。完全溶込みの実現に要する溶接長を見越してパスの始端の位置を調節するといった通常行われる方法により、始端部において切れ目のない裏波ビードが形成される。その後レーザ出力を一定に保つことにより、一定の溶込み深さが保たれる。終端部においては、クレータ処理のために漸次出力を低下させることにより、溶込み深さが徐々に浅くなる。   Path A starts at 11:30 in the vicinity of P1, starts welding at a predetermined laser output state until the 3 o'clock position, which is the connection point with pass B, and gradually decreases the laser output from that 3 o'clock position. The crater process is performed, and the laser output is turned off at the 4 o'clock position. The increase / decrease of the laser output during welding by pass A is shown in FIG. 3 (a). The laser output is kept constant from the 11:30 position to the 3 o'clock position, and from the 3 o'clock position to 4 o'clock. It is adjusted so that it gradually decreases to the position of. As shown in FIGS. 1 and 2, a weld bead is formed at the joint of the welded pipe 1. However, when welding is performed at a constant welding speed from the start end of the pass, complete penetration is realized and the reverse wave is achieved. Is formed after a certain degree of welding. An unbroken back bead is formed at the start end by a usual method such as adjusting the position of the start end of the pass in anticipation of the weld length required to achieve complete penetration. Thereafter, a constant penetration depth is maintained by keeping the laser output constant. In the terminal portion, the penetration depth gradually decreases by gradually reducing the output for crater processing.

パスBは、P2近傍の6時半の位置を始端とし、パスAとの接続点である3時の位置まで所定のレーザ出力状態で溶接を行い、その3時の位置からレーザ出力を漸次低下させクレータ処理を行い、2時の位置においてレーザ出力を切り終端とする。   Path B starts at 6:30 in the vicinity of P2, starts welding at a predetermined laser output state up to the 3 o'clock position, which is the connection point with pass A, and gradually reduces the laser output from that 3 o'clock position. The crater process is performed, and the laser output is turned off at the 2 o'clock position.

パスCは、P1近傍の12時半の位置を始端とし、パスDとの接続点となる9時の位置まで所定のレーザ出力状態で溶接を行い、その9時の位置からレーザ出力を漸次低下させクレータ処理を行い、8時の位置においてレーザ出力を切り終端とする。   Path C starts at 12:30 in the vicinity of P1, starts welding at a predetermined laser output state until 9 o'clock, which is the connection point with pass D, and gradually reduces laser output from that 9 o'clock position. The crater process is performed and the laser output is turned off at the 8 o'clock position.

パスDは、P2近傍の5時半の位置を始端とし、パスCとの接続点である9時の位置まで所定のレーザ出力状態で溶接を行い、その9時の位置からレーザ出力を漸次低下させクレータ処理を行い、10時の位置においてレーザ出力を切り終端とする。   Path D starts at 5:30 in the vicinity of P2, starts welding at a predetermined laser output state up to the 9 o'clock position, which is the connection point with pass C, and gradually reduces the laser output from that 9 o'clock position. The crater process is performed, and the laser output is turned off at the 10 o'clock position.

上記の説明では、便宜上各パスをパスA〜Dとしたが、パスの順番は特に制限されない。例えば、パスA、パスD、パスB、パスCの順に溶接を行ってもよいし、対角に位置するパスAとパスDにより同時に溶接を行った後、パスBとパスCにより同時に溶接を行ってもよい。   In the above description, each path is referred to as paths A to D for convenience, but the order of the paths is not particularly limited. For example, welding may be performed in the order of pass A, pass D, pass B, and pass C, or after welding is performed simultaneously with pass A and pass D located diagonally, and then welded simultaneously with pass B and pass C. You may go.

対向するパスの長さの比率は特に制限されず、接続点の位置をP1側又はP2側のいずれかに寄せることによって各パスの長さを変えてもよい。例えば、パスAとパスBとの接続点を4時の位置とし、パスAは11時半の位置から4時の位置まで所定のレーザ出力状態で溶接を行ったのち4時の位置から5時の位置までクレータ処理を行い、パスBは6時半の位置から4時の位置まで所定のレーザ出力状態で溶接を行った後4時の位置から3時の位置までクレータ処理を行うものとしてもよい。   The ratio of the lengths of the opposing paths is not particularly limited, and the length of each path may be changed by moving the position of the connection point to either the P1 side or the P2 side. For example, the connection point between the path A and the path B is set to the 4 o'clock position, and the path A is welded in a predetermined laser output state from the 11:30 position to the 4 o'clock position, and then from the 4 o'clock position to 5 o'clock. The crater process is performed up to the position of 4 and the path B is welded in a predetermined laser output state from the 6:30 position to the 4 o'clock position and then the crater process is performed from the 4 o'clock position to the 3 o'clock position. Good.

また、クレータ処理のための処理溶接長は、1時間分(30°分)には限定されず、溶接条件に応じて、十分なクレータ処理を行うのに必要な処理溶接長を設定すればよい。具体的には、クレータ処理のための処理溶接長は、被溶接管1の肉厚や管径、鋼種の他、レーザ出力や溶接速度、隣接管2の本数などに応じて、適宜設定することができる。   Further, the processing weld length for crater processing is not limited to one hour (30 °), and a processing welding length necessary to perform sufficient crater processing may be set according to welding conditions. . Specifically, the processing weld length for the crater processing is appropriately set according to the wall thickness, the pipe diameter, the steel type of the welded pipe 1, the laser output, the welding speed, the number of adjacent pipes 2, and the like. Can do.

図4を参照し、各パスにおけるレーザ光3の照射方法について説明する。図4(a)〜(d)はそれぞれ、パスA〜Dによる溶接の際のレーザ光3の照射方法に関するものである。互いに平行に隣接して配置された複数の管により列が形成されており、レーザ光源(図示せず)がその列の一方の側に配置されている場合、被溶接管1の、レーザ光源が配置されていない側の接合部にレーザ光3を照射することは不可能である。また、レーザ光3はエネルギー効率の観点から被溶接管1に対して垂直に照射されることが望ましいが、図4に示すように、最接近位置P1及びP2の近傍では、レーザ光源からのレーザ光3が隣接管2によって遮られるため、被溶接管1にレーザ光3を垂直に照射することは困難である。そのため、最接近位置P1及びP2の近傍では、レーザ光3の照射角度(被溶接管1の接線とレーザ光3とのなす角)を低く保ったまま溶接を行う必要があり、レーザ光3は互いに平行な複数の軌跡を描く。その後レーザ光3は被溶接管1に対し垂直に照射され、円弧状の軌跡を描く。   With reference to FIG. 4, the irradiation method of the laser beam 3 in each pass will be described. 4A to 4D relate to a method of irradiating the laser beam 3 during welding by paths A to D, respectively. When a row is formed by a plurality of tubes arranged adjacent to each other in parallel, and a laser light source (not shown) is arranged on one side of the row, the laser light source of the welded tube 1 is It is impossible to irradiate the laser beam 3 on the non-arranged joint. Further, it is desirable that the laser beam 3 is irradiated perpendicularly to the welded tube 1 from the viewpoint of energy efficiency. However, as shown in FIG. 4, in the vicinity of the closest positions P1 and P2, a laser beam from a laser light source is used. Since the light 3 is blocked by the adjacent tube 2, it is difficult to irradiate the welded tube 1 with the laser beam 3 vertically. Therefore, in the vicinity of the closest positions P1 and P2, it is necessary to perform welding while keeping the irradiation angle of the laser beam 3 (the angle formed between the tangent to the welded tube 1 and the laser beam 3) low. Draw multiple trajectories parallel to each other. Thereafter, the laser beam 3 is irradiated perpendicularly to the welded pipe 1 to draw an arc-shaped locus.

なお、レーザ光源からのレーザ光3の照射可能範囲や、そのうちレーザ光3を被溶接管1に対し垂直に照射できる範囲は、隣接管間隔、被溶接管1及び隣接管2の管径のほか、溶接装置の精度や焦点距離等によっても異なる。   The range in which the laser beam 3 can be irradiated from the laser light source, and the range in which the laser beam 3 can be irradiated perpendicularly to the welded tube 1 include the interval between adjacent tubes, the tube diameters of the welded tube 1 and the adjacent tube 2. Depends on the accuracy and focal length of the welding device.

図5を参照しつつ、本発明の実施例2について説明する。なお、実施例1と同様の構成については同一の符号を付して説明を省略する。
実施例2は、図5(a)に示すごとく、被溶接管1に対して3本の隣接管2が三方に等距離、等角度で配置され、被溶接管1及び隣接管2によりY字が形成されている場合における溶接方法である。被溶接管1と図中上方の隣接管2との最接近位置をP1、被溶接管1と図中右下方の隣接管2との最接近位置をP2、被溶接管1と図中左下方の隣接管2との最接近位置をP3とし、P1は12時の位置、P2は4時の位置、P3は8時の位置にあるものとする。
Embodiment 2 of the present invention will be described with reference to FIG. In addition, about the structure similar to Example 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.
In the second embodiment, as shown in FIG. 5 (a), three adjacent pipes 2 are arranged in three directions at equal angles and at equal angles with respect to the welded pipe 1, and the welded pipe 1 and the adjacent pipe 2 form a Y-shape. This is a welding method in the case where is formed. P1 is the closest approach position between the welded pipe 1 and the upper adjacent pipe 2 in the figure, P2 is the closest approach position between the welded pipe 1 and the lower right adjacent pipe 2 in the figure, and the welded pipe 1 is lower left in the figure. Let P3 be the closest position to the adjacent pipe 2, P1 is at the 12 o'clock position, P2 is at the 4 o'clock position, and P3 is at the 8 o'clock position.

図5(b)に示すごとく、P1近傍から時計回りに進行するパスAとP2近傍から反時計回りに進行するパスBは2時の位置で接続する。同様に、パスCとパスDは10時の位置、パスEとパスFは6時の位置で接続する。   As shown in FIG. 5B, the path A traveling clockwise from the vicinity of P1 and the path B traveling counterclockwise from the vicinity of P2 are connected at the 2 o'clock position. Similarly, the path C and the path D are connected at the 10 o'clock position, and the path E and the path F are connected at the 6 o'clock position.

被溶接管1に対し隣接管2が3本配置されている本実施例においても、3つの最接近位置を考慮してパス同士の接続点を設定することにより、十分な処理溶接長に亘る十分なクレータ処理が可能になる。   Even in this embodiment in which three adjacent pipes 2 are arranged with respect to the welded pipe 1, by setting the connection points between the paths in consideration of the three closest approach positions, it is sufficient for a sufficient processing weld length. Crater processing becomes possible.

図6を参照しつつ、本発明の実施例3について説明する。なお、実施例1と同様の構成については同一の符号を付して説明を省略する。
実施例3は、図6(a)に示すごとく、被溶接管1に対して4本の隣接管2が四方に等距離、等角度で配置され、被溶接管1及び隣接管2により十字が形成されている場合における溶接方法である。被溶接管1と図中上方の隣接管2との最接近位置をP1、被溶接管1と図中右方の隣接管2との最接近位置をP2、被溶接管1と図中下方の隣接管2との最接近位置をP3、被溶接管1と図中左方の隣接管2との最接近位置をP4とし、P1は12時の位置、P2は3時の位置、P3は6時の位置、P4は9時の位置にあるものとする。
Embodiment 3 of the present invention will be described with reference to FIG. In addition, about the structure similar to Example 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.
In the third embodiment, as shown in FIG. 6A, four adjacent pipes 2 are arranged at equal angles and equal angles in four directions with respect to the welded pipe 1, and a cross is formed by the welded pipe 1 and the adjacent pipe 2. It is the welding method in the case of being formed. The closest approach position between the welded pipe 1 and the upper adjacent pipe 2 in the figure is P1, the closest approach position between the welded pipe 1 and the right adjacent pipe 2 in the figure is P2, and the welded pipe 1 is lower in the figure. The closest approach position with the adjacent pipe 2 is P3, the closest approach position between the welded pipe 1 and the adjacent pipe 2 on the left in the figure is P4, P1 is the 12 o'clock position, P2 is the 3 o'clock position, and P3 is 6 The hour position, P4, is at the 9 o'clock position.

図6(b)に示すごとく、P1近傍から時計回りに進行するパスAとP2近傍から反時計回りに進行するパスBは1時半の位置で接続する。同様に、パスCとパスDは10時半の位置、パスEとパスFは4時半の位置、パスGとパスHは7時半の位置で接続する。   As shown in FIG. 6B, the path A that travels clockwise from the vicinity of P1 and the path B that travels counterclockwise from the vicinity of P2 are connected at the 1:30 position. Similarly, the path C and the path D are connected at the 10:30 position, the path E and the path F are connected at the 4:30 position, and the path G and the path H are connected at the 7:30 position.

被溶接管1に対し隣接管2が4本配置されている本実施例においても、4つの最接近位置を考慮してパス同士の接続点を設定することにより、十分な処理溶接長に亘る十分なクレータ処理が可能になる。   Even in this embodiment in which four adjacent pipes 2 are arranged with respect to the welded pipe 1, by setting the connection points between the paths in consideration of the four closest approach positions, it is sufficient for a sufficient processing weld length. Crater processing becomes possible.

図7を参照しつつ、本発明の実施例4について説明する。なお、実施例1と同様の構成については同一の符号を付して説明を省略する。
実施例4は、図7(a)に示すごとく、被溶接管1の対面及び両側に隣接管2が等距離で配置され、被溶接管1及び隣接管2によりT字が形成されている場合における溶接方法である。被溶接管1と図中上方の隣接管2との最接近位置をP1、被溶接管1と図中右方の隣接管2との最接近位置をP2、被溶接管1と図中左方の隣接管2との最接近位置をP3とし、P1は12時の位置、P2は3時の位置、P3は9時の位置にあるものとする。
Embodiment 4 of the present invention will be described with reference to FIG. In addition, about the structure similar to Example 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.
In Example 4, as shown in FIG. 7A, the adjacent pipes 2 are arranged at equal distances on both sides and both sides of the welded pipe 1, and a T-shape is formed by the welded pipe 1 and the adjacent pipe 2. It is the welding method in. The closest approach position between the welded pipe 1 and the upper adjacent pipe 2 in the figure is P1, the closest approach position between the welded pipe 1 and the adjacent pipe 2 on the right side in the figure is P2, and the welded pipe 1 and the left side in the figure. Let P3 be the closest position to the adjacent pipe 2, and P1 is at the 12 o'clock position, P2 is at the 3 o'clock position, and P3 is at the 9 o'clock position.

図7(b)に示すごとく、P1近傍から時計回りに進行するパスAとP2近傍から反時計回りに進行するパスBは1時半の位置で接続する。同様に、パスCとパスDは10時半の位置で、パスEとパスFは6時の位置で接続する。   As shown in FIG. 7B, the path A that travels clockwise from the vicinity of P1 and the path B that travels counterclockwise from the vicinity of P2 are connected at the 1:30 position. Similarly, the path C and the path D are connected at the 10:30 position, and the path E and the path F are connected at the 6 o'clock position.

被溶接管1に対し非対称に隣接管2が配置されている本実施例においても、各最接近位置を考慮してパス同士の接続点を設定することにより、十分な処理溶接長に亘る十分なクレータ処理が可能になる。   Even in this embodiment in which the adjacent pipe 2 is arranged asymmetrically with respect to the welded pipe 1, by setting the connection point between the paths in consideration of the closest approach positions, it is sufficient to cover a sufficient processing weld length. Crater processing is possible.

上述の実施例1〜4は本発明に係る管のレーザ溶接方法が適用可能である典型的な場合を例示したものであり、本発明は上述の実施例に限定されるものではない。被溶接管1に対し隣接管2が1本のみ配置されている場合や、被溶接管1に対し隣接管2が種々の距離、種々の角度で配置されている場合にも適用可能である。   Examples 1 to 4 described above exemplify typical cases where the laser welding method for pipes according to the present invention is applicable, and the present invention is not limited to the examples described above. The present invention can also be applied to the case where only one adjacent tube 2 is arranged with respect to the welded tube 1 or when the adjacent tube 2 is arranged with various distances and various angles with respect to the welded tube 1.

また、本発明に係る管のレーザ溶接方法を用いて多層盛溶接を行う場合、上述した複数のパスで各層を形成すればよく、各パスの終端部においてクレータ処理を十分に行うことにより多層溶接部の初層、中間層及び最終層における溶接割れなどの溶接欠陥の発生が抑制される。   In addition, when performing multi-layer welding using the pipe laser welding method according to the present invention, each layer may be formed by the plurality of passes described above, and multi-layer welding is performed by sufficiently performing crater treatment at the end of each pass. Occurrence of weld defects such as weld cracks in the initial layer, intermediate layer, and final layer of the part is suppressed.

一般にパスの始端部及び/又は終端部には二重溶接が施され、本発明に係る管のレーザ溶接方法においても、各パスの始端部及び終端部は二重溶接部となる。接合部の溶接ビードには溶接時に雰囲気(シールドガスあるいは大気)中の酸素が溶解するため、溶接ビードは母材よりも酸素含有量が多くなる場合があり、二重溶接部では酸素含有量は一層高くなりやすい。また、二重溶接においては、表面にスラグ(酸化物)が存在する溶接完了部上で再度溶接を行うため、溶接ビードに酸素が取り込まれやすい。そのため、溶接ビード内の酸素含有量が増加し、溶接ビードの凝固時に酸素が過飽和となり、溶接欠陥であるブローホールが発生するおそれがある。特に、シールドガスを用いずに溶接を行った場合や炭酸ガス等の活性ガスを用いて溶接を行った場合には、ブローホールが発生するおそれが高まる。   In general, double welding is applied to the start and / or end of a pass, and also in the tube laser welding method according to the present invention, the start and end of each pass becomes a double weld. Because the oxygen in the atmosphere (shield gas or air) dissolves in the weld bead at the joint, the weld bead may have a higher oxygen content than the base metal. It tends to be higher. Moreover, in double welding, since welding is performed again on the weld completion part in which slag (oxide) exists on the surface, oxygen is easily taken into the weld bead. For this reason, the oxygen content in the weld bead is increased, oxygen is supersaturated when the weld bead is solidified, and blow holes that are welding defects may occur. In particular, when welding is performed without using a shielding gas or when welding is performed using an active gas such as carbon dioxide gas, the risk of generating blow holes increases.

実施例1〜4では被溶接管1の組成を詳述しなかったが、二重溶接部でのブローホールの発生を抑えるためには、被溶接管1を脱酸元素が多く含まれた鋼製にすることが有効である。被溶接管1が脱酸元素を多く含むことにより、二重溶接部の溶接ビードに取り込まれた酸素は、被溶接管1に含まれる脱酸元素と結合し、スラグとして溶接ビードから排出される。これにより、二重溶接部に起因するブローホールの発生を抑え、溶接品質の低下を防ぐことが可能になる。   In Examples 1 to 4, the composition of the welded pipe 1 was not described in detail, but in order to suppress the occurrence of blowholes in the double welded portion, the welded pipe 1 is a steel containing a large amount of deoxidizing elements. It is effective to make it. Since the welded pipe 1 contains a large amount of deoxidizing element, oxygen taken into the weld bead of the double welded portion is combined with the deoxidized element contained in the welded pipe 1 and discharged from the weld bead as slag. . Thereby, generation | occurrence | production of the blowhole resulting from a double welding part can be suppressed, and it becomes possible to prevent the deterioration of welding quality.

具体的には、被溶接管1が、強脱酸元素であるAlを質量%で0.005%以上含むことが必要であり、Alの含有量が0.005%よりも少ないとブローホールの発生を抑制する効果は見込まれない。Alの含有量が2.0%を超えると接合部の靱性に悪影響を与えるため、Alの含有量は2.0%以下であることが必要である。好ましくは、被溶接管1は、Alを0.02〜1.5%含む。   Specifically, the welded pipe 1 needs to contain 0.005% or more by mass% of Al, which is a strong deoxidizing element, and if the Al content is less than 0.005%, The effect of suppressing the occurrence is not expected. If the Al content exceeds 2.0%, the toughness of the joint is adversely affected, so the Al content needs to be 2.0% or less. Preferably, the welded pipe 1 contains 0.02 to 1.5% of Al.

また、二重溶接部でのブローホールの発生を抑えるために、脱酸剤を含む溶加材を用いることも有効である。脱酸剤としては、Alのほか、Ti、Si、Mn等が採用される。溶加材を用いる方法としては、突合せ継手部にインサート材を挟み込んだりワイヤ状の溶加材を接合部に送給したりする方法などが採用されるが、これらの方法に限定されるものではない。   It is also effective to use a filler material containing a deoxidizing agent in order to suppress the occurrence of blow holes in the double welded portion. As the deoxidizer, Ti, Si, Mn and the like are employed in addition to Al. As a method of using a filler material, a method of inserting an insert material into a butt joint portion or feeding a wire-like filler material to a joint portion is adopted, but it is not limited to these methods. Absent.

本発明に係る管のレーザ溶接方法は、特に、コイルの製造に好適に用いられる。本発明に係る管のレーザ溶接方法を用いて製造されたコイルは、クレータ処理が適切に行われているため、溶接割れ等の溶接欠陥が少なく、高温のボイラ等における使用にも耐えうる。   The tube laser welding method according to the present invention is particularly preferably used for manufacturing a coil. Since the coil manufactured by using the laser welding method for a pipe according to the present invention is appropriately cratered, there are few welding defects such as weld cracks, and the coil can withstand use in a high-temperature boiler or the like.

ところで、本明細書中では、隣接する最接近位置により画定される溶接区間を、それぞれ対向する2回のパスで溶接する実施例を示したが、本発明に係る管のレーザ溶接方法は、1つの溶接区間を3回以上のパスによって溶接する場合にも応用可能である。例えば、1つの溶接区間をパスA〜Cの3回のパスで溶接する場合には、各パスの終端部において十分な処理溶接長に亘って十分にクレータ処理が行える限り、一方の最接近位置近傍から時計回りに進行するパスAと他方の最接近位置近傍から反時計回りに進行するパスBに加え、パスAとパスBとの接続点近傍を始端とし時計回り又は反時計回りに進行するパスCにより溶接を行ってもよい。   By the way, in this specification, although the Example which welds the welding area demarcated by the adjacent closest approach position by two mutually opposing passes was shown, the laser welding method of the pipe | tube which concerns on this invention is 1 The present invention can also be applied to a case where two welding sections are welded by three or more passes. For example, when welding one welding section with three passes of passes A to C, as long as crater processing can be sufficiently performed over a sufficient processing weld length at the end of each pass, one closest approach position In addition to the path A that progresses clockwise from the vicinity and the path B that progresses counterclockwise from the vicinity of the other closest approach position, it proceeds clockwise or counterclockwise starting from the vicinity of the connection point between the path A and the path B. Welding may be performed by pass C.

本発明に係る管のレーザ溶接方法は、互いに平行に隣接して配置された複数の管におけるレーザ溶接において利用可能であり、コイルの製造のほか、圧力容器や各種プラントの配管工事や建設等において利用可能である。   The pipe laser welding method according to the present invention can be used in laser welding of a plurality of pipes arranged in parallel and adjacent to each other. In addition to the manufacture of coils, the pipe construction and construction of various pressure vessels and various plants. Is available.

1 被溶接管
2 隣接管
3 レーザ光
1 Welded pipe 2 Adjacent pipe 3 Laser light

Claims (5)

管と管の接合部を複数のパスで溶接する管のレーザ溶接方法であって、
被溶接管に平行に隣り合う隣接管が少なくとも1本配置されており、接合部において前記被溶接管と前記隣接管とが最も接近する各位置を最接近位置とし、前記最接近位置近傍の始端から時計回り及び反時計回りに所定のレーザ出力状態で溶接を行い、
前記複数のパスはそれぞれ、隣接する又は単独の最接近位置近傍から進行し、かつ対向するパスと前記レーザ出力状態で接続する接続点と、溶接進行方向前方の最接近位置との距離が、終端に向けて漸次レーザ出力を低下させてクレータ処理を行う処理溶接長以上であることを特徴とする、管のレーザ溶接方法。
A laser welding method for a pipe that welds pipe-to-tube joints in multiple passes,
At least one adjacent pipe adjacent in parallel to the welded pipe is arranged, and each position at which the welded pipe and the adjacent pipe are closest to each other at the joint is defined as a closest position, and a starting end near the closest position Weld in a predetermined laser output state clockwise and counterclockwise from
Each of the plurality of paths proceeds from the vicinity of the adjacent or single closest approach position, and the distance between the connection path connecting the opposing path and the laser output state and the closest position in front of the welding progress direction is terminated. A laser welding method for a tube, characterized in that the length is equal to or longer than a processing welding length in which crater processing is performed by gradually reducing the laser output toward
前記隣接管が前記被溶接管の同一平面上に両側に2本配置されており、2つの前記最接近位置近傍から進行する4回のパスにより溶接を行うことを特徴とする、請求項1記載の管のレーザ溶接方法。   The said adjacent pipe is arrange | positioned on both sides on the same plane of the said to-be-welded pipe, and welding is performed by four passes which advance from the two said closest approach positions. Tube laser welding method. 前記被溶接管が、質量%でAlを0.005〜2.0%含むことを特徴とする、請求項1又は2記載の管のレーザ溶接方法。   3. The laser welding method for a pipe according to claim 1, wherein the welded pipe contains 0.005 to 2.0% of Al by mass%. 脱酸剤を含む溶加材を用いることを特徴とする、請求項1乃至3いずれかに記載の管のレーザ溶接方法。   The laser welding method for a pipe according to any one of claims 1 to 3, wherein a filler material containing a deoxidizer is used. 請求項2記載の管のレーザ溶接方法により、少なくとも直管とU字管とを接合し、同一平面上に連結又は独立したU字状に製造されるコイル。   A coil manufactured by joining at least a straight pipe and a U-shaped pipe by the laser welding method for a pipe according to claim 2, and connecting or independently manufacturing them on the same plane.
JP2015063524A 2015-03-26 2015-03-26 Method of laser welding a tube and coil produced using the welding method Expired - Fee Related JP6425596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015063524A JP6425596B2 (en) 2015-03-26 2015-03-26 Method of laser welding a tube and coil produced using the welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015063524A JP6425596B2 (en) 2015-03-26 2015-03-26 Method of laser welding a tube and coil produced using the welding method

Publications (2)

Publication Number Publication Date
JP2016182620A true JP2016182620A (en) 2016-10-20
JP6425596B2 JP6425596B2 (en) 2018-11-21

Family

ID=57242377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015063524A Expired - Fee Related JP6425596B2 (en) 2015-03-26 2015-03-26 Method of laser welding a tube and coil produced using the welding method

Country Status (1)

Country Link
JP (1) JP6425596B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022158025A1 (en) * 2021-01-20 2022-07-28 日立Astemo株式会社 Two-component joined article and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10272586A (en) * 1997-03-31 1998-10-13 Nippon Steel Corp Method and device for laser butt welding of metallic tube
JP2002035971A (en) * 2000-07-19 2002-02-05 Kawasaki Heavy Ind Ltd Laser beam welding method
JP2011078986A (en) * 2009-10-02 2011-04-21 Hitachi Zosen Corp Coil manufacturing device and method
JP2015037800A (en) * 2013-08-19 2015-02-26 日立Geニュークリア・エナジー株式会社 Laser welding device, method of maintaining reactor internal structure of nuclear power plant, and laser processing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10272586A (en) * 1997-03-31 1998-10-13 Nippon Steel Corp Method and device for laser butt welding of metallic tube
JP2002035971A (en) * 2000-07-19 2002-02-05 Kawasaki Heavy Ind Ltd Laser beam welding method
JP2011078986A (en) * 2009-10-02 2011-04-21 Hitachi Zosen Corp Coil manufacturing device and method
JP2015037800A (en) * 2013-08-19 2015-02-26 日立Geニュークリア・エナジー株式会社 Laser welding device, method of maintaining reactor internal structure of nuclear power plant, and laser processing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022158025A1 (en) * 2021-01-20 2022-07-28 日立Astemo株式会社 Two-component joined article and method for producing same
JP7502476B2 (en) 2021-01-20 2024-06-18 日立Astemo株式会社 Two-part joint and its manufacturing method

Also Published As

Publication number Publication date
JP6425596B2 (en) 2018-11-21

Similar Documents

Publication Publication Date Title
US9061374B2 (en) Laser/arc hybrid welding method and method for producing welded member using same
JP5496152B2 (en) Combined welding method of laser welding and arc welding of T type joint
US9364921B2 (en) Method of manufacturing laser welded steel pipe
WO2014119342A1 (en) Member-joining method, joined member structure, and joint tube
EP2886241A1 (en) Welding system and welding method
CN102310289A (en) Hybrid laser arc welding technology and equipment
JP2009090349A (en) Method and apparatus for welding impeller
JP5978633B2 (en) Manufacturing method of water-cooled wall panel
JP6155183B2 (en) Narrow groove laser welding method
JP2007283363A (en) Method of manufacturing uoe steel pipe
JP2008043974A (en) Longitudinal seam welded joint of uoe steel pipe
JP5954009B2 (en) Manufacturing method of welded steel pipe
JP6025620B2 (en) Submerged arc welding method, method of manufacturing steel pipe using the submerged arc welding method, welded joint, and steel pipe having the welded joint
JP5866790B2 (en) Laser welded steel pipe manufacturing method
JP2007283356A (en) Method of manufacturing uoe steel pipe
EP2703112B1 (en) Method for producing laser welded steel pipe
JP6482820B2 (en) Laser welding apparatus and laser welding method
RU2702075C2 (en) Method of connection of pipes of shell-and-tube heat exchanger with tube grid of shell-and-tube heat exchanger
JP2016182620A (en) Pipe laser welding method and coil manufactured using welding method
KR101008078B1 (en) Hybrid Welding Method
JP5803160B2 (en) Laser welded steel pipe manufacturing method
JP5587918B2 (en) Impeller welding method, welding apparatus, and impeller
WO2024131195A1 (en) Laser welding method and compressor
JP5483553B2 (en) Laser-arc combined welding method
JP2013071146A (en) Laser-arc hybrid welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181023

R150 Certificate of patent or registration of utility model

Ref document number: 6425596

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees