WO2022158025A1 - Two-component joined article and method for producing same - Google Patents

Two-component joined article and method for producing same Download PDF

Info

Publication number
WO2022158025A1
WO2022158025A1 PCT/JP2021/031756 JP2021031756W WO2022158025A1 WO 2022158025 A1 WO2022158025 A1 WO 2022158025A1 JP 2021031756 W JP2021031756 W JP 2021031756W WO 2022158025 A1 WO2022158025 A1 WO 2022158025A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
bead
component
energy
weld metal
Prior art date
Application number
PCT/JP2021/031756
Other languages
French (fr)
Japanese (ja)
Inventor
琢將 古山
賢一 郡司
雅史 根本
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to CN202180079973.7A priority Critical patent/CN116529475A/en
Priority to JP2022576959A priority patent/JP7502476B2/en
Publication of WO2022158025A1 publication Critical patent/WO2022158025A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves

Definitions

  • the present invention relates to a jointed product and a joining method of two parts, and more particularly to a jointed product in which sealing performance of an annular welded portion between two parts is emphasized and a manufacturing method thereof.
  • Patent Document 1 As a technique for inserting one part into the other part and welding these two parts along the outer periphery of the other part, for example, the technique described in Patent Document 1 is known.
  • Patent Document 1 The welding disclosed in Patent Document 1 is penetration welding that penetrates the plate thickness of two parts, and the welded portion is formed in a ring shape. In such welding, the opposing surfaces of the two parts are welded over one turn, and an overlapping portion may be formed in which the weld metal of the first week overlaps the weld metal of the second week. However, there is a tendency that internal cracks and blowholes are likely to occur in this overlapping portion.
  • An object of the present invention is to provide a joint of two parts and a manufacturing method thereof that can suppress the occurrence of internal cracks and blowholes in the weld metal that joins the two parts.
  • the present invention provides a first component having a through hole, a second component inserted into the through hole of the first component, and a and an annular weld metal that joins the first part and the second part, and the amount of overlap between the start end and the end of the back bead of the weld metal is the above To provide a joint of two parts smaller than the width of a back bead.
  • FIG. 1 is a schematic diagram of a fuel supply system including a high-pressure fuel supply pump, which is an application example of a two-part joint and a manufacturing method thereof according to an embodiment of the present invention.
  • Sectional view of the high-pressure fuel supply pump shown in FIG. Cross-sectional view taken along line III-III in Fig. 2
  • Enlarged view of part VI in Fig. 4 Enlarged view showing the state before welding of the part shown in FIG.
  • FIG. 1 is a schematic diagram of a fuel supply system including a high-pressure fuel supply pump, which is an application example of a two-part joint and a manufacturing method thereof according to an embodiment of the present invention.
  • the high-pressure fuel supply pump will be abbreviated as a high-pressure pump.
  • the high-pressure pump illustrated in this embodiment is applied to an engine system that directly injects fuel into the cylinders of an engine.
  • the dashed frame shown in the figure indicates the pump body 1, which is the body of the high-pressure pump, and the mechanisms and parts shown within this frame are integrally incorporated into the pump body 1.
  • a feed pump 21 is driven based on a signal from an engine control unit 27 (hereinafter referred to as ECU), and the feed pump 21 draws up fuel from a fuel tank 20 .
  • This fuel is pressurized and sent to the fuel suction port 10a of the high-pressure pump through the suction pipe 28 at a predetermined feed pressure.
  • the fuel that has passed through the fuel intake port 10a reaches the intake port 31b of the electromagnetic intake valve unit 300 that constitutes the variable capacity mechanism via the intake joint 51, the pressure pulsation reduction mechanism 9, and the intake passage 10d.
  • the fuel that has flowed into the electromagnetic intake valve unit 300 flows into the pressurization chamber 11 via the intake valve 30 .
  • Plunger 2 is powered to reciprocate by cam 93 (FIG. 2) of the engine.
  • cam 93 FIG. 2
  • the plunger 2 reciprocates, fuel is sucked into the pressurization chamber 11 from the intake valve 30 during the downward stroke of the plunger 2, and is pressurized during the upward stroke.
  • the fuel pressurized in the pressurization chamber 11 is discharged from the high-pressure pump via the discharge valve 8 and the fuel discharge port 12 and is pressure-fed to the common rail 23 .
  • a pressure sensor 26 and a plurality of injectors 24 are attached to the common rail 23 .
  • the number of injectors 24 corresponding to the number of cylinders of the internal combustion engine is attached to the common rail 23.
  • the injectors 24 are opened and closed according to a control signal from the ECU 27, and are opened to inject fuel into the cylinders (combustion chambers) of the engine.
  • the fuel discharge flow rate of the high-pressure pump is adjusted by controlling the electromagnetic intake valve unit 300 by the ECU 27 .
  • the ball valve 202 opens when the pressure of the common rail 23 rises excessively due to a failure of the injector 24 or the like, and the differential pressure between the pressure of the fuel discharge port 12 and the pressure chamber 11 becomes equal to or higher than the valve opening pressure of the relief valve unit 200 . Excessively pressurized fuel passes through the relief valve unit 200 and is returned from the relief passage 200a to the pressurization chamber 11, thereby protecting the common rail 23 and other high-pressure pipes.
  • FIG. 2 is a cross-sectional view of the high-pressure fuel supply pump shown in FIG. 1
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2
  • FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. be.
  • the high-pressure pump of the present embodiment is fixed by fixing the mounting flange 1e provided on the pump body 1 to the outer wall surface of the cylinder head 90 of the internal combustion engine with a plurality of bolts (not shown). be done.
  • An O-ring 61 is fitted in the pump body 1 to seal the space between the cylinder head 90 and the pump body 1, thereby preventing leakage of engine oil.
  • a suction joint 51 is attached to the pump body 1 as shown in FIG.
  • the intake joint 51 is connected to an intake pipe 28 (FIG. 1) that supplies low pressure fuel from the vehicle's fuel tank 20, from which fuel is supplied to the interior of the high pressure pump.
  • Fuel flowing in from the fuel inlet 10a of the suction joint 51 passes through a low-pressure passage formed inside the pump body 1 and flows into damper chambers formed in the damper upper portion 10b and the damper lower portion 10c.
  • a damper chamber is defined by a damper cover 14 attached to the pump body 1 .
  • the pressure pulsation of the fuel flowing into the damper chamber is suppressed by the pressure pulsation reduction mechanism 9 provided in the damper chamber, and the fuel reaches the suction port 31b of the electromagnetic suction valve unit 300 through the suction passage 10d.
  • the pressure pulsation reduction mechanism 9 is a metal diaphragm damper formed by laminating two corrugated disc-shaped metal plates and injecting an inert gas (for example, argon) into the inside. absorbs and reduces the pulsation of
  • FIG. 3 illustrates a configuration in which the suction joint 51 is provided on the side surface of the pump body 1, the suction joint 51 may be provided on the upper surface of the damper cover 14 in some cases.
  • An electromagnetic suction valve unit 300 and a discharge valve 8 are assembled to the pump body 1 .
  • Fuel is supplied to the pressurizing chamber 11 through the pressurizing chamber inlet passage 1 a formed in the pump body 1 by the electromagnetic suction valve unit 300 .
  • the discharge valve 8 prevents the fuel discharged from the pressure chamber 11 into the discharge passage 12b (FIG. 3) from flowing back.
  • the fuel that has passed through the discharge valve 8 is supplied to the engine through the fuel discharge port 12 of the discharge joint 12c.
  • a cylinder 6 that guides the reciprocating motion of the plunger 2 is attached to the pump body 1 .
  • the cylinder 6 is press-fitted into the pump body 1 and fixed by caulking.
  • the pressurized fuel is sealed so as not to leak from the pressure chamber 11 through the space between the cylinder 6 and the pump body 1 .
  • the cylinder 6 is in contact with the pump body 1 not only on the outer peripheral surface but also on the upper end surface, and the metal contact between the upper end surface of the cylinder 6 and the pump body 1 also contributes to the sealing of the pressurized fuel.
  • a tappet 92 is provided at the lower end of the plunger 2 , and the rotary motion of a cam 93 attached to the camshaft of the internal combustion engine is converted into vertical motion by the tappet 92 and transmitted to the plunger 2 .
  • a retainer 15 is attached to the plunger 2 , and the retainer 15 is pushed by the spring 4 to press the plunger 2 against the tappet 92 . As a result, the plunger 2 reciprocates up and down as the cam 93 rotates.
  • a plunger seal 13 is held at the lower end of the inner circumference of the seal holder 7, and the plunger seal 13 is installed below the cylinder 6 in the drawing. Since the plunger seal 13 slidably contacts the outer periphery of the plunger 2, the fuel in the auxiliary chamber 7a is sealed when the plunger 2 slides, thereby preventing the fuel from flowing into the internal combustion engine. At the same time, the plunger seal 13 also prevents lubricating oil (including engine oil) for lubricating sliding parts in the internal combustion engine from flowing into the pump body 1 .
  • the discharge valve 8 provided at the outlet of the pressurizing chamber 11 is composed of a seat 8a, a valve body 8b, a spring 8c, a discharge valve plug 8d, and a discharge valve stopper 8e.
  • the valve body 8b is biased toward the seat 8a by a spring 8c, and the discharge valve 8 is opened and closed by contacting or separating the valve body 8b from the seat 8a.
  • the stroke (movement distance) of the valve body 8b is defined by the discharge valve stopper 8e.
  • the discharge valve plug 8 d is the body of the discharge valve 8 and is joined to the pump body 1 with a weld metal 407 .
  • the weld metal 407 separates and isolates the inner space of the pump body 1 through which fuel flows from the outer space of the pump body 1 .
  • the valve body 8b When there is no fuel pressure difference between the pressure chamber 11 and the discharge valve chamber 12a, the valve body 8b is pressed against the seat 8a by the spring 8c, and the discharge valve 8 is closed.
  • the valve element 8b moves against the spring 8c and the discharge valve 8 opens.
  • the high-pressure fuel in the pressurization chamber 11 is discharged to the common rail 23 (FIG. 1) through the discharge valve chamber 12a, the discharge passage 12b, and the fuel discharge port 12 shown in FIG.
  • the opening and closing movement of the valve body 8b is guided by the outer peripheral surface of the discharge valve stopper 8e and limited to the stroke direction, and the discharge valve 8 also functions as a check valve.
  • the pressurization chamber 11 is defined by the pump body 1 , the electromagnetic intake valve unit 300 , the plunger 2 , the cylinder 6 , the discharge valve 8 and the relief valve unit 200 .
  • the rotation of the cam 93 causes the plunger 2 to reciprocate, and when the plunger 2 moves in the direction to expand the volume of the pressurizing chamber 11, fuel is drawn into the pressurizing chamber 11, and the fuel pressure inside the pressurizing chamber 11 decreases. .
  • the suction valve 30 opens.
  • FIG. 5 is a cross-sectional view taken along line VV in FIG. 3, showing a state in which the intake valve is open.
  • the electromagnetic suction valve unit 300 drives the magnetic core (fixed core) 39, the movable core 36, and the rod 35 by energizing the electromagnetic coil 43 to drive the suction valve 30, which sucks fuel and pressurizes it. Send to Room 11.
  • the rod biasing spring 40 pushes the suction valve 30 in the valve opening direction. flows, and a magnetic attraction force is generated in the magnetic core 39 .
  • the movable core 36 is pulled toward the valve closing direction on the magnetic attraction surface S by the magnetic attraction force of the magnetic core 39 .
  • a rod 35 is arranged between the movable core 36 and the intake valve 30 , and the rod 35 is provided with a flange portion 35 a for locking the movable core 36 .
  • the electromagnetic coil chamber in which the electromagnetic coil 43 is arranged is covered with a lid member 44 , and the magnetic core 39 also serves as a member for holding the lid member 44 .
  • the rod biasing spring 40 is covered with the portion of the magnetic core 39 that holds the lid member 44 .
  • the rod 35 is locked to the movable core 36 at the flange portion 35a, and moves together with the movable core 36 when the movable core 36 moves toward the magnetic core 39 side. Therefore, when the magnetic attraction force acts on the movable core 36, the rod 35 moves in the valve closing direction.
  • a valve-closing biasing spring 41 that biases the movable core 36 in the valve-closing direction and a rod guide member 37 that guides the rod 35 in the valve-opening/closing direction are arranged.
  • the rod guide member 37 constitutes a spring seat 37b of the valve closing biasing spring 41 .
  • a fuel passage 37a is provided in the rod guide member 37, allowing fuel to flow into and out of the space in which the movable core 36 is arranged.
  • the movable core 36 , the valve closing biasing spring 41 , the rod 35 and the like are contained in an electromagnetic intake valve unit housing 38 fixed to the pump body 1 . Also, the magnetic core 39 , the rod biasing spring 40 , the electromagnetic coil 43 , the rod guide member 37 and the like are supported by the electromagnetic intake valve unit housing 38 .
  • the rod guide member 37 is attached to the electromagnetic suction valve unit housing 38 on the side opposite to the magnetic core 39 and the electromagnetic coil 43 .
  • the rod guide member 37 includes the suction valve 30 , the suction valve biasing spring 33 and the stopper 32 , and constitutes a part of the electromagnetic suction valve unit housing 38 .
  • the suction valve 30 , the suction valve biasing spring 33 and the stopper 32 are provided on the opposite side of the magnetic core 39 on the rod 35 .
  • the suction valve 30 is provided with a guide portion 30 b projecting toward the pressurizing chamber 11 side, and the guide portion 30 b is guided by a suction valve biasing spring 33 .
  • the intake valve 30 moves in the valve opening direction (the direction away from the valve seat 31a) by the valve body stroke 30e to be in the open state, and fuel is supplied to the pressure chamber 11 from the intake passage 10d.
  • the guide portion 30b stops moving by colliding with the stopper 32 .
  • the stopper 32 is press-fitted and fixed inside the housing (rod guide member 37 ) of the electromagnetic suction valve unit 300 .
  • the rod 35 and the intake valve 30 are separate members independent of each other.
  • the suction valve 30 closes the flow path to the pressurizing chamber 11 by contacting the valve seat 31a of the valve seat member 31 arranged on the suction side, and closes the flow path to the pressurizing chamber 11 by moving away from the valve seat 31a. open the road
  • the intake valve 30 closes.
  • the volume of the pressurizing chamber 11 decreases due to the operation of the plunger 2 and the fuel pressure in the pressurizing chamber 11 increases.
  • high pressure fuel is discharged from the high pressure pump and supplied to the common rail 23 . This stroke is called a discharge stroke.
  • the fuel discharged from the high-pressure pump can be controlled by the timing of energizing the electromagnetic coil 43 .
  • the relief valve unit 200 includes a relief valve cover 201, a ball valve 202, a relief valve retainer 203, a spring 204, and a spring holder 205.
  • the relief valve unit 200 opens the ball valve 202 to return the fuel to the pressurization chamber 11 only when the common rail 23 or its downstream members have some problem and the pressure exceeds the allowable value.
  • a plurality of through holes for assembling parts are formed in the pump body 1, and assembling parts are inserted into these through holes and joined by welding. Examples thereof include the discharge valve 8 and the discharge joint 12c.
  • the body (discharge plug 8d) of the discharge valve 8 and the discharge joint 12c are joined to the pump body 1 via a weld metal 407 formed by laser welding.
  • the weld metal 407 surrounds the outer peripheral portion of the discharge plug 8d and is annularly formed along the facing portion between the pump body 1 and the discharge plug 8d.
  • the weld metal 407 that joins the discharge joint 12c and the pump body 1 similarly surrounds the outer peripheral portion of the discharge joint 12c and is annularly formed along the facing portion between the pump body 1 and the discharge joint 12c.
  • Suppressing the occurrence of defects such as solidification cracks and blowholes inside the weld metal 407 is important from the viewpoint of sufficiently ensuring the reliability of the weld.
  • the reliability of the welded portion facing the fuel flow path inside the pump body 1 is important from the viewpoint of preventing leakage of fuel from the pump body 1, and the welded portion is required to have sufficient strength.
  • Fig. 6 is an enlarged view of the VI section of Fig. 4, that is, an enlarged view of the welded portion between the pump body 1 and the discharge plug 8d.
  • 7 is an enlarged view showing the state before welding of the portion shown in FIG.
  • the structure of the welded portion between the pump body 1 and the discharge plug 8d will be described with reference to FIGS. 6 and 7.
  • the welded portion between the pump body 1 and the discharge joint 12c has the same structure.
  • the discharge plug 8d inserted into the through hole 413 for assembling parts formed in the pump body 1 is formed separately from the portion to be welded (the portion where the weld metal 407 is formed after welding).
  • the pressed-in portion 405 is press-fitted and fixed to the pump body 1 .
  • the press-fit portion 405 is located inside the pump body 1 from the portion to be welded in the direction of the center line O of the discharge plug 8d.
  • the discharge plug 8d before welding is provided with a flange 414, and the discharge plug 8d is press-fitted into the pump body 1 to a position where the flange 414 contacts the press-fitting receiving surface 406 of the outer wall of the pump body 1.
  • This gap GP has a conical shape that tapers toward the inside of the pump body 1, and the center line O of the discharge plug 8d approaches the center line O of the discharge plug 8d toward the inside of the pump body 1 as viewed in cross section in FIG. is tilted with respect to A gap 400 is formed between the gap GP (the portion facing the pump body 1 and the discharge plug 8 d ) and the press-fitting portion 405 .
  • the position is aligned with the gap GP in the state of FIG. Rotate the LB.
  • the optical axis of the laser LB is inclined with respect to the center line O of the discharge plug 8d in accordance with the inclination of the gap GP in the cross section of FIG.
  • weld metal 407 is formed. Since the gap 400 exists, the weld metal 407 has a front bead 415, which is the surface on the incident side of the laser LB (exposed to the space outside the pump body 1), and a back bead 416 exposed in the gap 400. formed.
  • the weld metal 407 has a front bead 415, which is the surface on the incident side of the laser LB (exposed to the space outside the pump body 1), and a back bead 416 exposed in the gap 400. formed.
  • front bead 415 is the surface on the incident side of the laser LB (exposed to the space outside the pump body 1)
  • a straight line 407a passing through the widthwise center of the front bead 415 and the widthwise center of the rear bead 416 is inclined with respect to the center line O of the discharge plug 8d corresponding to the gap GP before welding. is doing.
  • the weld metal 407 is formed around the entire circumference of the discharge plug 8d, and the opposing portion between the pump body 1 and the discharge plug 8d is sealed with the weld metal 407, thereby preventing leakage of fuel from the pump body 1.
  • FIG. 8 is a conceptual diagram for explaining the mechanism of keyhole generation due to the vapor pressure of metal vapor during welding.
  • the metal member when the laser LB is irradiated onto the metal member, the metal member is heated by the laser LB and melts when it reaches the melting point, and the metal member becomes partially liquid to form a molten pool MP.
  • the metal member in the vicinity of the laser optical axis of the liquefied molten pool MP is further heated by the laser LB to raise the temperature and evaporate into a metal vapor MV. It is understood that the vapor pressure of this metal vapor MV expands the molten pool MP and forms the keyhole KH.
  • this keyhole KH is not formed immediately after irradiating the metal member with the laser LB, but is formed through the steps of forming the molten pool MP and generating the metal vapor MV.
  • the laser LB penetrates the plate thickness TP of the metal member at a stage after the generation of the keyhole KH. After the generation of the keyhole KH, the keyhole KH gradually becomes deeper as the energy of the laser LB increases. , the molten pool MP gradually deepens and penetrates the plate thickness TP.
  • Figs. 9A to 9E are diagrams for explaining the mechanism of solidification cracking in the weld metal step by step.
  • a second metal part B (FIGS. 1 to 7) is inserted into a cylindrical through hole TH of a first metal part A (pump body 1 in the example of FIGS. 1 to 7). 2, for example, a discharge plug 8d) is press-fitted.
  • the laser LB is irradiated to the opposing portions of the first component A and the second component B, the first component A and the second component B are rotated, and the laser LB is emitted to the cylindrical opposing portions of both components.
  • the scanning process is represented in FIGS. 9A-9E.
  • the center line O of the annular opposing portion (in other words, the gap GP) between the first part A and the second part B is used as a reference, and the keyhole KH is the first part A.
  • the penetration welding starting point P1 is the starting point of the back bead 416 .
  • the molten pool MP and the keyhole KH advance along with the laser LB along a circular orbit from the penetration welding start point P1, and the portions through which the laser LB passes solidify sequentially to form the weld metal WM.
  • FIG. 9A shows the situation while the laser LB travels through a position with an azimuth angle of 0° ⁇ 270°. During this time, a sufficient gap GP remains in the traveling direction of the laser LB, and the metal vapor MV generated inside the keyhole KH flows into the gap GP in the traveling direction of the laser. Then, when the laser LB further advances and reaches the region of the azimuth angle ⁇ 270° as shown in FIG. gap GP gradually disappears. Further, when the laser LB approaches the penetration welding start point P1, part of the metal vapor MV that tried to flow into the gap GP in the traveling direction of the laser LB as shown in FIG. Collision with WM.
  • the metal vapor MV that has collided with the weld metal WM is pushed back in the direction opposite to the traveling direction of the laser LB by the reaction force, and is contained in the molten pool MP as shown in FIG. 9D.
  • the molten pool MP containing the metal vapor MV is solidified in this manner, blowholes are generated in the weld metal WM as shown in FIG. 9E, which may cause internal cracks IC of the metal vapor MV.
  • the weld metal 407 of the high-pressure pump explained with reference to FIGS. 1-7 is formed by a special welding method for suppressing the occurrence of such internal cracks.
  • a strong joint is manufactured between the pump body 1 corresponding to the first part A and the discharge plug 8d (or discharge joint 12c) corresponding to the second part B in the example of FIGS. 9A to 9E.
  • the method of manufacturing the two-piece joint includes a laser energy increasing step, a penetration welding step, a laser energy switching step, and a laser energy decreasing step.
  • the laser energy increasing step is a step of moving the laser while increasing the energy from the front edge of the front bead of the weld metal (laser irradiation start position) along the opposing portions of the first component and the second component. During this time, the energy of the laser LB is increased to the set penetration energy at which the back bead is formed. In the laser energy increasing step, the back bead is not formed because the thickness of the first component and the second component is not sufficient for the melting depth.
  • the penetration energy is maintained and the laser LB is applied along the opposing parts of the first component and the second component for one week. It is a process to let In the penetration welding step, the melt depth reaches the plate thickness of the first component and the second component, and penetration welding is performed, so that a back bead is formed.
  • the laser LB is set to the non-penetration energy set at which the back bead is not formed. It is the process of switching energy. As a result, the thicknesses of the first component and the second component are not sufficiently melted again, and the back bead is interrupted here.
  • the laser energy reduction step is a step of moving the laser LB along the opposing portions of the first component and the second component while decreasing the energy from the non-penetrating energy after the laser energy switching step. During this time, as the energy of the laser LB decreases, the depth of fusion also becomes shallower, and the weld metal (weld metal in the second week) becomes thinner. When the laser LB reaches a predetermined end position of the front bead, the irradiation of the laser LB is stopped and the welding is completed.
  • FIG. 10 is an explanatory diagram of a method of joining two parts according to one embodiment of the present invention.
  • the laser LB is irradiated clockwise along the annular facing portion between the pump body 1 and the discharge plug 8d, represents the energy control of 11A to 11D are explanatory diagrams of phenomena occurring at each stage of the bonding method of FIG.
  • the azimuth angles shown in these figures correspond to the azimuth angles shown in FIGS. 9A-9E. Welding between the pump body 1 and the discharge plug 8d will be described with reference to FIGS. 10 and 11A to 11D, but the welding between the pump body 1 and the discharge joint 12c is the same.
  • the energy amount of the laser LB is changed from 0 to Increases up to the above penetration energy.
  • the process of the section of this laser energy increase rotation angle Ru is the laser energy increase process.
  • the laser LB advances along the annular opposing portion of the pump body 1 and the discharge plug 8d by the main welding rotation angle Fp (360°)
  • the energy that penetrates the two parts, the pump body 1 and the discharge plug 8d is applied.
  • Penetration welding is performed with a laser LB.
  • the process of the section of this main welding rotation angle Fp is the penetration welding process.
  • the back bead 416 is formed only in the section of the main welding rotation angle Fp.
  • the laser LB approaches the penetration welding start point P1
  • a part of the metal vapor MV that tried to flow into the gap GP in the traveling direction of the laser LB as shown in FIG. of the weld metal WM (similar to FIG. 9C).
  • the energy of the laser LB is reduced from the penetration energy while the laser LB travels along the annular opposing portion of the pump body 1 and the discharge plug 8d by the laser energy sharply decreasing rotation angle Fd. Switch to non-penetrating energy.
  • the process of this section of the laser energy sharply decreasing rotation angle Fd is the laser energy switching process.
  • the laser energy rapid reduction rotation angle Fd is set to about 5-10°, and the energy of the laser LB is rapidly reduced by about 15-20% during this 5-10°.
  • the keyhole KH shrinks, the amount of the metal vapor MV inside the keyhole KH decreases, and the metal vapor MV stays in the keyhole KH due to the decrease in vapor pressure.
  • the energy of the laser LB is gradually increased while the laser LB travels along the annular facing portion of the pump body 1 and the discharge plug 8d by the laser energy reduction rotation angle Rd. Decrease.
  • the process of the section of this laser energy reduction rotation angle Rd is the laser energy reduction process.
  • the amount of overlap between the start and end of the front bead of the weld metal becomes larger than the width of the front bead.
  • the azimuth angle range between the start and end of this overlap based on the center of the annular weld metal reaches over 30 degrees.
  • the overlap between the penetration weld and the end of the front bead in the second week has a shallower melt depth toward the end.
  • the first part referred to here corresponds to the pump body 1 in the high-pressure pump described with reference to FIGS. 1 to 7, and the second part is a part assembled to the pump body 1, such as the body of the discharge valve.
  • the discharge valve plug 8d (or discharge joint 12c) corresponds.
  • FIG. 12A is a schematic diagram of a back bead of a two-part joined product manufactured by the manufacturing method (FIG. 10) according to one embodiment of the present invention
  • FIG. 12B is an enlarged view of the XIIB portion in FIG. 12A.
  • the melt depth reaches the plate thickness only in the section of the main welding rotation angle Fp (Fig. 10) (penetrates the plate thickness) and the penetration welding is performed, so the back bead 416 is formed only in this section. be done. That is, the back bead 416 is formed only 360 degrees.
  • a back bead starting end portion 411 is formed when the laser LB passes through the starting end of the section of the main welding rotation angle Fp, that is, the penetration welding starting point P1 (FIG. 10). Further, the rear bead end portion 412 is formed when the laser beam LB passes through the end of the section of the main welding rotation angle Fp.
  • the tip portions 411a and 412a of the back bead starting end portion 411 and the back bead terminating portion 412 are arcuate following the cross-sectional shape of the laser LB.
  • the back bead starting end portion 411 and the back bead trailing end portion 412 overlap each other only at the semicircular leading end portions 411a and 412a, and the overlap amount OL1 is the back bead 416 as shown in FIG. 12B. bead width BW1.
  • the back bead 416 is formed only at the main welding rotation angle Fp, while the front bead 415 is formed at the laser energy increase rotation angle Ru, the main welding rotation angle Fp, the laser energy sharp decrease rotation angle Fd, and the laser energy decrease rotation angle. It is formed continuously in the section of angle Rd. Therefore, with respect to the penetration weld formed in the section of the main welding rotation angle Fp, the end portion of the front bead 415 in the second round is the total section of the laser energy sharp reduction rotation angle Fd and the laser energy reduction rotation angle Rd. overlap.
  • This overlap amount OL2 (FIG. 11D) is wider than the bead width BW2 of the front bead 415 (FIG. 11D).
  • the azimuth angle range ⁇ (FIG. 11D) between the start and end of the overlapping portion between the end portion of the front bead 415 and the penetration weld portion is 30 degrees or more as described above.
  • the timing at which the laser LB returns to the penetration welding start point P1 after making one turn around the facing portion between the first member and the second member the energy of the laser LB is rapidly reduced to non-penetrating energy.
  • the overlap amount OL1 between the start end and the end of the back bead of the weld metal becomes smaller than the bead width BW1 of the back bead.
  • the metal vapor MV is rapidly reduced as described above and stops inside the keyhole KH, and the molten pool MP contains the metal vapor MV.
  • the occurrence of the phenomenon of solidification is suppressed. In this way, it is possible to suppress the occurrence of internal cracks and blowholes in the weld metal that joins the two parts, which is expected to improve the reliability of the joint of the two parts and reduce the maintenance and management cost of welding quality in mass production. can. Since internal cracks in the weld metal are effectively suppressed, high-pressure fuel can be effectively sealed with the weld metal.
  • the back bead of the weld metal overlaps only at the ends, whereas the overlap amount OL2 of the front bead of the weld metal is larger than the bead width BW2 of the front bead 415 .
  • the overlapping portion between the penetration weld portion of the weld metal and the end portion of the front bead secures a wide range of 30 degrees or more in the azimuth angle range, so that the two parts can be firmly joined. It is possible to secure sufficient reliability in terms of strength of the joint of the two parts.
  • the above-described method is preferably applied to the joint between the pump body 1 of the high-pressure fuel pump and the parts (for example, the discharge plug 8d) attached thereto, particularly to the portion facing the high-pressure fuel. can be done.
  • the sealing performance of the assembly parts such as the discharge plug 8d is important from the viewpoint of suppressing fuel leakage, etc., which will be explained with reference to FIGS. 6 and 7.
  • a structure that is firmly fixed by interference fitting and welding as described above is adopted.
  • the portion to be welded may have a clearance fit structure.
  • the above-described method which can effectively suppress the inclusion of metal vapor in the molten pool as described above, can be suitably applied to the joining of the pump body 1 of a high-pressure pump and parts to be assembled therewith. .
  • the case where the invention is applied to the joint between the pump body 1 of the high-pressure pump and the discharge plug 8d was exemplified. can be applied and similar effects can be obtained.
  • the invention is applicable not only to high-pressure pumps but also to other products.
  • the present invention can be applied to a case where a fuel injection valve (such as the injector 24 in FIG. 1) is assembled and joined by welding, and the same effect can be obtained.
  • a fuel injection valve such as the injector 24 in FIG. 1
  • the present invention can also be applied to a normally closed high-pressure pump.
  • the range of penetration welding may be limited to about 355°, and the energy of the laser LB may be rapidly reduced to non-penetration energy after 355° penetration welding.
  • the front bead 415 overlaps by 30° or more has been described, but this overlap amount is an example that is considered preferable, and the overlap amount OL2 of the front bead 415 can be appropriately changed in design.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Arc Welding In General (AREA)

Abstract

The present invention provides a two-component joined article having a first component that includes a through-hole, a second component that is inserted into the through-hole in the first component, and an annular weld metal that is formed at a portion where the first and second components face each other and that joins the first and second components, the two-component joined article being such that the amount of overlap between the starting end and the finishing end of a back bead of the weld metal is less than the width of the back bead.

Description

2部品の接合物及びその製造方法Joined product of two parts and its manufacturing method
 本発明は、2部品の接合物及び接合方法に関し、特に2部品間の環状の溶接部のシール性能が重要視される接合物及びその製造方法に関する。 The present invention relates to a jointed product and a joining method of two parts, and more particularly to a jointed product in which sealing performance of an annular welded portion between two parts is emphasized and a manufacturing method thereof.
 一方の部品に他方の部品を挿し込み、他方の部品の外周に沿ってこれら2部品を溶接する技術として、例えば特許文献1に記載された技術が知られている。 As a technique for inserting one part into the other part and welding these two parts along the outer periphery of the other part, for example, the technique described in Patent Document 1 is known.
国際公開第2018/142930号WO2018/142930
 特許文献1に開示された溶接は、2部品の板厚を貫通する貫通溶接であり、また溶接部が環状に形成される。このような溶接では、1周を超えて2部品の対向面を溶接し、1週目の溶接金属の一部に2週目の溶接金属が重なるオーバーラップ部が形成される場合がある。しかし、このオーバーラップ部に内部割れやブローホールが発生し易い傾向がある。 The welding disclosed in Patent Document 1 is penetration welding that penetrates the plate thickness of two parts, and the welded portion is formed in a ring shape. In such welding, the opposing surfaces of the two parts are welded over one turn, and an overlapping portion may be formed in which the weld metal of the first week overlaps the weld metal of the second week. However, there is a tendency that internal cracks and blowholes are likely to occur in this overlapping portion.
 本発明の目的は、2部品を接合する溶接金属の内部割れやブローホールの発生を抑制することができる2部品の接合物及びその製造方法を提供することにある。 An object of the present invention is to provide a joint of two parts and a manufacturing method thereof that can suppress the occurrence of internal cracks and blowholes in the weld metal that joins the two parts.
 上記目的を達成するために、本発明は、貫通孔を有する第1の部品と、前記第1の部品の貫通孔に挿し込まれた第2の部品と、前記第1の部品及び前記第2の部品の対向部に形成されて前記第1の部品及び前記第2の部品を接合する環状の溶接金属とを有し、前記溶接金属の裏ビードの始端と終端とのオーバーラップ量が、前記裏ビードの幅よりも小さい2部品の接合物を提供する。 In order to achieve the above object, the present invention provides a first component having a through hole, a second component inserted into the through hole of the first component, and a and an annular weld metal that joins the first part and the second part, and the amount of overlap between the start end and the end of the back bead of the weld metal is the above To provide a joint of two parts smaller than the width of a back bead.
 本発明によれば、2部品を接合する溶接金属の内部割れやブローホールの発生を抑制することができる。 According to the present invention, it is possible to suppress the occurrence of internal cracks and blowholes in the weld metal that joins two parts.
本発明の一実施形態に係る2部品の接合物及びその製造方法の一適用例である高圧燃料供給ポンプを含む燃料供給システムの模式図BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of a fuel supply system including a high-pressure fuel supply pump, which is an application example of a two-part joint and a manufacturing method thereof according to an embodiment of the present invention. 図1に示した高圧燃料供給ポンプの断面図Sectional view of the high-pressure fuel supply pump shown in FIG. 図2中のIII-III線による矢視断面図Cross-sectional view taken along line III-III in Fig. 2 図3中のIV-IV線による矢視断面図Cross-sectional view taken along line IV-IV in Fig. 3 図3中のV-V線による矢視断面図Cross-sectional view taken along line VV in FIG. 図4のVI部の拡大図Enlarged view of part VI in Fig. 4 図6に示した部位の溶接前の状態を表した拡大図Enlarged view showing the state before welding of the part shown in FIG. 溶接時における金属蒸気の蒸気圧によるキーホールの発生メカニズムを説明する概念図Conceptual diagram explaining the keyhole generation mechanism due to the vapor pressure of metal vapor during welding 溶接金属の凝固割れの発生メカニズムの説明図Explanatory diagram of the occurrence mechanism of solidification cracks in weld metal 溶接金属の凝固割れの発生メカニズムの説明図Explanatory diagram of the occurrence mechanism of solidification cracks in weld metal 溶接金属の凝固割れの発生メカニズムの説明図Explanatory diagram of the occurrence mechanism of solidification cracks in weld metal 溶接金属の凝固割れの発生メカニズムの説明図Explanatory diagram of the occurrence mechanism of solidification cracks in weld metal 溶接金属の凝固割れの発生メカニズムの説明図Explanatory diagram of the occurrence mechanism of solidification cracks in weld metal 本発明の一実施形態に係る2部品の接合方法の説明図Explanatory drawing of a method of joining two parts according to one embodiment of the present invention. 図10の接合方法の各段階で起こる現象の説明図Explanatory diagram of phenomena occurring at each stage of the joining method of FIG. 図10の接合方法の各段階で起こる現象の説明図Explanatory diagram of phenomena occurring at each stage of the joining method of FIG. 図10の接合方法の各段階で起こる現象の説明図Explanatory diagram of phenomena occurring at each stage of the joining method of FIG. 図10の接合方法の各段階で起こる現象の説明図Explanatory diagram of phenomena occurring at each stage of the joining method of FIG. 本発明の一実施形態に係る製造方法で製造された2部品の接合物の裏ビードの模式図Schematic diagram of a back bead of a joint of two parts manufactured by a manufacturing method according to an embodiment of the present invention. 図12A中のXIIB部の拡大図Enlarged view of XIIB part in FIG. 12A
 以下に図面を用いて本発明の実施の形態を説明する。 
 なお、上下方向を指定して説明する場合があるが、この上下方向は高圧燃料供給ポンプの実装状態における上下方向を意味するものではない。
Embodiments of the present invention will be described below with reference to the drawings.
In some cases, the vertical direction is designated for explanation, but this vertical direction does not mean the vertical direction in the mounting state of the high-pressure fuel supply pump.
 -燃料供給システム-
 図1は本発明の一実施形態に係る2部品の接合物及びその製造方法の一適用例である高圧燃料供給ポンプを含む燃料供給システムの模式図である。以下、高圧燃料供給ポンプを高圧ポンプと略記する。本実施形態で例示する高圧ポンプは、エンジンのシリンダ内部に燃料を直接噴射するエンジンシステムに適用される。
-Fuel supply system-
FIG. 1 is a schematic diagram of a fuel supply system including a high-pressure fuel supply pump, which is an application example of a two-part joint and a manufacturing method thereof according to an embodiment of the present invention. Hereinafter, the high-pressure fuel supply pump will be abbreviated as a high-pressure pump. The high-pressure pump illustrated in this embodiment is applied to an engine system that directly injects fuel into the cylinders of an engine.
 同図に示した破線の枠が高圧ポンプのボディであるポンプボディ1を示し、この枠の中に示されている機構や部品は、ポンプボディ1に一体に組み込まれている。エンジンコントロールユニット27(以下ECUと称す)からの信号に基づきフィードポンプ21が駆動され、フィードポンプ21によって燃料タンク20の燃料が汲み上げられる。この燃料は加圧されて所定のフィード圧力で吸入配管28を介して高圧ポンプの燃料吸入口10aに送られる。燃料吸入口10aを通過した燃料は、吸入ジョイント51、圧力脈動低減機構9、吸入通路10dを介して、容量可変機構を構成する電磁吸入弁ユニット300の吸入ポート31bに至る。 The dashed frame shown in the figure indicates the pump body 1, which is the body of the high-pressure pump, and the mechanisms and parts shown within this frame are integrally incorporated into the pump body 1. A feed pump 21 is driven based on a signal from an engine control unit 27 (hereinafter referred to as ECU), and the feed pump 21 draws up fuel from a fuel tank 20 . This fuel is pressurized and sent to the fuel suction port 10a of the high-pressure pump through the suction pipe 28 at a predetermined feed pressure. The fuel that has passed through the fuel intake port 10a reaches the intake port 31b of the electromagnetic intake valve unit 300 that constitutes the variable capacity mechanism via the intake joint 51, the pressure pulsation reduction mechanism 9, and the intake passage 10d.
 電磁吸入弁ユニット300に流入した燃料は、吸入弁30を介して加圧室11に流入する。プランジャ2には、エンジンのカム93(図2)により往復運動する動力が与えられる。プランジャ2が往復運動する際、プランジャ2の下降行程で吸入弁30から加圧室11に燃料が吸入され、上昇行程で燃料が加圧される。加圧室11で加圧された燃料は、吐出弁8及び燃料吐出口12を介して高圧ポンプから吐出され、コモンレール23に圧送される。コモンレール23には、圧力センサ26と複数のインジェクタ24が装着されている。インジェクタ24は、内燃機関の気筒数に応じた数だけコモンレール23に装着されており、ECU27からの制御信号に従って開閉し、開動作することにより燃料をエンジンのシリンダ内(燃焼室)に噴射する。高圧ポンプの燃料の吐出流量は、ECU27による電磁吸入弁ユニット300の制御により調整される。 The fuel that has flowed into the electromagnetic intake valve unit 300 flows into the pressurization chamber 11 via the intake valve 30 . Plunger 2 is powered to reciprocate by cam 93 (FIG. 2) of the engine. When the plunger 2 reciprocates, fuel is sucked into the pressurization chamber 11 from the intake valve 30 during the downward stroke of the plunger 2, and is pressurized during the upward stroke. The fuel pressurized in the pressurization chamber 11 is discharged from the high-pressure pump via the discharge valve 8 and the fuel discharge port 12 and is pressure-fed to the common rail 23 . A pressure sensor 26 and a plurality of injectors 24 are attached to the common rail 23 . The number of injectors 24 corresponding to the number of cylinders of the internal combustion engine is attached to the common rail 23. The injectors 24 are opened and closed according to a control signal from the ECU 27, and are opened to inject fuel into the cylinders (combustion chambers) of the engine. The fuel discharge flow rate of the high-pressure pump is adjusted by controlling the electromagnetic intake valve unit 300 by the ECU 27 .
 インジェクタ24の故障等で例えばコモンレール23の圧力が過度に上昇し、燃料吐出口12の圧力と加圧室11の差圧がリリーフ弁ユニット200の開弁圧力以上になると、ボール弁202が開く。過度に昇圧した燃料はリリーフ弁ユニット200を通りリリーフ通路200aから加圧室11へと戻され、コモンレール23等の高圧配管が保護される。 The ball valve 202 opens when the pressure of the common rail 23 rises excessively due to a failure of the injector 24 or the like, and the differential pressure between the pressure of the fuel discharge port 12 and the pressure chamber 11 becomes equal to or higher than the valve opening pressure of the relief valve unit 200 . Excessively pressurized fuel passes through the relief valve unit 200 and is returned from the relief passage 200a to the pressurization chamber 11, thereby protecting the common rail 23 and other high-pressure pipes.
 -高圧ポンプ-
 図2は図1に示した高圧燃料供給ポンプの断面図、図3は図2中のIII-III線による矢視断面図、図4は図3中のIV-IV線による矢視断面図である。
-High pressure pump-
2 is a cross-sectional view of the high-pressure fuel supply pump shown in FIG. 1, FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2, and FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. be.
 図3及び図4に示すように、本実施形態の高圧ポンプは、ポンプボディ1に設けられた取付けフランジ1eを内燃機関のシリンダヘッド90の外壁面に複数のボルト(不図示)で止めて固定される。ポンプボディ1にはOリング61が嵌め込まれ、シリンダヘッド90とポンプボディ1との間がOリング61でシールされ、エンジンオイルの漏出が防止される。 As shown in FIGS. 3 and 4, the high-pressure pump of the present embodiment is fixed by fixing the mounting flange 1e provided on the pump body 1 to the outer wall surface of the cylinder head 90 of the internal combustion engine with a plurality of bolts (not shown). be done. An O-ring 61 is fitted in the pump body 1 to seal the space between the cylinder head 90 and the pump body 1, thereby preventing leakage of engine oil.
 図3に示すように、ポンプボディ1には吸入ジョイント51が取り付けられている。吸入ジョイント51は、車両の燃料タンク20からの低圧の燃料を供給する吸入配管28(図1)に接続されており、燃料はここから高圧ポンプの内部に供給される。吸入ジョイント51の燃料吸入口10aから流入した燃料は、ポンプボディ1の内部に形成された低圧流路を通り、ダンパ上部10b及びダンパ下部10cに形成されたダンパ室に流れる。ダンパ室はポンプボディ1に取り付けられたダンパカバー14により画定されている。ダンパ室に流入した燃料は、ダンパ室に設けた圧力脈動低減機構9により圧力脈動が抑えられ、吸入通路10dを介して電磁吸入弁ユニット300の吸入ポート31bに至る。圧力脈動低減機構9は、波板状の円盤型金属板2枚を張り合わせて不活性ガス(例えばアルゴン)を内部に注入した金属ダイアフラムダンパであり、金属ダンパが膨張及び収縮することで燃料の流れの脈動を吸収し低減する。図3では吸入ジョイント51をポンプボディ1の側面に設けた構成を例示したが、吸入ジョイント51はダンパカバー14の上面に設けられる場合もある。 A suction joint 51 is attached to the pump body 1 as shown in FIG. The intake joint 51 is connected to an intake pipe 28 (FIG. 1) that supplies low pressure fuel from the vehicle's fuel tank 20, from which fuel is supplied to the interior of the high pressure pump. Fuel flowing in from the fuel inlet 10a of the suction joint 51 passes through a low-pressure passage formed inside the pump body 1 and flows into damper chambers formed in the damper upper portion 10b and the damper lower portion 10c. A damper chamber is defined by a damper cover 14 attached to the pump body 1 . The pressure pulsation of the fuel flowing into the damper chamber is suppressed by the pressure pulsation reduction mechanism 9 provided in the damper chamber, and the fuel reaches the suction port 31b of the electromagnetic suction valve unit 300 through the suction passage 10d. The pressure pulsation reduction mechanism 9 is a metal diaphragm damper formed by laminating two corrugated disc-shaped metal plates and injecting an inert gas (for example, argon) into the inside. absorbs and reduces the pulsation of Although FIG. 3 illustrates a configuration in which the suction joint 51 is provided on the side surface of the pump body 1, the suction joint 51 may be provided on the upper surface of the damper cover 14 in some cases.
 ポンプボディ1には、電磁吸入弁ユニット300と、吐出弁8とが組み付けられている。電磁吸入弁ユニット300により、ポンプボディ1に形成された加圧室入口流路1aを介して燃料が加圧室11に供給される。加圧室11から吐出通路12b(図3)に吐出された燃料の逆流が、吐出弁8により防止される。吐出弁8を通過した燃料は、吐出ジョイント12cの燃料吐出口12を通ってエンジンに供給される。 An electromagnetic suction valve unit 300 and a discharge valve 8 are assembled to the pump body 1 . Fuel is supplied to the pressurizing chamber 11 through the pressurizing chamber inlet passage 1 a formed in the pump body 1 by the electromagnetic suction valve unit 300 . The discharge valve 8 prevents the fuel discharged from the pressure chamber 11 into the discharge passage 12b (FIG. 3) from flowing back. The fuel that has passed through the discharge valve 8 is supplied to the engine through the fuel discharge port 12 of the discharge joint 12c.
 また、ポンプボディ1には、プランジャ2の往復運動をガイドするシリンダ6が取り付けられている。シリンダ6は、ポンプボディ1に圧入し、かしめて固定されている。シリンダ6を圧入することにより、加圧された燃料が、シリンダ6とポンプボディ1との間を介して加圧室11から漏出しないようにシールされる。また、シリンダ6は外周面だけでなく上端面でもポンプボディ1に接触しており、シリンダ6の上端面のポンプボディ1とのメタルタッチも加圧燃料のシールに貢献する。 A cylinder 6 that guides the reciprocating motion of the plunger 2 is attached to the pump body 1 . The cylinder 6 is press-fitted into the pump body 1 and fixed by caulking. By press-fitting the cylinder 6 , the pressurized fuel is sealed so as not to leak from the pressure chamber 11 through the space between the cylinder 6 and the pump body 1 . Further, the cylinder 6 is in contact with the pump body 1 not only on the outer peripheral surface but also on the upper end surface, and the metal contact between the upper end surface of the cylinder 6 and the pump body 1 also contributes to the sealing of the pressurized fuel.
 プランジャ2の下端にはタペット92が設けられており、内燃機関のカムシャフトに取り付けられたカム93の回転運動が、タペット92で上下運動に変換されてプランジャ2に伝達される。プランジャ2にはリテーナ15が装着されており、リテーナ15がばね4で押されてタペット92にプランジャ2が押し付けられている。これにより、カム93の回転運動に伴い、プランジャ2が上下に往復運動する。 A tappet 92 is provided at the lower end of the plunger 2 , and the rotary motion of a cam 93 attached to the camshaft of the internal combustion engine is converted into vertical motion by the tappet 92 and transmitted to the plunger 2 . A retainer 15 is attached to the plunger 2 , and the retainer 15 is pushed by the spring 4 to press the plunger 2 against the tappet 92 . As a result, the plunger 2 reciprocates up and down as the cam 93 rotates.
 また、シールホルダ7の内周の下端部にはプランジャシール13が保持されており、このプランジャシール13がシリンダ6の図中下側に設置されている。プランジャ2の外周にプランジャシール13が摺動可能に接触することにより、プランジャ2が摺動した際の副室7aの燃料がシールされ、内燃機関の内部への燃料の流入が防止される。同時に、内燃機関内の摺動部を潤滑する潤滑油(エンジンオイルも含む)のポンプボディ1の内部への流入もプランジャシール13により防止される。 A plunger seal 13 is held at the lower end of the inner circumference of the seal holder 7, and the plunger seal 13 is installed below the cylinder 6 in the drawing. Since the plunger seal 13 slidably contacts the outer periphery of the plunger 2, the fuel in the auxiliary chamber 7a is sealed when the plunger 2 slides, thereby preventing the fuel from flowing into the internal combustion engine. At the same time, the plunger seal 13 also prevents lubricating oil (including engine oil) for lubricating sliding parts in the internal combustion engine from flowing into the pump body 1 .
 加圧室11の出口に設けられた上記吐出弁8は、シート8a、弁体8b、ばね8c、吐出弁プラグ8d、吐出弁ストッパ8eから構成される。弁体8bはばね8cによりシート8aに向かって付勢され、シート8aに対して弁体8bが接触したり離れたりすることで吐出弁8が開閉する。弁体8bのストローク(移動距離)は吐出弁ストッパ8eで規定される。吐出弁プラグ8dは吐出弁8のボディであり、溶接金属407によりポンプボディ1と接合されている。溶接金属407は、燃料が流れるポンプボディ1の内側空間とポンプボディ1の外部空間とを隔て遮断している。 The discharge valve 8 provided at the outlet of the pressurizing chamber 11 is composed of a seat 8a, a valve body 8b, a spring 8c, a discharge valve plug 8d, and a discharge valve stopper 8e. The valve body 8b is biased toward the seat 8a by a spring 8c, and the discharge valve 8 is opened and closed by contacting or separating the valve body 8b from the seat 8a. The stroke (movement distance) of the valve body 8b is defined by the discharge valve stopper 8e. The discharge valve plug 8 d is the body of the discharge valve 8 and is joined to the pump body 1 with a weld metal 407 . The weld metal 407 separates and isolates the inner space of the pump body 1 through which fuel flows from the outer space of the pump body 1 .
 加圧室11と吐出弁室12aとの間に燃料圧力の差圧がない状態では、弁体8bはばね8cによりシート8aに押し付けられて吐出弁8は閉弁状態となる。加圧室11の燃料圧力が吐出弁室12aの燃料圧力よりも一定以上大きくなると、弁体8bはばね8cに逆らって移動して吐出弁8が開く。このとき、加圧室11内の高圧燃料は、図3に示す吐出弁室12a、吐出通路12b、燃料吐出口12を経てコモンレール23(図1)へと吐出される。また、弁体8bが開閉する運動は吐出弁ストッパ8eの外周面でガイドされてストローク方向に限定されており、吐出弁8は逆止弁としても機能する。 When there is no fuel pressure difference between the pressure chamber 11 and the discharge valve chamber 12a, the valve body 8b is pressed against the seat 8a by the spring 8c, and the discharge valve 8 is closed. When the fuel pressure in the pressure chamber 11 exceeds the fuel pressure in the discharge valve chamber 12a by a certain amount or more, the valve element 8b moves against the spring 8c and the discharge valve 8 opens. At this time, the high-pressure fuel in the pressurization chamber 11 is discharged to the common rail 23 (FIG. 1) through the discharge valve chamber 12a, the discharge passage 12b, and the fuel discharge port 12 shown in FIG. Further, the opening and closing movement of the valve body 8b is guided by the outer peripheral surface of the discharge valve stopper 8e and limited to the stroke direction, and the discharge valve 8 also functions as a check valve.
 加圧室11は、ポンプボディ1、電磁吸入弁ユニット300、プランジャ2、シリンダ6、吐出弁8、リリーフ弁ユニット200により画定される。カム93の回転によりプランジャ2が往復運動し、プランジャ2が加圧室11の容積を拡大する方向に動くと加圧室11に燃料が吸入され、加圧室11の内部の燃料圧力が低下する。この行程で加圧室11の内部の燃料圧力が吸入通路10dの圧力よりも低くなると吸入弁30が開く。 The pressurization chamber 11 is defined by the pump body 1 , the electromagnetic intake valve unit 300 , the plunger 2 , the cylinder 6 , the discharge valve 8 and the relief valve unit 200 . The rotation of the cam 93 causes the plunger 2 to reciprocate, and when the plunger 2 moves in the direction to expand the volume of the pressurizing chamber 11, fuel is drawn into the pressurizing chamber 11, and the fuel pressure inside the pressurizing chamber 11 decreases. . In this stroke, when the fuel pressure inside the pressurizing chamber 11 becomes lower than the pressure in the suction passage 10d, the suction valve 30 opens.
 吸入行程の後、プランジャ2が加圧室11を縮小する方向に動作方向を変わると圧縮行程に移る。ここで、電磁吸入弁ユニット300の電磁コイル43に通電されていない状態では、ロッド付勢ばね40に付勢されて吸入弁30が開く。加圧室11の容積が減少した状態では、加圧室11に吸入された燃料が一旦開弁状態の吸入弁30の開口部を通して吸入通路10dへと戻されるので、加圧室11の圧力が上昇することはない。この行程を戻し行程と称する。 After the suction stroke, when the plunger 2 changes its operating direction to contract the pressurizing chamber 11, it shifts to the compression stroke. Here, when the electromagnetic coil 43 of the electromagnetic suction valve unit 300 is not energized, the suction valve 30 is opened by being biased by the rod biasing spring 40 . When the volume of the pressurization chamber 11 is reduced, the fuel sucked into the pressurization chamber 11 is returned to the intake passage 10d through the opening of the intake valve 30, which is in the open state. It never rises. This stroke is called a return stroke.
 次に、電磁吸入弁ユニット300について図5を用いて説明する。図5は図3中のV-V線による矢視断面図であり、吸入弁が開いた状態を示している。 Next, the electromagnetic suction valve unit 300 will be explained using FIG. FIG. 5 is a cross-sectional view taken along line VV in FIG. 3, showing a state in which the intake valve is open.
 電磁吸入弁ユニット300は、電磁コイル43への通電により、磁性コア(固定コア)39、可動コア36及びロッド35に並んで配置される吸入弁30を駆動することで、燃料を吸入し加圧室11に送る。無通電状態ではロッド付勢ばね40により吸入弁30が開弁方向に押されるが、ECU27からの制御信号が電磁吸入弁ユニット300に印加されると、電磁コイル43には端子46を介して電流が流れ、磁性コア39に磁気吸引力が発生する。これに伴い、磁気吸引面Sにおいて可動コア36が磁性コア39の磁気吸引力により閉弁方向に引き寄せられる。可動コア36と吸入弁30との間にはロッド35が配置され、ロッド35には可動コア36を係止するフランジ部35aが備わっている。電磁コイル43が配置された電磁コイル室は蓋部材44で覆われており、磁性コア39は蓋部材44を保持する部材を兼ねる。ロッド付勢ばね40は、磁性コア39の蓋部材44を保持する部分で覆われている。 The electromagnetic suction valve unit 300 drives the magnetic core (fixed core) 39, the movable core 36, and the rod 35 by energizing the electromagnetic coil 43 to drive the suction valve 30, which sucks fuel and pressurizes it. Send to Room 11. In the non-energized state, the rod biasing spring 40 pushes the suction valve 30 in the valve opening direction. flows, and a magnetic attraction force is generated in the magnetic core 39 . Along with this, the movable core 36 is pulled toward the valve closing direction on the magnetic attraction surface S by the magnetic attraction force of the magnetic core 39 . A rod 35 is arranged between the movable core 36 and the intake valve 30 , and the rod 35 is provided with a flange portion 35 a for locking the movable core 36 . The electromagnetic coil chamber in which the electromagnetic coil 43 is arranged is covered with a lid member 44 , and the magnetic core 39 also serves as a member for holding the lid member 44 . The rod biasing spring 40 is covered with the portion of the magnetic core 39 that holds the lid member 44 .
 ロッド35は、フランジ部35aで可動コア36に係止し、可動コア36が磁性コア39側に移動する際に可動コア36と共に移動する。そのため、可動コア36に磁気吸引力が働いたときにロッド35が閉弁方向に移動する。可動コア36と吸入弁30との間には、可動コア36を閉弁方向に付勢する閉弁付勢ばね41と、ロッド35を開閉弁方向にガイドするロッドガイド部材37とが配置されている。ロッドガイド部材37は、閉弁付勢ばね41のばね座37bを構成する。また、ロッドガイド部材37には燃料通路37aが設けられており、可動コア36が配置された空間への燃料の流入出を可能にしている。 The rod 35 is locked to the movable core 36 at the flange portion 35a, and moves together with the movable core 36 when the movable core 36 moves toward the magnetic core 39 side. Therefore, when the magnetic attraction force acts on the movable core 36, the rod 35 moves in the valve closing direction. Between the movable core 36 and the intake valve 30, a valve-closing biasing spring 41 that biases the movable core 36 in the valve-closing direction and a rod guide member 37 that guides the rod 35 in the valve-opening/closing direction are arranged. there is The rod guide member 37 constitutes a spring seat 37b of the valve closing biasing spring 41 . Further, a fuel passage 37a is provided in the rod guide member 37, allowing fuel to flow into and out of the space in which the movable core 36 is arranged.
 可動コア36、閉弁付勢ばね41及びロッド35等は、ポンプボディ1に固定された電磁吸入弁ユニットハウジング38に内包されている。また、磁性コア39、ロッド付勢ばね40、電磁コイル43及びロッドガイド部材37等は、電磁吸入弁ユニットハウジング38に支持されている。ロッドガイド部材37は、電磁吸入弁ユニットハウジング38に対し、磁性コア39及び電磁コイル43とは反対側に取り付けられている。このロッドガイド部材37は、吸入弁30、吸入弁付勢ばね33及びストッパ32を内包しており、電磁吸入弁ユニットハウジング38の一部を構成する。 The movable core 36 , the valve closing biasing spring 41 , the rod 35 and the like are contained in an electromagnetic intake valve unit housing 38 fixed to the pump body 1 . Also, the magnetic core 39 , the rod biasing spring 40 , the electromagnetic coil 43 , the rod guide member 37 and the like are supported by the electromagnetic intake valve unit housing 38 . The rod guide member 37 is attached to the electromagnetic suction valve unit housing 38 on the side opposite to the magnetic core 39 and the electromagnetic coil 43 . The rod guide member 37 includes the suction valve 30 , the suction valve biasing spring 33 and the stopper 32 , and constitutes a part of the electromagnetic suction valve unit housing 38 .
 吸入弁30、吸入弁付勢ばね33及びストッパ32は、ロッド35における磁性コア39の反対側に備わっている。吸入弁30には、加圧室11側に突出したガイド部30bが備わっており、このガイド部30bが吸入弁付勢ばね33によりガイドされる。吸入弁30はロッド35の移動に伴って弁体ストローク30eだけ開弁方向(弁座31aから離れる方向)に移動して開弁状態となり、吸入通路10dから加圧室11に燃料が供給される。ガイド部30bは、ストッパ32に衝突することにより動きを停止する。ストッパ32は、電磁吸入弁ユニット300のハウジング(ロッドガイド部材37)の内部に圧入されて固定されている。ロッド35と吸入弁30は、互いに独立した別部材である。 The suction valve 30 , the suction valve biasing spring 33 and the stopper 32 are provided on the opposite side of the magnetic core 39 on the rod 35 . The suction valve 30 is provided with a guide portion 30 b projecting toward the pressurizing chamber 11 side, and the guide portion 30 b is guided by a suction valve biasing spring 33 . As the rod 35 moves, the intake valve 30 moves in the valve opening direction (the direction away from the valve seat 31a) by the valve body stroke 30e to be in the open state, and fuel is supplied to the pressure chamber 11 from the intake passage 10d. . The guide portion 30b stops moving by colliding with the stopper 32 . The stopper 32 is press-fitted and fixed inside the housing (rod guide member 37 ) of the electromagnetic suction valve unit 300 . The rod 35 and the intake valve 30 are separate members independent of each other.
 吸入弁30は、吸入側に配置された弁座部材31の弁座31aに接触することで加圧室11への流路を閉じ、また弁座31aから離れることで加圧室11への流路を開く。磁気付勢力がロッド付勢ばね40の付勢力に打ち勝ってロッド35が吸入弁30から離れる方向に移動すると、吸入弁付勢ばね33による付勢力と、吸入通路10dに流れ込む燃料の流体力とにより、吸入弁30が閉弁する。閉弁後、プランジャ2の動作による加圧室11の容積減少と共に加圧室11の燃料圧力が上昇し、加圧室11の圧力が燃料吐出口12の圧力以上になると、吐出弁8を介して高圧燃料が高圧ポンプから吐出されてコモンレール23に供給される。この行程を吐出行程と称する。高圧ポンプから吐出される燃料は、電磁コイル43への通電タイミングで制御できる。 The suction valve 30 closes the flow path to the pressurizing chamber 11 by contacting the valve seat 31a of the valve seat member 31 arranged on the suction side, and closes the flow path to the pressurizing chamber 11 by moving away from the valve seat 31a. open the road When the magnetic biasing force overcomes the biasing force of the rod biasing spring 40 and the rod 35 moves away from the intake valve 30, the biasing force of the suction valve biasing spring 33 and the fluid force of the fuel flowing into the intake passage 10d , the intake valve 30 closes. After the valve is closed, the volume of the pressurizing chamber 11 decreases due to the operation of the plunger 2 and the fuel pressure in the pressurizing chamber 11 increases. Then, high pressure fuel is discharged from the high pressure pump and supplied to the common rail 23 . This stroke is called a discharge stroke. The fuel discharged from the high-pressure pump can be controlled by the timing of energizing the electromagnetic coil 43 .
 リリーフ弁ユニット200は、リリーフ弁カバー201、ボール弁202、リリーフ弁押え203、ばね204、及びばねホルダ205を含んで構成される。リリーフ弁ユニット200は、コモンレール23やその下流側の部材に何らかの問題が生じ、許容値を超えて高圧になった場合にのみボール弁202が開いて燃料を加圧室11に戻す。 The relief valve unit 200 includes a relief valve cover 201, a ball valve 202, a relief valve retainer 203, a spring 204, and a spring holder 205. The relief valve unit 200 opens the ball valve 202 to return the fuel to the pressurization chamber 11 only when the common rail 23 or its downstream members have some problem and the pressure exceeds the allowable value.
 -溶接金属-
 ポンプボディ1には、部品組み付け用の貫通孔が複数形成されており、これら貫通孔にそれぞれ組み付け部品が挿入されて溶接により接合されている。吐出弁8や吐出ジョイント12c等がその例である。吐出弁8のボディ(吐出プラグ8d)や吐出ジョイント12cは、レーザ溶接により形成された溶接金属407を介してポンプボディ1と接合されている。溶接金属407は、吐出プラグ8dの外周部を囲い、ポンプボディ1と吐出プラグ8dとの対向部に沿って環状に形成されている。吐出ジョイント12cとポンプボディ1とを接合する溶接金属407も、同じように吐出ジョイント12cの外周部を囲い、ポンプボディ1と吐出ジョイント12cとの対向部に沿って環状に形成されている。これら溶接金属407の内部の凝固割れやブローホール等の欠陥の発生を抑えることは、溶接部の信頼性を十分に確保する観点で重要である。特に、ポンプボディ1の内部の燃料の流路に臨む溶接部の信頼性は、ポンプボディ1からの燃料の漏出を防止する観点で重要であり、溶接部には十分な強度が求められる。
-Weld metal-
A plurality of through holes for assembling parts are formed in the pump body 1, and assembling parts are inserted into these through holes and joined by welding. Examples thereof include the discharge valve 8 and the discharge joint 12c. The body (discharge plug 8d) of the discharge valve 8 and the discharge joint 12c are joined to the pump body 1 via a weld metal 407 formed by laser welding. The weld metal 407 surrounds the outer peripheral portion of the discharge plug 8d and is annularly formed along the facing portion between the pump body 1 and the discharge plug 8d. The weld metal 407 that joins the discharge joint 12c and the pump body 1 similarly surrounds the outer peripheral portion of the discharge joint 12c and is annularly formed along the facing portion between the pump body 1 and the discharge joint 12c. Suppressing the occurrence of defects such as solidification cracks and blowholes inside the weld metal 407 is important from the viewpoint of sufficiently ensuring the reliability of the weld. In particular, the reliability of the welded portion facing the fuel flow path inside the pump body 1 is important from the viewpoint of preventing leakage of fuel from the pump body 1, and the welded portion is required to have sufficient strength.
 図6は図4のVI部の拡大図、つまりポンプボディ1と吐出プラグ8dとの溶接部の拡大図である。また、図7は図6に示した部位の溶接前の状態を表した拡大図である。ここでは図6及び図7を用いてポンプボディ1と吐出プラグ8dとの溶接部の構造について説明するが、ポンプボディ1と吐出ジョイント12cとの溶接部も同様の構成である。 Fig. 6 is an enlarged view of the VI section of Fig. 4, that is, an enlarged view of the welded portion between the pump body 1 and the discharge plug 8d. 7 is an enlarged view showing the state before welding of the portion shown in FIG. Here, the structure of the welded portion between the pump body 1 and the discharge plug 8d will be described with reference to FIGS. 6 and 7. The welded portion between the pump body 1 and the discharge joint 12c has the same structure.
 図7に示したように、ポンプボディ1に形成された部品組み付け用の貫通孔413に挿入される吐出プラグ8dは、溶接予定部(溶接後に溶接金属407が形成される部分)とは別途形成された圧入部405が、ポンプボディ1に圧入されて固定されている。圧入部405は、吐出プラグ8dの中心線Oの方向において溶接予定部よりもポンプボディ1の内部側に位置する。このとき、溶接前の吐出プラグ8dには鍔414が備わっており、ポンプボディ1の外壁の圧入受面406に鍔414が当たる位置までポンプボディ1に吐出プラグ8dが圧入される。溶接前の段階では、ポンプボディ1の貫通孔413の内周面とこれに対向する吐出プラグ8dの外周面との間には、圧入部405と異なり僅かな隙間GPが存在する。この隙間GPはポンプボディ1の内部に向かって先細る円錐形状をしており、図7の断面で見てポンプボディ1の内部に向かうにつれて吐出プラグ8dの中心線Oに近付くように中心線Oに対して傾斜している。また、隙間GP(ポンプボディ1と吐出プラグ8dとの対向部)と圧入部405との間には、空隙400が形成されている。ポンプボディ1と吐出プラグ8dを溶接する場合、図7の状態で隙間GPに位置を合わせて吐出プラグ8dの鍔414のレーザ照射面404にレーザLBを照射し、環状の隙間GPに沿ってレーザLBを周回させる。レーザLBの光軸は図7の断面において隙間GPの傾斜に合わせて吐出プラグ8dの中心線Oに対して傾斜させる。 As shown in FIG. 7, the discharge plug 8d inserted into the through hole 413 for assembling parts formed in the pump body 1 is formed separately from the portion to be welded (the portion where the weld metal 407 is formed after welding). The pressed-in portion 405 is press-fitted and fixed to the pump body 1 . The press-fit portion 405 is located inside the pump body 1 from the portion to be welded in the direction of the center line O of the discharge plug 8d. At this time, the discharge plug 8d before welding is provided with a flange 414, and the discharge plug 8d is press-fitted into the pump body 1 to a position where the flange 414 contacts the press-fitting receiving surface 406 of the outer wall of the pump body 1. Before welding, there is a slight gap GP between the inner peripheral surface of the through-hole 413 of the pump body 1 and the outer peripheral surface of the discharge plug 8d opposed thereto, unlike the press-fit portion 405 . This gap GP has a conical shape that tapers toward the inside of the pump body 1, and the center line O of the discharge plug 8d approaches the center line O of the discharge plug 8d toward the inside of the pump body 1 as viewed in cross section in FIG. is tilted with respect to A gap 400 is formed between the gap GP (the portion facing the pump body 1 and the discharge plug 8 d ) and the press-fitting portion 405 . When welding the pump body 1 and the discharge plug 8d, the position is aligned with the gap GP in the state of FIG. Rotate the LB. The optical axis of the laser LB is inclined with respect to the center line O of the discharge plug 8d in accordance with the inclination of the gap GP in the cross section of FIG.
 この溶接の結果、図6に示したように、隙間GPが存在していた箇所を中心にポンプボディ1と吐出プラグ8dの対向部が溶融して凝固し、ポンプボディ1と吐出プラグ8dとを接合する溶接金属407が形成される。空隙400が存在することから、溶接金属407には、レーザLBの入射側の(ポンプボディ1の外側の空間に露出した)表面である表ビード415の他、空隙400に露出した裏ビード416が形成されている。図6の断面において、表ビード415の幅方向の中心と裏ビード416の幅方向の中心とを通る直線407aは、溶接前の隙間GPに対応して吐出プラグ8dの中心線Oに対して傾斜している。この溶接金属407が吐出プラグ8dの全周に形成されていて、ポンプボディ1と吐出プラグ8dとの対向部が溶接金属407でシールされ、ポンプボディ1からの燃料の漏出が抑止されている。 As a result of this welding, as shown in FIG. 6, the facing portion between the pump body 1 and the discharge plug 8d is melted and solidified, centering on the portion where the gap GP existed, and the pump body 1 and the discharge plug 8d are separated. Joining weld metal 407 is formed. Since the gap 400 exists, the weld metal 407 has a front bead 415, which is the surface on the incident side of the laser LB (exposed to the space outside the pump body 1), and a back bead 416 exposed in the gap 400. formed. In the cross section of FIG. 6, a straight line 407a passing through the widthwise center of the front bead 415 and the widthwise center of the rear bead 416 is inclined with respect to the center line O of the discharge plug 8d corresponding to the gap GP before welding. is doing. The weld metal 407 is formed around the entire circumference of the discharge plug 8d, and the opposing portion between the pump body 1 and the discharge plug 8d is sealed with the weld metal 407, thereby preventing leakage of fuel from the pump body 1.
 -溶接金属の欠陥の発生メカニズム-
 図8は溶接時における金属蒸気の蒸気圧によるキーホールの発生メカニズムを説明する概念図である。同図に示したようにレーザLBを金属部材に照射すると、金属部材がレーザLBにより熱せられて融点に達することで融解し、金属部材が一部液体となって溶融池MPが形成される。その後、液化した溶融池MPのレーザ光軸付近の金属部材は、レーザLBにより更に熱せられて昇温し、蒸発して金属蒸気MVとなる。この金属蒸気MVの蒸気圧が溶融池MPを押し広げ、キーホールKHを形成すると解される。また、このキーホールKHはレーザLBを金属部材に照射して直ちに生じるのではなく、溶融池MPの形成及び金属蒸気MVの発生の段階を経て起こる。レーザLBが金属部材の板厚TPを貫通するのはキーホールKHの発生の後の段階であり、キーホールKHの発生後、レーザLBのエネルギーの増加に伴ってキーホールKHが徐々に深くなり、溶融池MPが徐々に深くなって板厚TPを貫通すると解される。
-Mechanism of Defect Occurrence in Weld Metal-
FIG. 8 is a conceptual diagram for explaining the mechanism of keyhole generation due to the vapor pressure of metal vapor during welding. As shown in the figure, when the laser LB is irradiated onto the metal member, the metal member is heated by the laser LB and melts when it reaches the melting point, and the metal member becomes partially liquid to form a molten pool MP. After that, the metal member in the vicinity of the laser optical axis of the liquefied molten pool MP is further heated by the laser LB to raise the temperature and evaporate into a metal vapor MV. It is understood that the vapor pressure of this metal vapor MV expands the molten pool MP and forms the keyhole KH. Moreover, this keyhole KH is not formed immediately after irradiating the metal member with the laser LB, but is formed through the steps of forming the molten pool MP and generating the metal vapor MV. The laser LB penetrates the plate thickness TP of the metal member at a stage after the generation of the keyhole KH. After the generation of the keyhole KH, the keyhole KH gradually becomes deeper as the energy of the laser LB increases. , the molten pool MP gradually deepens and penetrates the plate thickness TP.
 図9A-図9Eは、溶接金属の凝固割れの発生メカニズムを段階的に説明する図である。これらの図においては、金属製の第1の部品A(図1-図7の例ではポンプボディ1)の円筒状の貫通孔THに、金属製の第2の部品B(図1-図7の例では例えば吐出プラグ8d)が圧入されている。そして、第1の部品Aと第2の部品Bの対向部にレーザLBを照射し、第1の部品Aと第2の部品Bを回転させて両部品の円筒状の対向部にレーザLBを走査する過程を図9A-図9Eに表している。  Figs. 9A to 9E are diagrams for explaining the mechanism of solidification cracking in the weld metal step by step. In these figures, a second metal part B (FIGS. 1 to 7) is inserted into a cylindrical through hole TH of a first metal part A (pump body 1 in the example of FIGS. 1 to 7). 2, for example, a discharge plug 8d) is press-fitted. Then, the laser LB is irradiated to the opposing portions of the first component A and the second component B, the first component A and the second component B are rotated, and the laser LB is emitted to the cylindrical opposing portions of both components. The scanning process is represented in FIGS. 9A-9E.
 図9A-図9Eの例では、第1の部品Aと第2の部品Bとの環状の対向部(換言すれば隙間GP)の中心線Oを基準とし、キーホールKHが第1の部品A及び第2の部品Bの板厚TP(図8)を貫通する貫通溶接開始点P1の位置を方位角θ=0°とする。貫通溶接開始点P1は裏ビード416の始端になる。貫通溶接開始点P1から円軌道を描いてレーザLBと共に溶融池MP及びキーホールKHが進行し、レーザLBが通過した部分が順次凝固して溶接金属WMを形成していく。図9Aは、レーザLBが方位角0°≦θ≦270°の位置を進行する間の様子を表している。この間はレーザLBの進行方向に隙間GPが十分に残っており、キーホールKHの内部で発生する金属蒸気MVはレーザ進行方向の隙間GPに流れ込む。それから更にレーザLBが進行し図9Bに示すように方位角θ≧270°の領域に到達すると、溶接金属WMで塞がれた貫通溶接開始点P1にレーザLBが近づくにつれ、レーザLBの進行方向の隙間GPが徐々になくなっていく。更にレーザLBが貫通溶接開始点P1に接近すると、図9Cに示したようにレーザLBの進行方向の隙間GPに流れ込もうとした金属蒸気MVの一部が、貫通溶接開始点P1の溶接金属WMに衝突する。すると、溶接金属WMに衝突した金属蒸気MVが反力によりレーザLBの進行方向と逆方向に押し戻され、図9Dに示したように溶融池MPに含有される。こうして金属蒸気MVを含有した溶融池MPが凝固することにより、図9Eに示したように溶接金属WMにブローホールが発生し、これが金属蒸気MVの内部割れICの要因となり得る。 In the example of FIGS. 9A to 9E, the center line O of the annular opposing portion (in other words, the gap GP) between the first part A and the second part B is used as a reference, and the keyhole KH is the first part A. And the position of the penetration welding start point P1 penetrating through the plate thickness TP (FIG. 8) of the second component B is assumed to be the azimuth angle θ=0°. The penetration welding starting point P1 is the starting point of the back bead 416 . The molten pool MP and the keyhole KH advance along with the laser LB along a circular orbit from the penetration welding start point P1, and the portions through which the laser LB passes solidify sequentially to form the weld metal WM. FIG. 9A shows the situation while the laser LB travels through a position with an azimuth angle of 0°≦θ≦270°. During this time, a sufficient gap GP remains in the traveling direction of the laser LB, and the metal vapor MV generated inside the keyhole KH flows into the gap GP in the traveling direction of the laser. Then, when the laser LB further advances and reaches the region of the azimuth angle θ≧270° as shown in FIG. gap GP gradually disappears. Further, when the laser LB approaches the penetration welding start point P1, part of the metal vapor MV that tried to flow into the gap GP in the traveling direction of the laser LB as shown in FIG. Collision with WM. Then, the metal vapor MV that has collided with the weld metal WM is pushed back in the direction opposite to the traveling direction of the laser LB by the reaction force, and is contained in the molten pool MP as shown in FIG. 9D. When the molten pool MP containing the metal vapor MV is solidified in this manner, blowholes are generated in the weld metal WM as shown in FIG. 9E, which may cause internal cracks IC of the metal vapor MV.
 -接合物の製造方法-
 それに対し、図1-7で説明した高圧ポンプの溶接金属407は、このような内部割れの発生の抑制を図る特殊な溶接方法で形成されている。これにより、図9A-図9Eの例における第1の部品Aに当たるポンプボディ1と、第2の部品Bに当たる吐出プラグ8d(又は吐出ジョイント12c)との強固な接合物が製造されている。この2部品の接合物の製造方法は、レーザエネルギー増加工程、貫通溶接工程、レーザエネルギー切換工程、レーザエネルギー減少工程を含んでいる。
-Manufacturing method of joint-
On the other hand, the weld metal 407 of the high-pressure pump explained with reference to FIGS. 1-7 is formed by a special welding method for suppressing the occurrence of such internal cracks. As a result, a strong joint is manufactured between the pump body 1 corresponding to the first part A and the discharge plug 8d (or discharge joint 12c) corresponding to the second part B in the example of FIGS. 9A to 9E. The method of manufacturing the two-piece joint includes a laser energy increasing step, a penetration welding step, a laser energy switching step, and a laser energy decreasing step.
 レーザエネルギー増加工程は、溶接金属の表ビードの始端(レーザ照射開始位置)から第1の部品及び第2の部品の対向部に沿ってエネルギーを増加させながらレーザを移動させる工程である。この間にレーザLBのエネルギーを裏ビードが形成される設定の貫通エネルギーまで増加させる。レーザエネルギー増加工程では、第1の部品及び第2の部品の板厚に溶融深さが満たないため、裏ビードは形成されない。 The laser energy increasing step is a step of moving the laser while increasing the energy from the front edge of the front bead of the weld metal (laser irradiation start position) along the opposing portions of the first component and the second component. During this time, the energy of the laser LB is increased to the set penetration energy at which the back bead is formed. In the laser energy increasing step, the back bead is not formed because the thickness of the first component and the second component is not sufficient for the melting depth.
 続く貫通溶接工程は、上記貫通エネルギーにレーザLBのエネルギーが到達する位置つまり裏ビードの始端から、貫通エネルギーを保って第1の部品及び第2の部品の対向部に沿ってレーザLBを1週させる工程である。貫通溶接工程では、第1の部品及び第2の部品の板厚に溶融深さが達し貫通溶接が実施されるため、裏ビードが形成される。 In the subsequent penetration welding process, from the position where the energy of the laser LB reaches the above penetration energy, that is, the starting end of the back bead, the penetration energy is maintained and the laser LB is applied along the opposing parts of the first component and the second component for one week. It is a process to let In the penetration welding step, the melt depth reaches the plate thickness of the first component and the second component, and penetration welding is performed, so that a back bead is formed.
 貫通溶接工程に続くレーザエネルギー切換工程は、裏ビードの終端に到達したら(言い換えれば貫通溶接を1周して裏ビードの始端に戻ったら)裏ビードが形成されない設定の非貫通エネルギーにレーザLBのエネルギーを切り換える工程である。これにより、再び第1の部品及び第2の部品の板厚に溶融深さが満たなくなり、裏ビードがここで途切れる。 In the laser energy switching process following the penetration welding process, when the terminal end of the back bead is reached (in other words, when the penetration welding is made once and returned to the beginning of the back bead), the laser LB is set to the non-penetration energy set at which the back bead is not formed. It is the process of switching energy. As a result, the thicknesses of the first component and the second component are not sufficiently melted again, and the back bead is interrupted here.
 レーザエネルギー減少工程は、レーザエネルギー切換工程の後、非貫通エネルギーからエネルギーを下げながら第1の部品及び第2の部品の対向部に沿ってレーザLBを移動させる工程である。この間、レーザLBのエネルギーの減少に伴って溶融深さも浅くなっていき、溶接金属(2週目の溶接金属)は薄くなっていく。レーザLBが表ビードの所定の終端位置に到達したらレーザLBの照射を停止して溶接は完了する。 The laser energy reduction step is a step of moving the laser LB along the opposing portions of the first component and the second component while decreasing the energy from the non-penetrating energy after the laser energy switching step. During this time, as the energy of the laser LB decreases, the depth of fusion also becomes shallower, and the weld metal (weld metal in the second week) becomes thinner. When the laser LB reaches a predetermined end position of the front bead, the irradiation of the laser LB is stopped and the welding is completed.
 図面を用いて以上の接合物の製造方法の具体例を説明する。 A specific example of the manufacturing method of the above-mentioned joined product will be explained using the drawings.
 図10は本発明の一実施形態に係る2部品の接合方法の説明図であり、ポンプボディ1と吐出プラグ8dとの環状の対向部に倣って右回りにレーザLBを照射する例におけるレーザLBのエネルギー制御を表している。図11A-図11Dの各図は図10の接合方法の各段階で起こる現象の説明図である。これらの図に示した方位角は、図9A-図9Eに示した方位角に対応している。ここでは図10及び図11A-図11Dを用いてポンプボディ1と吐出プラグ8dとの溶接について説明するが、ポンプボディ1と吐出ジョイント12cとの溶接も同様である。 FIG. 10 is an explanatory diagram of a method of joining two parts according to one embodiment of the present invention. In an example in which the laser LB is irradiated clockwise along the annular facing portion between the pump body 1 and the discharge plug 8d, represents the energy control of 11A to 11D are explanatory diagrams of phenomena occurring at each stage of the bonding method of FIG. The azimuth angles shown in these figures correspond to the azimuth angles shown in FIGS. 9A-9E. Welding between the pump body 1 and the discharge plug 8d will be described with reference to FIGS. 10 and 11A to 11D, but the welding between the pump body 1 and the discharge joint 12c is the same.
 まず図10において、レーザ照射開始点Xから所定のレーザエネルギー増加回転角度Ruだけポンプボディ1と吐出プラグ8dとの環状の対向部に沿ってレーザLBが進む間、レーザLBのエネルギー量を0から上記貫通エネルギーまで増加させていく。このレーザエネルギー増加回転角度Ruの区間の工程が、レーザエネルギー増加工程である。 First, in FIG. 10, the energy amount of the laser LB is changed from 0 to Increases up to the above penetration energy. The process of the section of this laser energy increase rotation angle Ru is the laser energy increase process.
 その後、更に本溶接回転角度Fp(360°)だけポンプボディ1と吐出プラグ8dとの環状の対向部に沿ってレーザLBが進行する間、ポンプボディ1と吐出プラグ8dの2部品を貫通エネルギーのレーザLBで貫通溶接する。この本溶接回転角度Fpの区間の工程が、貫通溶接工程である。裏ビード416は本溶接回転角度Fpの区間にのみ形成される。この例でも、レーザLBが貫通溶接開始点P1に接近すると、図11Aに示したようにレーザLBの進行方向の隙間GPに流れ込もうとした金属蒸気MVの一部が、貫通溶接開始点P1の溶接金属WMに衝突する(図9Cと同様)。 After that, while the laser LB advances along the annular opposing portion of the pump body 1 and the discharge plug 8d by the main welding rotation angle Fp (360°), the energy that penetrates the two parts, the pump body 1 and the discharge plug 8d, is applied. Penetration welding is performed with a laser LB. The process of the section of this main welding rotation angle Fp is the penetration welding process. The back bead 416 is formed only in the section of the main welding rotation angle Fp. In this example as well, when the laser LB approaches the penetration welding start point P1, a part of the metal vapor MV that tried to flow into the gap GP in the traveling direction of the laser LB as shown in FIG. of the weld metal WM (similar to FIG. 9C).
 本溶接回転角度Fpの通過後、更にレーザエネルギー急低減回転角度Fdだけポンプボディ1と吐出プラグ8dとの環状の対向部に沿ってレーザLBが進行する間にレーザLBのエネルギーを貫通エネルギーから上記非貫通エネルギーに切り換える。このレーザエネルギー急低減回転角度Fdの区間の工程が、レーザエネルギー切換工程である。ここでは、例えばレーザエネルギー急低減回転角度Fdを5-10°程度に設定し、この5-10°の間にレーザLBのエネルギーを15-20%程度急減させる。これにより、図11Bのように、キーホールKHが縮小し、キーホールKHの内部の金属蒸気MVの量が減り、蒸気圧の低下により金属蒸気MVがキーホールKHの中に留まるようになる。 After passing the main welding rotation angle Fp, the energy of the laser LB is reduced from the penetration energy while the laser LB travels along the annular opposing portion of the pump body 1 and the discharge plug 8d by the laser energy sharply decreasing rotation angle Fd. Switch to non-penetrating energy. The process of this section of the laser energy sharply decreasing rotation angle Fd is the laser energy switching process. Here, for example, the laser energy rapid reduction rotation angle Fd is set to about 5-10°, and the energy of the laser LB is rapidly reduced by about 15-20% during this 5-10°. As a result, as shown in FIG. 11B, the keyhole KH shrinks, the amount of the metal vapor MV inside the keyhole KH decreases, and the metal vapor MV stays in the keyhole KH due to the decrease in vapor pressure.
 レーザLBのエネルギーを非貫通エネルギーに落とした後、レーザエネルギー減少回転角度Rdだけポンプボディ1と吐出プラグ8dとの環状の対向部に沿ってレーザLBが進行する間、徐々にレーザLBのエネルギーを減少させる。このレーザエネルギー減少回転角度Rdの区間の工程が、レーザエネルギー減少工程である。これにより、図11Cのように、キーホールKHの内部の金属蒸気MVはレーザ入射側から大気に解放され、その間にキーホールKHは消滅し溶接は終了する。 After reducing the energy of the laser LB to the non-penetrating energy, the energy of the laser LB is gradually increased while the laser LB travels along the annular facing portion of the pump body 1 and the discharge plug 8d by the laser energy reduction rotation angle Rd. Decrease. The process of the section of this laser energy reduction rotation angle Rd is the laser energy reduction process. As a result, as shown in FIG. 11C, the metal vapor MV inside the keyhole KH is released to the atmosphere from the laser incident side, during which the keyhole KH disappears and the welding ends.
 -接合物-
 図10-図11Dで説明した方法で製造した2部品の接合物は、貫通孔を有する第1の部品と、第1の部品の貫通孔に挿し込まれた第2の部品と、第1の部品及び第2の部品の対向部に形成されて第1の部品及び第2の部品を接合する環状の溶接金属とを有している。そして、レーザエネルギー切換工程を経ることで、溶接金属の裏ビードの始端と終端とのオーバーラップ量が、裏ビードの幅よりも小さい特有の溶接痕が残る。
- Bonding -
A two-component bonded product manufactured by the method described in FIGS. An annular weld metal is formed at opposing portions of the part and the second part to join the first part and the second part. Then, through the laser energy switching process, a unique weld trace remains in which the amount of overlap between the starting end and the terminal end of the back bead of the weld metal is smaller than the width of the back bead.
 他方、レーザエネルギー切換工程に連続してレーザエネルギー減少工程が実施されることで、溶接金属の表ビードの始端と終端とのオーバーラップ量は、表ビードの幅よりも大きくなる。こうして裏ビードが形成された貫通溶接部と2週目の表ビードの終端部とがオーバーラップするところ、環状の溶接金属の中心を基準とするこのオーバーラップ部の始端と終端との方位角範囲は30度以上に達する。貫通溶接部と2週目の表ビードの終端部とのオーバーラップ部は、終端に向かって溶融深さが浅くなっている。ここで言う第1の部品には、図1-図7で説明した高圧ポンプではポンプボディ1が相当し、第2の部品には、ポンプボディ1に組み付けられる部品、例えば吐出弁のボディである吐出弁プラグ8d(又は吐出ジョイント12c)が相当する。 On the other hand, by performing the laser energy reduction step following the laser energy switching step, the amount of overlap between the start and end of the front bead of the weld metal becomes larger than the width of the front bead. Where the penetration weld where the back bead is formed and the end of the front bead in the second week overlap, the azimuth angle range between the start and end of this overlap based on the center of the annular weld metal reaches over 30 degrees. The overlap between the penetration weld and the end of the front bead in the second week has a shallower melt depth toward the end. The first part referred to here corresponds to the pump body 1 in the high-pressure pump described with reference to FIGS. 1 to 7, and the second part is a part assembled to the pump body 1, such as the body of the discharge valve. The discharge valve plug 8d (or discharge joint 12c) corresponds.
 以上の接合物について図面を用いて説明する。 The above joints will be explained using drawings.
 図12Aは本発明の一実施形態に係る製造方法(図10)で製造された2部品の接合物の裏ビードの模式図、図12Bは図12A中のXIIB部の拡大図である。 FIG. 12A is a schematic diagram of a back bead of a two-part joined product manufactured by the manufacturing method (FIG. 10) according to one embodiment of the present invention, and FIG. 12B is an enlarged view of the XIIB portion in FIG. 12A.
 前述した通り、本溶接回転角度Fp(図10)の区間でのみ溶融深さが板厚に到達し(板厚を貫通し)貫通溶接が実施されるため、この区間にのみ裏ビード416が形成される。つまり裏ビード416は360°だけ形成される。本溶接回転角度Fpの区間の始端、つまり貫通溶接開始点P1(図10)をレーザLBが通過する際に裏ビード始端部411が形成される。また、本溶接回転角度Fpの区間の終端をレーザLBが通過する際に裏ビード終端部412が形成される。レーザLBが断面円形であるため、裏ビード始端部411と裏ビード終端部412の各々の先端部411a,412aはレーザLBの断面形状に倣って円弧形状になる。本実施形態では、裏ビード始端部411と裏ビード終端部412とが、互いの半円形の先端部411a,412aのみで重なっており、図12Bに示したようにオーバーラップ量OL1は裏ビード416のビード幅BW1よりも小さい。 As described above, the melt depth reaches the plate thickness only in the section of the main welding rotation angle Fp (Fig. 10) (penetrates the plate thickness) and the penetration welding is performed, so the back bead 416 is formed only in this section. be done. That is, the back bead 416 is formed only 360 degrees. A back bead starting end portion 411 is formed when the laser LB passes through the starting end of the section of the main welding rotation angle Fp, that is, the penetration welding starting point P1 (FIG. 10). Further, the rear bead end portion 412 is formed when the laser beam LB passes through the end of the section of the main welding rotation angle Fp. Since the laser LB has a circular cross-section, the tip portions 411a and 412a of the back bead starting end portion 411 and the back bead terminating portion 412 are arcuate following the cross-sectional shape of the laser LB. In this embodiment, the back bead starting end portion 411 and the back bead trailing end portion 412 overlap each other only at the semicircular leading end portions 411a and 412a, and the overlap amount OL1 is the back bead 416 as shown in FIG. 12B. bead width BW1.
 他方、裏ビード416が本溶接回転角度Fpでのみ形成されるのに対し、表ビード415は、レーザエネルギー増加回転角度Ru、本溶接回転角度Fp、レーザエネルギー急低減回転角度Fd、レーザエネルギー減少回転角度Rdの区間で連続的に形成される。従って、本溶接回転角度Fpの区間で形成された貫通溶接部に対して、2周目の表ビード415の終端部は、レーザエネルギー急低減回転角度Fd及びレーザエネルギー減少回転角度Rdの合計区間でオーバーラップする。このオーバーラップ量OL2(図11D)は、表ビード415のビード幅BW2(図11D)よりも広い。表ビード415の終端部と貫通溶接部とのオーバーラップ部の始端と終端との方位角範囲φ(図11D)は、前述した通り30度以上である。 On the other hand, the back bead 416 is formed only at the main welding rotation angle Fp, while the front bead 415 is formed at the laser energy increase rotation angle Ru, the main welding rotation angle Fp, the laser energy sharp decrease rotation angle Fd, and the laser energy decrease rotation angle. It is formed continuously in the section of angle Rd. Therefore, with respect to the penetration weld formed in the section of the main welding rotation angle Fp, the end portion of the front bead 415 in the second round is the total section of the laser energy sharp reduction rotation angle Fd and the laser energy reduction rotation angle Rd. overlap. This overlap amount OL2 (FIG. 11D) is wider than the bead width BW2 of the front bead 415 (FIG. 11D). The azimuth angle range φ (FIG. 11D) between the start and end of the overlapping portion between the end portion of the front bead 415 and the penetration weld portion is 30 degrees or more as described above.
 -効果-
 (1)本実施形態によれば、上記の通り、貫通溶接開始後、第1の部材と第2の部材との対向部を1周して貫通溶接開始点P1にレーザLBが戻ってくるタイミングで、レーザLBのエネルギーを非貫通エネルギーに急減させる。これにより、溶接金属の裏ビードの始端と終端とのオーバーラップ量OL1が、裏ビードのビード幅BW1よりも小さくなる。この溶接金属の形成過程において、レーザLBのエネルギーを非貫通エネルギーに急減させる工程を経て、上記の通り金属蒸気MVが急減してキーホールKHの内部に止まり、溶融池MPが金属蒸気MVを内包して凝固する現象の発生が抑制される。このように、2部品を接合する溶接金属の内部割れやブローホールの発生を抑制でき、2部品の接合物の信頼性の向上、大量生産における溶接品質の維持管理コストの削減等の効果が期待できる。溶接金属の内部割れが効果的に抑制されるため、高圧燃料を溶接金属で効果的にシールできる。
-effect-
(1) According to the present embodiment, as described above, after the start of penetration welding, the timing at which the laser LB returns to the penetration welding start point P1 after making one turn around the facing portion between the first member and the second member , the energy of the laser LB is rapidly reduced to non-penetrating energy. As a result, the overlap amount OL1 between the start end and the end of the back bead of the weld metal becomes smaller than the bead width BW1 of the back bead. In the process of forming the weld metal, through the step of rapidly reducing the energy of the laser LB to the non-penetrating energy, the metal vapor MV is rapidly reduced as described above and stops inside the keyhole KH, and the molten pool MP contains the metal vapor MV. The occurrence of the phenomenon of solidification is suppressed. In this way, it is possible to suppress the occurrence of internal cracks and blowholes in the weld metal that joins the two parts, which is expected to improve the reliability of the joint of the two parts and reduce the maintenance and management cost of welding quality in mass production. can. Since internal cracks in the weld metal are effectively suppressed, high-pressure fuel can be effectively sealed with the weld metal.
 (2)本実施形態の場合、溶接金属の裏ビードが端部のみでオーバーラップするのに対し、溶接金属の表ビードのオーバーラップ量OL2は、表ビード415のビード幅BW2よりも大きい。特に本実施形態では、溶接金属の貫通溶接部と表ビードの終端部とのオーバーラップ部は、方位角範囲で30度以上の広範囲が確保されているので、2部品を強固に接合することができ、2部品の接合物の強度面での信頼性も十分に確保される。その際、貫通溶接部と表ビードの終端部とのオーバーラップ部の溶融深さが終端に向かって浅くなるようにレーザエネルギー減少工程を経て溶接を完了することで、オーバーラップ部においてもブローホールの発生をより効果的に抑制できる。 (2) In the case of the present embodiment, the back bead of the weld metal overlaps only at the ends, whereas the overlap amount OL2 of the front bead of the weld metal is larger than the bead width BW2 of the front bead 415 . In particular, in this embodiment, the overlapping portion between the penetration weld portion of the weld metal and the end portion of the front bead secures a wide range of 30 degrees or more in the azimuth angle range, so that the two parts can be firmly joined. It is possible to secure sufficient reliability in terms of strength of the joint of the two parts. At that time, by completing the welding through the laser energy reduction process so that the melting depth of the overlapping part between the penetration weld part and the end part of the front bead becomes shallower toward the end, blowholes are generated even in the overlap part. can be more effectively suppressed.
 (3)上記実施形態のように、高圧燃料ポンプのポンプボディ1とこれに組み付けられる部品(例えば吐出プラグ8d)の接合物、特に高圧燃料に臨む部分には、上記方法を好適に適用することができる。具体的には、高圧ポンプのポンプボディ1の内部は高圧になるため、燃料の漏洩等を抑制する観点でも吐出プラグ8d等の組み付け部品のシール性能は重要であり、図6及び図7で説明したように締まり嵌めと溶接で確りと固定する構造が採用される場合がある。しかし、締まり嵌め部と溶接部の双方においてポンプボディ1と取付部品との対向面が丁度接触するように部品を製作することは精度面で容易ではない。そこで、図7で説明したように、溶接する部分は隙間嵌め構造にすることがある。しかし、この場合、十分な溶け込み深さを得るために高密度なレーザを使用する必要があり、高密度なレーザを使用することにより溶接中に金属蒸気が多く発生し溶融池に取り込まれ易くなる。このような事情から、上記の通り溶融池に金属蒸気が含まれることを効果的に抑制できる上記方法は、高圧ポンプのポンプボディ1とこれに組み付ける部品との接合に好適に適用することができる。 (3) As in the above-described embodiment, the above-described method is preferably applied to the joint between the pump body 1 of the high-pressure fuel pump and the parts (for example, the discharge plug 8d) attached thereto, particularly to the portion facing the high-pressure fuel. can be done. Specifically, since the inside of the pump body 1 of the high-pressure pump is under high pressure, the sealing performance of the assembly parts such as the discharge plug 8d is important from the viewpoint of suppressing fuel leakage, etc., which will be explained with reference to FIGS. 6 and 7. In some cases, a structure that is firmly fixed by interference fitting and welding as described above is adopted. However, it is not easy in terms of accuracy to manufacture the parts so that the facing surfaces of the pump body 1 and the mounting part just contact each other at both the interference fit portion and the welded portion. Therefore, as described with reference to FIG. 7, the portion to be welded may have a clearance fit structure. However, in this case, it is necessary to use a high-density laser to obtain a sufficient penetration depth, and using a high-density laser causes a large amount of metal vapor to be generated during welding, making it easier for it to be taken into the molten pool. . Under these circumstances, the above-described method, which can effectively suppress the inclusion of metal vapor in the molten pool as described above, can be suitably applied to the joining of the pump body 1 of a high-pressure pump and parts to be assembled therewith. .
 -変形例-
 以上の実施形態では、高圧ポンプのポンプボディ1と吐出プラグ8dとの接合に発明を適用した場合を例示したが、上記の通り高圧ポンプのポンプボディ1と吐出ジョイント12cとの接合にも発明は適用可能であり、同様の効果を得ることができる。また、高圧ポンプに限らず、他の製品にも発明は適用可能である。例えば燃料噴射弁(図1のインジェクタ24等)を組み付けて溶接により接合する場合にも本発明は適用可能であり、同様の効果を奏する。また、図1-7では、いわゆるノーマルオープン式の高圧ポンプを説明したが、ノーマルクローズ式の高圧ポンプにも本発明は適用可能である。
-Modification-
In the above embodiment, the case where the invention is applied to the joint between the pump body 1 of the high-pressure pump and the discharge plug 8d was exemplified. can be applied and similar effects can be obtained. Moreover, the invention is applicable not only to high-pressure pumps but also to other products. For example, the present invention can be applied to a case where a fuel injection valve (such as the injector 24 in FIG. 1) is assembled and joined by welding, and the same effect can be obtained. In addition, although the so-called normally open high-pressure pump has been described in FIGS. 1-7, the present invention can also be applied to a normally closed high-pressure pump.
 また、上記の例では貫通溶接を丁度360°だけ実施する例を説明したが、貫通溶接する範囲の多少の増減、例えば360±5°程度は許容される。レーザLBが形成する溶融池は点ではなく、体積を持った断面円形の立体であるためである。従って、例えば貫通溶接の範囲を355°程度に抑え、355°貫通溶接をしたところでレーザLBのエネルギーを非貫通エネルギーに急減するようにしても良い。また、表ビード415を30°以上オーバーラップさせる例を説明したが、このオーバーラップ量は好適と解される一例であり、表ビード415のオーバーラップ量OL2については適宜設計変更可能である。 Also, in the above example, an example in which penetration welding is performed exactly at 360° was explained, but a slight increase or decrease in the range of penetration welding, for example, about 360±5° is allowed. This is because the molten pool formed by the laser LB is not a point but a three-dimensional volume with a circular cross section. Therefore, for example, the range of penetration welding may be limited to about 355°, and the energy of the laser LB may be rapidly reduced to non-penetration energy after 355° penetration welding. Also, an example in which the front bead 415 overlaps by 30° or more has been described, but this overlap amount is an example that is considered preferable, and the overlap amount OL2 of the front bead 415 can be appropriately changed in design.
1…ポンプボディ、8d…吐出プラグ(組み付けられる部品、吐出弁のボディ)、12c…吐出ジョイント(組み付けられる部品)、411…裏ビード始端、415…表ビード、416…裏ビード、A…第1の部品、B…第2の部品、BW1,BW2…裏ビード幅、LB…レーザ、OL1,OL2…オーバーラップ量、WM…溶接金属、φ…方位角範囲 Reference Signs List 1 Pump body 8d Discharge plug (mounted part, discharge valve body) 12c Discharge joint (mounted part) 411 Back bead start end 415 Front bead 416 Back bead A First first parts, B... second part, BW1, BW2... back bead width, LB... laser, OL1, OL2... overlap amount, WM... weld metal, φ... azimuth angle range

Claims (7)

  1.  貫通孔を有する第1の部品と、
     前記第1の部品の貫通孔に挿し込まれた第2の部品と、
     前記第1の部品及び前記第2の部品の対向部に形成されて前記第1の部品及び前記第2の部品を接合する環状の溶接金属とを有し、
     前記溶接金属の裏ビードの始端と終端とのオーバーラップ量が、前記裏ビードの幅よりも小さいことを特徴とする2部品の接合物。
    a first part having a through hole;
    a second component inserted into the through hole of the first component;
    an annular weld metal formed at opposing portions of the first component and the second component and joining the first component and the second component;
    A joined product of two parts, wherein the amount of overlap between the start end and the end of the back bead of the weld metal is smaller than the width of the back bead.
  2.  請求項1の2部品の接合物において、
     前記溶接金属の表ビードの始端と終端とのオーバーラップ量が、前記表ビードの幅よりも大きいことを特徴とする2部品の接合物。
    The two-part joint of claim 1, wherein
    A joined product of two parts, wherein the amount of overlap between the front end and the end of the front bead of the weld metal is larger than the width of the front bead.
  3.  請求項2の2部品の接合物において、
     前記裏ビードが形成された貫通溶接部と前記表ビードの終端部とのオーバーラップ部は、前記環状の溶接金属の中心を基準として始端と終端との方位角範囲が30度以上であることを特徴とする2部品の接合物。
    The two-part joint of claim 2,
    The overlapping part between the penetration weld part where the back bead is formed and the terminal part of the front bead has an azimuth angle range of 30 degrees or more between the starting end and the terminal end with respect to the center of the annular weld metal. A two-part joint characterized by:
  4.  請求項3の2部品の接合物において、
     前記貫通溶接部と前記表ビードの終端部とのオーバーラップ部は、終端に向かって溶融深さが浅くなっていることを特徴とする2部品の接合物。
    The two-part joint of claim 3,
    A joined product of two parts, wherein an overlapping portion between the through-welded portion and the end portion of the front bead has a melting depth shallower toward the end portion.
  5.  請求項1の2部品の接合物において、
     前記第1の部品が、高圧燃料ポンプのポンプボディであり、
     前記第2の部品が、前記ポンプボディに組み付けられる部品である
    ことを特徴とする2部品の接合物。
    The two-part joint of claim 1, wherein
    wherein the first component is a pump body of a high-pressure fuel pump;
    A two-part joint, wherein the second part is a part assembled to the pump body.
  6.  請求項5の2部品の接合物において、
     前記第2の部品が、吐出弁のボディである
    ことを特徴とする2部品の接合物。
    The two-part joint of claim 5,
    A two-part joint, wherein said second part is the body of a discharge valve.
  7.  請求項2の2部品の接合物の製造方法であって、
     前記表ビードの始端から前記第1の部品及び前記第2の部品の対向部に沿ってエネルギーを増加させながらレーザを移動させ、
     前記裏ビードが形成される設定の貫通エネルギーに前記レーザのエネルギーが到達する前記裏ビードの始端から、前記第1の部品及び前記第2の部品の対向部に沿って前記貫通エネルギーを保って前記レーザを1週させ、
     前記裏ビードの終端に到達したら前記裏ビードが形成されない設定の非貫通エネルギーに前記レーザのエネルギーを切り換えた後、
     前記非貫通エネルギーからエネルギーを下げながら前記第1の部品及び前記第2の部品の対向部に沿ってレーザを移動させ、
     前記レーザが前記表ビードの終端に到達したら前記レーザの照射を停止して溶接を完了する
    ことを特徴とする接合物の製造方法。
    A method of manufacturing a two-part joint according to claim 2, comprising:
    moving the laser from the beginning of the front bead along the opposing portions of the first part and the second part while increasing the energy;
    From the beginning of the back bead where the energy of the laser reaches the set penetration energy at which the back bead is formed, along the opposing parts of the first component and the second component, the penetration energy is maintained and the let the laser go on for a week,
    After switching the energy of the laser to a non-penetrating energy setting at which the back bead is not formed when the back bead reaches the end of the back bead,
    moving the laser along opposing portions of the first and second parts while decreasing the energy from the non-penetrating energy;
    A method for manufacturing a joined article, wherein when the laser reaches the end of the front bead, the irradiation of the laser is stopped to complete the welding.
PCT/JP2021/031756 2021-01-20 2021-08-30 Two-component joined article and method for producing same WO2022158025A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180079973.7A CN116529475A (en) 2021-01-20 2021-08-30 Two-component joint and method for manufacturing same
JP2022576959A JP7502476B2 (en) 2021-01-20 2021-08-30 Two-part joint and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021007079 2021-01-20
JP2021-007079 2021-01-20

Publications (1)

Publication Number Publication Date
WO2022158025A1 true WO2022158025A1 (en) 2022-07-28

Family

ID=82549672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031756 WO2022158025A1 (en) 2021-01-20 2021-08-30 Two-component joined article and method for producing same

Country Status (3)

Country Link
JP (1) JP7502476B2 (en)
CN (1) CN116529475A (en)
WO (1) WO2022158025A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003071579A (en) * 2001-08-30 2003-03-11 Mitsubishi Heavy Ind Ltd Laser beam welding device
JP2016182620A (en) * 2015-03-26 2016-10-20 日立造船株式会社 Pipe laser welding method and coil manufactured using welding method
JP2017524531A (en) * 2014-05-16 2017-08-31 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツングMAHLE International GmbH Manufacturing method of piston for internal combustion engine and piston manufactured by the method
JP6734941B2 (en) * 2017-01-31 2020-08-05 日立オートモティブシステムズ株式会社 High pressure fuel supply pump

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003071579A (en) * 2001-08-30 2003-03-11 Mitsubishi Heavy Ind Ltd Laser beam welding device
JP2017524531A (en) * 2014-05-16 2017-08-31 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツングMAHLE International GmbH Manufacturing method of piston for internal combustion engine and piston manufactured by the method
JP2016182620A (en) * 2015-03-26 2016-10-20 日立造船株式会社 Pipe laser welding method and coil manufactured using welding method
JP6734941B2 (en) * 2017-01-31 2020-08-05 日立オートモティブシステムズ株式会社 High pressure fuel supply pump

Also Published As

Publication number Publication date
JP7502476B2 (en) 2024-06-18
JPWO2022158025A1 (en) 2022-07-28
CN116529475A (en) 2023-08-01

Similar Documents

Publication Publication Date Title
JP6430354B2 (en) High pressure fuel supply pump
JP6734941B2 (en) High pressure fuel supply pump
US20210215127A1 (en) Method for manufacturing assembly, parts set, method for manufacturing fuel injection pump, and fuel injection pump
WO2017038298A1 (en) High-pressure fuel pump and method for producing same
WO2022158025A1 (en) Two-component joined article and method for producing same
US20210207567A1 (en) Fuel supply pump
JP7198363B2 (en) Electromagnetic intake valve and high pressure fuel supply pump
WO2017175539A1 (en) High-pressure fuel supply pump
JP2019143562A (en) Discharge valve mechanism and fuel supply pump having the same
JP5178676B2 (en) High pressure fuel supply pump
US11713741B2 (en) Fuel supply pump
JP7284348B2 (en) high pressure fuel supply pump
JP6626728B2 (en) High pressure fuel supply pump
JP7178504B2 (en) Fuel pump
WO2020255524A1 (en) Joint structure and high-pressure fuel supply pump using same
JP2023173797A (en) Welding method and welding method for fuel pump
JP6938101B2 (en) Manufacturing method of high-pressure fuel supply pump and high-pressure fuel supply pump
JP2008163772A (en) Fuel control valve
JP2023090295A (en) high pressure fuel supply pump
WO2024084567A1 (en) Fuel pump
JP2019218896A (en) Vehicle component and fuel pump having the same
JP6952191B2 (en) Fuel pump
WO2023058287A1 (en) Electromagnetic intake valve mechanism and fuel pump
JP7110384B2 (en) Fuel pump
WO2023062684A1 (en) Electromagnetic suction valve and fuel supply pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921130

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022576959

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180079973.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21921130

Country of ref document: EP

Kind code of ref document: A1