JP2016182032A - ローター固定用樹脂組成物、ローター、および自動車 - Google Patents

ローター固定用樹脂組成物、ローター、および自動車 Download PDF

Info

Publication number
JP2016182032A
JP2016182032A JP2016131273A JP2016131273A JP2016182032A JP 2016182032 A JP2016182032 A JP 2016182032A JP 2016131273 A JP2016131273 A JP 2016131273A JP 2016131273 A JP2016131273 A JP 2016131273A JP 2016182032 A JP2016182032 A JP 2016182032A
Authority
JP
Japan
Prior art keywords
rotor
resin composition
fixing
resin
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016131273A
Other languages
English (en)
Inventor
哲也 北田
Tetsuya Kitada
哲也 北田
康二 武藤
Koji Muto
康二 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2016131273A priority Critical patent/JP2016182032A/ja
Publication of JP2016182032A publication Critical patent/JP2016182032A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

【課題】繰り返し使用に耐えることのできる耐久性を向上させたローターコアを得るためのローター固定用樹脂組成物を提供する。【解決手段】回転シャフトに固設され、回転シャフトの周縁部に沿って配置されている複数の穴部が設けられている、ローターコアと、穴部に挿入された磁石と、穴部と前記磁石との離間部に設けられた固定部材と、を備えるローターのうち固定部材の形成に用いるローター固定用樹脂組成物であって、エポキシ樹脂を含む熱硬化性樹脂と、硬化剤と、無機充填剤と、を含み、金型温度175℃、注入圧力9.8MPa、硬化時間120秒という硬化条件で、かつJIS K7162に準じて得られたダンベル形状のローター固定用樹脂組成物の硬化物を、さらに175℃、4時間という条件で硬化させて得られた硬化物を試験片として作製し、温度25℃、負荷速度1.0mm/minという条件で引張試験を行った際に得られる破断エネルギーが、1.5×10−4J/mm3以上である。【選択図】図1

Description

本発明は、ローター固定用樹脂組成物、ローター、および自動車に関する。
自動車等に搭載されるモータに関し、その強度等を向上させるための様々な技術が検討されている。特許文献1に記載の技術は、モータの封止に用いるモータ封止用樹脂成形材料に関するものである。すなわち、特許文献1に記載の成形材料は、モータを封止するハウジングに用いられるものであると考えられる。
特許文献2〜6には、モータを構成するローターに関する技術が記載されている。ローターは、穴部を有するローターコアと、穴部に挿入された永久磁石と、を有する。
例えば特許文献2に記載の技術は、永久磁石を収容するための収容孔に連通して設けられたスリットに、樹脂を充填するというものである。なお、当該スリットは、ステータに伝わる磁束量を増やすために、永久磁石を収容するための収容孔の周方向に関する両端部分に形成されるものであると記載されている。
また、特許文献3〜5には、磁石をローターコアに接着する技術が記載されている。
特許文献3に記載の技術は、永久磁石に直接コーティングされた接着剤により、永久磁石とローターコアとの接着を行うものである。特許文献4に記載の技術は、接着剤を入れたローターコアのスロット内に永久磁石を挿入した後、上下を逆転させた状態において接着剤の熱硬化を行うものである。特許文献5に記載の技術は、マグネットおよび接着剤を挿入するスロットの内壁またはマグネットの表面に形成された凹条部または凸条部に、硬化した接着剤を係合させるものである。
さらに、特許文献6には、磁石を挿入するための穴部に注入された樹脂部により磁石をローターコアに固定する技術が記載されている。特許文献6に記載の技術は、穴部に埋設された磁石と穴部との間に形成される充填部を、穴部の開口における磁石の幅方向の中央部に面する部分から穴部に注入して形成するものである。
なお、樹脂に関する技術としては、例えば特許文献7に記載のものがある。特許文献7に記載の技術は、顆粒状の半導体封止用エポキシ樹脂組成物に関し、その粒度分布を制御するものである。
特開2009−13213号公報 特開2002−359942号公報 特開2003−199303号公報 特開2005−304247号公報 特開平11−98735号公報 特開2007−236020号公報 特開2010−159400号公報
ローターコアは、高温下、長時間にわたって高速回転させて使用されるものである。現在、自動車駆動用のモータをさらに小型化することが求められており、小型化を達成するためには、より高速回転可能なモータとすることが必要となる。このため、ローターコアに対しても、高速回転時における耐久性の向上が強く求められている。
モータが高速回転している際、ローターコア内部に埋め込まれた永久磁石には大きな遠心力が作用する。遠心力が作用したとしても、磁石の位置ずれや磁石の変形が起こらない構造とすることが求められる。このような構造の実現には、磁石をローターコアに固定する固定材を最適に設計することが重要な技術的課題となっている。
そこで、本発明の目的は、繰り返し使用に耐えることのできる耐久性を向上させたローターコアを得るためのローター固定用樹脂組成物、当該ローター固定用樹脂組成物を用いて形成したローターを提供することにある。
本発明者らは、遠心力が作用したとしても、磁石の位置ずれや変形を抑制するために、固定部材の弾性率や強度などを向上させることを考え、無機充填剤を含有する固定用樹脂組成物を固定部材に用いることを検討した。
しかしながら、上記構造は、単に固定部材の弾性率や強度などを高めるだけでは磁石の位置ずれや変形を抑制するには十分ではなかった。
本発明者らは、こうした構造を実現するための設計指針についてさらに鋭意検討した。その結果、本発明者等らが考案した特定温度における固定材の破断エネルギーという尺度がこうした設計指針として有効であることを見出し、本発明に到達した。
本発明によれば、回転シャフトに固設され、前記回転シャフトの周縁部に沿って配置されている複数の穴部が設けられている、ローターコアと、
前記穴部に挿入された磁石と、
前記穴部と前記磁石との離間部に設けられた固定部材と、を備えるローターのうち前記固定部材の形成に用いるローター固定用樹脂組成物であって、
エポキシ樹脂を含む熱硬化性樹脂と、
硬化剤と、
無機充填剤と、
を含み、
金型温度175℃、注入圧力9.8MPa、硬化時間120秒という硬化条件で、かつJIS K7162に準じて得られたダンベル形状の前記ローター固定用樹脂組成物の硬化物を、さらに175℃、4時間という条件で硬化させて試験片として作製し、
温度25℃、負荷速度1.0mm/minという条件で引張試験を行った際に得られる破断エネルギーが、1.5×10−4J/mm以上であるローター固定用樹脂組成物が提供される。
さらに、本発明によれば、上記ローター固定用樹脂組成物を用いて形成されるローターが提供される。
さらに、本発明によれば、上記ローター用いて作製される自動車が提供される。
本発明によれば、ローターコアの耐久性を測る尺度として特定温度における破断エネルギーを用いている。この破断エネルギーが、温度25℃において、1.5×10−4J/mm以上の範囲にある固定材を用いることによって、高温下、長時間にわたって高速回転させる環境下において、十分な耐久性を示すローターコアを実現させることができる。
上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
本実施形態に係るローターを示す平面図である。 図1に示すローターを示す断面図である。 図1に示すローターを示す断面拡大図である。 図1に示すローターを構成するローターコアの第1変形例を示す平面図である。 図1に示すローターを構成するローターコアの第2変形例を示す平面図である。 図1に示すローターを構成するローターコアの第3変形例を示す平面図である。 図1に示すローターの一部を示す平面拡大図である。 図1に示すローターを示す断面図である。 図1に示すローターの一部を示す平面拡大図である。 インサート成形に用いるインサート成形装置の上型を示す断面図である。
以下、本実施形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
図1は、本実施形態に係るローター100を示す平面図である。図2は、図1に示すローター100を示す断面図である。なお、図1および図2はローター100を示す模式図であり、本実施形態に係るローター100の構成は図1および図2に示すものに限られない。
ローター100は、ローターコア110と、磁石120と、固定部材130と、を備える。ローターコア110には、孔部150が設けられている。磁石120は、孔部150内に挿入されている。固定部材130は、孔部150と磁石120との離間部140に設けられている。
固定部材130は、固定用樹脂組成物を用いて形成される。本実施形態に係るローター固定用樹脂組成物は、熱硬化性樹脂(A)と、硬化剤(B)と、無機充填剤(C)と、を含んでいる。
本実施形態では、金型温度175℃、注入圧力9.8MPa、硬化時間120秒という硬化条件で、かつJIS K7162に準じて得られたダンベル形状のローター固定用樹脂組成物の硬化物を、さらに175℃、4時間という条件で硬化させて試験片として用いた結果を例に説明する。なお、JIS K7162に記載のダンベル形状と同様の形状が、ISO527−2に記載されている。
以下、温度25℃、負荷速度1.0mm/minという条件で引張試験を行った際に得られる破断エネルギーを、破断エネルギーa、とする。また、温度150℃、負荷速度1.0mm/minという条件で引張試験を行った際に得られる破断エネルギーを、破断エネルギーbとする。さらに、破断エネルギーaの測定条件における破断強度を、破断強度a、破断エネルギーbの測定条件における破断強度を、破断強度bとする。
破断エネルギーとは、引張試験時における垂直応力(stress)と垂直歪み(strein)との関係を、グラフ化した曲線(応力−歪曲線)を作成し、算出した。具体的には、歪みを変数とし、引張試験の開始点から破断点までの応力の積分値を算出するものである。この破断エネルギーが大きい程、得られるローターコアは、硬さおよび粘り強さを備えた耐久性に優れたものとなる。なお、単位は、×10−4J/mmである。
本実施形態に係るローター固定用樹脂組成物の硬化物における破断エネルギーaは、1.5×10−4J/mm以上の範囲であって、かかる範囲の破断エネルギーaを有していることによって、硬さおよび粘り強さを備えた耐久性に優れたローターコアが得られる。
また、破断エネルギーaは、1.9×10−4J/mm以上であることが好ましい。破断エネルギーaが、この範囲にあることによって、高温下、長時間にわたって高速回転させる環境下において、十分な耐久性を示すローターコアを実現できる。なお、上限値については特に制限されるものではないが、15.0×10−4J/mm程度であれば十分である。
なお、破断エネルギーbは、1.2×10−4J/mm以上であることが好ましい。破断エネルギーaと比較して高温で測定している破断エネルギーbが、上記範囲内である場合、温度変化にも強く、かつ硬さと粘り強さを備えた耐久性に優れたローターコアを得ることができる。また、破断エネルギーbは、1.5×10−4J/mm以上であることがさらに好ましい。破断エネルギーbが、この範囲にあることによって、高速回転時における耐久性が、より一層向上する。破断エネルギーbについても、破断エネルギーaと同様に、上限値については特に制限されるものではないが、8.0×10−4J/mm程度であれば十分である。
破断エネルギーaおよびbを向上させるためには、以下の手法が有効である。
まず、エポキシ樹脂およびその硬化剤の組み合わせを最適化することにより、樹脂成分の強度および粘り強さを向上させることが必要である。これにくわえ、無機充填剤の表面をシランカップリング剤により改質し、樹脂と無機充填剤の界面接着強度を向上させることが有効である。さらには、無機充填剤の粒径分布を調整することにより、樹脂硬化体内部に発生したマイクロクラックが進展し難い構造とすることも有効である。
本実施形態に係るローターコアは、破断強度aを50MPa以上の範囲に制御することによって、さらに耐久性を向上させることが可能である。具体的には、破断強度aがこの範囲にあることによって、高速回転時における耐久性が、より一層向上する。なお、破断強度aは、60MPa以上であると好ましい。上限値については特に制限されるものではないが、200MPa程度であれば十分である。
破断強度bについても、破断強度aと同様に、破断強度bを15MPa以上の範囲に制御することによって、高速回転時における耐久性が、より一層向上する。なお、破断強度bは、20MPa以上であることが好ましい。上限値については特に制限されるものではないが、100MPa程度であれば十分である。
破断強度aおよびbについて上記特定の範囲に設定することによって、耐久性に優れたローターコアを提供することが可能である。特に、ローターコアの高速回転使用時における永久磁石の位置安定性に優れたローターコアを提供することが可能である。
ヤング率は、引張試験実施時の応力−歪み曲線における引張開始直後の線形領域における直線の傾きから求めることができる。このヤング率は、ローターコアの変形しやすさを表す指標の一つである。得られるローターコアは、ヤング率が大きければ大きいほど、変形しにくい耐久性に優れたものとなる。
本実施形態に係るローターコアにおいて25℃でのヤング率は、12GPa以上であることが好ましい。ヤング率がこの範囲にあれば、高速回転時における耐久性が、より一層向上する。
なお、ヤング率は、無機充填剤の量、あるいは樹脂成分の選択により適宜調整することが可能である。
以上のように、本実施形態に係るローター固定用樹脂組成物の硬化物は、特定の破断エネルギーaを有している。このため、得られたローターコアは、硬さや粘り強さの観点で耐久性に優れたローターコアを得ることが可能である。また、本実施形態に係るローター固定用樹脂組成物の硬化物は、破断エネルギーの他に破断強度やヤング率についても、特定の値を設定することが好ましい。こうすることによって、変形しにくい機械的特性のバランスのとれたローターコアを得ることができる。
また、本実施形態に係るローターコアは、ワックスを使用せずにローター固定用樹脂組成物を製造しても良い。通常、半導体封止剤には金型の汚染が生じることを防止するため、ワックスを添加することが必須とされている。一方、本実施形態に係るローター固定用樹脂組成物では、ワックスをあえて使用しない組成としている。
ローター固定用樹脂組成物の組成を工夫して、特定の構成とすることにより金型を汚染することなくトランスファー成形できることを見いだした。また、ワックスを添加しないことによって、破断エネルギーが従来の技術水準と比較して向上することも見いだした。これは、理由は必ずしも明らかではないが、無機充填剤と樹脂との界面強度が向上したことによると考えられる。
本実施形態のローター固定用樹脂組成物を得るためには、例えば、以下の3つの条件を、それぞれ適切に調整することが重要である。
(1)無機充填剤の性状
(2)無機充填剤のシランカップリング処理条件
(3)熱硬化性樹脂、その硬化剤および添加剤の組み合わせ
具体的には、実施例にて後述する。
ただし、本実施形態のローター固定用樹脂組成物の製法は、上記のような方法には限定されず、種々の条件を適切に調整することにより、本実施形態のローター固定用樹脂組成物を得ることができる。例えば、シリカ粒子を用いなくても、カップリング剤の処理条件を調整することにより、本実施形態のローター固定用樹脂組成物を得ることができる。
本実施形態に係るローター固定用樹脂組成物は、以下に説明する態様で使用することができる。
本実施形態に係るローター100は、例えば自動車等に搭載されるモータを構成する。モータは、ローター100およびローター100の周囲に設けられたステータ(図示せず)を含む。ステータは、ステータコアと、ステータコアに巻回されたコイルにより構成される。
図2に示すように、ローター100は回転シャフト170に取り付けられている。ローター100により発生した回転は、回転シャフト170を介して外部に伝達されることとなる。
ローターコア110には、回転シャフト170を挿入するための貫通孔が設けられている。ローターコア110は、貫通孔に挿入されて回転シャフト170に固設される。ローターコア110の形状は、特に限定されないが、例えば平面視で円形または多角形等である。
図2に示すように、ローターコア110は、薄板状の磁性体である電磁鋼板112を複数積層してなる。電磁鋼板112は、例えば鉄または鉄合金等により構成される。
また、図2に示すように、ローターコア110の軸方向における両端には、エンドプレート118aおよびエンドプレート118bが設けられている。すなわち、積層された電磁鋼板112上には、エンドプレート118aが設けられている。また、積層された電磁鋼板112下にはエンドプレート118bが設けられている。エンドプレート118aおよびエンドプレート118bは、例えば溶接等により回転シャフト170に固定される。
図3は、図1に示すローター100を示す断面拡大図である。図3に示すように、複数の電磁鋼板112には、カシメ部160が形成されている。カシメ部160は、例えば電磁鋼板112に形成された突起部により構成される。各電磁鋼板112は、互いにカシメ部160により結合されている。
また、エンドプレート118aには、例えば電磁鋼板112から突出したカシメ部160や、電磁鋼板112上に突出した固定部材130との干渉を避けるための溝部116が設けられている。なお、電磁鋼板112上に突出した固定部材130とは、固定用樹脂組成物を離間部140へ注入する際に電磁鋼板112上に残存した固定用樹脂組成物が硬化することにより形成される部分である。
図1に示すように、ローターコア110には、複数の孔部150が設けられている。複数の孔部150は、回転シャフト170の軸心を中心として点対称となるようにローターコア110に配置されている。
図1に示すように、本実施形態のローター100では、例えば隣接する二つの孔部150からなる複数の孔部群が、回転シャフト170の周縁部に沿って配置されている。複数の孔部群は、例えば互いに離間するように設けられている。一つの孔部群を構成する二つの孔部150は、例えば平面視でVの字状に配置される。この場合、一つの孔部群を構成する二つの孔部150は、例えば互いに対向するそれぞれの端部が回転シャフト170側に位置するように設けられる。また、一つの孔部群を構成する二つの孔部150は、例えば互いに離間するように設けられている。
図4は、図1に示すローター100を構成するローターコア110の第1変形例を示す平面図である。図4に示すように、三つの孔部150からなる複数の孔部群が、回転シャフト170の周縁部に沿って配置されていてもよい。この場合、三つの孔部150は、例えば平面視でVの字状に配置された孔部154aおよび孔部154bと、これらの間に位置する孔部156と、により構成される。孔部154a、孔部154b、および孔部156は、互いに離間している。
図5は、図1に示すローター100を構成するローターコア110の第2変形例を示す平面図である。図5に示すように、平面視でVの字状の形状を有する複数の孔部150が、回転シャフト170の周縁部に沿って配置されていてもよい。この場合、孔部150は、例えば孔部150の中心部が回転シャフト170側に位置し、かつ孔部150の両端部がローターコア110の外周縁側に位置するように設けられる。
図6は、図1に示すローター100を構成するローターコア110の第3変形例を示す平面図である。図6に示すように、平面視でローターコア110の径方向に対して垂直な長方形の形状を有する複数の孔部150が、回転シャフト170の周縁部に沿って配置されていてもよい。
なお、孔部150の配置レイアウトは上述したものに限定されない。
図7は、図1に示すローター100の一部を示す平面拡大図である。
図7に示すように、孔部150は、例えば平面視で矩形である。孔部150は、ローターコア110の外周縁側に位置する側壁151と、ローターコア110の内周縁側に位置する側壁153と、ローターコア110の周方向において互いに対向する側壁155および側壁157と、を有する。側壁151と側壁153は、ローターコア110の径方向において互いに対向している。本実施形態において、一つの孔部群を構成し、かつ互いに隣接する二つの孔部150は、それぞれの側壁155が互いに対向するように配置される。
なお、孔部150の形状は、磁石120の形状に対応していれば特に限定されず、例えば楕円形等であってもよい。
図7に示すように、磁石120は、例えば平面視で矩形である。磁石120は、側壁151と対向する側壁121、側壁153と対向する側壁123、側壁155と対向する側壁125、および側壁157と対向する側壁127と、を有する。すなわち、側壁121は、ローターコア110の外周縁側に位置する。また、側壁123は、ローターコアの内周縁側に位置する。磁石120は、例えばネオジム磁石等の永久磁石である。なお、磁石120の形状は、上述したものに限定されず、例えば楕円形等であってもよい。
固定部材130は、孔部150と磁石120との間隙(以下、離間部140とも称呼する)に充填された固定用樹脂組成物を硬化することにより形成される。これにより、磁石120がローターコア110に固定されることとなる。なお、本実施形態に係るローター100において、離間部140の幅は、例えば20μm以上500μm以下である。
固定部材130は、少なくともロータコア110の径方向における孔部150と磁石120との離間部140に設けられている。すなわち、固定部材130は、少なくとも側壁121と側壁151の間または側壁123と側壁153の間のいずれか一方に設けられることとなる。
また、固定部材130は、例えば平面視で矩形である磁石120の少なくとも3辺を覆うように設けられている。すなわち、側壁121、側壁123、側壁125、および側壁127のうちの少なくとも3つが、固定部材130により覆われることとなる。
図7に示すように、離間部140は、例えば側壁121と側壁151との間、側壁123と側壁153との間、側壁125と側壁155との間、および側壁127と側壁157との間に形成される。この場合、磁石120のうち、側壁121、側壁123、側壁125、および側壁127が、固定部材130により覆われることとなる。
本実施形態では、側壁121と側壁151との間隙、および側壁123と側壁153との間隙に、固定部材130が形成される。このため、ローターコア110の径方向において、磁石120の位置が固定されることとなる。これにより、モータの高速回転時に働く遠心力によって磁石120の位置がずれてしまうことを抑制することができる。
また、図2に示すように、固定部材130は、例えば磁石120の上面を覆うように形成されている。これにより、ローターコア110の軸方向において、磁石120の位置が固定される。従って、モータの駆動時等に磁石120の位置がローターコア110の軸方向へずれてしまうことを抑制することができる。
図8は、図1に示すローター100を示す断面図であり、図2とは異なる例を示す。
図8に示すように、磁石120は、例えば側壁121が側壁151に当接するように固定されてもよい。この場合、離間部140は、側壁123と側壁153との間、側壁125と側壁155との間、および側壁127と側壁157との間に形成されることとなる。従って、磁石120のうち、側壁123、側壁125および側壁127が、固定部材130により覆われることとなる。この場合においても、ローターコア110の径方向において、磁石120の位置を固定することができる。
また、磁石120は、例えば側壁123が側壁153に当接するように固定されてもよい。この場合、離間部140は、側壁121と側壁151との間、側壁125と側壁155との間、および側壁127と側壁157との間に形成されることとなる。従って、磁石120のうち、側壁121、側壁125および側壁127が、固定部材130により覆われることとなる。この場合においても、ローターコア110の径方向において、磁石120の位置を固定することができる。
図9は、図1に示すローター100の一部を示す平面拡大図であり、図7とは異なる例を示している。図9に示すように、本実施形態に係るローター100において、孔部150の両端部には、スリット152が設けられていてもよい。スリット152は、ローターコア110の周方向における、孔部150の両端部に位置している。また、スリット152は、孔部150と連通して設けられている。
孔部150の両端にスリット152を設けることで、磁石120から発生される磁束の磁路を狭くすることができる。すなわち、磁石120の両端部からローターコア110の周方向へ生じる磁束がローターコア110内において短絡することを抑制することができる。これにより、ローターコア110内における短絡を減少させ、ステータに伝わる磁束量を増大させることが可能となる。
図9に示すように、スリット152内には、スリット充填用樹脂部材132が形成されている。スリット充填用樹脂部材132は、例えば離間部140およびスリット152内に充填された固定用樹脂組成物を硬化することにより形成される。すなわち、スリット充填用樹脂部材132は、例えば固定部材130と同一工程により形成される。このため、スリット充填用樹脂部材132は、固定部材130と一体として設けられる。
スリット152を形成する場合、側壁155および側壁157と、スリット152と、の境界部には、角部が形成される。この場合、モータを駆動する際に磁石120にかかる応力は、当該角部と当接する部分に集中してしまう。
本変形例によれば、スリット152内にスリット充填用樹脂部材132を形成することで、モータを駆動する際に磁石120にかかる応力の集中を緩和することができる。このため、モータ駆動時に磁石120に対して大きな応力が働くことを抑制できる。従って、磁石120の破損等が発生することを防止することが可能となる。
(ローター固定用樹脂組成物)
次に、本実施形態に係るローター固定用樹脂組成物について、詳細に説明する。
本実施形態に係る固定用樹脂組成物は、例えば粉末状、顆粒状、またはタブレット状等である。このため、後述するように、例えば溶融させた固定用樹脂組成物を離間部140内に注入することにより、離間部140内に固定用樹脂組成物が充填される。
本実施形態に係る固定用樹脂組成物は、熱硬化性樹脂(A)と、硬化剤(B)と、無機充填剤(C)と、を含む。以下、各成分について説明する。
[熱硬化性樹脂(A)]
熱硬化性樹脂(A)は、特に制限されるものではないが、例えばエポキシ樹脂(A1)、フェノール樹脂、オキセタン樹脂、(メタ)アクリレート樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、またはマレイミド樹脂等が用いられる。中でも、硬化性、保存性、硬化物の耐熱性、耐湿性、および耐薬品性に優れるエポキシ樹脂(A1)が好適に用いられる。
本実施形態に係る熱硬化性樹脂(A)は、好ましくはエポキシ樹脂(A1)を含む。エポキシ樹脂(A1)としては、一分子中にエポキシ基を2個以上有するものであれば特に分子量や構造は限定されるものではない。
エポキシ樹脂(A1)としては、例えばフェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂;N,N−ジグリシジルアニリン、N,N−ジグリシジルトルイジン、ジアミノジフェニルメタン型グリシジルアミン、アミノフェノール型グリシジルアミンのような芳香族グリシジルアミン型エポキシ樹脂;ハイドロキノン型エポキシ樹脂;ビフェニル型エポキシ樹脂;スチルベン型エポキシ樹脂;トリフェノールメタン型エポキシ樹脂;トリフェノールプロパン型エポキシ樹脂;アルキル変性トリフェノールメタン型エポキシ樹脂;トリアジン核含有エポキシ樹脂;ジシクロペンタジエン変性フェノール型エポキシ樹脂;ナフトール型エポキシ樹脂;ナフタレン型エポキシ樹脂;ナフチレンエーテル型エポキシ樹脂;フェニレンおよび/またはビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、フェニレンおよび/またはビフェニレン骨格を有するナフトールアラルキル型エポキシ樹脂等のアラルキル型エポキシ樹脂等のエポキシ樹脂、またはビニルシクロヘキセンジオキシド、ジシクロペンタジエンオキシド、アリサイクリックジエポキシ−アジペイド等の脂環式エポキシ等の脂肪族エポキシ樹脂が挙げられる。これらは単独でも2種以上混合して使用しても良い。
熱硬化性樹脂(A)としてエポキシ樹脂(A1)を含む場合、芳香族環にグリシジルエーテル構造あるいはグリシジルアミン構造が結合した構造を含むものが、耐熱性、機械特性、および耐湿性の観点から好ましい。
また、フェノール樹脂としては、例えばフェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールAノボラック樹脂等のノボラック型フェノール樹脂、レゾール型フェノール樹脂等が挙げられる。
本実施形態に係る熱硬化性樹脂(A)の含有量は、特に限定されないが、固定用樹脂組成物の合計値100質量%に対して、好ましくは5質量%以上40質量%以下であり、より好ましくは10質量%以上20質量%以下である。
熱硬化性樹脂(A)としてエポキシ樹脂(A1)を含む好ましい態様において、該エポキシ樹脂の含有量は、特に限定されないが、熱硬化性樹脂(A)100質量%に対して、好ましくは70質量%以上100質量%以下であり、より好ましくは80質量%以上100質量%以下である。
[硬化剤(B)]
硬化剤(B)は、熱硬化性樹脂(A)に好ましい態様として含まれるエポキシ樹脂(A1)を三次元架橋させるために用いられるものである。硬化剤(B)としては、特に限定されないが、例えばフェノール樹脂を用いることができる。このようなフェノール樹脂系硬化剤は、一分子内にフェノール性水酸基を2個以上有するモノマー、オリゴマー、ポリマー全般であり、その分子量、分子構造を特に限定するものではない。
フェノール樹脂系硬化剤としては、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ナフトールノボラック樹脂等のノボラック型樹脂;トリフェノールメタン型フェノール樹脂等の多官能型フェノール樹脂;テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂等の変性フェノール樹脂;フェニレン骨格及び/又はビフェニレン骨格を有するフェノールアラルキル樹脂、フェニレン及び/又はビフェニレン骨格を有するナフトールアラルキル樹脂等のアラルキル型樹脂;ビスフェノールA、ビスフェノールF等のビスフェノール化合物、ナフテン酸コバルト等のナフテン酸金属塩等が挙げられる。これらは、1種類を単独で用いても2種類以上を併用してもよい。このようなフェノール樹脂系硬化剤を用いることにより、耐燃性、耐湿性、電気特性、硬化性、および保存安定性等のバランスが良好となる。特に、硬化性の点から、フェノール樹脂系硬化剤の水酸基当量は、例えば90g/eq以上250g/eq以下とすることができる。
さらに、併用できる硬化剤としては、例えば重付加型の硬化剤、触媒型の硬化剤、縮合型の硬化剤等を挙げることができる。
重付加型の硬化剤としては、例えばジエチレントリアミン(DETA)、トリエチレンテトラミン(TETA)、メタキシレンジアミン(MXDA)等の脂肪族ポリアミン、ジアミノジフェニルメタン(DDM)、m−フェニレンジアミン(MPDA)、ジアミノジフェニルスルホン(DDS)等の芳香族ポリアミンのほか、ジシアンジアミド(DICY)、有機酸ジヒドララジド等を含むポリアミン化合物;ヘキサヒドロ無水フタル酸(HHPA)、メチルテトラヒドロ無水フタル酸(MTHPA)等の脂環族酸無水物、無水トリメリット酸(TMA)、無水ピロメリット酸(PMDA)、ベンゾフェノンテトラカルボン酸(BTDA)等の芳香族酸無水物などを含む酸無水物;ノボラック型フェノール樹脂、フェノールポリマー等のポリフェノール化合物;ポリサルファイド、チオエステル、チオエーテル等のポリメルカプタン化合物;イソシアネートプレポリマー、ブロック化イソシアネート等のイソシアネート化合物;カルボン酸含有ポリエステル樹脂等の有機酸類等が挙げられる。
触媒型の硬化剤としては、例えばベンジルジメチルアミン(BDMA)、2,4,6−トリスジメチルアミノメチルフェノール(DMP−30)等の3級アミン化合物;2−メチルイミダゾール、2−エチル−4−メチルイミダゾール(EMI24)等のイミダゾール化合物;BF3錯体等のルイス酸等が挙げられる。
縮合型の硬化剤としては、例えばレゾール樹脂、メチロール基含有尿素樹脂のような尿素樹脂;メチロール基含有メラミン樹脂のようなメラミン樹脂等が挙げられる。
このような他の硬化剤を併用する場合において、フェノール樹脂系硬化剤の含有量は、全硬化剤(B)に対して、20質量%以上であることが好ましく、30質量%以上であることがより好ましく、50質量%以上であることが特に好ましい。配合割合が上記範囲内であると、耐燃性を保持しつつ、良好な流動性を発現させることができる。また、フェノール樹脂系硬化剤の含有量は、特に限定されないが、全硬化剤(B)に対して、100質量%以下であることが好ましい。
固定用樹脂組成物に対する硬化剤(B)の含有量は、特に限定されるものではないが、固定用樹脂組成物の合計値100質量%に対して、0.8質量%以上であることが好ましく、1.5質量%以上であることがより好ましい。配合割合を上記範囲内とすることにより、良好な硬化性を得ることができる。また、固定用樹脂組成物に対する硬化剤(B)の含有量は、特に限定されるものではないが、全固定用樹脂組成物の合計値100質量%に対して、12質量%以下であることが好ましく、10質量%以下であることがより好ましい。
なお、硬化剤(B)としてのフェノール樹脂と熱硬化性樹脂(A)としてのエポキシ樹脂(A1)は、全熱硬化性樹脂(A)中のエポキシ基数(EP)と全フェノール樹脂のフェノール性水酸基数(OH)との当量比(EP)/(OH)が、0.8以上1.3以下となるように配合されることが好ましい。当量比が上記範囲内であると、得られる固定用樹脂組成物を成形する際、十分な硬化特性を得ることができる。ただし、エポキシ樹脂と反応し得るフェノール樹脂以外の樹脂を併用する場合は、適宜当量比を調整すればよい。
[無機充填剤(C)]
無機充填剤(C)としては、固定用樹脂組成物の技術分野で一般的に用いられる無機充填剤を使用することができる。
無機充填剤(C)としては、例えば溶融破砕シリカ及び溶融球状シリカ等の溶融シリカ、結晶シリカ、アルミナ、カオリン、タルク、クレイ、マイカ、ロックウール、ウォラストナイト、ガラスパウダー、ガラスフレーク、ガラスビーズ、ガラスファイバー、炭化ケイ素、窒化ケイ素、窒化アルミ、カーボンブラック、グラファイト、二酸化チタン、炭酸カルシウム、硫酸カルシウム、炭酸バリウム、炭酸マグネシウム、硫酸マグネシウム、硫酸バリウム、セルロース、アラミド、木材、フェノール樹脂成形材料やエポキシ樹脂成形材料の硬化物を粉砕した粉砕粉等が挙げられる。この中でも、溶融破砕シリカ、溶融球状シリカ、結晶シリカ等のシリカが好ましく、溶融球状シリカがより好ましい。また、この中でも、炭酸カルシウムがコストの面で好ましい。無機充填剤(C)としては、一種で使用しても良いし、または二種以上を併用してもよい。
無機充填剤(C)の平均粒径D50は、好ましくは0.01μm以上75μm以下であり、より好ましくは0.05μm以上50μm以下である。無機充填剤(C)の平均粒径を上記範囲内にすることにより、孔部150と磁石120との離間部140への充填性が向上する。平均粒径D50は、レーザー回折型測定装置RODOS SR型(SYMPATEC HEROS&RODOS社)での体積換算平均粒径とした。
また、本実施形態に係る固定用樹脂組成物において、無機充填剤(C)は、平均粒径D50が異なる2種以上の球状シリカを含むことができる。これにより、流動性及び充填性の向上とバリ抑制の両立が可能となる。
無機充填剤(C)の含有量は、固定用樹脂組成物の合計値100質量%に対して、好ましくは50質量%以上であり、より好ましくは60質量%以上であり、さらに好ましくは65質量%以上であり、特に好ましくは75質量%以上である。上記範囲内であると、得られる固定用樹脂組成物の硬化に伴う吸湿量の増加や、強度の低下が低減できる。また、無機充填剤(C)の含有量は、固定用樹脂組成物の合計値100質量%に対して、好ましくは93質量%以下であり、より好ましくは91質量%以下であり、さらに好ましくは90質量%以下である。上記範囲内であると、得られる固定用樹脂組成物は良好な流動性を有するとともに、良好な成形性を備える。したがって、ローターの製造安定性が高まり、歩留まり及び耐久性のバランスに優れたローターが得られる。
また、本発明者らが検討した結果、無機充填剤(C)の含有量を50質量%以上とすることにより、固定部材130と電磁鋼板112との線膨張率の差を小さくすることができることが判明した。これにより、温度変化に応じて電磁鋼板112が変形し、ローター100の回転特性が低下することを抑制することができる。従って、耐久性の中でも、とくに回転特性の持続性に優れたローターが実現される。
また、無機充填剤(C)として溶融破砕シリカ、溶融球状シリカ、結晶シリカ等のシリカを用いる場合、シリカの含有量が、固定用樹脂組成物の合計値100質量%に対して、40質量%以上であることが好ましく、60質量%以上であることがより好ましい。上記範囲内であると、流動性と熱膨張率のバランスが良好となる。
また、無機充填剤(C)と、後述するような水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物や、硼酸亜鉛、モリブデン酸亜鉛、三酸化アンチモン等の無機系難燃剤とを併用する場合には、これらの無機系難燃剤と上記無機充填剤の合計量は、上記無機充填剤(C)の含有量の範囲内とすることが望ましい。
無機充填剤(C)には、予めシランカップリング剤などのカップリング剤(F)(第1カップリング剤とも呼ぶ。)による表面処理が行われていてもよい。これにより、無機充填剤の凝集を抑制し、良好な流動性を得ることができる。したがって、離間部140への固定用樹脂組成物の充填性を向上させることが可能となる。
また、樹脂成分との親和性が高まるため、固定用樹脂組成物を用いて形成される固定部材の強度を向上させることができる。
無機充填剤(C)の表面処理に用いられる第1カップリング剤としては、例えばγ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン等の1級アミノシランを用いることができる。このような無機充填剤(C)の表面処理に使用する第1カップリング剤の種類を適宜選択し、または第1カップリング剤の配合量を適宜調整することにより、固定用樹脂組成物の流動性および固定部材の強度等を制御することができる。
無機充填剤(C)へのカップリング処理は、例えば次のように行うことができる。まず、ミキサーを用いて無機充填剤(C)とシランカップリング剤を混合攪拌する。ミキサーとしては、例えばリボンブレンダー等を用いることができる。このとき、ミキサー内を湿度50%以下に設定しておくのが好ましい。このような噴霧環境に調整することにより、シリカ粒子の表面に水分が再付着するのを抑制することができる。さらに、噴霧中のカップリング剤に水分が混入し、カップリング剤同士が反応してしまうのを抑制することができる。
次いで、得られた混合物をミキサーから取り出し、エージング処理を行い、カップリング反応を促進させる。エージング処理は、例えば、20±5℃の条件下で、7日間以上放置することにより行われる。このような条件でおこなうことにより、シリカ粒子の表面にカップリング剤を均一に結合させることができる。その後、ふるいにかけ、粗大粒子を除去することにより、シランカップリング処理が施された無機充填剤(C)が得られる。
このような表面処理シリカ粒子を用いることにより、シリカ粒子と樹脂成分との界面接着強度を向上させることができる。さらには、固定部材中のマイクロクラックの発生を抑制することができる。
[その他の成分]
本実施形態に係る固定用樹脂組成物は、硬化促進剤(D)を含んでもよい。硬化促進剤(D)は、エポキシ樹脂のエポキシ基とフェノール樹脂系硬化剤(B)の水酸基との反応を促進するものであればよく、一般に使用される硬化促進剤(D)を用いることができる。
硬化促進剤(D)の具体例としては、有機ホスフィン、テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物、ホスホニウム化合物とシラン化合物との付加物等のリン原子含有化合物;1,8−ジアザビシクロ(5,4,0)ウンデセン−7、イミダゾールなどのアミジン系化合物、ベンジルジメチルアミンなどの3級アミンや前記化合物の4級オニウム塩であるアミジニウム塩、アンモニウム塩などに代表される窒素原子含有化合物が挙げられる。
これらのうち、硬化性の観点からはリン原子含有化合物が好ましく、流動性と硬化性のバランスの観点からは、テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物、ホスホニウム化合物とシラン化合物との付加物等の潜伏性を有する硬化促進剤がより好ましい。流動性という点を考慮するとテトラ置換ホスホニウム化合物が特に好ましく、また耐半田性の観点では、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物が特に好ましく、また潜伏的硬化性という点を考慮すると、ホスホニウム化合物とシラン化合物との付加物が特に好ましい。また、連続成形性の観点では、テトラ置換ホスホニウム化合物が好ましい。また、コスト面を考えると、有機ホスフィン、窒素原子含有化合物も好適に用いられる。
本実施形態に係る固定用樹脂組成物で用いることができる有機ホスフィンとしては、例えばエチルホスフィン、フェニルホスフィン等の第1ホスフィン;ジメチルホスフィン、ジフェニルホスフィン等の第2ホスフィン;トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン等の第3ホスフィンが挙げられる。
本実施形態に係る固定用樹脂組成物で用いることができるテトラ置換ホスホニウム化合物としては、例えば下記一般式(1)で表される化合物等が挙げられる。
Figure 2016182032
一般式(1)において、Pはリン原子を表し、R1、R2、R3及びR4は、それぞれ独立して芳香族基又はアルキル基を表し、Aはヒドロキシル基、カルボキシル基、チオール基から選ばれる官能基のいずれかを芳香環に少なくとも1つ有する芳香族有機酸のアニオンを表し、AHはヒドロキシル基、カルボキシル基、チオール基から選ばれる官能基のいずれかを芳香環に少なくとも1つ有する芳香族有機酸を表し、x及びyは1〜3の整数であり、zは0〜3の整数であり、かつx=yである。
一般式(1)で表される化合物は、例えば次のようにして得られるが、これに限定されるものではない。まず、テトラ置換ホスホニウムハライドと芳香族有機酸と塩基を有機溶剤に混ぜ均一に混合し、その溶液系内に芳香族有機酸アニオンを発生させる。次いで、水を加えると、一般式(1)で表される化合物を沈殿させることができる。
一般式(1)で表される化合物において、合成時の収得率と硬化促進効果のバランスに優れるという観点では、リン原子に結合するR1、R2、R3及びR4がフェニル基であり、かつAHはヒドロキシル基を芳香環に有する化合物、すなわちフェノール化合物であり、かつAは該フェノール化合物のアニオンであるのが好ましい。なお、フェノール化合物とは、単環のフェノール、クレゾール、カテコール、レゾルシンや縮合多環式のナフトール、ジヒドロキシナフタレン、複数の芳香環を備える(多環式の)ビスフェノールA、ビスフェノールF、ビスフェノールS、ビフェノール、フェニルフェノール、フェノールノボラック等を概念に含むものであり、中でも水酸基を2個有するフェノール化合物が好ましく用いられる。
本実施形態に係る固定用樹脂組成物で用いることができるホスホベタイン化合物としては、例えば下記一般式(2)で表される化合物等が挙げられる。
Figure 2016182032
一般式(2)において、X1は炭素数1〜3のアルキル基を表し、Y1はヒドロキシル基を表し、aは0〜5の整数であり、bは0〜4の整数である。
一般式(2)で表される化合物は、例えば第三ホスフィンであるトリ芳香族置換ホスフィンとジアゾニウム塩とを接触させ、トリ芳香族置換ホスフィンとジアゾニウム塩が有するジアゾニウム基とを置換させる工程を経て得られる。しかしこれに限定されるものではない。
本実施形態に係る固定用樹脂組成物で用いることができるホスフィン化合物とキノン化合物との付加物としては、例えば下記一般式(3)で表される化合物等が挙げられる。
Figure 2016182032
一般式(3)において、Pはリン原子を表し、R5、R6及びR7は、互いに独立して、炭素数1〜12のアルキル基又は炭素数6〜12のアリール基を表し、R8、R9及びR10は、互いに独立して、水素原子又は炭素数1〜12の炭化水素基を表す。R8とR9は、互いに結合して環を形成していてもよい。
ホスフィン化合物とキノン化合物との付加物に用いるホスフィン化合物としては、例えばトリフェニルホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリナフチルホスフィン、トリス(ベンジル)ホスフィン等の芳香環に無置換又はアルキル基、アルコキシル基等の置換基が存在するものが好ましい。アルキル基、アルコキシル基等の置換基としては1〜6の炭素数を有するものが挙げられる。入手しやすさの観点からはトリフェニルホスフィンが好ましい。
またホスフィン化合物とキノン化合物との付加物に用いるキノン化合物としては、o−ベンゾキノン、p−ベンゾキノン、アントラキノン類が挙げられる。これらの中でもp−ベンゾキノンが保存安定性の点から好ましい。
ホスフィン化合物とキノン化合物との付加物は、例えば有機第三ホスフィンとベンゾキノン類の両者が溶解することができる溶媒中で接触、混合させることにより得ることができる。溶媒としてはアセトンやメチルエチルケトン等のケトン類で付加物への溶解性が低いものがよい。しかしこれに限定されるものではない。
一般式(3)で表される化合物において、リン原子に結合するR5、R6及びR7がフェニル基であり、かつR8、R9及びR10が水素原子である化合物、すなわち1,4−ベンゾキノンとトリフェニルホスフィンを付加させた化合物が、固定用樹脂組成物の硬化物の熱時弾性率を低下させる点で好ましい。
本実施形態に係る固定用樹脂組成物で用いることができるホスホニウム化合物とシラン化合物との付加物としては、例えば下記一般式(4)で表される化合物等が挙げられる。
Figure 2016182032
一般式(4)において、Pはリン原子を表し、Siは珪素原子を表す。R11、R12、R13及びR14は、互いに独立して、芳香環又は複素環を有する有機基、あるいは脂肪族基を表し、X2は、基Y2及びY3と結合する有機基である。X3は、基Y4及びY5と結合する有機基である。Y2及びY3は、プロトン供与性基がプロトンを放出してなる基を表し、同一分子内の基Y2及びY3が珪素原子と結合してキレート構造を形成するものである。Y4及びY5はプロトン供与性基がプロトンを放出してなる基を表し、同一分子内の基Y4及びY5が珪素原子と結合してキレート構造を形成するものである。X2、及びX3は互いに同一であっても異なっていてもよい。Y2、Y3、Y4、及びY5は互いに同一であっても異なっていてもよい。Z1は芳香環又は複素環を有する有機基、あるいは脂肪族基である。
一般式(4)において、R11、R12、R13及びR14としては、例えば、フェニル基、メチルフェニル基、メトキシフェニル基、ヒドロキシフェニル基、ナフチル基、ヒドロキシナフチル基、ベンジル基、メチル基、エチル基、n−ブチル基、n−オクチル基及びシクロヘキシル基等が挙げられる。これらの中でも、フェニル基、メチルフェニル基、メトキシフェニル基、ヒドロキシフェニル基、ヒドロキシナフチル基等の置換基を有する芳香族基もしくは無置換の芳香族基が好ましい。
また、一般式(4)において、X2は、Y2及びY3と結合する有機基である。同様に、X3は、基Y4及びY5と結合する有機基である。Y2及びY3はプロトン供与性基がプロトンを放出してなる基であり、同一分子内の基Y2及びY3が珪素原子と結合してキレート構造を形成するものである。同様にY4及びY5はプロトン供与性基がプロトンを放出してなる基であり、同一分子内の基Y4及びY5が珪素原子と結合してキレート構造を形成するものである。基X2及びX3は互いに同一であっても異なっていてもよく、基Y2、Y3、Y4、及びY5は互いに同一であっても異なっていてもよい。このような一般式(4)中の−Y2−X2−Y3−、及び−Y4−X3−Y5−で表される基は、プロトン供与体が、プロトンを2個放出してなる基で構成されるものである。このため、プロトン供与体としては、分子内にカルボキシル基または水酸基を少なくとも2個有する有機酸が好ましく、芳香環を構成する炭素上にカルボキシル基または水酸基を少なくとも2個有する芳香族化合物がより好ましく、芳香環を構成する隣接する炭素上に水酸基を少なくとも2個有する芳香族化合物がさらに好ましい。
プロトン供与体としては、例えば、カテコール、ピロガロール、1,2−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレン、2,2'−ビフェノール、1,1'−ビ−2−ナフトール、サリチル酸、1−ヒドロキシ−2−ナフトエ酸、3−ヒドロキシ−2−ナフトエ酸、クロラニル酸、タンニン酸、2−ヒドロキシベンジルアルコール、1,2−シクロヘキサンジオール、1,2−プロパンジオール及びグリセリン等が挙げられる。これらの中でも、原料入手の容易さと硬化促進効果のバランスという観点では、カテコール、1,2−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレンがより好ましい。
また、一般式(4)中のZ1は、芳香環又は複素環を有する有機基又は脂肪族基を表す。これらの具体的な例としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基またはオクチル基等の脂肪族炭化水素基や、フェニル基、ベンジル基、ナフチル基またはビフェニル基等の芳香族炭化水素基、グリシジルオキシプロピル基、メルカプトプロピル基、アミノプロピル基またはビニル基等の反応性置換基などが挙げられる。これらの中でも、メチル基、エチル基、フェニル基、ナフチル基、またはビフェニル基が熱安定性の面から、より好ましい。
ホスホニウム化合物とシラン化合物との付加物は、例えば次のようにして得られる。まず、メタノールを入れたフラスコに、フェニルトリメトキシシラン等のシラン化合物、2,3−ジヒドロキシナフタレン等のプロトン供与体を加えて溶かす。次いで、上記フラスコに室温攪拌下でナトリウムメトキシド−メタノール溶液を滴下する。次いで、予め用意したテトラフェニルホスホニウムブロマイド等のテトラ置換ホスホニウムハライドをメタノールに溶かした溶液を、上記フラスコに室温攪拌下で滴下すると結晶が析出する。析出した結晶を濾過、水洗、真空乾燥すると、ホスホニウム化合物とシラン化合物との付加物が得られる。しかし、これに限定されるものではない。
本実施形態に係る固定用樹脂組成物に用いることができる硬化促進剤(D)の含有量は、全固定用樹脂組成物の合計値100質量%に対して、0.1質量%以上であることが好ましい。硬化促進剤(D)の含有量が上記範囲内であると、充分な硬化性を得ることができる。また、硬化促進剤(D)の含有量は、全固定用樹脂組成物の合計値100質量%に対して、好ましくは3質量%以下であり、より好ましくは1質量%以下である。硬化促進剤(D)の含有量が上記範囲内であると、充分な流動性を得ることができる。
本実施形態に係る固定用樹脂組成物には、さらに芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(E)(以下、単に「化合物(E)」と称することもある)が含まれていてもよい。化合物(E)を用いることにより、硬化促進剤(D)として潜伏性を有しないリン原子含有硬化促進剤を用いた場合であっても、固定用樹脂組成物の溶融混練中における反応を抑えることができ、安定して固定用樹脂組成物を得ることができる。また、化合物(E)は、固定用樹脂組成物の溶融粘度を下げ、流動性を向上させる効果も有するものである。化合物(E)としては、下記一般式(5)で表される単環式化合物、又は下記一般式(6)で表される多環式化合物等を用いることができる。これらの化合物は水酸基以外の置換基を有していてもよい。
Figure 2016182032
一般式(5)において、R15及びR19のいずれか一方は水酸基であり、他方は水素原子、水酸基又は水酸基以外の置換基である。また、R16、R17及びR18は、水素原子、水酸基又は水酸基以外の置換基である。
Figure 2016182032
一般式(6)において、R20及びR26のいずれか一方は水酸基であり、他方は水素原子、水酸基又は水酸基以外の置換基である。また、R21、R22、R23、R24及びR25は、水素原子、水酸基又は水酸基以外の置換基である。
一般式(5)で表される単環式化合物の具体例としては、例えばカテコール、ピロガロール、没食子酸、没食子酸エステル又はこれらの誘導体が挙げられる。また、一般式(6)で表される多環式化合物の具体例としては、例えば1,2−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレン及びこれらの誘導体が挙げられる。これらのうち、流動性と硬化性の制御のしやすさから、芳香環を構成する2個の隣接する炭素原子にそれぞれ水酸基が結合した化合物が好ましい。また、混練工程での揮発を考慮した場合、母核は低揮発性で秤量安定性の高いナフタレン環である化合物とすることがより好ましい。この場合、化合物(E)を、具体的には、例えば1,2−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレン及びその誘導体等のナフタレン環を有する化合物とすることができる。これらの化合物(E)は1種類を単独で用いても2種以上を併用してもよい。
化合物(E)の含有量は、全固定用樹脂組成物の合計値100質量%に対して、0.01質量%以上であることが好ましく、0.03質量%以上であることがより好ましく、0.05質量%以上であることがさらに好ましい。化合物(E)の含有量が上記範囲内であると、固定用樹脂組成物の充分な低粘度化と流動性向上効果を得ることができる。また、化合物(E)の含有量は、全固定用樹脂組成物の合計値100質量%に対して、2質量%以下であることが好ましく、0.8質量%以下であることがより好ましく、0.5質量%以下であることがさらに好ましい。化合物(E)の含有量が上記範囲内であると、固定用樹脂組成物の硬化性の低下や硬化物の物性の低下を引き起こす恐れが少ない。
本実施形態に係る固定用樹脂組成物においては、エポキシ樹脂(A1)と、無機充填剤(C)との密着性をさらに向上させるため、上述した第1カップリング剤とは別に、カップリング剤(F)(第2カップリング剤とも呼ぶ。)をさらに添加することができる。第2カップリング剤としては、エポキシ樹脂(A1)と無機充填剤(C)との間で反応し、エポキシ樹脂(A1)と無機充填剤(C)の界面強度を向上させるものであればよい。
第2カップリング剤としては、特に限定されるものではないが、例えばエポキシシラン、アミノシラン、ウレイドシラン、メルカプトシランなどが挙げられる。また、第2カップリング剤は、前述の化合物(E)と併用することで、固定用樹脂組成物の溶融粘度を下げ、流動性を向上させるという化合物(E)の効果を高めることもできるものである。
エポキシシランとしては、例えばγ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、β−(3,4エポキシシクロヘキシル)エチルトリメトキシシラン等が挙げられる。また、アミノシランとしては、例えばγ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルメチルジメトキシシラン、N−フェニルγ−アミノプロピルトリエトキシシラン、N−フェニルγ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリエトキシシラン、N−6−(アミノヘキシル)3−アミノプロピルトリメトキシシラン、N−(3−(トリメトキシシリルプロピル)−1,3−ベンゼンジメタナン等が挙げられる。また、ウレイドシランとしては、例えばγ−ウレイドプロピルトリエトキシシラン、ヘキサメチルジシラザン等が挙げられる。アミノシランの1級アミノ部位をケトン又はアルデヒドを反応させて保護した潜在性アミノシランカップリング剤として用いてもよい。また、アミノシランとしては、2級アミノ基を有してもよい。また、メルカプトシランとしては、例えばγ−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルメチルジメトキシシランのほか、ビス(3−トリエトキシシリルプロピル)テトラスルフィド、ビス(3−トリエトキシシリルプロピル)ジスルフィドのような熱分解することによってメルカプトシランカップリング剤と同様の機能を発現するシランカップリング剤等、が挙げられる。また、これらのシランカップリング剤は予め加水分解反応させたものを配合してもよい。これらのシランカップリング剤は1種類を単独で用いても2種類以上を併用してもよい。
連続成形性という観点では、メルカプトシランが好ましい。流動性の観点では、アミノシランが好ましい。密着性という観点ではエポキシシランが好ましい。
本実施形態に係る固定用樹脂組成物に用いることができるシランカップリング剤等のカップリング剤(F)の含有量(第1カップリング剤および第2カップリング剤の合計量)は、全固定用樹脂組成物の合計値100質量%に対して、0.01質量%以上であることが好ましく、0.05質量%以上であることがより好ましく、0.1質量%以上であることがさらに好ましい。シランカップリング剤等のカップリング剤(F)の含有量が上記範囲内であれば、エポキシ樹脂(A1)と無機充填剤(C)との界面強度が低下することがなく、良好な耐振動性を得ることができる。また、シランカップリング剤等のカップリング剤(F)の含有量は、全固定用樹脂組成物の合計値100質量%に対して、1質量%以下であることが好ましく、0.8質量%以下であることがより好ましく、0.6質量%以下であることがさらに好ましい。シランカップリング剤等のカップリング剤(F)の含有量が上記範囲内であれば、エポキシ樹脂(A1)と無機充填剤(C)との界面強度が低下することがなく、良好な耐振動性を得ることができる。また、シランカップリング剤等のカップリング剤(F)の含有量が上記範囲内であれば、固定用樹脂組成物の硬化物の吸水性が増大することがなく、良好な防錆性を得ることができる。
本実施形態に係る固定用樹脂組成物においては、難燃性を向上させるために無機難燃剤(G)を添加することができる。無機難燃剤(G)としては、燃焼時に脱水、吸熱することによって燃焼反応を阻害する金属水酸化物、又は複合金属水酸化物が、燃焼時間を短縮することができる点で好ましい。金属水酸化物としては、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、水酸化バリウム、水酸化ジルコニアを挙げることができる。複合金属水酸化物としては、2種以上の金属元素を含むハイドロタルサイト化合物であって、少なくとも一つの金属元素がマグネシウムであり、かつ、その他の金属元素がカルシウム、アルミニウム、スズ、チタン、鉄、コバルト、ニッケル、銅、又は亜鉛から選ばれる金属元素であればよい。このような複合金属水酸化物としては、水酸化マグネシウム・亜鉛固溶体が市販品で入手が容易である。なかでも、連続成形性の観点からは水酸化アルミニウム、水酸化マグネシウム・亜鉛固溶体が好ましい。無機難燃剤(G)は、単独で用いても、2種以上用いてもよい。また、連続成形性への影響を低減する目的から、シランカップリング剤などの珪素化合物やワックスなどの脂肪族系化合物などで表面処理を行って用いてもよい。
また、本実施形態に係る無機難燃剤(G)の含有量は、少ない方が好ましく、とくに0.2質量%以下が好ましい。通常、半導体封止材用途は、UL規格を満たすために難燃剤の添加は必須であるが、難燃剤の添加量が多すぎると、熱硬化性樹脂の硬化反応を阻害してしまい、固定部材の強度が低下する場合がある。そのため、本実施形態では、無機難燃剤(G)はなるべく添加しない方が好ましい。
本実施形態に係る固定用樹脂組成物においては、イオン性不純物の濃度は、固定用樹脂組成物に対して、好ましくは500ppm以下であり、より好ましくは300ppm以下であり、さらに好ましくは200ppm以下である。また、イオン性不純物の濃度は、特に限定されないが、例えば、本発明に係る固定用樹脂組成物に対して、0ppb以上であり、より好ましくは10ppb以上であり、さらに好ましくは100ppb以上である。これにより、本実施形態に係る固定用樹脂組成物の硬化物を固定部材に用いた際、高温、多湿下で処理しても高い防錆性を保持することができる。
本実施形態に係るイオン性不純物としては、特に限定されるものではないが、アルカリ金属イオン、アルカリ土類金属イオン、ハロゲンイオン等、より具体的にはナトリウムイオン、塩素イオン等が挙げられる。ナトリウムイオンの濃度は、本実施形態に係る固定用樹脂組成物に対して、好ましくは100ppm以下であり、より好ましくは70ppm以下であり、さらに好ましくは50ppm以下である。また、塩素イオンの濃度は、本実施形態に係る固定用樹脂組成物に対して、好ましくは100ppm以下であり、より好ましくは50ppm以下であり、さらに好ましくは30ppm以下である。上記の範囲とすることにより、電磁鋼板や磁石の腐食を抑制することができる。
本実施形態においては、例えば純度の高いエポキシ樹脂を使用することにより、イオン性不純物を低減することができる。以上により、耐久性に優れたローターが得られる。
イオン性不純物の濃度は、下記のようにして求めることができる。まず、本実施形態に係る固定用樹脂組成物を175℃、180秒で成形硬化後、粉砕機で粉砕し硬化物の粉末を得る。得られた硬化物粉末を純水中で120℃、24時間処理し、純水中にイオンを抽出した後、ICP−MS(誘導結合プラズマイオン源質量分析装置)を用い測定できる。
本実施形態に係る固定用樹脂組成物においては、アルミナの含有量は、固定用樹脂組成物の合計値100質量%に対して、好ましくは10質量%以下であり、より好ましくは7質量%以下であり、さらに好ましくは5質量%以下である。アルミナの含有量は、特に限定されないが、例えば、本実施形態に係る固定用樹脂組成物の合計値100質量%に対して、好ましくは0質量%以上であり、より好ましくは0.01質量%以上であり、さらに好ましくは0.1質量%以上である。アルミナの含有量を上記上限値以下とすることにより、本実施形態に係る固定用樹脂組成物の流動性を向上させること、および軽量化を図ることができる。なお、本実施形態において、0質量%は検出限界の値を許容する。
本実施形態に係る固定用樹脂組成物では、前述した成分以外に、ハイドロタルサイト類またはマグネシウム、アルミニウム、ビスマス、チタン、ジルコニウムから選ばれる元素の含水酸化物等のイオン捕捉剤;カーボンブラック、ベンガラ、酸化チタン等の着色剤;カルナバワックス等の天然ワックス;ポリエチレンワックス等の合成ワックス;ステアリン酸やステアリン酸亜鉛等の高級脂肪酸及びその金属塩類若しくはパラフィン等の離型剤;ポリブタジエン化合物、アクリロニトリルブタジエン共重合化合物、シリコーンオイル、シリコーンゴム等のシリコーン化合物等の低応力剤、チアゾリン、ジアゾール、トリアゾール、トリアジン、ピリミジン等の密着付与剤を適宜配合してもよい。
本実施形態に係る着色剤の含有量は、本実施形態に係る固定用樹脂組成物の合計値100質量%に対して、好ましくは0.01質量%以上1質量%以下であり、より好ましくは0.05質量%以上0.8質量%以下である。着色剤の含有量を上記範囲内とすることにより、色が付いた不純物を除去する工程が不要となり、作業性が向上する。したがって、歩留まりに優れたローターが実現される。
本実施形態に係る離型剤の含有量は、特に限定されないが、本実施形態に係る固定用樹脂組成物の合計値100質量%に対して、例えば好ましくは0.01質量%以上であり、より好ましくは0.05質量%以上である。また、離型剤の含有量は、特に限定されないが、例えば好ましくは1質量%以下であり、より好ましくは0.5質量%以下であり、さらに好ましくは0.2質量%以下であり、特に好ましくは0.1質量%以下である。通常、半導体チップをトランスファー形成する際には、固定部材が金型から離間する離型性を確保するために、離型剤を一定量添加することが知られている。
本実施形態に係る低応力剤の含有量は、本実施形態に係る固定用樹脂組成物の合計値100質量%に対して、好ましくは0.01質量%以上3質量%以下であり、より好ましくは0.05質量%以上2質量%以下である。低応力剤の含有量が上記範囲内であると、高温下、長時間にわたって高速回転させる環境下において、十分な耐久性を示すローターコアを実現できる。
本実施形態に係るイオン捕捉剤の含有量は、本実施形態に係る固定用樹脂組成物の合計値100質量%に対して、好ましくは0.01質量%以上3質量%以下であり、より好ましくは0.05質量%以上2質量%以下である。イオン捕捉剤の含有量が上記範囲内であると、高温下、長時間にわたって高速回転させる環境下において、十分な耐久性を示すローターコアを実現できる。
本実施形態に係る密着付与剤の含有量は、本実施形態に係る固定用樹脂組成物の合計値100質量%に対して、好ましくは0.01質量%以上3質量%以下であり、より好ましくは0.05質量%以上2質量%以下である。密着付与剤の含有量が上記範囲内であると、高温下、長時間にわたって高速回転させる環境下において、十分な耐久性を示すローターコアを実現できる。
(ローター固定用樹脂組成物の製造方法)
本実施形態に係る固定用樹脂組成物の製造方法は、特に制限されないが、例えば次のように行われる。まず、熱硬化性樹脂(A)、フェノール樹脂系硬化剤(B)及び無機充填剤(C)、ならびに好ましくはその他の添加剤等を、所定量配合する。次いで、配合したものを、たとえばミキサー、ジェットミル、ボールミル等を用いて常温で均一に粉砕、混合する。次いで、加熱ロール、ニーダー又は押出機等の混練機を用いて、90〜120℃程度まで固定用樹脂組成物を加温しながら溶融し混練を行う。次いで、混練後の固定用樹脂組成物を冷却、粉砕し、顆粒又は粉末状の固形の固定用樹脂組成物を得る。これらの製造工程における条件を適宜調整することにより、所望の分散度や流動性等を有する固定用樹脂組成物を得ることができる。
本実施形態に係る固定用樹脂組成物の粉末又は顆粒の粒度は、例えば5mm以下が好ましい。5mm以下とすることにより、打錠時に充填不良をおこし、タブレットの質量のバラツキが大きくなることを抑制することができる。
さらに、得られた固定用樹脂組成物の粉末又は顆粒を打錠成型することによりタブレットを得ることができる。打錠成型に用いる装置としては、単発式、又は多連ローターリー式の打錠機を用いることができる。タブレットの形状は、特に限定されないが、円柱状であることが好ましい。打錠機のオス型、メス型及び環境の温度に特に制限はないが、35℃以下が好ましい。35℃を超えると固定用樹脂組成物が反応により粘度上昇し、流動性が損なわれる恐れがある。打錠圧力は400×10以上3000×10以下Paの範囲が好ましい。打錠圧力を上記上限値以下とすることにより、タブレット打錠直後に破壊が生じることを抑制できる。一方、打錠圧力を上記下限値以上とすることにより、十分な凝集力が得られないために輸送中にタブレットの破壊が生じることを抑制することができる。打錠機のオス型、メス型の金型の材質、表面処理に特に限定はなく、公知の材質のものを使用することができる。表面処理の例としては、たとえば放電加工、離型剤のコーティング、メッキ処理、研磨などを挙げることができる。
また、本実施形態に係る固定部材のガラス転移温度(Tg)が、130℃以上であることが好ましく、140℃以上であることがより好ましい。上記下限値以上であれば、信頼性向上が期待できる。上記ガラス転移温度(Tg)の上限値としては、とくに限定されないが200℃以下が好ましく、190℃以下がより好ましい。これにより、耐久性に優れたローターが実現される。
また、本実施形態においては、例えば、エポキシ樹脂、硬化剤の軟化点を上げることにより、上記ガラス転移温度(Tg)を増加させることができる。
本実施形態に係る固定部材の150℃における曲げ強度が、70MPa以上であることが好ましく、100MPa以上であることがより好ましい。上記下限値以上であれば、クラックなどが発生しにくく信頼性向上が期待できる。上記曲げ強度の上限値としては、とくに限定されないが300MPa以下が好ましく、250MPa以下がより好ましい。これにより、耐久性に優れたローターが実現される。
また、本実施の形態においては、例えば、無機充填剤の表面にカップリング剤を処理することにより、上記曲げ強度を増加することができる。
本実施形態に係る固定部材の150℃における曲げ弾性率の上限値が、1.6×10MPa以下であることが好ましく、1.3×10MPa以下であることがより好ましい。上記上限値以下であれば、応力緩和による信頼性向上が期待できる。上記曲げ弾性率の下限値としては、とくに限定されないが5000MPa以上が好ましく、7000MPa以上がより好ましい。これにより、耐久性に優れたローターが実現される。
また、本実施の形態においては、例えば、低応力剤の添加量を増やす、無機充填剤の配合量を減らすなどにより、上記曲げ弾性率を低減することができる。
本実施形態に係る固定部材の、25℃以上のガラス転移温度(Tg)以下の領域における線膨張係数(α1)が、10ppm/℃以上、25ppm/℃以下であることが好ましく、15ppm/℃以上、20ppm/℃以下であることがより好ましい。上記範囲内であれば、電磁鋼板との熱膨張差が小さくかつマグネットの抜け落ちが防止できる。これにより、耐久性に優れたローターが実現される。
また、本実施の形態においては、例えば、無機充填剤の配合量を増やすことにより、上記線膨張係数(α1)を低減することができる。
本実施形態に係る固定部材の、ガラス転移温度(Tg)を超える領域における線膨張係数(α2)が、10ppm/℃以上、100ppm/℃以下であることが好ましく、20ppm/℃以上、80ppm/℃以下であることがより好ましい。上記範囲内であれば、電磁鋼板との熱膨張差が小さくかつマグネットの抜け落ちが防止できる。これにより、耐久性に優れたローターが実現される。
また、本実施の形態においては、例えば、無機充填剤の配合量を増やすことにより、上記線膨張係数(α2)を低減することができる。
(ローターの製造方法)
本実施形態に係るローター100の製造方法は、例えば次のように行われる。まず、回転シャフト170が貫通する貫通孔の周縁部に沿って配置されている複数の穴部150が設けられたローターコア110を準備する。次いで、孔部150に磁石120を挿入する。次いで、孔部150と磁石120との離間部140に固定用樹脂組成物を充填する。次いで、固定用樹脂組成物を硬化して、固定部材130を得る。次いで、ローターコア110が有する貫通孔に回転シャフト170を挿入するとともに、ローターコアに回転シャフト170を固設する。これにより、本実施形態に係るローター100が得られる。
本実施形態では、離間部140に固定用樹脂組成物を充填する手法として、インサート成形を用いることが好ましい。以下、詳述する。
まず、インサート成形装置について説明する。図10は、インサート成形に用いるインサート成形装置の上型200を示す断面図である。
固定部材130の形成方法の一例としては、タブレット状の固定用樹脂組成物を用い、インサート成形を行う方法を用いることができる。このインサート成形には、インサート成形装置を用いる。この成形装置は、タブレット状の固定用樹脂組成物が供給されるポット210および溶融状態の固定用樹脂組成物を移動させる流路220を有する上型200と、下型(図示せず)と、これらの上型200及び下型を加熱する加熱手段と、溶融状態の固定用樹脂組成物を押し出す押出機構と、を備える。インサート成形装置は、例えば、ローターコア等を搬送する搬送機能を備えてもよい。
上型200および下型は、インサート成形時において、ローターコア110の上面および下面にそれぞれ密着することが好ましい。このため、上型200および下型は、例えば板状である。本実施形態の上型200および下型は、インサート成形成型時においてローターコア110の全体を覆わない点で、半導体装置の製造方法に用いる通常のトランスファー成形の金型とは異なる。すなわち、本実施形態に係る上型200および下型は、インサート成形時において、ローターコア110の側面を覆わない。一方で、トランスファー成形用の金型は、上型及び下型で構成されるキャビティ内に半導体チップ全体が配置されるように構成される。
また、図10に示すように、ポット210は、二つの別々の流路220を有してもよい。この場合、一つのポット210に接続する二つの流路220は、Y字状に配置される。これにより、一つのポット210から、二つの孔部150に、本実施形態に係る固定用樹脂組成物を充填できる。なお、一つのポット210は、一つの孔部150に固定用樹脂組成物を充填する一つの流路のみを有してもよく、三つ以上の孔部150に固定用樹脂組成物を充填する三つ以上の流路を有してもよい。一つのポット210が複数の流路220を有する場合、複数の流路220は互いに独立してもよく、互いに連続していてもよい。
続いて、本実施形態に係るインサート成形について説明する。
まず、ローターコア110をオーブン又は熱盤上などで予熱後、不図示の成形装置の下型に固定する。続いて、ローターコア110の孔部150中に、磁石120を挿入する。続いて、下型を上昇させ、ローターコア110の上面に上型200を押しつける。これにより、上型200と下型とで、ローターコア110の上面および下面を挟み込む。このとき、上型200中の流路220の先端部が、孔部150と磁石120との離間部140上に配置される。また、ローターコア110は、成形装置の下型と上型200からの熱伝導により加熱されることとなる。成形装置の下型および上型200は、ローターコア110が固定用樹脂組成物の成形、硬化に適した温度となるよう、例えば150℃〜200℃程度に温調されている。この状態でタブレット状の固定用樹脂組成物を上型200のポット210内に供給する。上型200のポット210内に供給されたタブレット状の固定用樹脂組成物は、ポット210内で加熱され溶融状態となる。
続いて、プランジャ(押出機構)により、溶融状態の固定用樹脂組成物をポット210から押し出す。これにより、固定用樹脂組成物は、流路220を移動して孔部150と磁石120との離間部140に充填される。固定用樹脂組成物が離間部140に充填される間、ローターコア110は金型(下型と上型200)からの熱伝導により加熱される。ローターコア110が加熱されることで、離間部140に充填された固定用樹脂組成物が硬化される。これにより、固定部材130が形成されることとなる。
このとき、固定用樹脂組成物を硬化する際の温度条件は、例えば150℃〜200℃とすることができる。また、硬化時間は、例えば30秒〜180秒とすることができる。これにより、孔部150の内部に挿入された磁石120が固定部材130により固定される。この後、ローターコア110の上面から上型200を離間する。次いで、ローターコア110の貫通孔に回転シャフト170を挿入するとともに、ローターコア110に回転シャフト170を固設する。
以上により、本実施形態に係るローター100が得られる。
本実施形態に係るインサート成形方法は、脱型する必要がない点で、半導体装置の製造に用いるトランスファー成形方法と異なる。
インサート成形方法では、ローターコア110の上面と上型200とが密着された状態で、上型200の流路220を通って、ローターコア110の孔部150に固定用樹脂組成物が充填される。このため、ローターコア110の上面と上型200との間に樹脂が充填されず、上型200と上面との着脱が容易となる。
一方、トランスファー成形方法では、半導体チップと金型との間のキャビティに樹脂が充填されるので、成形品から金型をうまく脱型する必要がある。このため、半導体チップを封止する樹脂には、金型と成形品との離型性が特に要求されることになる。
本実施の形態のローター100は、ハイブリッド車、燃料電池車および電気自動車等の電動車両、列車ならびに船舶等の、乗り物に搭載することができる。
以下、本発明を、実施例を参照して詳細に説明するが、本発明は、これらの実施例の記載に何ら限定されるものではない。特に記載しない限り、以下に記載の「部」は「質量部」、「%」は「質量%」を示す。
各実施例及び各比較例で用いた原料成分を下記に示した。
(熱硬化性樹脂(A))
エポキシ樹脂1:製造方法を後述する。
エポキシ樹脂2:オルソクレゾールノボラック型エポキシ樹脂(日本化薬社製、EOCN−1020−65)
エポキシ樹脂3:オルソクレゾールノボラック型エポキシ樹脂(日本化薬社製、EOCN−1020−55)
(硬化剤(B))
フェノール樹脂系硬化剤1:製造方法を後述する。
フェノール樹脂系硬化剤2:ノボラック型フェノール樹脂(住友ベークライト製、PR−HF−3)
フェノール樹脂系硬化剤3:ノボラック型フェノール樹脂(住友ベークライト製、PR−51470)
(無機充填剤(C))
球状シリカ1(電気化学工業製、FB−950、平均粒径D5023μm、最大粒径Dmax75μm)
球状シリカ2(電気化学工業製、FB−35、平均粒径D5010μm、最大粒径Dmax75μm)
未処理球状シリカ3(アドマテックス社製、SO−25R、平均粒径D500.5μm)
(硬化促進剤(D))
硬化促進剤:トリフェニルホスフィン(ケイ・アイ化成(株)製、PP−360)
(シランカップリング剤(F))
シランカップリング剤1:γ−アミノプロピルトリエトキシシラン(信越化学工業(株)製、KBE−903)
シランカップリング剤2:フェニルアミノプロピルトリメトキシシラン(東レ・ダウコーニング(株)製、CF4083)
シランカップリング剤3:γ−グリシドキシプロピルトリメトキシシラン(チッソ(株)製、GPS−M)
シランカップリング剤4:γ−メルカプトプロピルトリメトキシシラン
(その他の添加剤)
離型剤:カルナバワックス
イオン捕捉剤:ハイドロタルサイト(協和化学工業製、商品名DHT−4H)
着色剤:カーボンブラック(三菱化学製、MA600)
トリアゾール:3−アミノ−1,2,4−トリアゾール−5−チオール
低応力剤:シリコーンレジン(信越化学工業(株)製、KMP−594)
難燃剤:水酸化アルミニウム(住友化学、CL−303,平均粒径D503.5μm)
フェノール樹脂系硬化剤1の製造方法を以下に示す。
セパラブルフラスコに撹拌装置、温度計、還流冷却器、窒素導入口を装着した後、1,3−ジヒドロキシベンゼン(東京化成工業社製、「レゾルシノール」、融点111℃、分子量110、純度99.4%)360質量部、フェノール(関東化学社製特級試薬、融点41℃、分子量94、純度99.3%)235質量部、あらかじめ粒状に砕いた4,4'−ビスクロロメチルビフェニル(和光純薬工業社製、融点126℃、純度95%、分子量251)251質量部を、セパラブルフラスコに秤量した。次に、窒素置換しながら加熱し、フェノールの溶融の開始に併せて攪拌を開始した。
撹拌開始後、系内温度を110〜130℃の範囲に維持しながら3時間反応させた後、再度加熱し、140〜160℃の範囲に維持しながら3時間反応させた。なお、上記の反応によって系内に発生した塩酸ガスは、窒素気流によって系外へ排出した。
反応終了後、150℃、2mmHgの減圧条件下、未反応成分を留去した。次いで、トルエン400質量部を添加し、均一溶解させた後、分液漏斗に移し、蒸留水150質量部を加えて振とうした。振とう後、水層を棄却する操作(水洗)を洗浄水が中性になるまで繰り返し行った。上記水洗操作後、油層を125℃減圧処理することによってトルエン、残留未反応成分等の揮発成分を留去し、下記式(12A)で表されるフェノール樹脂系硬化剤1(重合体)を得た。
なお、このフェノール樹脂系硬化剤1における水酸基当量は135、150℃におけるICI粘度は4.7dPa・sであった。
また、電界脱離質量分析(Field Desorption Mass Spectrometry;FD−MS)により測定・分析された相対強度比を質量比とみなして算術計算することにより得られた、一価ヒドロキシフェニレン構造単位の繰り返し数kの平均値k0、二価ヒドロキシフェニレン構造単位の繰り返し数mの平均値m0、およびそれらの比k0/m0は、それぞれ、1.20、1.27、48.6/51.4であった。
Figure 2016182032
(式(12A)中、2つのYは、それぞれ互いに独立して、下記式(12B)または下記式(12C)で表されるヒドロキシフェニル基を表し、Xは、下記式(12D)または下記式(12E)で表されるヒドロキシフェニレン基を表す。)
Figure 2016182032
エポキシ樹脂1の製造方法を以下に示す。
セパラブルフラスコに撹拌装置、温度計、還流冷却器、窒素導入口を装着した後、前述のフェノール樹脂系硬化剤1を100質量部、エピクロルヒドリン(東京化成工業社製)を400質量部、秤量して100℃に加熱溶解させた。次に、水酸化ナトリウム(固形細粒状、純度99%)60質量部を4時間かけて徐々に添加し、さらに3時間反応させた。次に、トルエン200質量部を加えて溶解させた後、蒸留水150質量部を加えて振とうし、水層を棄却する操作(水洗)を洗浄水が中性になるまで繰り返し行った。上記水洗操作後、油層を125℃、2mmHgの減圧条件下、エピクロルヒドリンを留去した。得られた固形物にメチルイソブチルケトン300質量部を加えて溶解し、70℃に加熱した上で、30質量%水酸化ナトリウム水溶液13質量部を1時間かけて添加した。添加後、さらに1時間反応して静置し、水層を棄却した。次に、油層に蒸留水150質量部を加えて水洗操作を行い、洗浄水が中性になるまで同様の水洗操作を繰り返し行った。上記水洗操作後、加熱減圧によってメチルイソブチルケトンを留去し、下記式(13A)で表される化合物を含むエポキシ樹脂1(エポキシ当量190g/eq)を得た。
Figure 2016182032
(式(13A)中、2つのYは、それぞれ互いに独立して、下記式(13B)または下記式(13C)で表されるグリシジル化フェニル基を表し、Xは、下記式(13D)または下記式(13E)で表されるグリシジル化フェニレン基を表す。)
Figure 2016182032
実施例1、3および4では、予めシランカップリング処理を施した無機充填剤(C)を処理シリカとして用いた。無機充填剤(C)のシランカップリング処理は、次のように行った。
まず、球状シリカ1および球状シリカ2を105℃で12時間それぞれ乾燥した。次いで、球状シリカ1を60重量部と、球状シリカ2を20重量部と、をミキサーに投入し、10分間攪拌した。次いで、球状シリカ1と球状シリカ2の混合物にシランカップリング剤1を0.3重量部噴霧しながら、当該混合物を20分間攪拌した。この際、シランカップリング剤1を噴霧した時間は、10分間程度であった。また、ミキサー内の湿度は50%以下であった。その後、60分間攪拌を続けることで、シリカとシランカップリング剤1とを混合した。
次いで、ミキサーから取り出し、20±5℃の条件下で7日間エージングを行った。次いで、200meshのふるいにかけ、粗大粒子を除去した。これにより、シランカップリング処理が施された無機充填剤(C)が得られた。なお。ミキサーには、リボンブレンダーを用いた。また、リボンブレンダーの回転数は、30rpmであった。
なお、シランカップリング剤2、3および4は樹脂に添加した。
(実施例および比較例)
実施例1〜4および比較例1〜3について、表に示す配合量に従って各成分を配合したものを、ミキサーを用いて常温で混合し、粉末状中間体を得た。得られた粉末状中間体を自動供給装置(ホッパー)に装填して、80℃〜100℃の加熱ロールへ定量供給し、溶融混練を行った。その後冷却し、次いで粉砕して、固定用樹脂組成物を得た。成型装置を用いて、得られた固定用樹脂組成物を打錠成型することにより、タブレットを得た。
得られた固定用樹脂組成物について、下記に示す測定及び評価を行った。
実施例1〜4および比較例1〜3では、ローター固定用樹脂組成物の硬化物を得るために、金型温度175℃、注入圧力9.8MPa、硬化時間120秒という硬化条件を用いている。また、下記測定に用いるローター固定用樹脂組成物の硬化物は、JIS K7162に準じた形状に成形し、175℃、4時間という条件でさらに硬化することで試験片を得た。
また、実施例1〜4および比較例1〜3における、各成分の配合比率を、以下の表1にまとめた。
下記表1の配合比率で得られた各硬化物に対し、行った測定および評価について以下に詳説する。
(評価項目)
破断エネルギーaおよびb、ヤング率:JIS K7162に準じてダンベル型に成形したローター固定用樹脂組成物の硬化物(以下、試験片と示す)を、25℃あるいは150℃で、負荷速度1.0mm/minという条件で引張試験を行った。なお、ヤング率は25℃、負荷速度1.0mm/minという条件のみで上記引張試験を行った。この引張試験において、テンシロンには、オリエンテック社製テンシロンUCT−30T型を、歪みゲージには、共和電業社製タイプKFG−2−120−D16−11L1M2Rを用いた。
破断エネルギーは、以下の方法で算出した。まず、引張試験時における垂直応力(stress)と垂直歪み(strein)との関係を、グラフ化した曲線(応力−歪曲線)を作成した。次に、歪みを変数とし、引張試験の開始点から破断点までの応力の積分値を、算出した。なお、単位は、×10−4J/mmとした。
ヤング率の単位は、GPaとした。
破断強度aおよびb:試験片を、25℃あるいは150℃で、負荷速度1.0mm/minという条件で引張試験を行った。ここで破断強度とは、試験片を破断させるために必要な引張荷重または力のことを示している。本実施例において破断強度は、以下の方法で算出した。まず、試験片が破断した際に、試験片に加えた応力をσ、試験片の最小断面積をSとする。破断強度は、試験片が破断した際に試験片に加えた力である。単位は、MPaとした。
疲労限度応力:試験片を、25℃で引張疲労試験を行った。ここで、疲労限度応力とは、試験片に繰り返し応力を加えた場合に、応力を無限回数負荷しても破壊しない応力振幅の上限のことを示している。本実施例において疲労限度応力は、鷲宮製作所社製引張疲労試験機FT−10型を用い、以下の方法で算出した。試験片に対し30Hzの正弦波で片振り応力(最大値と最小値=0の間を繰り返す応力)を印加し、10回印加しても破断しない応力を求めた。この時の応力を疲労限度応力とて算出した。なお、単位は、MPaである。
また、耐久性に優れたローターコアとするには、引張限度応力が25MPa以上であると好ましく、28MPa以上であるとさらに好ましい。
上記評価項目に関する評価結果を、以下の表1に各成分の配合比率と共に示す。
Figure 2016182032
疲労限度応力は、繰り返し使用に伴うローターコアの耐久性を表す指標となる。疲労限度応力が大きい材料を用いた場合、良好な耐久性を有したローターコアを得ることができる。表1からも分かるように、実施例1〜4の硬化物は、いずれも比較例の値と比較して高い値の疲労限度応力を有している。実際に、実施例に記載の材料を用いてローターコアを製造した場合、繰り返し使用という観点で高い耐久性を有したローターコアが得られた。
実施例1〜4に記載のローター固定用樹脂組成物は、破断エネルギーaを向上させるために、樹脂組成物の配合、シリカの表面処理(処理前の乾燥、pHの管理、エージング時間)その他の処理等の最適化を行っている。実施例1〜4では、従来にない処方上の工夫等をして最適化を行っており、以下に詳説する。
具体的に、実施例1では、新規なエポキシ樹脂1を含む3種のエポキシ樹脂を含有させている点、新規なフェノール樹脂系硬化剤1を用いている点、無機充填剤(C)のシランカップリング処理を最適化した点、等の技術的な工夫を行っている。実施例2では、新規なエポキシ樹脂1およびフェノール樹脂系硬化剤1を用いている点、ワックスを添加していないものを使用している点、等の技術的な工夫を行っている。実施例3では、新規なエポキシ樹脂1を含む3種のエポキシ樹脂を含有させている点、新規なフェノール樹脂系硬化剤1を含む3種のフェノール樹脂系硬化剤を含有させている点、無機充填剤(C)のシランカップリング処理を最適化した点、等の技術的な工夫を行っている。実施例4では、2種のエポキシ樹脂を含有させている点、2種のフェノール樹脂系硬化剤を含有させている点、ワックスを添加していないものを使用している点、無機充填剤(C)のシランカップリング処理を最適化した点、等の技術的な工夫を行っている。
100 ローター
110 ローターコア
112 電磁鋼板
116 溝部
118a エンドプレート
118b エンドプレート
120 磁石
121 側壁
123 側壁
125 側壁
127 側壁
130 固定部材
132 スリット充填用樹脂部材
140 離間部
150 孔部
151 側壁
152 スリット
153 側壁
154a 孔部
154b 孔部
155 側壁
156 孔部
157 側壁
160 カシメ部
170 回転シャフト
200 上型
210 ポット
220 流路
本発明によれば、回転シャフトに固設され、前記回転シャフトの周縁部に沿って配置されている複数の穴部が設けられている、ローターコアと、
前記穴部に挿入された磁石と、
前記穴部と前記磁石との離間部に設けられた固定部材と、を備えるローターのうち前記固定部材の形成に用いるローター固定用樹脂組成物であって、
2種以上のエポキシ樹脂を含む熱硬化性樹脂と、
硬化剤と、
無機充填剤と、
2級アミノシラン、エポキシシラン、メルカプトシランからなる群よりされる1種の化合物と、
を含み、
前記無機充填剤がシリカであり、
前記熱硬化性樹脂の含有量が前記ローター固定用樹脂組成物の合計値100質量%に対して5質量%以上40質量%以下であり、
前記硬化剤の含有量が前記ローター固定用樹脂組成物の合計値100質量%に対して0.8質量%以上12質量%以下であり、
前記無機充填剤の含有量が前記ローター固定用樹脂組成物の合計値100質量%に対して50質量%以上93質量%以下であり、
金型温度175℃、注入圧力9.8MPa、硬化時間120秒という硬化条件で、かつJIS K7162に準じて得られたダンベル形状の前記ローター固定用樹脂組成物の硬化物を、さらに175℃、4時間という条件で硬化させて試験片として作製し、
温度25℃、負荷速度1.0mm/minという条件で引張試験を行った際に得られる破断エネルギーが、1.5×10−4J/mm以上であるローター固定用樹脂組成物が提供される。
本実施の形態のローター100は、ハイブリッド車、燃料電池車および電気自動車等の電動車両、列車ならびに船舶等の、乗り物に搭載することができる。
以下、参考形態の例を付記する。
1.回転シャフトに固設され、前記回転シャフトの周縁部に沿って配置されている複数の穴部が設けられている、ローターコアと、
前記穴部に挿入された磁石と、
前記穴部と前記磁石との離間部に設けられた固定部材と、を備えるローターのうち前記固定部材の形成に用いるローター固定用樹脂組成物であって、
エポキシ樹脂を含む熱硬化性樹脂と、
硬化剤と、
無機充填剤と、
を含み、
金型温度175℃、注入圧力9.8MPa、硬化時間120秒という硬化条件で、かつJIS K7162に準じて得られたダンベル形状の前記ローター固定用樹脂組成物の硬化物を、さらに175℃、4時間という条件で硬化させて試験片として作製し、
温度25℃、負荷速度1.0mm/minという条件で引張試験を行った際に得られる破断エネルギーが、1.5×10 −4 J/mm 以上であるローター固定用樹脂組成物。
2.前記試験片に対して、温度150℃、負荷速度1.0mm/minという条件で引張試験を行った際に得られる破断エネルギーが、1.2×10 −4 J/mm 以上である1.に記載のローター固定用樹脂組成物。
3.前記試験片に対して、温度25℃、負荷速度1.0mm/minという条件で測定した際の破断強度が50MPa以上である1.または2.に記載のローター固定用樹脂組成物。
4.前記試験片に対して、温度150℃、負荷速度1.0mm/minという条件で測定した際の破断強度が15MPa以上である1.乃至3.のいずれか一つに記載のローター固定用樹脂組成物。
5.前記試験片のヤング率が、12GPa以上である1.乃至4.のいずれか一つに記載のローター固定用樹脂組成物。
6.2級アミノシラン、エポキシシラン、メルカプトシランからなる群よりされる1種の化合物をさらに含む1.乃至5.のいずれか一つに記載のローター固定用樹脂組成物。
7.前記エポキシ樹脂が、ビフェニル型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、フェノールノボラックエポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、ビスナフトール型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ジヒドロアントラセンジオール型エポキシ樹脂、及びトリフェニルメタン型エポキシ樹脂からなる群から選択される少なくとも一種を含む、1.乃至6.のいずれか一つに記載のローター固定用樹脂組成物。
8.前記硬化剤が、ノボラック型フェノール樹脂、フェノールアラルキル樹脂、ナフトール型フェノール樹脂、及びヒドロキシベンズアルデヒドとホルムアルデヒドとフェノールの反応生成物を主とするフェノール樹脂からなる群から選択される少なくとも一種を含む、1.乃至7.のいずれか一つに記載のローター固定用樹脂組成物。
9.前記エポキシ樹脂が、結晶性エポキシ樹脂である、1.乃至6.のいずれか一つに記載のローター固定用樹脂組成物。
10.粉末状、顆粒状、又はタブレット状である、1.乃至9.のいずれか一つに記載のローター固定用樹脂組成物。
11.穴部と磁石との前記離間部の幅は、20μm以上500μm以下である1.乃至10.のいずれか一つに記載のローター固定用樹脂組成物。
12.1.乃至10.のいずれか一つに記載のローター固定用樹脂組成物を用いて形成されるローター。
13.12.に記載のローターを用いて作製された自動車。

Claims (13)

  1. 回転シャフトに固設され、前記回転シャフトの周縁部に沿って配置されている複数の穴部が設けられている、ローターコアと、
    前記穴部に挿入された磁石と、
    前記穴部と前記磁石との離間部に設けられた固定部材と、を備えるローターのうち前記固定部材の形成に用いるローター固定用樹脂組成物であって、
    エポキシ樹脂を含む熱硬化性樹脂と、
    硬化剤と、
    無機充填剤と、
    を含み、
    金型温度175℃、注入圧力9.8MPa、硬化時間120秒という硬化条件で、かつJIS K7162に準じて得られたダンベル形状の前記ローター固定用樹脂組成物の硬化物を、さらに175℃、4時間という条件で硬化させて試験片として作製し、
    温度25℃、負荷速度1.0mm/minという条件で引張試験を行った際に得られる破断エネルギーが、1.5×10−4J/mm以上であるローター固定用樹脂組成物。
  2. 前記試験片に対して、温度150℃、負荷速度1.0mm/minという条件で引張試験を行った際に得られる破断エネルギーが、1.2×10−4J/mm以上である請求項1に記載のローター固定用樹脂組成物。
  3. 前記試験片に対して、温度25℃、負荷速度1.0mm/minという条件で測定した際の破断強度が50MPa以上である請求項1または2に記載のローター固定用樹脂組成物。
  4. 前記試験片に対して、温度150℃、負荷速度1.0mm/minという条件で測定した際の破断強度が15MPa以上である請求項1乃至3のいずれか一項に記載のローター固定用樹脂組成物。
  5. 前記試験片のヤング率が、12GPa以上である請求項1乃至4のいずれか一項に記載のローター固定用樹脂組成物。
  6. 2級アミノシラン、エポキシシラン、メルカプトシランからなる群よりされる1種の化合物をさらに含む請求項1乃至5のいずれか一項に記載のローター固定用樹脂組成物。
  7. 前記エポキシ樹脂が、ビフェニル型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、フェノールノボラックエポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、ビスナフトール型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ジヒドロアントラセンジオール型エポキシ樹脂、及びトリフェニルメタン型エポキシ樹脂からなる群から選択される少なくとも一種を含む、請求項1乃至6のいずれか一項に記載のローター固定用樹脂組成物。
  8. 前記硬化剤が、ノボラック型フェノール樹脂、フェノールアラルキル樹脂、ナフトール型フェノール樹脂、及びヒドロキシベンズアルデヒドとホルムアルデヒドとフェノールの反応生成物を主とするフェノール樹脂からなる群から選択される少なくとも一種を含む、請求項1乃至7のいずれか一項に記載のローター固定用樹脂組成物。
  9. 前記エポキシ樹脂が、結晶性エポキシ樹脂である、請求項1乃至6のいずれか一項に記載のローター固定用樹脂組成物。
  10. 粉末状、顆粒状、又はタブレット状である、請求項1乃至9のいずれか一項に記載のローター固定用樹脂組成物。
  11. 穴部と磁石との前記離間部の幅は、20μm以上500μm以下である請求項1乃至10のいずれか一項に記載のローター固定用樹脂組成物。
  12. 請求項1乃至10のいずれか一項に記載のローター固定用樹脂組成物を用いて形成されるローター。
  13. 請求項12に記載のローターを用いて作製された自動車。
JP2016131273A 2016-07-01 2016-07-01 ローター固定用樹脂組成物、ローター、および自動車 Pending JP2016182032A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016131273A JP2016182032A (ja) 2016-07-01 2016-07-01 ローター固定用樹脂組成物、ローター、および自動車

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016131273A JP2016182032A (ja) 2016-07-01 2016-07-01 ローター固定用樹脂組成物、ローター、および自動車

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012045882A Division JP2013181106A (ja) 2012-03-01 2012-03-01 ローター固定用樹脂組成物、ローター、および自動車

Publications (1)

Publication Number Publication Date
JP2016182032A true JP2016182032A (ja) 2016-10-13

Family

ID=57132124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016131273A Pending JP2016182032A (ja) 2016-07-01 2016-07-01 ローター固定用樹脂組成物、ローター、および自動車

Country Status (1)

Country Link
JP (1) JP2016182032A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107603149A (zh) * 2017-08-28 2018-01-19 南亚新材料科技股份有限公司 一种检验电子级填料鱼目的方法
JP2021101605A (ja) * 2019-10-31 2021-07-08 アイシン・エィ・ダブリュ株式会社 ロータの製造方法
JP2021533263A (ja) * 2018-07-30 2021-12-02 ポスコPosco 電磁鋼板、電磁鋼板用絶縁被膜組成物および電磁鋼板の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005304247A (ja) * 2004-04-15 2005-10-27 Toyota Motor Corp 永久磁石モータのロータ及びその製造方法
JP2007138136A (ja) * 2005-10-19 2007-06-07 Yokohama Rubber Co Ltd:The エポキシ樹脂/ポリウレタン混合物および硬化性樹脂組成物
JP2009013213A (ja) * 2007-07-02 2009-01-22 Gun Ei Chem Ind Co Ltd モーター封止用エポキシ樹脂成形材料及び成形品
JP2010053334A (ja) * 2008-07-31 2010-03-11 Sekisui Chem Co Ltd エポキシ系樹脂組成物、プリプレグ、硬化体、シート状成形体、積層板及び多層積層板
JP2010529819A (ja) * 2007-06-01 2010-08-26 バクームシュメルツェ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニ コマンディートゲゼルシャフト 2つの接合相手を結合するための方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005304247A (ja) * 2004-04-15 2005-10-27 Toyota Motor Corp 永久磁石モータのロータ及びその製造方法
JP2007138136A (ja) * 2005-10-19 2007-06-07 Yokohama Rubber Co Ltd:The エポキシ樹脂/ポリウレタン混合物および硬化性樹脂組成物
JP2010529819A (ja) * 2007-06-01 2010-08-26 バクームシュメルツェ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニ コマンディートゲゼルシャフト 2つの接合相手を結合するための方法
JP2009013213A (ja) * 2007-07-02 2009-01-22 Gun Ei Chem Ind Co Ltd モーター封止用エポキシ樹脂成形材料及び成形品
JP2010053334A (ja) * 2008-07-31 2010-03-11 Sekisui Chem Co Ltd エポキシ系樹脂組成物、プリプレグ、硬化体、シート状成形体、積層板及び多層積層板

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107603149A (zh) * 2017-08-28 2018-01-19 南亚新材料科技股份有限公司 一种检验电子级填料鱼目的方法
JP2021533263A (ja) * 2018-07-30 2021-12-02 ポスコPosco 電磁鋼板、電磁鋼板用絶縁被膜組成物および電磁鋼板の製造方法
JP7291203B2 (ja) 2018-07-30 2023-06-14 ポスコ カンパニー リミテッド 電磁鋼板、電磁鋼板用絶縁被膜組成物および電磁鋼板の製造方法
JP2021101605A (ja) * 2019-10-31 2021-07-08 アイシン・エィ・ダブリュ株式会社 ロータの製造方法
JP7480676B2 (ja) 2019-10-31 2024-05-10 株式会社アイシン ロータの製造方法

Similar Documents

Publication Publication Date Title
JP6469943B2 (ja) ローター固定用樹脂組成物およびローター
JP5966445B2 (ja) 固定用樹脂組成物、ロータ、および自動車
JP6089900B2 (ja) 固定用樹脂組成物、ロータ、自動車、及びロータの製造方法
EP2613426B1 (en) Fixing resin composition for use in rotor
JP5307263B1 (ja) 固定用樹脂組成物、ロータ、および自動車
JP2017125150A (ja) 樹脂組成物
JP6281178B2 (ja) 電子装置、自動車および電子装置の製造方法
JP6281614B2 (ja) ロータ
JP2016182032A (ja) ローター固定用樹脂組成物、ローター、および自動車
JP5957961B2 (ja) 固定用樹脂組成物、ロータおよび自動車
JP5971176B2 (ja) ロータに用いる固定用樹脂組成物
JP6249468B2 (ja) ロータおよび自動車
JP2013181106A (ja) ローター固定用樹脂組成物、ローター、および自動車
JP6275946B2 (ja) ローター固定用樹脂組成物およびローター
JP5971081B2 (ja) 固定用樹脂組成物、ロータ、および自動車
JP7552931B2 (ja) 封止用樹脂組成物および片面封止構造体の製造方法
JP6989044B1 (ja) 封止構造体の製造方法およびタブレット
JP5246377B2 (ja) ロータに用いる固定用樹脂組成物およびロータ

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160722

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180323

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180403

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20180608