JP2016180691A - Ultrasonic flowmeter with silencer - Google Patents

Ultrasonic flowmeter with silencer Download PDF

Info

Publication number
JP2016180691A
JP2016180691A JP2015061139A JP2015061139A JP2016180691A JP 2016180691 A JP2016180691 A JP 2016180691A JP 2015061139 A JP2015061139 A JP 2015061139A JP 2015061139 A JP2015061139 A JP 2015061139A JP 2016180691 A JP2016180691 A JP 2016180691A
Authority
JP
Japan
Prior art keywords
cylindrical body
silencer
pair
measurement
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015061139A
Other languages
Japanese (ja)
Other versions
JP6474659B2 (en
Inventor
服部 浩
Hiroshi Hattori
浩 服部
慎治 後藤
Shinji Goto
慎治 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Tokei Denki Co Ltd
Original Assignee
Aichi Tokei Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Tokei Denki Co Ltd filed Critical Aichi Tokei Denki Co Ltd
Priority to JP2015061139A priority Critical patent/JP6474659B2/en
Publication of JP2016180691A publication Critical patent/JP2016180691A/en
Application granted granted Critical
Publication of JP6474659B2 publication Critical patent/JP6474659B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonic flowmeter with silencer that can reduce a change in measurement value arising from piping to be connected to an upstream side.SOLUTION: A flowmeter 10 according to the present invention includes a silencer 30 on an upstream side of a flow measurement unit 11 that transmits/receives an ultrasonic wave between paired transducers 21 and 21 opposing each other in an axial direction of a measurement flow channel 20 of a rectangular cross section. The silencer 30 is provided with: a cylindrical body 31 coaxial with the measurement flow channel 20; an annular obstacle plate 33 to be engaged with an inner peripheral surface 31M of the cylindrical body 31; a center obstacle plate 34 forming an annular clearance 34A between the inner peripheral surface 31M of the cylindrical body 31 and the center obstacle plate; and a plurality of support pillars 47 coupling the annular obstacle plate 33 to the center obstacle plate 34. When viewing from the axial direction of the cylindrical body 31, each support pillar 47 is arranged in a range where an angle formed with a straight line connecting the support pillar 47 to a center axis of the cylindrical body 31 and a long-side direction of the flow channel cross section of the measurement flow channel 20 is equal to or less than 45 degrees.SELECTED DRAWING: Figure 2

Description

本発明は、1対の送受波器の間で超音波を送受波することで計測流路を流れる流体の流量を計測する流量計測部の上流側に消音器が備えられた消音器付き超音波流量計に関する。   The present invention relates to an ultrasonic wave with a silencer provided with a silencer on the upstream side of a flow rate measurement unit that measures the flow rate of a fluid flowing through a measurement channel by transmitting and receiving ultrasonic waves between a pair of transducers. It relates to a flow meter.

従来、この種の消音器付き超音波流量計として、消音器が、計測流路と同軸に配置される筒形ボディ内に、筒形ボディの内周面に嵌合される環状障害壁と、環状障害壁の中央孔を覆うと共に筒形ボディの内周面との間に環状の隙間を形成する中央障害壁とを交互に並べて備え、環状障害壁と中央障害壁とが複数の支柱で連結されたものが知られている(例えば、特許文献1参照)。   Conventionally, as this type of ultrasonic flowmeter with a silencer, the silencer is placed in the cylindrical body coaxially with the measurement flow path, the annular obstacle wall fitted to the inner peripheral surface of the cylindrical body, The central obstacle wall that covers the central hole of the annular obstacle wall and forms an annular gap between the inner peripheral surface of the cylindrical body is arranged alternately, and the annular obstacle wall and the central obstacle wall are connected by a plurality of columns. Is known (for example, see Patent Document 1).

特開2012−220428号公報(段落[0023]〜[0026]、図2)JP 2012-220428 A (paragraphs [0023] to [0026], FIG. 2)

しかしながら、上述した従来の消音器付き超音波流量計では、上流側に接続される配管の形状等の相違による計測値の変化が大きいという問題があった。   However, the above-described conventional ultrasonic flowmeter with a silencer has a problem that a change in measurement value due to a difference in the shape or the like of the pipe connected to the upstream side is large.

本発明は、上記事情に鑑みてなされたもので、上流側に接続される配管に起因した計測値の変化を低減可能な消音器付き超音波流量計の提供を目的とする。   This invention is made | formed in view of the said situation, and aims at provision of the ultrasonic flowmeter with a silencer which can reduce the change of the measured value resulting from the piping connected upstream.

本願発明者は、上記課題を解決すべく、鋭意検討した結果、計測値の変化が、環状障害壁と中央障害壁とを連結する複数の支柱の配置に依存するという知見を得た。具体的には、本願発明者は、断面矩形状の計測流路の中心軸上に1対の送受波器が対向配置される場合では、計測流路の軸方向から見て、各支柱と計測流路の中心軸を結ぶ直線が計測流路の流路断面の長手方向となす角が45度より大きく、90度以下であるときよりも、45度以下であるときの方が、計測値の変化が小さくなる、という知見を得た。また、本願発明者は、1対の送受波器が計測流路の中心軸と斜めに交差する方向に対向配置される場合では、計測流路の周方向における支柱の送受波器からのズレが45度未満のときよりも、ズレが45度以上、90度以下のときの方が、計測値の変化が小さくなる、という知見をも得た。これらの知見に基づいて、本願発明者は、以下の請求項1〜5の発明に至った。   The inventor of the present application has made extensive studies to solve the above problems, and as a result, has obtained the knowledge that the change in the measured value depends on the arrangement of a plurality of support columns connecting the annular obstacle wall and the central obstacle wall. Specifically, the inventor of the present application, when a pair of transducers are arranged opposite to each other on the central axis of the measurement channel having a rectangular cross-section, each column and the measurement are viewed from the axial direction of the measurement channel. The angle between the straight line connecting the central axes of the flow paths and the longitudinal direction of the cross section of the measurement flow path is greater than 45 degrees and less than 90 degrees. The knowledge that change becomes small was acquired. In addition, in the case where the pair of transducers are arranged opposite to each other in a direction obliquely intersecting the central axis of the measurement flow path, the inventor of the present application has a deviation from the transducer of the support column in the circumferential direction of the measurement flow path. It was also found that the change in the measured value is smaller when the deviation is 45 degrees or more and 90 degrees or less than when it is less than 45 degrees. Based on these findings, the inventors of the present application have arrived at the inventions of claims 1 to 5 below.

即ち、上記目的を達成するためになされた請求項1の発明は、1対の送受波器の間で超音波を送受波することで計測流路を流れる流体の流量を計測する流量計測部の上流側に消音器が備えられた消音器付き超音波流量計であって、前記計測流路は、断面矩形状をなすと共に、前記1対の送受波器は、前記計測流路の中心軸上に対向配置され、前記消音器には、前記計測流路と同軸に配置される筒形ボディと、前記筒形ボディの内周面に嵌合される環状障害板と、前記環状障害板の内側に形成される中央孔を覆うと共に、前記筒形ボディの内周面との間に環状隙間を形成する中央障害板と、前記環状障害板と前記中央障害板とが前記筒形ボディの軸方向で交互に配置されるように、前記環状障害板と前記中央障害板とを連結する複数の支柱と、が備えられている消音器付き超音波流量計において、各前記支柱は、前記筒形ボディの中心軸方向から見たときに、その支柱と前記筒形ボディの中心軸とを結ぶ直線と前記計測流路の流路断面の長手方向とのなす角度が45度以下となる範囲に配置されている消音器付き超音波流量計である。   That is, in order to achieve the above object, the invention of claim 1 is directed to a flow rate measurement unit that measures the flow rate of a fluid flowing through a measurement channel by transmitting and receiving ultrasonic waves between a pair of transducers. An ultrasonic flowmeter with a silencer provided with a silencer on the upstream side, wherein the measurement flow path has a rectangular cross section, and the pair of transducers are on a central axis of the measurement flow path The silencer is disposed opposite to the cylindrical body, the cylindrical body disposed coaxially with the measurement channel, the annular obstacle plate fitted to the inner peripheral surface of the cylindrical body, and the inner side of the annular obstacle plate A central obstruction plate that covers the central hole formed in the cylindrical body and forms an annular gap between the inner peripheral surface of the cylindrical body, and the annular obstruction plate and the central obstruction plate are in the axial direction of the cylindrical body A plurality of struts connecting the annular obstruction plate and the central obstruction plate, so as to be alternately arranged, In the ultrasonic flowmeter with a silencer provided, each of the columns has a straight line connecting the column and the central axis of the cylindrical body and the measurement flow when viewed from the central axis direction of the cylindrical body. It is an ultrasonic flowmeter with a muffler arranged in a range where the angle formed with the longitudinal direction of the flow path section of the path is 45 degrees or less.

請求項2の発明は、前記複数の支柱は、前記筒形ボディの周方向で180度離れた位置に配置される1対の対向支柱のみからなる請求項1に記載の消音器付き超音波流量計である。   The invention according to claim 2 is the ultrasonic flow rate with a silencer according to claim 1, wherein the plurality of struts are composed only of a pair of opposed struts arranged at positions 180 degrees apart in the circumferential direction of the cylindrical body. It is a total.

請求項3の発明は、前記1対の対向支柱が前記計測流路の流路断面の長手方向に一致している請求項2に記載の消音器付き超音波流量計である。   A third aspect of the present invention is the ultrasonic flowmeter with a silencer according to the second aspect, wherein the pair of opposed struts coincide with a longitudinal direction of a cross section of the measurement flow path.

請求項4の発明は、1対の送受波器の間で超音波を送受波することで計測流路を流れる流体の流量を計測する流量計測部の上流側に消音器が備えられた消音器付き超音波流量計であって、前記1対の送受波器は、前記計測流路の中心軸と斜めに交差する方向に対向配置され、前記消音器には、前記計測流路と同軸に配置される筒形ボディと、前記筒形ボディの内周面に嵌合される環状障害板と、前記環状障害壁の内側に形成される中央孔を覆うと共に、前記筒形ボディの内周面との間に環状隙間を形成する中央障害壁と、前記環状障害壁と前記中央障害壁とが前記筒形ボディの軸方向で交互に配置されるように、前記環状障害壁と前記中央障害壁とを連結する複数の支柱と、が備えられている消音器付き超音波流量計において、前記複数の支柱は、前記筒形ボディの軸方向から見たときに、前記1対の送受波器に対する周方向のズレが45度以上、90度以下となる範囲に配置されている消音器付き超音波流量計である。   According to a fourth aspect of the present invention, a silencer is provided with a silencer on the upstream side of a flow rate measurement unit that measures the flow rate of fluid flowing through the measurement flow path by transmitting and receiving ultrasonic waves between a pair of transducers. An ultrasonic flowmeter with a pair, wherein the pair of transducers are arranged opposite to each other in a direction obliquely intersecting a central axis of the measurement flow path, and the silencer is arranged coaxially with the measurement flow path A cylindrical body, an annular obstacle plate fitted to the inner peripheral surface of the cylindrical body, a central hole formed inside the annular obstacle wall, and an inner peripheral surface of the cylindrical body A central obstacle wall forming an annular gap therebetween, and the annular obstacle wall and the central obstacle wall so that the annular obstacle wall and the central obstacle wall are alternately arranged in the axial direction of the cylindrical body. In the ultrasonic flowmeter with a silencer, comprising a plurality of struts for connecting the plurality of struts, Is an ultrasonic flowmeter with a silencer arranged in a range in which the circumferential displacement with respect to the pair of transducers is 45 degrees or more and 90 degrees or less when viewed from the axial direction of the cylindrical body It is.

請求項5の発明は、前記複数の支柱は、前記筒形ボディの周方向で180度離れた位置に配置される1対の対向支柱のみからなる請求項4に記載の消音器付き超音波流量計である。   The invention according to claim 5 is the ultrasonic flow rate with silencer according to claim 4, wherein the plurality of struts are composed only of a pair of opposed struts arranged at positions 180 degrees apart in the circumferential direction of the cylindrical body. It is a total.

請求項6の発明は、前記1対の対向支柱の対向方向が前記1対の送受波器の対向方向と直交する請求項5に記載の消音器付き超音波流量計である。   The invention according to claim 6 is the ultrasonic flowmeter with a silencer according to claim 5, wherein the facing direction of the pair of opposed struts is orthogonal to the facing direction of the pair of transducers.

[請求項1〜3の発明]
請求項1の発明では、計測流路が断面矩形状をなすと共に、1対の送受波器が計測流路の中心軸上に対向配置されている。そして、本発明によれば、環状障害壁と中央障害壁を連結する各支柱は、筒形ボディの中心軸方向から見たときに、その支柱と筒形ボディの中心軸とを結ぶ直線と計測流路の流路断面の長手方向とのなす角度が45度以下となる範囲に配置されているので、上流側に接続される配管に起因した計測値の変化を低減することが可能となる。しかも、請求項2の発明のように、複数の支柱が筒形ボディの周方向で180度離れた位置に配置される1対の対向支柱のみからなる構成とすれば、支柱による圧損を低減しつつ、計測値の変化を効率よく低減することが可能となる。なお、1対の対向支柱の対向方向は、計測流路の流路断面の長手方向に一致することが好ましい(請求項3の発明)。
[Invention of claims 1 to 3]
According to the first aspect of the present invention, the measurement channel has a rectangular cross section, and a pair of transducers are arranged opposite to each other on the central axis of the measurement channel. According to the present invention, each column that connects the annular obstacle wall and the central obstacle wall is measured with a straight line connecting the column and the central axis of the cylindrical body when viewed from the central axis direction of the cylindrical body. Since the angle formed by the longitudinal direction of the flow path section of the flow path is 45 degrees or less, it is possible to reduce the change in the measurement value due to the pipe connected to the upstream side. In addition, as in the invention of claim 2, if the plurality of struts are composed of only a pair of opposed struts arranged at positions 180 degrees apart in the circumferential direction of the cylindrical body, pressure loss due to the struts can be reduced. However, it is possible to efficiently reduce changes in measurement values. In addition, it is preferable that the opposing direction of a pair of opposing support | pillar corresponds with the longitudinal direction of the flow-path cross section of a measurement flow path (invention of Claim 3).

[請求項4〜6の発明]
請求項4の発明では、1対の送受波器が計測流路の中心軸と斜めに交差する方向に対向配置されている。そして、本発明によれば、複数の支柱は、筒形ボディの軸方向から見たときに、1対の送受波器に対する周方向のズレが45度以上、90度以下となる範囲に配置されているので、上流側に接続される配管に起因した計測値の変化を低減することが可能となる。しかも、請求項5の発明のように、複数の支柱が筒形ボディの周方向で180度離れた位置に配置される1対の対向支柱のみからなる構成とすれば、支柱による圧損を低減しつつ、計測値の変化を効率よく低減することが可能となる。なお、1対の対向支柱の対向方向は、1対の送受波器の対向方向と直交することが好ましい(請求項6の発明)。
[Invention of Claims 4-6]
In the invention of claim 4, the pair of transducers are arranged opposite to each other in a direction that obliquely intersects the central axis of the measurement flow path. And according to this invention, when it sees from the axial direction of a cylindrical body, several support | pillars are arrange | positioned in the range from which the shift | offset | difference of the circumferential direction with respect to a pair of transmitter / receiver becomes 45 to 90 degree | times. Therefore, it becomes possible to reduce the change of the measured value resulting from the piping connected to the upstream side. In addition, as in the fifth aspect of the present invention, if the plurality of struts are composed of only a pair of opposed struts arranged at positions 180 degrees apart in the circumferential direction of the cylindrical body, pressure loss due to the struts can be reduced. However, it is possible to efficiently reduce changes in measurement values. The facing direction of the pair of facing struts is preferably orthogonal to the facing direction of the pair of transducers (invention of claim 6).

本発明の第1実施形態に係る消音器付き超音波流量計の側面図The side view of the ultrasonic flowmeter with a silencer concerning a 1st embodiment of the present invention. 消音器付き超音波流量計の側断面図Cross section of ultrasonic flowmeter with silencer インナーユニットの斜視図Perspective view of inner unit (A)消音器付き超音波流量計の正断面図、(B)別の例としての消音器付き超音波流量計の正断面図、(C)参考例としての消音器付き超音波流量計の正断面図(A) Front sectional view of ultrasonic flowmeter with silencer, (B) Front sectional view of ultrasonic flowmeter with silencer as another example, (C) Ultrasonic flowmeter with silencer as reference example Front sectional view 確認実験の概要を示す図Diagram showing the outline of the confirmation experiment 実験例1の実験結果を示すグラフThe graph which shows the experimental result of Experimental example 1 実験例2の実験結果を示すグラフThe graph which shows the experimental result of Experimental example 2 実験例3の実験結果を示すグラフThe graph which shows the experimental result of Experimental example 3 エルボ管がされた場合の実験例1〜3の実験結果を同一のグラフに重ねて示した図The figure which piled up and showed the experimental result of Experimental Examples 1-3 when an elbow pipe was done on the same graph (A)計測流路の長手方向に流速分布がある場合の流速分布と1対の送受波器の配置関係を示す図、(B)計測流路の短手方向に流速分布がある場合の流速分布と1対の送受波器の配置関係を示す図(A) The figure which shows the flow rate distribution in the case where there is a flow velocity distribution in the longitudinal direction of the measurement flow path and the arrangement relationship between the pair of transducers, (B) The flow velocity in the case where there is a flow velocity distribution in the short direction of the measurement flow path The figure which shows distribution and arrangement relation of one pair of transducers (A)乱流における流速分布の平滑化の概念図、(B)層流における流速分布の平滑化の概念図(A) Conceptual diagram of smoothing of flow velocity distribution in turbulent flow, (B) Conceptual diagram of smoothing of flow velocity distribution in laminar flow 1対の対向支柱の対向方向と計測流路の長手方向が直交する場合における消音器付き超音波流量計の(A)正断面図、(B)A−A断面図(A) Front sectional view and (B) AA sectional view of an ultrasonic flowmeter with a silencer when the opposing direction of a pair of opposing struts and the longitudinal direction of the measurement channel are orthogonal to each other 1対の対向支柱の対向方向と計測流路の長手方向が一致する場合における消音器付き超音波流量計の(A)正断面図、(B)B−B断面図(A) Front sectional view, (B) BB sectional view of an ultrasonic flowmeter with a silencer when the opposing direction of a pair of opposing struts coincides with the longitudinal direction of the measurement flow path 第2実施形態に係る消音器付き超音波流量計における(A)1対の送受波器の対向方向で切断した断面図、(B)1対の送受波器の対向方向と直交する方向で切断した断面図In the ultrasonic flowmeter with a silencer according to the second embodiment, (A) a sectional view cut in the facing direction of a pair of transducers, (B) cut in a direction orthogonal to the facing direction of the pair of transducers Cross section (A)消音器付き超音波流量計の正断面図、(B)別の例としての消音器付き超音波流量計の正断面図、(C)参考例としての消音器付き超音波流量計の正断面図(A) Front sectional view of ultrasonic flowmeter with silencer, (B) Front sectional view of ultrasonic flowmeter with silencer as another example, (C) Ultrasonic flowmeter with silencer as reference example Front sectional view (A)1対の送受波器の対向方向に流速分布がある場合の流速分布と1対の送受波器の配置関係を示す図、(B)1対の送受波器の対向方向と直交する方向に流速分布がある場合の流速分布と1対の送受波器の配置関係を示す図(A) The figure which shows the flow rate distribution in the case where there is a flow velocity distribution in the facing direction of a pair of transducers and the arrangement relationship between the pair of transducers, (B) orthogonal to the facing direction of the pair of transducers. The figure which shows the arrangement relation of the flow velocity distribution when there is a flow velocity distribution in the direction and a pair of transducers 1対の対向支柱の対向方向と1対の送受波器の対向方向とが一致する場合における(A)正断面図、(B)C−C断面図(A) Front sectional view, (B) CC sectional view when the facing direction of a pair of opposed struts coincides with the facing direction of a pair of transducers 1対の対向支柱の対向方向と1対の送受波器の対向方向とが直交する場合における(A)正断面図、(B)D−D断面図(A) Front sectional view, (B) DD sectional view in the case where the facing direction of a pair of opposed struts and the facing direction of a pair of transducers are orthogonal to each other (A)変形例に係る消音器付き超音波流用計の正断面図、(B)変形例に係る消音器付き超音波流用計の正断面図(A) Front sectional view of ultrasonic diverter with silencer according to modification, (B) Front sectional view of ultrasonic diversion meter with silencer according to modification (A)変形例に係る消音器付き超音波流用計の正断面図、(B)変形例に係る消音器付き超音波流用計の正断面図(A) Front sectional view of ultrasonic diverter with silencer according to modification, (B) Front sectional view of ultrasonic diversion meter with silencer according to modification

[第1実施形態]
以下、本発明の第1実施形態を図1〜図13に基づいて説明する。図1に示すように、本実施形態の消音器付き超音波流量計10(以下、単に「流量計10」という。)は、流体が流れる配管70(例えば、ガス管)の途中に取り付けられ、流量計測部11の上流側に消音器30を備えた構造になっている。なお、以下では、配管70のうち流量計10より上流側部分を上流側配管71と、流量計10より下流側部分を下流側配管72と、適宜、区別することにする。
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, the ultrasonic flowmeter 10 with a silencer of the present embodiment (hereinafter simply referred to as “flowmeter 10”) is attached in the middle of a pipe 70 (for example, a gas pipe) through which a fluid flows. The silencer 30 is provided on the upstream side of the flow rate measuring unit 11. In the following description, the upstream portion of the pipe 70 from the flow meter 10 is appropriately distinguished from the upstream pipe 71, and the downstream portion from the flow meter 10 is appropriately distinguished from the downstream pipe 72.

図2に示すように、流量計測部11は、計測流路20が内側に形成された計測管12と、計測流路20を流れる流体の流量を計測するための1対の送受波器21,21と、を備えている。具体的には、計測管12は、軸方向の中間部で内側断面積が段付き状に小さくなって、内側断面積の小さな小径部14が内側断面積の大きな大径部13,13に軸方向で挟まれた構造になっている。そして、1対の大径部13,13に、超音波を送受波可能な1対の送受波器21,21が固定して備えられることで、小径部14の内側部分に、直線状に延びた計測流路20が形成されている。ここで、1対の送受波器21,21は、計測流路20の中心軸上に配置されている。なお、図2では、1対の送受波器21,21を計測管12に固定するための機構は省略して示されている。   As shown in FIG. 2, the flow rate measurement unit 11 includes a measurement tube 12 in which the measurement channel 20 is formed inside, and a pair of transducers 21 for measuring the flow rate of the fluid flowing through the measurement channel 20, 21. Specifically, the measuring tube 12 has an inner cross-sectional area that is stepwise reduced at an intermediate portion in the axial direction. The structure is sandwiched between directions. The pair of large-diameter portions 13 and 13 are provided with a pair of transducers 21 and 21 that can transmit and receive ultrasonic waves, so that they extend linearly to the inner portion of the small-diameter portion 14. The measurement flow path 20 is formed. Here, the pair of transducers 21 and 21 is disposed on the central axis of the measurement flow path 20. In FIG. 2, a mechanism for fixing the pair of transducers 21 and 21 to the measuring tube 12 is omitted.

図4(A)に示すように、本実施形態では、計測流路20の断面形状は、矩形状になっている。具体的には、計測流路20の断面における短手方向では、計測流路20の長さは、送受波器21の長さとほぼ同じ大きさになっていて、長手方向では、計測流路20の長さは、送受波器の長さの約2〜20倍となっている。   As shown in FIG. 4A, in this embodiment, the cross-sectional shape of the measurement channel 20 is rectangular. Specifically, the length of the measurement channel 20 is approximately the same as the length of the transducer 21 in the short direction in the cross section of the measurement channel 20, and the measurement channel 20 in the longitudinal direction. Is about 2 to 20 times the length of the transducer.

図2に示すように、消音器30は、計測管12に接続される筒形ボディ31を有している。筒形ボディ31は、円筒状をなして計測管12(計測流路20)と同軸に配置され、筒形ボディ31の内径は、上流側配管71の内径よりも大径となっている。詳細には、筒形ボディ31の内径は、計測管12の大径部13の内径と同一径となっている。また、筒形ボディ31の両端部にはフランジ31F,31Fが備えられ、それらフランジ31F,31Fが上流側配管71のフランジ71Fと計測管12のフランジ12Fに重ねられて連結されている。   As shown in FIG. 2, the silencer 30 has a cylindrical body 31 connected to the measurement tube 12. The cylindrical body 31 has a cylindrical shape and is arranged coaxially with the measurement pipe 12 (measurement flow path 20). The inner diameter of the cylindrical body 31 is larger than the inner diameter of the upstream pipe 71. Specifically, the inner diameter of the cylindrical body 31 is the same as the inner diameter of the large diameter portion 13 of the measuring tube 12. Further, flanges 31F and 31F are provided at both ends of the cylindrical body 31, and the flanges 31F and 31F are overlapped and connected to the flange 71F of the upstream pipe 71 and the flange 12F of the measurement pipe 12.

筒形ボディ31の内部には、環状障害壁43と中央障害壁44とが一定の間隔をあけて交互に並べて備えられ、それら環状障害壁43及び中央障害壁44によって筒形ボディ31の内部が複数の部屋36,36,・・・に仕切られている。   Inside the cylindrical body 31, annular obstacle walls 43 and central obstacle walls 44 are alternately arranged with a certain interval, and the inside of the cylindrical body 31 is formed by the annular obstacle walls 43 and the central obstacle wall 44. It is partitioned into a plurality of rooms 36, 36,.

環状障害壁43は、円環状をなして径方向中央に中央孔43Aを有し、筒形ボディ31の内周面31Mに嵌合されている。中央障害壁44は、円形状をなして、筒形ボディ31の内周面31Mとの間に環状隙間44Aを形成する。ここで、中央障害壁44の大きさは、環状障害壁43の中央孔43Aよりも大径となっていて、中央障害壁44と中央孔43Aが筒形ボディ31の軸方向で対向配置されている。また、環状障害壁43と環状隙間44Aも筒形ボディ31の軸方向で対向配置されている。このように、本実施形態では、中央障害壁44が環状障害壁43の中央孔43Aを覆うように配置されていて、中央孔43Aと環状隙間44Aとが筒形ボディ31の軸方向で重ならないようになっている。   The annular obstacle wall 43 has an annular shape, has a central hole 43A at the center in the radial direction, and is fitted to the inner peripheral surface 31M of the cylindrical body 31. The central obstacle wall 44 has a circular shape and forms an annular gap 44 </ b> A with the inner peripheral surface 31 </ b> M of the cylindrical body 31. Here, the size of the central obstacle wall 44 is larger than that of the central hole 43A of the annular obstacle wall 43, and the central obstacle wall 44 and the central hole 43A are arranged to face each other in the axial direction of the cylindrical body 31. Yes. Further, the annular obstacle wall 43 and the annular gap 44 </ b> A are also opposed to each other in the axial direction of the cylindrical body 31. Thus, in the present embodiment, the central obstacle wall 44 is disposed so as to cover the central hole 43A of the annular obstacle wall 43, and the central hole 43A and the annular gap 44A do not overlap in the axial direction of the cylindrical body 31. It is like that.

図3に示すように、環状障害壁43と中央障害壁44は、複数の支柱47によって連結されてインナーユニット40を構成している。支柱47は、環状障害壁43よりも大径なフランジ壁41から起立して筒形ボディ31の軸方向に延び、環状障害壁43と中央障害壁44とを貫通して、環状障害壁43と中央障害壁44との間を一定の間隔で固定している。図2に示されるように、インナーユニット40は、筒形ボディ31の上流側の開口部32から挿入され、フランジ壁41を筒形ボディ31のフランジ31Fと上流側配管71のフランジ71Fとの間に挟むことで筒形ボディ31内に位置決めされている。なお、フランジ壁41の中央部に貫通形成された円形孔41Aは、例えば、中央孔43Aと同一径となっている(図2参照)。   As shown in FIG. 3, the annular obstacle wall 43 and the central obstacle wall 44 are connected by a plurality of support columns 47 to form an inner unit 40. The column 47 rises from the flange wall 41 having a diameter larger than that of the annular obstacle wall 43 and extends in the axial direction of the cylindrical body 31, penetrates the annular obstacle wall 43 and the central obstacle wall 44, and The distance between the central obstacle wall 44 and the central obstacle wall 44 is fixed. As shown in FIG. 2, the inner unit 40 is inserted from the opening 32 on the upstream side of the cylindrical body 31, and the flange wall 41 is interposed between the flange 31 </ b> F of the cylindrical body 31 and the flange 71 </ b> F of the upstream pipe 71. It is positioned in the cylindrical body 31 by being sandwiched between the two. Note that the circular hole 41A formed through the central portion of the flange wall 41 has the same diameter as the central hole 43A, for example (see FIG. 2).

本実施形態では、複数の支柱47は、筒形ボディ31の周方向で180度離れた位置に対をなして配置される1対の対向支柱47T,47Tのみで構成されている。このように、本実施形態では、環状障害壁43と中央障害壁44を連結する支柱47の数が2つのみとなっているので、支柱47による流体の圧損を低減することが可能となっている。   In the present embodiment, the plurality of support columns 47 are configured by only a pair of opposed support columns 47T and 47T disposed in pairs at positions 180 degrees apart in the circumferential direction of the cylindrical body 31. Thus, in this embodiment, since the number of the support | pillars 47 which connect the cyclic | annular obstacle wall 43 and the central obstacle wall 44 is only two, it becomes possible to reduce the pressure loss of the fluid by the support | pillar 47. Yes.

図4(A)及び図4(B)に示すように、各対向支柱47Tは、筒形ボディ31の軸方向から見たときに、対向支柱47Tと筒形ボディ31の中心軸を結ぶ直線L1と計測流路20の流路断面の長手方向とのなす角が45度以下となる範囲に配置される。言い換えれば、1対の対向支柱47T,47Tの対向方向と計測流路20の流路断面の長手方向とのなす角が45度以下となっている。図4(A)と図4(B)とには、1対の対向支柱47T,47Tの対向方向と計測流路20の流路断面の長手方向とのなす角が0度のもの(即ち、両方向が一致するもの)と、45度のものが示されている。また、図4(C)には、本発明の技術的範囲に属しない参考例として、1対の対向支柱47T,47Tの対向方向と計測流路20の流路断面の長手方向とのなす角が90度のものが示されている。   As shown in FIGS. 4A and 4B, each counter column 47 </ b> T is a straight line L <b> 1 connecting the counter column 47 </ b> T and the central axis of the cylindrical body 31 when viewed from the axial direction of the cylindrical body 31. And the angle formed by the longitudinal direction of the channel cross section of the measurement channel 20 is arranged in a range of 45 degrees or less. In other words, the angle formed by the opposing direction of the pair of opposing struts 47T and 47T and the longitudinal direction of the cross section of the measurement channel 20 is 45 degrees or less. 4A and 4B, the angle formed between the opposing direction of the pair of opposing struts 47T and 47T and the longitudinal direction of the cross section of the measurement channel 20 is 0 degrees (ie, Those in which both directions coincide with each other) and 45 degrees are shown. 4C, as a reference example not belonging to the technical scope of the present invention, an angle formed by the opposing direction of the pair of opposing struts 47T and 47T and the longitudinal direction of the cross section of the measurement channel 20 is shown. Is shown at 90 degrees.

本実施形態に係る流量計10の構成に関する説明は以上である。次に、流量計10の作用効果について説明する。   This completes the description of the configuration of the flow meter 10 according to the present embodiment. Next, the effect of the flow meter 10 will be described.

本実施形態の流量計10では、1対の対向支柱47T,47Tの対向方向と計測流路20の流路断面の長手方向とのなす角が45度以下(図4(A)及び図4(B)参照)になっているので、以下の[確認実験]で説明するように、上流側に接続される配管に起因した計測値の変化を低減することが可能となる。しかも、本実施形態では、複数の支柱47が1対の対向支柱47T,47Tのみからなるので、支柱47による圧損を低減しつつ、計測値の変化を効率よく低減することが可能となる。なお、1対の対向支柱47T,47Tの対向方向と計測流路の流路断面の長手方向とのなす角は、0度とすることが好ましい(図4(A)参照)。   In the flow meter 10 of the present embodiment, the angle formed by the opposing direction of the pair of opposing struts 47T and 47T and the longitudinal direction of the cross section of the measurement channel 20 is 45 degrees or less (FIG. 4A and FIG. Therefore, as described in the following [Confirmation Experiment], it is possible to reduce the change in the measurement value caused by the pipe connected to the upstream side. In addition, in the present embodiment, since the plurality of support columns 47 include only a pair of opposed support columns 47T and 47T, it is possible to efficiently reduce the change in the measurement value while reducing the pressure loss due to the support columns 47. The angle formed by the opposing direction of the pair of opposing struts 47T and 47T and the longitudinal direction of the cross section of the measurement channel is preferably 0 degrees (see FIG. 4A).

[確認実験]
本発明に係る流量計10の効果を、実験により確認した。具体的には、図5に示すように、流量計10の上流側に試験用配管81を、下流側にストレート管82を接続し、ストレート管82の下流側寄り部分に標準器85を取り付けた。そして、ストレート管82の下流側に接続したブロワ83にて室内空気を吸引し、流量計10と標準器85の計測値のズレを測定した。実験条件及び実験結果は、以下の通りである。
[Confirmation experiment]
The effect of the flow meter 10 according to the present invention was confirmed by experiments. Specifically, as shown in FIG. 5, a test pipe 81 is connected to the upstream side of the flow meter 10, a straight pipe 82 is connected to the downstream side, and a standard device 85 is attached to the downstream side of the straight pipe 82. . Then, the room air was sucked by the blower 83 connected to the downstream side of the straight pipe 82, and the difference between the measured values of the flow meter 10 and the standard device 85 was measured. Experimental conditions and experimental results are as follows.

[実験条件]
流量計10における1対の対向支柱47T,47Tの配置を、図4(A)と図4(B)に示す配置としたもの実験例1,2とした。また、流量計10において1対の対向支柱47T,47Tの配置を図4(C)に示す配置としたものを、実験例3とした。流量については、ブロワ83の最大吸引量を100%としたときに、0〜100%の範囲で吸引量を変化させて、空気の流量を変化させた。そして、実験例1〜3について、各流量における計測値のズレを測定した。試験用配管81としては、ストレート管とエルボ管の2種類を用いた(図5には、エルボ管の例が示されている。)。標準器85としては、臨界ノズルを使用した。なお、試験中の室内温度は23℃、室内圧力は大気圧、室内湿度は50%RHである。
[Experimental conditions]
The arrangement of the pair of opposing struts 47T and 47T in the flow meter 10 is the arrangement shown in FIGS. 4A and 4B, and experimental examples 1 and 2 were used. In addition, in the flow meter 10, the arrangement of the pair of opposed struts 47T and 47T having the arrangement shown in FIG. Regarding the flow rate, when the maximum suction amount of the blower 83 is 100%, the suction amount is changed in the range of 0 to 100%, and the air flow rate is changed. And about the experimental examples 1-3, the gap | deviation of the measured value in each flow volume was measured. As the test pipe 81, two types of a straight pipe and an elbow pipe were used (an example of an elbow pipe is shown in FIG. 5). As the standard device 85, a critical nozzle was used. The room temperature during the test is 23 ° C., the room pressure is atmospheric pressure, and the room humidity is 50% RH.

[実験結果]
実験例1〜3の実験結果を図6〜図8に示す。図6〜図8において、縦軸の計測値のズレ(%)は、各実験例1〜3の流量計の計測値と標準器85の計測値との差を、標準器85の計測値で除することで算出した。図6〜図8に示すように、実験例1〜3の何れについても、流量が0〜30%の範囲で、計測値のズレ(%)が大きくなっている。また、流量0〜30%の範囲では、実験例1〜3の何れについても、試験用配管81としてエルボ管を用いた場合の方が、ストレート管を用いた場合よりも、計測値のズレ(%)が大きくなっている。
[Experimental result]
Experimental results of Experimental Examples 1 to 3 are shown in FIGS. 6 to 8, the deviation (%) in the measurement value on the vertical axis is the difference between the measurement value of the flow meter and the measurement value of the standard device 85 in each of Experimental Examples 1 to 3, and the measurement value of the standard device 85. It was calculated by dividing. As shown in FIGS. 6 to 8, in any of Experimental Examples 1 to 3, the deviation (%) in the measured value is large when the flow rate is in the range of 0 to 30%. In addition, in the range of 0 to 30% of the flow rate, in each of the experimental examples 1 to 3, the measured value deviation (when the elbow pipe is used as the test pipe 81 is smaller than when the straight pipe is used) %) Is larger.

図9には、試験用配管81としてエルボ管が用いられた場合における実験例1〜3の結果の流量0〜40%の範囲が拡大して示されている。同図に示されるように、計測値のズレ(%)は、1対の対向支柱47T,47Tの対向方向と計測流路20の流路断面の長手方向のなす角が90度の場合(図4(C)参照)で、−0.69%〜0.88%、45度の場合(図4(B)参照)で、−0.41%〜0.56%、0度の場合(図4(A)参照)で、−0.46%〜0.31%となっていて、両方向のなす角が小さくなるに従って、計測値のズレ(%)が小さくなっていることが分かる。このことから、1対の対向支柱47T,47Tの対向方向と計測流路20の流路断面の長手方向とのなす角が45度以下の場合には、その角が45度より大きい場合よりも、上流側の配管(試験用配管81)に起因した計測値の変化が低減されることが確認できた。   In FIG. 9, the range of the flow rate of 0 to 40% as a result of Experimental Examples 1 to 3 in the case where an elbow pipe is used as the test pipe 81 is shown in an enlarged manner. As shown in the figure, the deviation (%) in the measured value is when the angle formed by the opposing direction of the pair of opposing struts 47T and 47T and the longitudinal direction of the cross section of the measurement channel 20 is 90 degrees (FIG. 4 (C)), −0.69% to 0.88%, 45 degrees (see FIG. 4B), −0.41% to 0.56%, 0 degrees (see FIG. 4B). 4 (A)), it is -0.46% to 0.31%, and it can be seen that the deviation (%) in the measured value decreases as the angle formed by both directions decreases. From this, when the angle formed by the opposing direction of the pair of opposing struts 47T and 47T and the longitudinal direction of the cross section of the measurement channel 20 is 45 degrees or less, the angle is larger than 45 degrees. It was confirmed that the change in measured value due to the upstream pipe (test pipe 81) was reduced.

なお、流量計10の効果の原因については、以下のことが推測される。この推測について説明する前に、まず、消音器30がない場合を考える。この場合において、図10(A)に示すように、計測流路20の流路断面の長手方向に流体の流速分布があると、1対の送受波器21,21が送受波する超音波は、ある流速で流れる流体の部分のみを通過し、超音波の通過領域に流速分布が反映されない。このため、流体の流速の平均値を計測することが困難となり、流量計測値が安定し難くなる。なお、図10(B)に示すように、計測流路20の流路断面の短手方向に流体の流速分布がある場合には、1対の送受波器21,21が送受波する超音波の通過領域に流速分布が反映されるので、流速の平均値を計測することが可能となり、流量計測値が安定し易くなる。このように、流量計測値が変化する一因として、流体の流速分布が考えられる。   In addition, about the cause of the effect of the flowmeter 10, the following is estimated. Before explaining this guess, first consider the case where there is no silencer 30. In this case, as shown in FIG. 10A, if there is a fluid flow velocity distribution in the longitudinal direction of the cross section of the measurement flow path 20, the ultrasonic waves transmitted and received by the pair of transducers 21 and 21 are Only the part of the fluid flowing at a certain flow velocity passes, and the flow velocity distribution is not reflected in the ultrasonic wave passage region. For this reason, it becomes difficult to measure the average value of the flow velocity of the fluid, and the flow rate measurement value becomes difficult to stabilize. As shown in FIG. 10B, when there is a fluid flow velocity distribution in the short direction of the cross section of the measurement flow channel 20, the ultrasonic waves transmitted and received by the pair of transducers 21 and 21 are transmitted. Since the flow velocity distribution is reflected in the passage region, it is possible to measure the average value of the flow velocity, and the flow rate measurement value is easily stabilized. As described above, the flow velocity distribution of the fluid can be considered as a cause of the change in the flow rate measurement value.

次に、消音器30がある場合について考える。流量計測部11の上流側に消音器30があると、環状障害壁43と中央障害壁44とによって、流体は、筒形ボディ31の径方向中央側と径方向外側との間を行き来しながら蛇行するうように流れる。このように、消音器30では、筒形ボディ31の軸方向に直線状に流体が流れる場合と比較して、流体が流れる距離が長くなるので、流体の流速分布が平滑化されやすくなる。図11(A)及び図11(B)には、流体の流れが乱流である場合と、層流である場合における流速分布の平滑化が概念的に示されている(図11(A)及ぶ図11(B)では、矢印の大きさが流速の大きさを表している。)。   Next, consider the case where the silencer 30 is present. When the silencer 30 is present on the upstream side of the flow rate measuring unit 11, the fluid moves between the radially central side and the radially outer side of the cylindrical body 31 by the annular obstacle wall 43 and the central obstacle wall 44. It flows like a meander. As described above, in the silencer 30, compared to the case where the fluid flows linearly in the axial direction of the cylindrical body 31, the distance through which the fluid flows becomes longer, and thus the flow velocity distribution of the fluid is easily smoothed. 11A and 11B conceptually show smoothing of the flow velocity distribution when the fluid flow is a turbulent flow and when it is a laminar flow (FIG. 11A). In FIG. 11B, the size of the arrow represents the size of the flow velocity.

ところで、一般に、層流は、流速が比較的低い場合に起こり易く、乱流は、流速が比較的高い場合に起こり易いことが知られている。従って、層流と乱流が切り替わる遷移域では、図11(A)及び図11(B)に示した何れの平滑化も起こり難く、消音器30による平滑化の効果が低下することが考えられる。図6〜図8に示した実験結果において、流量0〜30%の範囲で計測値のズレ(%)が大きくなっていることの原因は、流体の流れが遷移域となっっていることが原因であると推測される。   Incidentally, it is generally known that laminar flow is likely to occur when the flow velocity is relatively low, and turbulent flow is likely to occur when the flow velocity is relatively high. Therefore, in the transition region where the laminar flow and the turbulent flow are switched, any smoothing shown in FIGS. 11 (A) and 11 (B) hardly occurs, and the smoothing effect by the silencer 30 may be reduced. . In the experimental results shown in FIG. 6 to FIG. 8, the cause of the large deviation (%) in the measured value in the flow rate range of 0 to 30% is that the fluid flow is in the transition region. Presumed to be the cause.

ここで、計測流路20の流路断面の長手方向に流体の流速分布がある場合において、1対の対向支柱47T,47Tの対向方向と計測流路20の流路断面の長手方向とのなす角が90度であると、図12に示すように、流体の流れは、対向支柱47T,47Tによって流速が速い部分と遅い部分とに分けられる(図12では、矢印の大きさが流速の大きさを表している。)。従って、消音器30内を流れる流体は、筒形ボディ31の径方向中央側から径方向外側へ移動し、再び径方向中央側へ戻ってくるまでの間、流速分布が速い部分と遅い部分が混ざり合うことが困難となり、流速分布の平滑化にかかる時間が長くなることが予想される。   Here, in the case where there is a fluid flow velocity distribution in the longitudinal direction of the cross section of the measurement flow path 20, the opposing direction of the pair of opposed struts 47T and 47T and the longitudinal direction of the cross section of the measurement flow path 20 are formed. When the angle is 90 degrees, as shown in FIG. 12, the flow of the fluid is divided into a portion having a high flow velocity and a portion having a low flow velocity by the opposing struts 47T and 47T (in FIG. 12, the size of the arrow indicates the magnitude of the flow velocity. Represents.) Accordingly, the fluid flowing in the silencer 30 moves from the radial center side of the cylindrical body 31 to the radially outer side and returns to the radial center side again. It is difficult to mix, and it is expected that the time required for smoothing the flow velocity distribution will increase.

これに対し、1対の対向支柱47T,47Tの対向方向と計測流路20の流路断面の長手方向とのなす角度が0度であると、図13に示すように、対向支柱47T,47Tによって分けられた流体は、対向支柱47T,47Tによって分けられる前の流速分布と同様の流速分布を有することとなる(図13では、矢印の大きさが流速の大きさを表している。)。従って、筒形ボディ31の径方向中央側から径方向外側へ移動し、再び径方向中央側へ戻ってくるまでの間、流速分布が速い部分と遅い部分が混ざり易くなり、流速分布の平滑化にかかる時間が短くなることが予想される。   On the other hand, if the angle formed by the opposing direction of the pair of opposing struts 47T and 47T and the longitudinal direction of the cross section of the measurement flow path 20 is 0 degrees, as shown in FIG. The fluid divided by the above has a flow velocity distribution similar to the flow velocity distribution before being divided by the opposing struts 47T and 47T (in FIG. 13, the size of the arrow represents the size of the flow velocity). Accordingly, the portion where the flow velocity distribution is fast and the portion where the flow velocity distribution is slow are easily mixed until the cylindrical body 31 moves from the radially central side to the radially outer side and returns to the radial central side again, and the flow velocity distribution is smoothed. It is expected that the time required for the process will be shortened.

以上、纏めると、消音器30による流速分布の平滑化にかかる時間は、1対の対向支柱47T,47Tの対向方向と計測流路20の流路断面の長手方向とのなす角度に依存して変化すると考えられる。この変化は、特に、層流と乱流の遷移域において顕著であると考えられる。そして、1対の対向支柱47T,47Tの対向方向と計測流路20の流路断面の長手方向とのなす角度が0度〜45度の範囲になる場合、その角度が45度〜90度の範囲にあるときよりも、平滑化にかかる時間が短くなると考えられる。そして、この平滑化にかかる時間の相違が、実験例1〜3の計測値のズレ(%)の相違となって表れていると推測される。   In summary, the time required for smoothing the flow velocity distribution by the silencer 30 depends on the angle formed by the opposing direction of the pair of opposing struts 47T and 47T and the longitudinal direction of the cross section of the measurement channel 20. It will change. This change is considered to be particularly remarkable in the transition region between laminar flow and turbulent flow. And when the angle which the opposing direction of a pair of opposing support | pillar 47T and 47T and the longitudinal direction of the flow-path cross section of the measurement flow path 20 becomes in the range of 0 degree-45 degree | times, the angle is 45 degree-90 degree | times. It is considered that the time required for smoothing is shorter than when it is within the range. And it is estimated that this difference in time required for smoothing appears as a difference (%) in the measured values in Experimental Examples 1 to 3.

[第2実施形態]
以下、本実施形態の第2実施形態を図14〜図18に基づいて説明する。図14(A)及び図14(B)に示すように、本実施形態の消音器付き超音波流量計10V(以下、単に、流量計10Vという。)は、主として、流量計測部11Vの構成が上記第1実施形態の流量計測部11の構成と異なっている。具体的には、計測流路20Vは、断面円形状になっていて、1対の送受波器21,21は、計測流路20の中心軸と斜めに交差する方向で対向配置されるように計測管12に固定して備えられている。
[Second Embodiment]
Hereinafter, a second embodiment of the present embodiment will be described with reference to FIGS. As shown in FIGS. 14 (A) and 14 (B), the ultrasonic flow meter with silencer 10V of the present embodiment (hereinafter simply referred to as flow meter 10V) mainly has a configuration of the flow measurement unit 11V. It differs from the structure of the flow volume measurement part 11 of the said 1st Embodiment. Specifically, the measurement flow path 20V has a circular cross section, and the pair of transducers 21 and 21 are arranged to face each other in a direction obliquely intersecting the central axis of the measurement flow path 20. The measuring tube 12 is fixedly provided.

本実施形態では、複数の支柱47は、筒形ボディ31の軸方向から見たときに、1対の送受波器21,21に対する周方向のズレが45度以上、90度以下となる範囲に配置されている(図15(A)及び図15(B)参照)。詳細には、本実施形態では、上記第1実施形態と同様に、複数の支柱47が1対の対向支柱47T,47Tのみで構成され、筒形ボディ31の軸方向から見たときに、1対の対向支柱47T,47Tの対向方向と1対の送受波器21,21の対向方向とのなす角が45度以上、90度以下となっている。なお、図15(A)と図15(B)とには、1対の対向支柱47T,47Tの対向方向と1対の送受波器21,21の流路断面の長手方向とのなす角が90度のもの(即ち、両方向が直交するもの)と、45度のものが示されている。また、図15(C)には、本発明の技術的範囲に属しない参考例として、1対の対向支柱47T,47Tの対向方向と送受波器21,21の対向方向とのなす角が0度のものが示されている。   In the present embodiment, when the plurality of support columns 47 are viewed from the axial direction of the cylindrical body 31, the circumferential displacement with respect to the pair of transducers 21 and 21 is in a range of 45 degrees or more and 90 degrees or less. (See FIGS. 15A and 15B). Specifically, in the present embodiment, as in the first embodiment, the plurality of support columns 47 are configured by only a pair of opposed support columns 47T and 47T, and when viewed from the axial direction of the cylindrical body 31, The angle formed by the opposing direction of the pair of opposing struts 47T and 47T and the opposing direction of the pair of transducers 21 and 21 is 45 degrees or more and 90 degrees or less. 15A and 15B, the angle formed by the opposing direction of the pair of opposing struts 47T and 47T and the longitudinal direction of the channel cross section of the pair of transducers 21 and 21 is shown. 90 degrees (ie, both directions are orthogonal) and 45 degrees are shown. In FIG. 15C, as a reference example not belonging to the technical scope of the present invention, the angle formed by the opposing direction of the pair of opposing struts 47T and 47T and the opposing direction of the transducers 21 and 21 is 0. Degrees are shown.

流量計10Vのその他の構成は、上記第1実施形態と同様になっているので、同一符号を付すことで説明を省略する。本実施形態によれば、上記実施形態と同様の効果を奏することが可能となる。   Since the other configuration of the flow meter 10V is the same as that of the first embodiment, description thereof is omitted by attaching the same reference numerals. According to the present embodiment, it is possible to achieve the same effect as the above-described embodiment.

なお、流量計10Vの効果の原因については、以下のことが推測される。この推測の説明においても、記第1実施形態のときと同様に、まず、消音器30がない場合を考える。この場合において、図16(A)に示すように、1対の送受波器21,21の対向方向に流体の流速分布があると、1対の送受波器21,21が送受波する超音波の通過領域に流速分布が反映されるので、流速の平均値を計測することが可能となり、流量計測値が安定し易くなる一方、図16(B)に示すように、1対の送受波器21,21の対向方向と直交する方向に流体の流速分布があると、超音波の通過領域に流速分布が反映されない。このため、流体の流速の平均値を計測することが困難となり、流量計測値が安定し難くなるこのように、本実施形態においても、流量計測値が変化する一因として、流体の流速分布が考えられる。なお、図16(A)及び図16(B)では、矢印の大きさが流速の大きさを表している。   In addition, the following is estimated about the cause of the effect of the flowmeter 10V. Also in the description of this guess, as in the case of the first embodiment, first consider the case where the silencer 30 is not provided. In this case, as shown in FIG. 16A, if there is a flow velocity distribution of the fluid in the opposing direction of the pair of transducers 21 and 21, the ultrasonic waves that are transmitted and received by the pair of transducers 21 and 21. Since the flow velocity distribution is reflected in the passage area of the, the average value of the flow velocity can be measured, and the flow rate measurement value can be easily stabilized. On the other hand, as shown in FIG. If there is a flow velocity distribution of the fluid in a direction orthogonal to the opposing direction of 21 and 21, the flow velocity distribution is not reflected in the ultrasonic wave passing region. For this reason, it becomes difficult to measure the average value of the flow velocity of the fluid, and it becomes difficult to stabilize the flow rate measurement value.In this embodiment as well, the flow velocity distribution of the fluid is one factor that causes the flow rate measurement value to change. Conceivable. In FIGS. 16A and 16B, the size of the arrow indicates the size of the flow velocity.

次に、消音器30がある場合について考える。上記第1実施形態と同様に、消音器30では、筒形ボディ31内を流体が蛇行しながら流れるので、筒形ボディ31の軸方向に直線状に流体が流れる場合と比較して、流体が流れる距離が長くなり、流体の流速分布が平滑化されやすくなる。   Next, consider the case where the silencer 30 is present. As in the first embodiment, in the silencer 30, the fluid flows through the cylindrical body 31 while meandering, so that the fluid flows compared to the case where the fluid flows linearly in the axial direction of the cylindrical body 31. The flowing distance becomes long, and the flow velocity distribution of the fluid is easily smoothed.

ここで、筒形ボディ31の軸方向から見て、1対の送受波器21,21の対向方向と直交する方向に流体の流速分布がある場合に、1対の対向支柱47T,47Tの対向方向と1対の送受波器21,21の対向方向とのなす角が0度であると、図17に示すように、流体の流れは、対向支柱47T,47Tによって流速が速い部分と遅い部分とに分けられる(図17では、矢印の大きさが流速の大きさを表している。)。従って、消音器30内を流れる流体は、流速分布が速い部分と遅い部分が混ざり合うことが困難となり、流速分布の平滑化にかかる時間が長くなることが予想される。   Here, when there is a fluid flow velocity distribution in a direction orthogonal to the facing direction of the pair of transducers 21 and 21 when viewed from the axial direction of the cylindrical body 31, the facing of the pair of facing struts 47T and 47T. When the angle formed by the direction and the opposing direction of the pair of transducers 21 and 21 is 0 degree, as shown in FIG. (In FIG. 17, the size of the arrow represents the size of the flow velocity). Therefore, it is difficult for the fluid flowing in the silencer 30 to mix the fast flow rate distribution portion and the slow flow velocity distribution portion, and the time required for smoothing the flow velocity distribution is expected to increase.

これに対し、筒形ボディ31の軸方向から見て、1対の対向支柱47T,47Tの対向方向と1対の送受波器21,21の対向方向とが直交していると、図18に示すように、対向支柱47T,47Tによって分けられた流体は、対向支柱47T,47Tによって分けられる前の流速分布と同様の流速分布を有することとなる(図18では、矢印の大きさが流速の大きさを表している。)。従って、消音器30内を流れる流体は、流速分布が速い部分と遅い部分が混ざり易くなり、流速分布の平滑化にかかる時間が短くなることが予想される。   On the other hand, when viewed from the axial direction of the cylindrical body 31, the facing direction of the pair of opposing struts 47T, 47T and the facing direction of the pair of transducers 21, 21 are orthogonal to each other in FIG. As shown, the fluid divided by the opposed struts 47T and 47T has a flow velocity distribution similar to the flow velocity distribution before being divided by the opposed struts 47T and 47T (in FIG. 18, the size of the arrow is the flow velocity). Represents the size.) Therefore, it is expected that the fluid flowing in the silencer 30 is likely to be mixed with a portion where the flow velocity distribution is fast and a portion where the flow velocity distribution is slow, and the time required for smoothing the flow velocity distribution is shortened.

以上、纏めると、消音器30による流速分布の平滑化にかかる時間は、筒形ボディ31の軸方向かた見たときの1対の対向支柱47T,47Tの対向方向と1対の送受波器21,21の対向方向とのなす角度に依存して変化すると考えられる。そして、1対の対向支柱47T,47Tの対向方向と1対の送受波器21,21の対向方向とのなす角度が45〜90度の範囲にある場合、その角度が0度〜45度の範囲にある場合よりも、平滑化にかかる時間が短くなると考えられる。   In summary, the time required to smooth the flow velocity distribution by the silencer 30 is equal to the opposing direction of the pair of opposing struts 47T and 47T when viewed from the axial direction of the cylindrical body 31, and the pair of transducers. It is thought that it changes depending on the angle between the opposing direction of 21 and 21. When the angle formed between the facing direction of the pair of opposing struts 47T and 47T and the facing direction of the pair of transducers 21 and 21 is in the range of 45 to 90 degrees, the angle is 0 to 45 degrees. It is considered that the time required for smoothing is shorter than that in the range.

[他の実施形態]
本発明は、上記実施形態に限定されるものではなく、例えば、以下に説明するような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
[Other Embodiments]
The present invention is not limited to the above-described embodiment. For example, the embodiments described below are also included in the technical scope of the present invention, and various modifications are possible within the scope of the invention other than the following. It can be changed and implemented.

(1)上記第1実施形態では、支柱47を2本のみ備えた構成であったが、筒形ボディ31の軸方向から見たときに、各支柱47が、その支柱47と筒形ボディ31の中心軸とを結ぶ直線と計測流路20の流路断面の長手方向とのなす角が45度以下の範囲に配置されていれば、図19(A)及び図19(B)に示すように、3本以上備えた構成であってもよい。なお、この場合において、複数の支柱47には、1対の対向支柱47T,47Tを含む構成であってもよいし、1対の対向支柱47T,47Tを含まない構成であってもよい。   (1) In the first embodiment, the structure includes only two support columns 47. However, when viewed from the axial direction of the cylindrical body 31, each support column 47 includes the support column 47 and the cylindrical body 31. As shown in FIGS. 19A and 19B, if the angle formed by the straight line connecting the central axis of the channel and the longitudinal direction of the cross section of the measurement channel 20 is 45 degrees or less. Moreover, the structure provided with three or more may be sufficient. In this case, the plurality of struts 47 may include a pair of opposing struts 47T and 47T or may not include a pair of opposing struts 47T and 47T.

(2)上記第2実施形態では、支柱47を2本のみ備えた構成であったが、筒形ボディ31の軸方向から見たときに、1対の送受波器21,21に対する周方向のズレが45度以上、90度以下となる範囲に各支柱47が配置されていれば図20(A)及び図20(B)に示すように、3本以上備えた構成であってもよい。なお、この場合において、複数の支柱47には、1対の対向支柱47T,47Tを含む構成であってもよいし、1対の対向支柱47T,47Tを含まない構成であってもよい。   (2) In the second embodiment described above, only two support columns 47 are provided. However, when viewed from the axial direction of the cylindrical body 31, the circumferential direction relative to the pair of transducers 21, 21 is shown. If each support | pillar 47 is arrange | positioned in the range from which a shift | offset | difference is 45 degree | times or more and 90 degrees or less, as shown to FIG. 20 (A) and FIG. 20 (B), the structure provided with three or more may be sufficient. In this case, the plurality of struts 47 may include a pair of opposing struts 47T and 47T or may not include a pair of opposing struts 47T and 47T.

(3)上記実施形態では、中央障害壁44は円形であったが、四角形状であってもよいし楕円形状であってもよい。また、上記実施形態では、環状障害壁43は円形であったが、四角形状であってもよいし楕円形状であってもよい   (3) In the above embodiment, the central obstacle wall 44 is circular, but may be rectangular or elliptical. In the above embodiment, the circular obstacle wall 43 is circular, but it may be rectangular or elliptical.

(4)上記実施形態では、環状障害壁43と中央障害壁44を複数ずつ備えた構成であったが、1つずつ備えた構成であってもよい。   (4) In the above-described embodiment, a plurality of annular obstacle walls 43 and a plurality of central obstacle walls 44 are provided.

10,10V 消音器付き超音波流量計
11,11V 流量計測部
20,20V 計測流路
21,21V 送受波器
30 消音器
43 環状障害壁
44 中央障害壁
47 支柱
47T 対向支柱
10,10V Ultrasonic flowmeter with silencer 11,11V Flow measurement unit 20,20V Measurement flow path 21,21V Transceiver 30 Silencer 43 Annular obstacle wall 44 Central obstacle wall 47 Post 47T Opposite post

Claims (6)

1対の送受波器の間で超音波を送受波することで計測流路を流れる流体の流量を計測する流量計測部の上流側に消音器が備えられた消音器付き超音波流量計であって、
前記計測流路は、断面矩形状をなすと共に、前記1対の送受波器は、前記計測流路の中心軸上に対向配置され、
前記消音器には、
前記計測流路と同軸に配置される筒形ボディと、
前記筒形ボディの内周面に嵌合される環状障害板と、
前記環状障害板の内側に形成される中央孔を覆うと共に、前記筒形ボディの内周面との間に環状隙間を形成する中央障害板と、
前記環状障害板と前記中央障害板とが前記筒形ボディの軸方向で交互に配置されるように、前記環状障害板と前記中央障害板とを連結する複数の支柱と、が備えられている消音器付き超音波流量計において、
各前記支柱は、前記筒形ボディの中心軸方向から見たときに、その支柱と前記筒形ボディの中心軸とを結ぶ直線と前記計測流路の流路断面の長手方向とのなす角度が45度以下となる範囲に配置されている消音器付き超音波流量計。
This is an ultrasonic flowmeter with a silencer equipped with a silencer on the upstream side of the flow rate measurement unit that measures the flow rate of the fluid flowing through the measurement flow path by transmitting and receiving ultrasonic waves between a pair of transducers. And
The measurement flow path has a rectangular cross section, and the pair of transducers are arranged opposite to each other on the central axis of the measurement flow path,
In the silencer,
A cylindrical body disposed coaxially with the measurement channel;
An annular obstacle plate fitted to the inner peripheral surface of the cylindrical body;
A central obstacle plate that covers a central hole formed inside the annular obstacle plate and forms an annular gap with the inner peripheral surface of the cylindrical body;
A plurality of support columns connecting the annular obstacle plate and the central obstacle plate are provided so that the annular obstacle plate and the central obstacle plate are alternately arranged in the axial direction of the cylindrical body. In ultrasonic flowmeter with silencer,
When viewed from the central axis direction of the cylindrical body, each of the columns has an angle formed by a straight line connecting the column and the central axis of the cylindrical body and the longitudinal direction of the cross section of the measurement channel. An ultrasonic flowmeter with a silencer arranged in a range of 45 degrees or less.
前記複数の支柱は、前記筒形ボディの周方向で180度離れた位置に配置される1対の対向支柱のみからなる請求項1に記載の消音器付き超音波流量計。   2. The ultrasonic flowmeter with a silencer according to claim 1, wherein each of the plurality of support columns includes only a pair of opposed support columns disposed at positions 180 degrees apart in a circumferential direction of the cylindrical body. 前記1対の対向支柱が前記計測流路の流路断面の長手方向に一致している請求項2に記載の消音器付き超音波流量計。   The ultrasonic flowmeter with a silencer according to claim 2, wherein the pair of opposed struts are aligned with a longitudinal direction of a cross section of the measurement flow path. 1対の送受波器の間で超音波を送受波することで計測流路を流れる流体の流量を計測する流量計測部の上流側に消音器が備えられた消音器付き超音波流量計であって、
前記1対の送受波器は、前記計測流路の中心軸と斜めに交差する方向に対向配置され、
前記消音器には、
前記計測流路と同軸に配置される筒形ボディと、
前記筒形ボディの内周面に嵌合される環状障害板と、
前記環状障害壁の内側に形成される中央孔を覆うと共に、前記筒形ボディの内周面との間に環状隙間を形成する中央障害壁と、
前記環状障害壁と前記中央障害壁とが前記筒形ボディの軸方向で交互に配置されるように、前記環状障害壁と前記中央障害壁とを連結する複数の支柱と、が備えられている消音器付き超音波流量計において、
前記複数の支柱は、前記筒形ボディの軸方向から見たときに、前記1対の送受波器に対する周方向のズレが45度以上、90度以下となる範囲に配置されている消音器付き超音波流量計。
This is an ultrasonic flowmeter with a silencer equipped with a silencer on the upstream side of the flow rate measurement unit that measures the flow rate of the fluid flowing through the measurement flow path by transmitting and receiving ultrasonic waves between a pair of transducers. And
The pair of transducers are arranged to face each other in a direction that obliquely intersects the central axis of the measurement flow path,
In the silencer,
A cylindrical body disposed coaxially with the measurement channel;
An annular obstacle plate fitted to the inner peripheral surface of the cylindrical body;
A central obstacle wall that covers a central hole formed inside the annular obstacle wall and that forms an annular gap with the inner peripheral surface of the cylindrical body;
A plurality of support pillars connecting the annular obstacle wall and the central obstacle wall are provided so that the annular obstacle wall and the central obstacle wall are alternately arranged in the axial direction of the cylindrical body. In ultrasonic flowmeter with silencer,
The plurality of struts are equipped with a silencer that is disposed in a range in which a deviation in a circumferential direction with respect to the pair of transducers is 45 degrees or more and 90 degrees or less when viewed from the axial direction of the cylindrical body. Ultrasonic flow meter.
前記複数の支柱は、前記筒形ボディの周方向で180度離れた位置に配置される1対の対向支柱のみからなる請求項4に記載の消音器付き超音波流量計。   5. The ultrasonic flowmeter with a silencer according to claim 4, wherein the plurality of struts include only a pair of opposed struts disposed at positions 180 degrees apart in a circumferential direction of the cylindrical body. 前記1対の対向支柱の対向方向が前記1対の送受波器の対向方向と直交する請求項5に記載の消音器付き超音波流量計。   The ultrasonic flowmeter with a muffler according to claim 5, wherein an opposing direction of the pair of opposing columns is orthogonal to an opposing direction of the pair of transducers.
JP2015061139A 2015-03-24 2015-03-24 Ultrasonic flow meter with silencer Active JP6474659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015061139A JP6474659B2 (en) 2015-03-24 2015-03-24 Ultrasonic flow meter with silencer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015061139A JP6474659B2 (en) 2015-03-24 2015-03-24 Ultrasonic flow meter with silencer

Publications (2)

Publication Number Publication Date
JP2016180691A true JP2016180691A (en) 2016-10-13
JP6474659B2 JP6474659B2 (en) 2019-02-27

Family

ID=57130990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015061139A Active JP6474659B2 (en) 2015-03-24 2015-03-24 Ultrasonic flow meter with silencer

Country Status (1)

Country Link
JP (1) JP6474659B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021526642A (en) * 2019-03-16 2021-10-07 オイル アンド ガス メータリング エクイップメント エス.アール.オー. Small ultrasonic flowmeter especially for gas

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999022207A1 (en) * 1997-10-24 1999-05-06 Daniel Industries, Inc. Ultrasonic gas meter silencer and method
JP2012220428A (en) * 2011-04-13 2012-11-12 Aichi Tokei Denki Co Ltd Silencer for ultrasonic flowmeter and ultrasonic flowmeter with silencer
JP2013127443A (en) * 2011-11-17 2013-06-27 Aichi Tokei Denki Co Ltd Silencer, and ultrasonic flowmeter with silencer
JP2015040715A (en) * 2013-08-20 2015-03-02 愛知時計電機株式会社 Pressure loss reduction structure, flowmeter, silencer and rectifier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999022207A1 (en) * 1997-10-24 1999-05-06 Daniel Industries, Inc. Ultrasonic gas meter silencer and method
JP2012220428A (en) * 2011-04-13 2012-11-12 Aichi Tokei Denki Co Ltd Silencer for ultrasonic flowmeter and ultrasonic flowmeter with silencer
JP2013127443A (en) * 2011-11-17 2013-06-27 Aichi Tokei Denki Co Ltd Silencer, and ultrasonic flowmeter with silencer
JP2015040715A (en) * 2013-08-20 2015-03-02 愛知時計電機株式会社 Pressure loss reduction structure, flowmeter, silencer and rectifier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021526642A (en) * 2019-03-16 2021-10-07 オイル アンド ガス メータリング エクイップメント エス.アール.オー. Small ultrasonic flowmeter especially for gas
JP7085027B2 (en) 2019-03-16 2022-06-15 オイル アンド ガス メータリング エクイップメント エス.アール.オー. Small ultrasonic flowmeter for gas

Also Published As

Publication number Publication date
JP6474659B2 (en) 2019-02-27

Similar Documents

Publication Publication Date Title
CN203672423U (en) Ultrasonic metering system with orifice plate flow meter device
US10527476B2 (en) Ultrasonic flow meter having a main channel and at least one secondary channel
TWI636238B (en) Straight-tube gas meter
JP5559239B2 (en) Coriolis flow meter
WO2014134021A4 (en) Ultrasonic flow metering with laminar to turbulent transition flow control
WO2012063437A1 (en) Ultrasonic flow rate measurement device
US9057391B2 (en) Reflector for fluid measurement system
CN206583495U (en) A kind of built-in rectifier for Ultrasonic Wave Flowmeter
CN104948351A (en) Homogenization apparatus for at least two fluid flows
JP2012220428A (en) Silencer for ultrasonic flowmeter and ultrasonic flowmeter with silencer
CN110383013A (en) Ultrasonic flowmeter
JP6474659B2 (en) Ultrasonic flow meter with silencer
JP6137542B2 (en) Pressure loss reduction structure, flow meter, silencer and rectifier
KR101327182B1 (en) Structure of combing duct with ultrasonic oscillator and ultrasonics wave flowmeter using the same of
JP2014145767A (en) Ultrasonic transducer
WO2019158932A8 (en) Constant shear continuous reactor device
RU2502054C1 (en) Ultrasonic flow meter
JP2016098857A (en) Flow straightener
JP2013250254A (en) Multiple reflection prevention rectifier tube for ultrasonic spirometer
CN109477743A (en) For the method and arrangement structure of clipping measuring ultrasonic wave flow and for realizing the main body of measurement
CN203704996U (en) Ultrasonic heat meter pipeline
JP2009264906A (en) Flow meter
JP2019113342A (en) Ultrasonic flowmeter
JP4873535B2 (en) Ultrasonic flow meter and manufacturing method thereof
RU118744U1 (en) ULTRASONIC FLOW METER

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190130

R150 Certificate of patent or registration of utility model

Ref document number: 6474659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150