JP2016180427A - Bearing member of fluid dynamic pressure bearing device and manufacturing method thereof - Google Patents

Bearing member of fluid dynamic pressure bearing device and manufacturing method thereof Download PDF

Info

Publication number
JP2016180427A
JP2016180427A JP2015059691A JP2015059691A JP2016180427A JP 2016180427 A JP2016180427 A JP 2016180427A JP 2015059691 A JP2015059691 A JP 2015059691A JP 2015059691 A JP2015059691 A JP 2015059691A JP 2016180427 A JP2016180427 A JP 2016180427A
Authority
JP
Japan
Prior art keywords
cylindrical body
axial direction
bearing
cylindrical
bearing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015059691A
Other languages
Japanese (ja)
Inventor
和慶 原田
Kazunori Harada
和慶 原田
冬木 伊藤
Fuyuki Ito
冬木 伊藤
稔明 丹羽
Toshiaki Niwa
稔明 丹羽
哲弥 栗村
Tetsuya Kurimura
栗村  哲弥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2015059691A priority Critical patent/JP2016180427A/en
Priority to PCT/JP2016/056947 priority patent/WO2016152474A1/en
Publication of JP2016180427A publication Critical patent/JP2016180427A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a bearing member in which cylindrical bodies adjacent in an axial direction are properly connected, and concentricity between radial bearing surfaces provided at two places in the axial direction so as to separate from each other is properly secured.SOLUTION: In a bearing member 3 for a fluid dynamic pressure bearing device, by sizing first and second cylindrical bodies 31, 32 arranged consecutively in an axial direction and made of a sintered metal, the cylindrical bodies 31, 32 are connected; on the inner peripheral surfaces of the first and second cylindrical bodies 31, 32, radial bearing surfaces A1, A2 molded by the sizing are provided respectively; and an intermediate relief part B is provided between the radial bearing surfaces A1, A2. To a recess part 5 provided only at one (32c) of two end surfaces 31b, 32c opposite to each other in an axial direction, a convex projection part 6 occurring at the other (31b) with the sizing is closely contacted, thereby to form a fitting structure 7 having irregularities. The first and second cylindrical bodies 31, 32 are connected by the fitting structure.SELECTED DRAWING: Figure 1

Description

本発明は、流体動圧軸受装置用の軸受部材及びその製造方法に関し、特に、軸方向に連ねて配置した複数の円筒体を結合してなる軸受部材およびその製造方法に関する。   The present invention relates to a bearing member for a fluid dynamic bearing device and a method for manufacturing the same, and more particularly to a bearing member formed by connecting a plurality of cylindrical bodies arranged in an axial direction and a method for manufacturing the same.

周知のように、流体動圧軸受装置は、高速回転、高回転精度および低騒音等の特長を有することから、HDD等のディスク駆動装置に組み込まれるスピンドルモータ、PC等に組み込まれるファンモータ、あるいはレーザビームプリンタに組み込まれるポリゴンスキャナモータなどのモータ用軸受装置として好適に使用されている。   As is well known, a fluid dynamic bearing device has features such as high-speed rotation, high rotation accuracy, and low noise. Therefore, a spindle motor incorporated in a disk drive device such as an HDD, a fan motor incorporated in a PC, etc. It is suitably used as a bearing device for a motor such as a polygon scanner motor incorporated in a laser beam printer.

流体動圧軸受装置は、内周に円筒状のラジアル軸受面を有する軸受部材と、上記ラジアル軸受面で形成されるラジアル軸受隙間に生じる流体の潤滑膜(例えば、油膜)で支持すべき軸をラジアル方向に相対回転自在に支持するラジアル軸受部とを備える。軸受部材としては、内周面の軸方向に離間した二箇所にラジアル軸受面を設けると共に、両ラジアル軸受面間にラジアル軸受面よりも大径の円筒面(中逃げ部)を設けた、いわゆる中逃げ構造を有するものを採用する場合がある。   The fluid dynamic bearing device includes a bearing member having a cylindrical radial bearing surface on the inner periphery, and a shaft to be supported by a lubricating film (for example, an oil film) of fluid generated in a radial bearing gap formed by the radial bearing surface. And a radial bearing portion that is rotatably supported in the radial direction. As the bearing member, a radial bearing surface is provided at two locations spaced apart in the axial direction on the inner peripheral surface, and a so-called cylindrical surface (medium escape portion) having a larger diameter than the radial bearing surface is provided between both radial bearing surfaces. In some cases, a middle relief structure is employed.

中逃げ構造を有する軸受部材は、単一の円筒体で構成される場合と、軸方向に連ねて配置した複数の円筒体を結合一体化することで構成される場合とがあり、何れの場合においても、ラジアル軸受面を有する円筒体としては、加工性(量産性)やラジアル軸受隙間における油膜形成能力に優れた焼結金属で形成されたものが重用される。   The bearing member having the intermediate relief structure may be configured by a single cylindrical body or may be configured by combining and integrating a plurality of cylindrical bodies arranged in the axial direction. However, as the cylindrical body having the radial bearing surface, a cylindrical body made of a sintered metal excellent in workability (mass productivity) and oil film forming ability in the radial bearing gap is used.

例えば、下記の特許文献1(の図1)には、軸方向に連ねて配置した2つの円筒体を結合することにより、中逃げ部を形成した軸受部材が開示されている。本願の図6を参照して具体的に述べると、上記の軸受部材100は、軸方向に連ねて配置した焼結金属製の第1および第2円筒体110,120を両者間に形成した結合部104により結合一体化したものであり、第1円筒体110の内周に第1ラジアル軸受面101が設けられ、第2円筒体120の内周に第2ラジアル軸受面102および両ラジアル軸受面101,102よりも大径の円筒面(中逃げ部)103が設けられている。   For example, the following Patent Document 1 (FIG. 1) discloses a bearing member in which a middle relief portion is formed by joining two cylindrical bodies arranged continuously in the axial direction. More specifically, referring to FIG. 6 of the present application, the bearing member 100 is a combination in which a sintered metal first and second cylindrical bodies 110 and 120 are arranged between the two, which are arranged continuously in the axial direction. The first radial bearing surface 101 is provided on the inner periphery of the first cylindrical body 110, and the second radial bearing surface 102 and both radial bearing surfaces are provided on the inner periphery of the second cylindrical body 120. A cylindrical surface (medium escape portion) 103 having a diameter larger than those of 101 and 102 is provided.

上記の軸受部材100は、図7(a)〜(c)に示すサイジング金型130を用いて完成品形状に仕上げられる。具体的には、まず、図7(a)に示すように、サイジングコア131の外周に、第2円筒体120(厳密には、サイジングによって図6に示す第2円筒体120に仕上げられる円筒素材)の一端外周側に設けた円筒状の被嵌合部(肉取り部)121に対して第1円筒体110(厳密には、サイジングによって図6に示す第1円筒体110に仕上げられる円筒素材)の他端外周側に設けた円筒状の嵌合部111を嵌合してなるアセンブリを配置してから、図7(b)に示すように、サイジングコア131および上パンチ133を下降させることにより、ダイ132の内周にアセンブリを圧入する。そして、図7(c)に示すように、サイジングコア131および上パンチ133をさらに下降させ、上パンチ133および下パンチ134でアセンブリを軸方向に圧縮する。アセンブリを軸方向に圧縮すると、両円筒体110,120が径方向に膨張変形し、両円筒体110,120の内周面および外周面がサイジングコア131の外周面およびダイ132の内周面にそれぞれ押し付けられる。これに伴い、両円筒体110,120の対向二面(例えば、図6に示す第1円筒状体110の大径内周面112と第2円筒体120の小径外周面122)が密着し、両円筒体110,120を結合させる結合部104が形成される。また、両円筒体110,120の内周面のうちサイジングコア131に押し付けられた部分にラジアル軸受面101,102が成形されると共に、両円筒体110,120間(特に両ラジアル軸受面101,102間)での同軸出しが行われる。   The bearing member 100 is finished into a finished product shape using a sizing mold 130 shown in FIGS. Specifically, as shown in FIG. 7A, first, on the outer periphery of the sizing core 131, the second cylindrical body 120 (strictly, the cylindrical material that is finished to the second cylindrical body 120 shown in FIG. 6 by sizing). ) With respect to the cylindrical fitting portion (meat removal portion) 121 provided on the outer peripheral side of one end of the first cylindrical body 110 (strictly, the cylindrical material finished to the first cylindrical body 110 shown in FIG. 6 by sizing) ), The assembly formed by fitting the cylindrical fitting portion 111 provided on the outer peripheral side of the other end is disposed, and then the sizing core 131 and the upper punch 133 are lowered as shown in FIG. Thus, the assembly is press-fitted into the inner periphery of the die 132. Then, as shown in FIG. 7C, the sizing core 131 and the upper punch 133 are further lowered, and the assembly is compressed in the axial direction by the upper punch 133 and the lower punch 134. When the assembly is compressed in the axial direction, both cylindrical bodies 110 and 120 expand and deform in the radial direction, and the inner and outer peripheral surfaces of both cylindrical bodies 110 and 120 become the outer peripheral surface of the sizing core 131 and the inner peripheral surface of the die 132. Each is pressed. Along with this, the opposing two surfaces of both the cylindrical bodies 110 and 120 (for example, the large-diameter inner peripheral surface 112 of the first cylindrical body 110 and the small-diameter outer peripheral surface 122 of the second cylindrical body 120 shown in FIG. A coupling portion 104 that couples both the cylindrical bodies 110 and 120 is formed. In addition, radial bearing surfaces 101 and 102 are formed on a portion of the inner peripheral surfaces of both cylindrical bodies 110 and 120 pressed against the sizing core 131, and between the two cylindrical bodies 110 and 120 (particularly, both radial bearing surfaces 101, 102).

特許第3475215号公報Japanese Patent No. 3475215

上記のように、特許文献1に開示された技術手段によれば、複数(2つ)の円筒体を結合した場合であっても、軸方向に離間した2つのラジアル軸受面間で必要とされるミクロンオーダーの同軸度を適切に確保した軸受部材100を容易に得ることができるとも考えられる。しかしながら、軸受部材100を構成する各円筒体は、量産部品である関係上、常に同一の形状・寸法に形成されるわけではなく、実際には第1円筒体110の相互間、および第2円筒体120の相互間で各部の形状や寸法にバラツキがある。そのため、軸受部材100を得る際には、例えば、図8(a)に示すように、偏肉により周方向各部での肉厚が異なる第1円筒体110が用いられる場合もある。なお、理解の容易化のため、図示例では偏肉の度合いを誇張して描いている。   As described above, according to the technical means disclosed in Patent Document 1, even when a plurality (two) of cylindrical bodies are coupled, they are required between two radial bearing surfaces spaced apart in the axial direction. It is also considered that the bearing member 100 that appropriately secures a coaxial degree of a micron order can be easily obtained. However, the cylindrical bodies constituting the bearing member 100 are not always formed in the same shape and dimensions because they are mass-produced parts. Actually, the first cylindrical bodies 110 and the second cylinder are not formed. There are variations in the shape and dimensions of each part between the bodies 120. Therefore, when obtaining the bearing member 100, for example, as shown in FIG. 8A, there may be a case where the first cylindrical body 110 having a different thickness in each circumferential portion due to uneven thickness may be used. For ease of understanding, the degree of uneven thickness is exaggerated in the illustrated example.

このとき、図7(a)〜(c)を参照して説明したように、両円筒体110,120を予め嵌合(凹凸嵌合)させた状態で両円筒体110,120にサイジングを施すと、第2円筒体120の存在によって第1円筒体110の径方向内側への移動が規制されてしまうため、第1円筒体110の内周面のうちラジアル軸受面101の成形予定領域をサイジングコア131の外周面に対して適切に押し付けることができず、第1円筒体110の内周面に所定形状・精度のラジアル軸受面101を成形することができないおそれがある。この場合、両ラジアル軸受面101,102間で必要とされる同軸度を確保することもできなくなる[図8(b)参照]。   At this time, as described with reference to FIGS. 7A to 7C, sizing is performed on both cylinders 110 and 120 in a state in which both cylinders 110 and 120 are fitted in advance (concave fitting). Since the movement of the first cylindrical body 110 inward in the radial direction is restricted by the presence of the second cylindrical body 120, the area to be molded of the radial bearing surface 101 in the inner peripheral surface of the first cylindrical body 110 is sized. There is a possibility that the radial bearing surface 101 having a predetermined shape and accuracy cannot be formed on the inner peripheral surface of the first cylindrical body 110 because the core 131 cannot be appropriately pressed against the outer peripheral surface of the core 131. In this case, the required coaxiality between the radial bearing surfaces 101 and 102 cannot be ensured [see FIG. 8B].

以上の実情に鑑み、本発明の課題は、軸方向に連ねて配置した複数の円筒体を結合してなる流体動圧軸受装置用の軸受部材であって、軸方向の一端側に配置された円筒体の内周面および軸方向の他端側に配置された円筒体の内周面のそれぞれにサイジングにより成形されたラジアル軸受面が設けられると共に、両ラジアル軸受面間に中逃げ部が設けられる軸受部材において、円筒体同士を適切に結合しつつ、各ラジアル軸受面の形状・寸法精度、および両ラジアル軸受面間での同軸度を適切に確保することを可能とし、もって、ラジアル方向の軸受性能に優れた流体動圧軸受装置を実現可能とすることにある。   In view of the above circumstances, an object of the present invention is a bearing member for a fluid dynamic bearing device formed by connecting a plurality of cylindrical bodies arranged in an axial direction, and is disposed on one end side in the axial direction. A radial bearing surface formed by sizing is provided on each of the inner peripheral surface of the cylindrical body and the inner peripheral surface of the cylindrical body disposed on the other end side in the axial direction, and an intermediate clearance portion is provided between the radial bearing surfaces. It is possible to appropriately secure the shape and dimensional accuracy of each radial bearing surface and the coaxiality between both radial bearing surfaces while appropriately coupling the cylindrical bodies to each other. It is to be possible to realize a fluid dynamic pressure bearing device having excellent bearing performance.

上記の課題を解決するため、本発明では、軸方向に連ねて配置した複数の円筒体にサイジングを施すことにより、軸方向で隣り合う円筒体同士が結合され、上記複数の円筒体のうち軸方向の一端側に配置された焼結金属製の第1円筒体および軸方向の他端側に配置された焼結金属製の第2円筒体の内周面のそれぞれに、上記サイジングに伴って成形されたラジアル軸受面が設けられ、両ラジアル軸受面間に両ラジアル軸受面よりも大径の中逃げ部が設けられた流体動圧軸受装置用の軸受部材であって、軸方向で互いに対峙する2つの端面の何れか一方にのみ設けた凹部に対し、上記サイジングに伴って他方の端面に生じた凸状の隆起部を密着させることで形成した凹凸嵌合構造により、軸方向で隣り合う円筒体同士を結合したことを特徴とする流体動圧軸受用軸受部材を提供する。   In order to solve the above-described problem, in the present invention, by sizing a plurality of cylindrical bodies arranged in a row in the axial direction, cylinders adjacent in the axial direction are coupled to each other. In accordance with the sizing, each of the first cylindrical body made of sintered metal disposed on one end side in the direction and the second peripheral body made of sintered metal disposed on the other end side in the axial direction A bearing member for a fluid dynamic pressure bearing device in which a molded radial bearing surface is provided, and an intermediate clearance portion having a diameter larger than that of both radial bearing surfaces is provided between both radial bearing surfaces. Adjacent in the axial direction by the concave-convex fitting structure formed by bringing the convex ridges formed on the other end face in close contact with the concave part provided on only one of the two end faces Characterized by the combination of cylinders To provide a fluid dynamic pressure bearing bearing member.

なお、本発明でいう「ラジアル軸受面」とは、支持すべき軸の外周面との間にラジアル軸受隙間を形成する面を意味し、この面に動圧溝等の動圧発生部が形成されているか否かは問わない。   The “radial bearing surface” as used in the present invention means a surface that forms a radial bearing gap with the outer peripheral surface of the shaft to be supported, and a dynamic pressure generating portion such as a dynamic pressure groove is formed on this surface. It doesn't matter whether it is done or not.

上記の凹凸嵌合構造により軸方向で隣り合う円筒体同士が結合されていれば、サイジングに伴って、上記一方(の端面)に設けた凹部に密着する凸状の隆起部を上記他方(の端面)に生じさせ得る限りにおいて、サイジングの実施前における上記他方の形状を任意に設定することができる。そのため、サイジングの実施前(実施開始段階)において、上記他方は、例えば、軸線と直交する方向の平面(平坦面)、すなわち上記一方と径方向で係合しない形状に形成することができる。この場合、少なくともサイジングがある程度進展するまでは、軸方向で隣り合う2つの円筒体の何れか一方の径方向移動が他方の存在によって規制されることがなくなるので、第1および第2円筒体内周面のラジアル軸受面の成形予定領域を、サイジングコアの外周面に適切に押し付けることが(サイジングコアの外周面に倣って変形させることが)できる。従って、両ラジアル軸受面を所定精度に成形しつつ、両ラジアル軸受面間での同軸出しも適切になされた状態で、軸方向で隣り合う円筒体同士が適切に結合された軸受部材を得ることができる。   If cylindrical bodies adjacent to each other in the axial direction are joined by the concave-convex fitting structure, a convex ridge portion that closely contacts a concave portion provided on the one (end surface) is attached to the other (the As long as it can be generated on the end face), the other shape before the sizing can be arbitrarily set. Therefore, before the sizing is performed (initiation stage), the other can be formed into, for example, a plane (flat surface) in a direction orthogonal to the axis, that is, a shape that does not engage with the one in the radial direction. In this case, at least until the sizing progresses to some extent, the radial movement of one of the two cylinders adjacent in the axial direction is not restricted by the presence of the other, so that the inner circumference of the first and second cylinders The area of the surface radial bearing surface to be molded can be appropriately pressed against the outer peripheral surface of the sizing core (can be deformed following the outer peripheral surface of the sizing core). Accordingly, a bearing member in which cylindrical bodies adjacent in the axial direction are appropriately coupled is obtained in a state in which both radial bearing surfaces are molded with a predetermined accuracy and the coaxial alignment between both radial bearing surfaces is appropriately performed. Can do.

本発明を適用し得る軸受部材の具体的な一例として、凹部が、第1円筒体の軸方向他方側の端面、又は第2円筒体の軸方向一端側の端面に設けられ、中逃げ部が、第1円筒体の軸方向他端側の内周面、又は第2円筒体の軸方向一端側の内周面に設けられたものを挙げることができる。この場合、第1および第2円筒体のうち、凹部が設けられる円筒体の降伏点を相対的に大きくしておけば、サイジングに伴って凹部が変形し、第1円筒体と第2円筒体が適切に結合されなくなるような事態を可及的に防止することができる。   As a specific example of a bearing member to which the present invention can be applied, a concave portion is provided on the end surface on the other axial side of the first cylindrical body, or on the end surface on one axial end side of the second cylindrical body, and the intermediate relief portion is provided. And an inner peripheral surface on the other axial end side of the first cylindrical body, or an inner peripheral surface on the one axial end side of the second cylindrical body. In this case, of the first and second cylindrical bodies, if the yield point of the cylindrical body provided with the concave portion is relatively large, the concave portion is deformed with sizing, and the first cylindrical body and the second cylindrical body are formed. Can be prevented as much as possible.

また、本発明を適用し得る軸受部材の他例として、第1円筒体と第2円筒体との間に配置され、内周に中逃げ部が設けられた第3円筒体をさらに有し、凹部が、第3円筒体の軸方向一端側および他端側の端面にそれぞれ設けられたものを挙げることができる。この場合において、第3円筒体の降伏点を、第1および第2円筒体の降伏点よりも大きくしておけば、サイジングに伴って凹部が変形し、第1円筒体および第2円筒体と第3円筒体とが適切に結合されなくなるような事態を可及的に防止することができる。第1および第2円筒体よりも降伏点が大きい第3円筒体は、例えば、これをステンレス鋼や真鍮等の溶製材で形成することにより得られる。   Further, as another example of a bearing member to which the present invention can be applied, the bearing member further includes a third cylindrical body disposed between the first cylindrical body and the second cylindrical body and provided with a middle escape portion on the inner periphery thereof, There may be mentioned those in which the concave portions are provided on the end surfaces on the one end side and the other end side in the axial direction of the third cylindrical body, respectively. In this case, if the yield point of the third cylindrical body is made larger than the yield points of the first and second cylindrical bodies, the concave portion is deformed with sizing, and the first cylindrical body and the second cylindrical body It is possible to prevent as much as possible the situation in which the third cylindrical body is not properly coupled. The third cylinder having a yield point larger than that of the first and second cylinders can be obtained, for example, by forming the third cylinder with a melted material such as stainless steel or brass.

以上の構成において、両ラジアル軸受面には動圧溝等の動圧発生部を設けることもできる。この動圧発生部は、軸方向に連ねて配置した複数の円筒体にサイジングを施すのと同時に型成形することができる。なお、ラジアル軸受面に動圧溝等の動圧発生部を設けた軸受部材は、一般的に、ラジアル軸受面に動圧溝等の動圧発生部が設けられていない軸受部材(ラジアル軸受面が平滑な円筒面に形成された軸受部材)に比べ、支持すべき軸の外周面との間に形成されるラジアル軸受隙間の隙間幅が小さい領域で使用されるため、2つのラジアル軸受面間で必要とされる同軸度が相対的に小さくなる。この点、本発明に係る軸受部材では、前述したとおり、2つのラジアル軸受面間での同軸度を適切に確保できる。そのため、本発明は、ラジアル軸受面に動圧発生部が設けられた軸受部材においてより一層の効果が得られる。   In the above configuration, dynamic pressure generating portions such as dynamic pressure grooves can be provided on both radial bearing surfaces. The dynamic pressure generating portion can be molded at the same time as sizing is performed on a plurality of cylindrical bodies arranged in series in the axial direction. In general, a bearing member having a dynamic pressure generating portion such as a dynamic pressure groove on a radial bearing surface is generally a bearing member in which a dynamic pressure generating portion such as a dynamic pressure groove is not provided on the radial bearing surface (radial bearing surface). Is used in a region where the gap width of the radial bearing gap formed between the outer peripheral surface of the shaft to be supported is small compared to the bearing member formed on the smooth cylindrical surface), and between the two radial bearing surfaces The required coaxiality is relatively small. In this respect, in the bearing member according to the present invention, the coaxiality between the two radial bearing surfaces can be appropriately ensured as described above. For this reason, the present invention can achieve further effects in the bearing member in which the dynamic pressure generating portion is provided on the radial bearing surface.

また、本発明に係る軸受部材において、第1円筒体の軸方向一端側の端面、第2円筒体の軸方向他端側の端面の少なくとも一方に、支持すべき軸の端面との間にスラスト軸受隙間を形成するスラスト軸受面を設けることもできる。このスラスト軸受面も、軸方向に連ねて配置した複数の円筒体にサイジングを施すのと同時に成形することができる。   Further, in the bearing member according to the present invention, a thrust is provided between at least one of the end surface on the one axial end side of the first cylindrical body and the end surface on the other axial end side of the second cylindrical body with the end surface of the shaft to be supported. A thrust bearing surface that forms a bearing gap can also be provided. This thrust bearing surface can also be formed at the same time as sizing a plurality of cylindrical bodies arranged in the axial direction.

以上で説明したように、本発明に係る軸受部材は、軸方向で隣り合う円筒体同士が適切に結合され、しかも、軸方向の二箇所に離間して設けられたラジアル軸受面間での同軸度が適切に確保されていることから、この軸受部材を内周に固定したハウジングを備えた流体動圧軸受装置は、低トルクで、しかも軸受剛性(モーメント剛性)に優れたものとなる。また、本発明に係る軸受部材の構造上、支持すべき軸が軸方向に長寸であっても、これを精度良く支持することができる。従って、本発明に係る軸受部材を備える流体動圧軸受装置は、比較的大型のモータ(例えば、サーバ用のファンモータ)用軸受などとして活用することができる。   As described above, in the bearing member according to the present invention, the cylindrical bodies adjacent in the axial direction are appropriately coupled to each other, and the coaxial member is provided between the radial bearing surfaces that are provided apart from each other in two axial directions. Since the degree is appropriately secured, the fluid dynamic pressure bearing device including the housing in which the bearing member is fixed to the inner periphery has low torque and excellent bearing rigidity (moment rigidity). Further, due to the structure of the bearing member according to the present invention, even if the shaft to be supported is long in the axial direction, it can be accurately supported. Therefore, the fluid dynamic pressure bearing device including the bearing member according to the present invention can be used as a bearing for a relatively large motor (for example, a fan motor for a server).

また、上記の課題を解決するため、本発明では、軸方向に連ねて配置した複数の円筒体にサイジングを施すことにより、軸方向で隣り合う円筒体同士を結合してなる流体動圧軸受装置用の軸受部材であって、上記複数の円筒体のうち軸方向の一端側に配置された焼結金属製の第1円筒体および軸方向の他端側に配置された焼結金属製の第2円筒体の内周面のそれぞれに、上記サイジングに伴って成形されたラジアル軸受面が設けられ、両ラジアル軸受面間に両ラジアル軸受面よりも大径の中逃げ部が設けられたものを製造するための方法において、軸方向で互いに対峙する2つの端面のうち、何れか一方にのみ凹部が設けられると共に他方が軸方向と直交する方向の平坦面に形成された上記複数の円筒体にサイジングを施すことを特徴とする流体動圧軸受装置用軸受部材の製造方法、を提供する。   Further, in order to solve the above-described problems, in the present invention, a fluid dynamic pressure bearing device in which cylindrical bodies adjacent in the axial direction are coupled to each other by sizing a plurality of cylindrical bodies arranged continuously in the axial direction. A first sintered body made of sintered metal disposed on one end side in the axial direction of the plurality of cylindrical bodies, and a first made of sintered metal disposed on the other end side in the axial direction. A radial bearing surface formed in accordance with the above sizing is provided on each of the inner peripheral surfaces of the two cylindrical bodies, and an intermediate relief portion having a larger diameter than both radial bearing surfaces is provided between the radial bearing surfaces. In the method for manufacturing, the plurality of cylindrical bodies formed on the flat surface in the direction perpendicular to the axial direction while the concave portion is provided only in one of the two end surfaces facing each other in the axial direction. Characterized by sizing Method of manufacturing a Karadado圧 bearing device for a bearing member, provides.

以上より、本発明によれば、軸方向に連ねて配置した複数の円筒体からなる流体動圧軸受装置用の軸受部材であって、円筒体同士を適切に結合しつつ、各ラジアル軸受面の形状・寸法精度、および両ラジアル軸受面間での同軸度を適切に確保した軸受部材を提供することができる。   As described above, according to the present invention, there is provided a bearing member for a fluid dynamic pressure bearing device including a plurality of cylindrical bodies arranged in an axial direction, and each radial bearing surface is appropriately coupled to each other while appropriately coupling the cylindrical bodies. It is possible to provide a bearing member in which shape / dimensional accuracy and coaxiality between both radial bearing surfaces are appropriately secured.

本発明の一実施形態に係る軸受部材を備えた流体動圧軸受装置の概略断面図である。It is a schematic sectional drawing of the fluid dynamic pressure bearing apparatus provided with the bearing member which concerns on one Embodiment of this invention. 図1に示す軸受部材の断面図である。It is sectional drawing of the bearing member shown in FIG. 図1に示す軸受部材の製造工程に含まれるサイジング工程を模式的に示す断面図であって、(a)図は同工程の初期段階を示す図、(b)図および(c)図は同工程の途中段階を示す図である。It is sectional drawing which shows typically the sizing process included in the manufacturing process of the bearing member shown in FIG. 1, Comprising: (a) A figure is a figure which shows the initial stage of the process, (b) A figure and (c) figure are the same It is a figure which shows the intermediate stage of a process. (a)図は、変形例に係る軸受部材の部分拡大図、(b)図および(c)図は、何れも、凹部の変形例を模式的に示す図である。FIG. 5A is a partially enlarged view of a bearing member according to a modified example, and FIG. 5B and FIG. 5C are diagrams schematically showing modified examples of the recesses. 本発明の他の実施形態に係る軸受部材を備えた流体動圧軸受装置の概略断面図である。It is a schematic sectional drawing of the fluid dynamic pressure bearing apparatus provided with the bearing member which concerns on other embodiment of this invention. 従来の軸受部材の概略断面図である。It is a schematic sectional drawing of the conventional bearing member. 図6に示す軸受部材の製造工程に含まれるサイジング工程を模式的に示す断面図であって、(a)図は同工程の初期段階を示す図、(b)図および(c)図は同工程の途中段階を示す図である。It is sectional drawing which shows typically the sizing process included in the manufacturing process of the bearing member shown in FIG. 6, Comprising: (a) A figure is a figure which shows the initial stage of the process, (b) A figure and (c) figure are the same It is a figure which shows the intermediate stage of a process. (a)図および(b)図は、従来の軸受部材の問題点を説明するための概要図である。(A) A figure and (b) figure are the schematic diagrams for demonstrating the problem of the conventional bearing member.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に、本発明の一実施形態に係る軸受部材を備えた流体動圧軸受装置の一構成例を概念的に示す。同図に示す流体動圧軸受装置1は、軸受部材3と、軸受部材3の内周に挿入された軸部材2と、接着や圧入接着(圧入状態で接着)等の適宜の手段で軸受部材3を内周に固定した筒状のハウジング4とを備え、軸部材2は、軸方向の離間した二箇所に形成されるラジアル軸受部R1,R2によりラジアル方向に相対回転自在に支持される。軸受部材3は、軸方向に連ねて配置した複数の円筒体(本実施形態では第1および第2円筒体31,32)からなる。詳細な図示は省略しているが、ハウジング4の内部空間には、潤滑流体としての潤滑油が充填されている。なお、以下では、便宜上、第1円筒体31が配置された側を上側、第2円筒体32が配置された側を下側として説明を進めるが、流体動圧軸受装置1(軸受部材3)の使用態様を限定するわけではない。   FIG. 1 conceptually shows one configuration example of a fluid dynamic bearing device provided with a bearing member according to an embodiment of the present invention. The fluid dynamic pressure bearing device 1 shown in FIG. 1 includes a bearing member 3, a shaft member 2 inserted in the inner periphery of the bearing member 3, and an appropriate means such as adhesion or press-fit adhesion (adhesion in a press-fit state). The shaft member 2 is supported by radial bearing portions R1 and R2 formed at two positions spaced apart in the axial direction so as to be relatively rotatable in the radial direction. The bearing member 3 includes a plurality of cylindrical bodies (in the present embodiment, first and second cylindrical bodies 31 and 32) arranged in series in the axial direction. Although detailed illustration is omitted, the internal space of the housing 4 is filled with lubricating oil as a lubricating fluid. In the following, for the sake of convenience, the description will proceed with the side on which the first cylindrical body 31 is disposed as the upper side and the side on which the second cylindrical body 32 is disposed on the lower side. However, the fluid dynamic bearing device 1 (bearing member 3) However, there is no limitation on the use mode.

軸部材2は、例えばステンレス鋼等の金属材料で形成され、その外周面2aのうち、軸受部材3の内周面と対向する部分は凹凸のない平滑な円筒面に形成されている。   The shaft member 2 is made of, for example, a metal material such as stainless steel, and a portion of the outer peripheral surface 2a that faces the inner peripheral surface of the bearing member 3 is formed into a smooth cylindrical surface without unevenness.

軸受部材3を構成する第1および第2円筒体31は、何れも、銅又は鉄を主成分とする焼結金属の多孔質体で略円筒状に形成されている。本実施形態では、第1円筒体31の降伏点が相対的に小さく、第2円筒体32の降伏点が相対的に大きくなっている。要するに、第2円筒体32は、第1円筒体31よりも高強度の焼結金属で形成されている。このように、降伏点が互いに異なる焼結金属製の円筒体31,32は、例えば、原料粉末の組成を互いに異ならせる、原料粉末の圧粉体を得る際の成形圧を互いに異ならせる、あるいは焼結条件を互いに異ならせる、などの手段を採用することで得られる。   Each of the first and second cylindrical bodies 31 constituting the bearing member 3 is a sintered metal porous body mainly composed of copper or iron and is formed in a substantially cylindrical shape. In the present embodiment, the yield point of the first cylindrical body 31 is relatively small, and the yield point of the second cylindrical body 32 is relatively large. In short, the second cylindrical body 32 is formed of a sintered metal having a higher strength than the first cylindrical body 31. As described above, the sintered metal cylinders 31 and 32 having different yield points are different from each other in, for example, the composition of the raw material powder, the forming pressure when obtaining the green compact of the raw material powder, or It can be obtained by adopting means such as different sintering conditions.

第1円筒体31の内周面31aには、軸部材2と軸受部材3の相対回転時に、対向する軸部材2の外周面2aとの間にラジアル軸受部R1のラジアル軸受隙間を形成する円筒状のラジアル軸受面A1が設けられている。ラジアル軸受面A1には、図2に示すように、ラジアル軸受部R1のラジアル軸受隙間内の潤滑油に動圧作用を発生させるための動圧発生部(ラジアル動圧発生部)8が形成されている。図示例の動圧発生部8は、軸方向に対して傾斜した複数の上側動圧溝8a1と、上側動圧溝8a1とは反対方向に傾斜した複数の下側動圧溝8a2と、動圧溝8a1,8a2を区画する凸状の丘部とで構成され、動圧溝8a1,8a2は全体としてヘリングボーン形状に配列されている。丘部は、周方向で隣り合う動圧溝間に設けられた傾斜丘部8bと、上下の動圧溝8a1,8a2間に設けられ、傾斜丘部8bと略同径の環状丘部8cとからなる。   A cylinder that forms a radial bearing gap of the radial bearing portion R1 on the inner peripheral surface 31a of the first cylindrical body 31 between the outer peripheral surface 2a of the opposing shaft member 2 when the shaft member 2 and the bearing member 3 are relatively rotated. A radial bearing surface A1 is provided. As shown in FIG. 2, the radial bearing surface A1 is formed with a dynamic pressure generating portion (radial dynamic pressure generating portion) 8 for generating a dynamic pressure action on the lubricating oil in the radial bearing gap of the radial bearing portion R1. ing. The illustrated dynamic pressure generator 8 includes a plurality of upper dynamic pressure grooves 8a1 inclined with respect to the axial direction, a plurality of lower dynamic pressure grooves 8a2 inclined in a direction opposite to the upper dynamic pressure grooves 8a1, and a dynamic pressure. The grooves 8a1 and 8a2 are divided into convex hills, and the dynamic pressure grooves 8a1 and 8a2 are arranged in a herringbone shape as a whole. The hill portion includes an inclined hill portion 8b provided between the dynamic pressure grooves adjacent in the circumferential direction, and an annular hill portion 8c provided between the upper and lower dynamic pressure grooves 8a1 and 8a2 and having substantially the same diameter as the inclined hill portion 8b. Consists of.

第2円筒体32の内周面32aは、相対的に小径の小径内周面32a1と、相対的に大径の大径内周面32a2とに区画されている。小径内周面32a1には、軸部材2と軸受部材3の相対回転時に、対向する軸部材2の外周面2aとの間にラジアル軸受部R2のラジアル軸受隙間を形成する円筒状のラジアル軸受面A2が設けられている。ラジアル軸受面A2には、図2に示すように、ラジアル軸受部R2のラジアル軸受隙間内の潤滑油に動圧作用を発生させるための動圧発生部(ラジアル動圧発生部)8が形成されている。この動圧発生部8は、第1円筒体31の内周面31a(ラジアル軸受面A1)に設けられた動圧発生部8と同様の構成を有する。大径内周面32a2は、2つのラジアル軸受面A1,A2間に配置されて中逃げ部Bを構成している。   The inner peripheral surface 32a of the second cylindrical body 32 is partitioned into a relatively small-diameter small-diameter internal peripheral surface 32a1 and a relatively large-diameter large-diameter internal peripheral surface 32a2. A cylindrical radial bearing surface that forms a radial bearing gap of the radial bearing portion R2 between the small-diameter inner peripheral surface 32a1 and the outer peripheral surface 2a of the opposing shaft member 2 when the shaft member 2 and the bearing member 3 rotate relative to each other. A2 is provided. As shown in FIG. 2, the radial bearing surface A2 is formed with a dynamic pressure generating portion (radial dynamic pressure generating portion) 8 for generating a dynamic pressure action on the lubricating oil in the radial bearing gap of the radial bearing portion R2. ing. The dynamic pressure generation unit 8 has the same configuration as the dynamic pressure generation unit 8 provided on the inner peripheral surface 31a (radial bearing surface A1) of the first cylindrical body 31. The large-diameter inner peripheral surface 32a2 is disposed between the two radial bearing surfaces A1 and A2 to form a middle escape portion B.

なお、ラジアル軸受面A1,A2の双方に設けた動圧発生部8の形状はあくまでも一例であり、公知のその他の形状の動圧発生部8を採用することももちろん可能である。   The shape of the dynamic pressure generating portion 8 provided on both the radial bearing surfaces A1 and A2 is merely an example, and it is of course possible to adopt other known shapes of the dynamic pressure generating portion 8.

軸受部材3を構成する第1および第2円筒体31,32は、両円筒体31,32間に形成された凹凸嵌合構造7により結合一体化されている。凹凸嵌合構造7は、軸方向で互いに対峙する二面(ここでは、第1円筒体31の下端面31bおよび第2円筒体32の上端面32c)のうち、第2円筒体32の上端面32cに設けた凹部5(の内壁面)に対し、第1円筒体31の下端面31bに設けた凸状の隆起部6を密着させることで形成されている。本実施形態において、凹部5およびこれに密着した凸状の隆起部6は、何れも円環状をなしている。なお、第1円筒体31の下端面31bのうち隆起部6が形成された部分を除く環状領域、および第2円筒体32の上端面32cのうち凹部5が形成された部分を除く環状領域は、何れも軸線(軸方向)と直交する方向に延びる平坦面に形成されており、両平坦面は互いに密着している。   The first and second cylindrical bodies 31 and 32 constituting the bearing member 3 are coupled and integrated by a concave / convex fitting structure 7 formed between the cylindrical bodies 31 and 32. The concave-convex fitting structure 7 has an upper end surface of the second cylindrical body 32 among two surfaces facing each other in the axial direction (here, the lower end surface 31b of the first cylindrical body 31 and the upper end surface 32c of the second cylindrical body 32). It is formed by closely contacting the convex raised portion 6 provided on the lower end surface 31b of the first cylindrical body 31 with the concave portion 5 (the inner wall surface) provided on the 32c. In the present embodiment, the concave portion 5 and the convex raised portion 6 in close contact with the concave portion 5 each have an annular shape. The annular region excluding the portion where the raised portion 6 is formed in the lower end surface 31b of the first cylindrical body 31 and the annular region excluding the portion where the recessed portion 5 is formed in the upper end surface 32c of the second cylindrical body 32 are These are all formed on a flat surface extending in a direction orthogonal to the axis (axial direction), and the two flat surfaces are in close contact with each other.

上記のように、両円筒体31,32の内周面に動圧発生部8を有するラジアル軸受面A1,A2がそれぞれ設けられ、かつ両円筒体31,32の間に形成した凹凸嵌合構造7により両円筒体31,32を結合してなる軸受部材3は、軸方向に連ねて配置した第1および第2円筒体31,32(厳密には、それぞれがサイジングによって上記構成を有する第1および第2円筒体31,32に仕上げられる第1および第2円筒素材31’,32’)にサイジングを施すことで得られる。以下、図3(a)〜(c)を参照しながら、サイジング工程について詳細に説明する。   As described above, the radial fitting surfaces A1 and A2 having the dynamic pressure generating portion 8 are provided on the inner peripheral surfaces of the cylindrical bodies 31 and 32, respectively, and the concave-convex fitting structure formed between the cylindrical bodies 31 and 32. 7, the bearing member 3 formed by connecting the two cylindrical bodies 31 and 32 to each other includes first and second cylindrical bodies 31 and 32 arranged in series in the axial direction (strictly, each of the first and second cylinders 31 and 32 has the above-described configuration by sizing. And the first and second cylindrical materials 31 ′ and 32 ′) finished to the second cylindrical bodies 31 and 32. Hereinafter, the sizing process will be described in detail with reference to FIGS.

サイジング工程は、図3(a)〜(c)に示すように、同軸に配置されたコア11、円筒状のダイ12、および一対の上下パンチ13,14を備えたサイジング金型10を用いて実行される。詳細な図示は省略しているが、コア11の外周面には、動圧発生部8,8(を有するラジアル軸受面A1,A2)の形状に対応した凹凸状の型部が上下に離間した二箇所に設けられている。   As shown in FIGS. 3A to 3C, the sizing process uses a sizing die 10 including a core 11, a cylindrical die 12, and a pair of upper and lower punches 13, 14 arranged coaxially. Executed. Although detailed illustration is omitted, on the outer peripheral surface of the core 11, concave and convex mold portions corresponding to the shapes of the dynamic pressure generating portions 8 and 8 (having the radial bearing surfaces A1 and A2) are separated vertically. It is provided in two places.

次に、サイジング工程に供される第1および第2円筒素材31’,32’について説明する。第1円筒素材31’は、サイジングによって上記構成を有する第1円筒体31に仕上げられるものであり、その内周面にラジアル軸受面A1(動圧発生部8)は設けられていない。また、第1円筒素材31’のうち、サイジング後に第1円筒体31の下端面31bとなる下端面31b’は、その全域が軸線と直交する方向の平坦面に形成されている。第2円筒素材32’は、サイジングによって上記構成を有する第2円筒体32に仕上げられるものであり、その内周面は相対的に小径の小径内周面と相対的に大径の大径内周面とに区画されているものの、小径内周面にラジアル軸受面A2(動圧発生部8)は設けられていない。但し、第2円筒素材32’のうち、サイジング後に第2円筒体32の上端面32cとなる上端面32c’には円環状の凹部5が設けられている[以上、図3(a)(b)を参照]。以上の構成を有する第1および第2円筒素材31’,32’は、何れも、原料粉末の圧粉体を焼結することで得られる焼結金属の多孔質体であるが、本実施形態では、第1円筒素材31’として、第2円筒素材32’よりも降伏点が小さいものが用いられる。   Next, the first and second cylindrical materials 31 'and 32' used in the sizing process will be described. The first cylindrical material 31 'is finished to the first cylindrical body 31 having the above-described configuration by sizing, and the radial bearing surface A1 (dynamic pressure generating portion 8) is not provided on the inner peripheral surface thereof. Further, in the first cylindrical material 31 ′, the lower end surface 31 b ′ which becomes the lower end surface 31 b of the first cylindrical body 31 after sizing is formed as a flat surface in the direction orthogonal to the axis. The second cylindrical material 32 'is finished into a second cylindrical body 32 having the above-described configuration by sizing, and the inner peripheral surface thereof is a relatively small-diameter inner peripheral surface and a relatively large-diameter large-diameter inner surface. Although divided into a peripheral surface, the radial bearing surface A2 (dynamic pressure generating portion 8) is not provided on the small-diameter inner peripheral surface. However, in the second cylindrical material 32 ′, an annular recess 5 is provided on the upper end surface 32c ′ that becomes the upper end surface 32c of the second cylindrical body 32 after sizing [see FIGS. 3A and 3B. )]. The first and second cylindrical materials 31 ′ and 32 ′ having the above configuration are both sintered metal porous bodies obtained by sintering a green compact of raw material powder. Then, what has a yield point smaller than 2nd cylindrical raw material 32 'is used as 1st cylindrical raw material 31'.

上記の構成において、まず、図3(a)に示すように、ダイ12の上端面12a上に、両円筒素材31’,32’を軸方向に連ねて(上下に重ねて)配置する。より具体的には、ダイ12の上端面12aに、凹部5が設けられた上端面32c’を上側にした起立姿勢で第2円筒素材32’を載置すると共に、下端面31b’を下側にした起立姿勢で第1円筒素材31’を第2円筒素材32’上に載置する。そして、両円筒素材31’,32’の内周にコア11を挿入する。   In the above configuration, first, as shown in FIG. 3A, both cylindrical materials 31 ′ and 32 ′ are arranged on the upper end surface 12 a of the die 12 so as to be connected in the axial direction (superimposed vertically). More specifically, the second cylindrical material 32 ′ is placed on the upper end surface 12 a of the die 12 in an upright posture with the upper end surface 32 c ′ provided with the recess 5 on the upper side, and the lower end surface 31 b ′ is placed on the lower side. The first cylindrical material 31 ′ is placed on the second cylindrical material 32 ′ in the standing posture. Then, the core 11 is inserted into the inner periphery of both cylindrical materials 31 'and 32'.

次いで、図3(b)に示すように、コア11および上パンチ13を下降させることにより、両円筒素材31’,32’をダイ12の内周に圧入し、両円筒素材31’,32’の外周面を拘束する。その後、図3(c)に示すようにコア11および上パンチ13をさらに下降させ、上パンチ13および下パンチ14で両円筒素材31’,32’を軸方向に圧縮すると、両円筒素材31’,32’が径方向に膨張変形し、両円筒素材31’,32’の外周面および内周面がダイ12の内周面12aおよびコア11の外周面11aにそれぞれ押し付けられる。これにより、両円筒素材31’,32’の外周面および内周面は、ダイ12の内周面12aおよびコア11の外周面11aに倣って変形し、第1円筒素材31’の内周面および第2円筒素材32’の内周面(小径内周面)のそれぞれに、動圧発生部8を有するラジアル軸受面A1,A2が成形される。そして、コア11および上パンチ13をさらに下降させると、第1円筒素材31’の下端面31b’のうち、第2円筒素材32’の上端面32c’に設けた凹部5と対峙する部分に凸状の隆起部6が生じ、この隆起部6が凹部5の内壁面に密着する。これにより、両円筒素材31’,32’の間に両者を結合一体化した凹凸嵌合構造7が形成される。   Next, as shown in FIG. 3B, by lowering the core 11 and the upper punch 13, both cylindrical materials 31 ′ and 32 ′ are press-fitted into the inner periphery of the die 12, and both cylindrical materials 31 ′ and 32 ′ are pressed. Restrain the outer peripheral surface. Thereafter, as shown in FIG. 3C, when the core 11 and the upper punch 13 are further lowered and both the cylindrical materials 31 ′ and 32 ′ are compressed in the axial direction by the upper punch 13 and the lower punch 14, both the cylindrical materials 31 ′. , 32 ′ expand and deform in the radial direction, and the outer peripheral surface and inner peripheral surface of both cylindrical materials 31 ′, 32 ′ are pressed against the inner peripheral surface 12 a of the die 12 and the outer peripheral surface 11 a of the core 11, respectively. Thereby, the outer peripheral surface and inner peripheral surface of both cylindrical materials 31 'and 32' are deformed following the inner peripheral surface 12a of the die 12 and the outer peripheral surface 11a of the core 11, and the inner peripheral surface of the first cylindrical material 31 '. And radial bearing surface A1, A2 which has the dynamic pressure generation | occurrence | production part 8 is shape | molded on each of the internal peripheral surface (small diameter internal peripheral surface) of 2nd cylindrical raw material 32 '. Then, when the core 11 and the upper punch 13 are further lowered, the portion of the lower end surface 31b ′ of the first cylindrical material 31 ′ protrudes from the portion facing the concave portion 5 provided on the upper end surface 32c ′ of the second cylindrical material 32 ′. A raised portion 6 is formed, and this raised portion 6 is in close contact with the inner wall surface of the recess 5. As a result, the concave / convex fitting structure 7 is formed between the cylindrical materials 31 ′ and 32 ′.

図示は省略しているが、以上のようにして凹凸嵌合構造7を形成した後には、例えばコア11および上下パンチ13,14を一体的に上昇させて、両円筒素材31’,32’の一体品をダイ12の外側に排出した後、上パンチ13およびコア11をさらに上昇させる。これにより、第1円筒体31の内周面31aに動圧発生部8を有するラジアル軸受面A1が成形されると共に、第2円筒体32の内周面32a(小径内周面32a1)に動圧発生部8を有するラジアル軸受面A2が成形され、かつ凹凸嵌合構造7により二つの円筒体31,32が結合してなる軸受部材3が得られる。   Although not shown in the figure, after forming the concave-convex fitting structure 7 as described above, for example, the core 11 and the upper and lower punches 13 and 14 are raised integrally to form both cylindrical materials 31 ′ and 32 ′. After the integrated product is discharged to the outside of the die 12, the upper punch 13 and the core 11 are further raised. As a result, the radial bearing surface A1 having the dynamic pressure generating portion 8 is formed on the inner peripheral surface 31a of the first cylindrical body 31, and is moved to the inner peripheral surface 32a (small-diameter inner peripheral surface 32a1) of the second cylindrical body 32. A bearing member 3 is obtained in which a radial bearing surface A2 having a pressure generating portion 8 is formed, and the two cylindrical bodies 31 and 32 are joined by the concave-convex fitting structure 7.

以上の構成を有する流体動圧軸受装置1において、軸部材2と軸受部材3が相対回転すると、軸受部材3内周の上下二箇所に離間して設けられたラジアル軸受面A1,A2と、これらに対向する軸部材2の外周面2aとの間にラジアル軸受隙間がそれぞれ形成される。そして軸部材2と軸受部材3の相対回転に伴い、両ラジアル軸受隙間に形成される油膜の圧力が動圧発生部8,8の動圧作用によって高められ、その結果、軸部材2をラジアル方向に相対回転自在に非接触支持するラジアル軸受部R1,R2が軸方向に離間した二箇所に形成される。このとき、軸受部材3(第2円筒体32)の内周に円筒面状の中逃げ部Bを設けたことにより、二つのラジアル軸受隙間間には円筒状の潤滑油溜りが形成される。そのため、両ラジアル軸受隙間における油膜切れ、すなわちラジアル軸受部R1,R2の軸受性能低下を可及的に防止することができる。   In the fluid dynamic bearing device 1 having the above-described configuration, when the shaft member 2 and the bearing member 3 are relatively rotated, the radial bearing surfaces A1 and A2 that are spaced apart from each other at two locations on the inner periphery of the bearing member 3 and these Radial bearing gaps are respectively formed between the outer peripheral surface 2a of the shaft member 2 facing each other. As the shaft member 2 and the bearing member 3 rotate relative to each other, the pressure of the oil film formed in the radial bearing gaps is increased by the dynamic pressure action of the dynamic pressure generating portions 8 and 8, and as a result, the shaft member 2 is moved in the radial direction. Radial bearing portions R1 and R2 that are supported in a non-contact manner so as to be relatively rotatable are formed at two locations separated in the axial direction. At this time, a cylindrical lubricating oil reservoir is formed between the two radial bearing gaps by providing the cylindrical surface intermediate escape portion B on the inner periphery of the bearing member 3 (second cylindrical body 32). Therefore, it is possible to prevent as much as possible an oil film breakage between the radial bearing gaps, that is, a reduction in bearing performance of the radial bearing portions R1 and R2.

図示は省略するが、以上で説明した流体動圧軸受装置1は、例えば、(1)ディスク装置用のスピンドルモータ、(2)レーザビームプリンタ用のポリゴンスキャナモータ、あるいは(3)PC用のファンモータなどのモータ用軸受装置として用いられる。(1)の場合、例えば、軸部材2にディスク搭載面を有するディスクハブが一体又は別体に設けられ、(2)の場合、例えば、軸部材2にポリゴンミラーが一体又は別体に設けられる。また、(3)の場合、例えば、軸部材2に羽根を有するファンが一体又は別体に設けられる。   Although not shown, the fluid dynamic bearing device 1 described above includes, for example, (1) a spindle motor for a disk device, (2) a polygon scanner motor for a laser beam printer, or (3) a fan for a PC. Used as a bearing device for a motor such as a motor. In the case of (1), for example, a disk hub having a disk mounting surface is integrally or separately provided on the shaft member 2, and in the case of (2), for example, a polygon mirror is integrally or separately provided on the shaft member 2. . In the case of (3), for example, a fan having blades on the shaft member 2 is provided integrally or separately.

以上で説明したように、本発明に係る軸受部材3では、軸方向で互いに対峙する第1円筒体31の下端面31bと第2円筒体32の上端面32cのうち、何れか一方の端面[ここでは上端面32c(32c’)]にのみ設けた凹部5に対し、サイジングに伴って他方の端面[ここでは下端面31b(31b’)]に生じた凸状の隆起部6を密着させることで形成した凹凸嵌合構造7により、軸方向で隣り合う第1および第2円筒体31,32が結合されている。   As described above, in the bearing member 3 according to the present invention, any one of the lower end surface 31b of the first cylindrical body 31 and the upper end surface 32c of the second cylindrical body 32 facing each other in the axial direction [ Here, with respect to the concave portion 5 provided only on the upper end surface 32c (32c ′)], the convex raised portion 6 generated on the other end surface [here, the lower end surface 31b (31b ′)] is brought into close contact with the sizing. The first and second cylindrical bodies 31 and 32 that are adjacent in the axial direction are joined together by the concave-convex fitting structure 7 formed in the above.

このような凹凸嵌合構造7により軸方向で隣り合う円筒体31,32同士が結合されていれば、サイジングに伴って、凹部5に密着する凸状の隆起部6を下端面31b’に生じさせ得る限りにおいて、サイジングの実施前における第1円筒素材31’の下端面31b’の形状を任意に設定することができる。そのため、サイジングの実施前において、第1円筒素材31’の下端面31b’全域は、上述のように、軸線と直交する方向の平坦面、すなわち第2円筒素材32’の上端面32c’と(径方向で)係合しない形状に形成することができる。この場合、サイジングがある程度進展するまでは、軸方向で隣り合う2つの円筒体の何れか一方の径方向移動が他方の存在によって規制されることがなくなるので、第1円筒素材31’および第2円筒素材32’内周面のラジアル軸受面の成形予定領域をコア11の外周面11cに適切に押し付けることができる。従って、動圧発生部8を有するラジアル軸受面A1,A2を所定精度に成形しつつ、両ラジアル軸受面A1,A2間での同軸出しも適切になされた状態で、軸方向で隣り合う円筒体31,32同士が適切に結合された軸受部材3を得ることができる。   If the cylindrical bodies 31 and 32 adjacent in the axial direction are coupled to each other by such an uneven fitting structure 7, a convex raised portion 6 that closely contacts the concave portion 5 is generated on the lower end surface 31 b ′ along with sizing. As long as it can be made, the shape of the lower end surface 31b ′ of the first cylindrical material 31 ′ before the sizing can be arbitrarily set. Therefore, before the sizing, the entire lower end surface 31b ′ of the first cylindrical material 31 ′ is flat with the direction perpendicular to the axis, that is, the upper end surface 32c ′ of the second cylindrical material 32 ′ (as described above). It can be formed into a shape that does not engage (in the radial direction). In this case, until the sizing progresses to some extent, the radial movement of one of the two cylindrical bodies adjacent in the axial direction is not restricted by the presence of the other, so the first cylindrical material 31 ′ and the second The forming area of the radial bearing surface on the inner peripheral surface of the cylindrical material 32 ′ can be appropriately pressed against the outer peripheral surface 11 c of the core 11. Therefore, the cylindrical bearings adjacent in the axial direction are formed in a state where the radial bearing surfaces A1 and A2 having the dynamic pressure generating portion 8 are formed with a predetermined accuracy and the coaxial bearings between the radial bearing surfaces A1 and A2 are also properly formed. The bearing member 3 in which 31 and 32 are appropriately coupled can be obtained.

特に、本実施形態では、結合すべき2つの円筒体31,32(円筒素材31’,32’)のうち、凹部5が設けられた第2円筒体32(第2円筒素材32’)の降伏点を相対的に大きくしているので、サイジングに伴って第2円筒体32の凹部5が変形し、両円筒体31,32が適切に結合されなくなるような事態を可及的に防止することができる。   In particular, in the present embodiment, of the two cylindrical bodies 31 and 32 (cylindrical materials 31 ′ and 32 ′) to be coupled, the yield of the second cylindrical body 32 (second cylindrical material 32 ′) provided with the recess 5 is provided. Since the point is relatively large, the concave portion 5 of the second cylindrical body 32 is deformed with sizing, and the situation where the two cylindrical bodies 31 and 32 are not properly coupled is prevented as much as possible. Can do.

以上、本発明の一実施形態に係る軸受部材3、およびこれを備えた流体動圧軸受装置1について説明を行ったが、軸受部材3には本発明の要旨を逸脱しない範囲で種々の変更を施すことができる。   The bearing member 3 according to the embodiment of the present invention and the fluid dynamic pressure bearing device 1 including the bearing member 3 have been described above. However, the bearing member 3 can be variously modified without departing from the gist of the present invention. Can be applied.

例えば、以上で説明した実施形態では、凹凸嵌合構造7を形成するための凹部5を、軸方向で互いに対峙する2つの端面(第1円筒体31の下端面31bおよび第2円筒体32の上端面32c)のうち、上端面32cの径方向略中央部に設けた円環溝で構成したが、円環溝からなる凹部5は、上端面32cの径方向に離間した複数箇所に設けても良い。図4(a)はその一例を具体的に示すものであり、第2円筒体32の上端面32cの径方向に離間した二箇所に円環溝からなる凹部5を設けている。この場合、凹部5に密着する凸状の隆起部6は、第1円筒体31の下端面31bの径方向に離間した二箇所に形成される。   For example, in the embodiment described above, the concave portion 5 for forming the concave-convex fitting structure 7 has two end surfaces (the lower end surface 31b of the first cylindrical body 31 and the second cylindrical body 32 of the first cylindrical body 32) facing each other in the axial direction. Of the upper end surface 32c), the upper end surface 32c is configured by an annular groove provided at a substantially central portion in the radial direction. However, the concave portions 5 formed by the annular groove are provided at a plurality of locations spaced in the radial direction of the upper end surface 32c. Also good. FIG. 4A specifically shows an example of this, and the concave portions 5 each formed of an annular groove are provided at two locations spaced in the radial direction of the upper end surface 32 c of the second cylindrical body 32. In this case, the convex raised portions 6 that are in close contact with the concave portion 5 are formed at two locations that are spaced apart in the radial direction of the lower end surface 31 b of the first cylindrical body 31.

また、凹凸嵌合構造7を形成するための凹部5は、円環溝以外にも、例えば図4(b)および図4(c)に示すように、周方向で有端の溝で構成することも可能である。この場合、凹凸嵌合構造7の形成後には、軸方向で隣り合う円筒体31,32が軸線回りに相対回転する可能性を減じることができる。なお、図4(b)は、外径側に向けて溝幅が漸減する径方向溝で凹部5を構成した場合の一例であり、図4(c)は、溝幅が一定の径方向溝で凹部5を構成した場合の一例である。もちろん、凹部5の形状は上述のものに限られるわけではなく、例えばスパイラル形状の溝やディンプル(断面略半円形状の窪み)で凹部5を構成することも可能である(図示省略)。   Moreover, the recessed part 5 for forming the uneven | corrugated fitting structure 7 is comprised by the groove | channel which is end | ended in the circumferential direction other than an annular groove, as shown, for example in FIG.4 (b) and FIG.4 (c). It is also possible. In this case, after the formation of the concave-convex fitting structure 7, the possibility that the cylindrical bodies 31 and 32 adjacent in the axial direction rotate relative to each other around the axis can be reduced. FIG. 4B is an example in which the concave portion 5 is formed by a radial groove whose groove width gradually decreases toward the outer diameter side, and FIG. 4C shows a radial groove having a constant groove width. It is an example at the time of comprising the recessed part 5 by. Of course, the shape of the recess 5 is not limited to that described above, and the recess 5 may be configured by, for example, a spiral groove or dimple (a recess having a semicircular cross section) (not shown).

また、凹凸嵌合構造7は、第1円筒体31の下端面31b(第1円筒素材31’の下端面31b’)に設けた凹部5に対し、軸方向に連ねて配置した第1および第2円筒体31,32(第1および第2円筒素材31’,32’)にサイジングを施すのに伴って第2円筒体32の上端面32c(第2円筒素材32’の上端面32c’)に生じた凸状の隆起部6を密着させることで形成することも可能である。   In addition, the concave-convex fitting structure 7 includes a first and a second that are arranged continuously in the axial direction with respect to the concave portion 5 provided on the lower end surface 31b of the first cylindrical body 31 (the lower end surface 31b ′ of the first cylindrical material 31 ′). As the two cylinders 31 and 32 (first and second cylindrical materials 31 ′ and 32 ′) are sized, the upper end surface 32c of the second cylindrical body 32 (the upper end surface 32c ′ of the second cylindrical material 32 ′). It is also possible to form it by closely contacting the raised ridges 6 produced in the above.

また、中逃げ部5は、第2円筒体32ではなく、第1円筒体31の内周面で構成しても良いし、第1および第2円筒体31,32の内周面の双方で構成しても良い。   Further, the middle escape portion 5 may be configured not by the second cylindrical body 32 but by the inner peripheral surface of the first cylindrical body 31, or by both the inner peripheral surfaces of the first and second cylindrical bodies 31 and 32. It may be configured.

軸受部材3は、軸方向に連ねて配置した2つの円筒体(第1および第2円筒体31,32)を結合することで構成する以外にも、図5に示すように、軸方向に連ねて配置した3つの円筒体を結合することで構成することも可能である。詳細に述べると、図5に示す実施形態において、軸受部材3は、軸方向の一端(上端)に配置され、内周面31aにラジアル軸受面A1を有する焼結金属製の第1円筒体31と、軸方向の他端(下端)に配置され、内周面32aにラジアル軸受面A2を有する焼結金属製の第2円筒体32との間に第3円筒体33を配置し、この第3円筒体33の内周面33aで中逃げ部Bを形成している。そして、軸方向で隣り合う第1円筒体31と第3円筒体33は両者間に形成した凹凸嵌合構造7により結合され、また、軸方向で隣り合う第3円筒体33と第2円筒体32は両者間に形成した凹凸嵌合構造7により結合されている。   The bearing member 3 is connected in the axial direction as shown in FIG. 5 in addition to the configuration in which two cylindrical bodies (first and second cylindrical bodies 31 and 32) arranged in the axial direction are coupled. It is also possible to configure by connecting three cylindrical bodies arranged in the same manner. More specifically, in the embodiment shown in FIG. 5, the bearing member 3 is disposed at one end (upper end) in the axial direction, and the sintered metal first cylindrical body 31 having the radial bearing surface A1 on the inner peripheral surface 31a. And a third cylindrical body 33 disposed between the second cylindrical body 32 made of sintered metal and disposed on the other end (lower end) in the axial direction and having a radial bearing surface A2 on the inner peripheral surface 32a. The middle escape portion B is formed by the inner peripheral surface 33 a of the three cylindrical body 33. The first cylindrical body 31 and the third cylindrical body 33 that are adjacent in the axial direction are joined by the concave-convex fitting structure 7 formed therebetween, and the third cylindrical body 33 and the second cylindrical body that are adjacent in the axial direction. 32 is couple | bonded by the uneven | corrugated fitting structure 7 formed between both.

なお、図5に示す実施形態では、第3円筒体33の上端面33bに設けた円環溝からなる凹部5に対して第1円筒体31の下端面31bに形成した凸状の隆起部6を密着させることにより、第1および第3円筒体31,33を結合する凹凸嵌合構造7を形成し、第3円筒体33の下端面33cに設けた円環溝からなる凹部5に対して第2円筒体32の上端面32bに形成した凸状の隆起部6を密着させることにより、第2および第3円筒体32,33を結合する凹凸嵌合構造7を形成している。もちろん、これら2つの凹凸嵌合構造7の何れか一方又は双方を、図4(a)〜(c)に示すような凹部5と、これに密着する凸状の隆起部6とで形成することも可能である。   In the embodiment shown in FIG. 5, the convex raised portion 6 formed on the lower end surface 31 b of the first cylindrical body 31 with respect to the concave portion 5 formed of an annular groove provided on the upper end surface 33 b of the third cylindrical body 33. To form the concave-convex fitting structure 7 for joining the first and third cylindrical bodies 31 and 33 to the concave portion 5 formed of an annular groove provided on the lower end surface 33c of the third cylindrical body 33. By bringing the raised ridge 6 formed on the upper end surface 32 b of the second cylindrical body 32 into close contact, the concave-convex fitting structure 7 that joins the second and third cylindrical bodies 32 and 33 is formed. Of course, either one or both of these two concave-convex fitting structures 7 are formed by a concave portion 5 as shown in FIGS. 4A to 4C and a convex raised portion 6 that is in close contact therewith. Is also possible.

詳細な図示は省略するが、図5に示す軸受部材3も、図1に示す軸受部材3と同様に、軸方向に連ねて配置した3つの円筒体31〜33にサイジングを施すことで得られる。すなわち、両ラジアル軸受面A1,A2は上記のサイジングに伴って成形され、かつ、軸方向で隣り合う円筒体同士を結合した凹凸嵌合構造7は、サイジングに伴って第1円筒体31の下端面31bに生じた凸状の隆起部6および第2円筒体32の上端面32bに生じた凸状の隆起部6のそれぞれを、第3円筒体33の上端面33bおよび下端面33cに設けた凹部5,5に密着させることで形成される。   Although detailed illustration is omitted, the bearing member 3 shown in FIG. 5 is also obtained by sizing the three cylindrical bodies 31 to 33 arranged in the axial direction in the same manner as the bearing member 3 shown in FIG. . That is, both the radial bearing surfaces A1 and A2 are formed with the above sizing, and the concave-convex fitting structure 7 in which the cylindrical bodies adjacent in the axial direction are joined together is below the first cylindrical body 31 with the sizing. The convex ridge 6 generated on the end surface 31b and the convex ridge 6 generated on the upper end surface 32b of the second cylindrical body 32 are provided on the upper end surface 33b and the lower end surface 33c of the third cylindrical body 33, respectively. It is formed by being in close contact with the recesses 5 and 5.

この実施形態では、サイジングに伴って凹部5が変形し、所定の凹凸嵌合構造7が得られなく可能性を可及的に減じるため、凹部5を有する第3円筒体33を、第1円筒体31および第2円筒体32よりも降伏点の大きい材料で形成している。第3円筒体33は、第1および第2円筒体31,32と同様に焼結金属の多孔質体で形成しても構わないが、ここでは、ステンレス鋼や真鍮等の溶製材で第3円筒体33を形成している。この場合、第3円筒体33を焼結金属で形成する場合に比べ、流体動圧軸受装置1(ハウジング7)の内部空間に充填すべき潤滑油量を減じることができるので、流体動圧軸受装置1の低コスト化を図る上で有利となる。   In this embodiment, the concave portion 5 is deformed with sizing, and the predetermined concave-convex fitting structure 7 cannot be obtained, and the possibility is reduced as much as possible. Therefore, the third cylindrical body 33 having the concave portion 5 is replaced with the first cylinder. The body 31 and the second cylindrical body 32 are made of a material having a higher yield point. The third cylindrical body 33 may be formed of a sintered metal porous body in the same manner as the first and second cylindrical bodies 31 and 32, but here, the third cylindrical body 33 is made of a molten material such as stainless steel or brass. A cylindrical body 33 is formed. In this case, since the amount of lubricating oil to be filled in the internal space of the fluid dynamic pressure bearing device 1 (housing 7) can be reduced as compared with the case where the third cylindrical body 33 is formed of sintered metal, the fluid dynamic pressure bearing This is advantageous in reducing the cost of the apparatus 1.

また、図示しての説明は省略するが、以上で説明した軸受部材3は、ラジアル荷重のみならず、スラスト荷重を併せて支持する場合にも用いることが可能である。この場合、支持すべき軸(軸部材2)の形状に応じて、第1円筒体31の上端面31cおよび第2円筒体32の下端面32bの何れか一方又は双方に、スラスト軸受面を設けることができる。スラスト軸受面は、ラジアル軸受面と同様に、軸方向に連ねて配置した複数の円筒体にサイジングを施すのと同時に成形することができ、このスラスト軸受面には、動圧溝等の動圧発生部(スラスト動圧発生部)を設けても良い。このスラスト動圧発生部は、上記複数の円筒体にサイジングを施すのと同時に型成形することができる。   Although not shown in the drawings, the bearing member 3 described above can be used not only for radial loads but also for supporting thrust loads. In this case, a thrust bearing surface is provided on one or both of the upper end surface 31c of the first cylindrical body 31 and the lower end surface 32b of the second cylindrical body 32 in accordance with the shape of the shaft (shaft member 2) to be supported. be able to. Like the radial bearing surface, the thrust bearing surface can be molded at the same time as sizing a plurality of cylindrical bodies arranged in a row in the axial direction, and the thrust bearing surface has a dynamic pressure such as a dynamic pressure groove. A generator (thrust dynamic pressure generator) may be provided. The thrust dynamic pressure generating portion can be molded simultaneously with sizing the plurality of cylindrical bodies.

また、以上で説明した実施形態では、軸受部材3を製造するためのサイジング工程において、軸受部材3の内周面にラジアル動圧発生部8を型成形するようにしたが、ラジアル動圧発生部8は、軸受部材3の内周面と対向する軸部材2の外周面2aに設けても構わない。   In the embodiment described above, in the sizing process for manufacturing the bearing member 3, the radial dynamic pressure generating portion 8 is molded on the inner peripheral surface of the bearing member 3. 8 may be provided on the outer peripheral surface 2 a of the shaft member 2 facing the inner peripheral surface of the bearing member 3.

また、本発明は、以上で説明したように、軸方向に連ねて配置した2つ又は3つの円筒体で軸受部材3を構成する場合のみならず、軸方向に連ねて配置した4つ以上の円筒体で軸受部材3を構成する場合にも適用可能である。   Further, as described above, the present invention is not limited to the case where the bearing member 3 is composed of two or three cylindrical bodies arranged in a row in the axial direction, but also four or more pieces arranged in a row in the axial direction. The present invention can also be applied when the bearing member 3 is formed of a cylindrical body.

1 流体動圧軸受装置
2 軸部材(支持すべき軸)
3 軸受部材
4 ハウジング
5 凹部
6 隆起部
7 凹凸嵌合構造
8 動圧発生部
31 第1円筒体
31a 内周面
32 第2円筒体
32a 内周面
33 第3円筒体
33a 内周面
A1,A2 ラジアル軸受面
B 中逃げ部
R1,R2 ラジアル軸受部
1 Fluid dynamic bearing device 2 Shaft member (shaft to be supported)
DESCRIPTION OF SYMBOLS 3 Bearing member 4 Housing 5 Recessed part 6 Raised part 7 Concavity and convexity fitting structure 8 Dynamic pressure generating part 31 First cylindrical body 31a Inner peripheral surface 32 Second cylindrical body 32a Inner peripheral surface 33 Third cylindrical body 33a Inner peripheral surfaces A1, A2 Radial bearing surface B Center relief R1, R2 Radial bearing

Claims (10)

軸方向に連ねて配置した複数の円筒体にサイジングを施すことにより、軸方向で隣り合う円筒体同士が結合され、前記複数の円筒体のうち軸方向一端側に配置された焼結金属製の第1円筒体および軸方向他端側に配置された焼結金属製の第2円筒体の内周面のそれぞれに、前記サイジングにより成形されたラジアル軸受面が設けられ、両ラジアル軸受面間に両ラジアル軸受面よりも大径の中逃げ部が設けられた流体動圧軸受装置用の軸受部材であって、
軸方向で互いに対峙する2つの端面の何れか一方にのみ設けた凹部に対し、前記サイジングに伴って他方に生じた凸状の隆起部を密着させることで形成した凹凸嵌合構造により、軸方向で隣り合う円筒体同士を結合したことを特徴とする流体動圧軸受装置用軸受部材。
By sizing a plurality of cylindrical bodies arranged in a row in the axial direction, cylindrical bodies adjacent in the axial direction are joined together, and the sintered metal made of sintered metal disposed on one end side in the axial direction of the plurality of cylindrical bodies. A radial bearing surface formed by the sizing is provided on each of the inner peripheral surfaces of the first cylindrical body and the second cylindrical body made of sintered metal disposed on the other end side in the axial direction, and between the radial bearing surfaces. A bearing member for a fluid dynamic pressure bearing device in which a middle escape portion having a larger diameter than both radial bearing surfaces is provided,
The concave / convex fitting structure formed by bringing the convex ridges generated on the other side in accordance with the sizing into close contact with the concave portions provided only on either one of the two end faces that face each other in the axial direction. A bearing member for a fluid dynamic bearing device, wherein the adjacent cylindrical bodies are coupled together.
前記凹部が、第1円筒体の軸方向他端側の端面、又は第2円筒体の軸方向一端側の端面に設けられ、
前記中逃げ部が、第1円筒体の軸方向他端側の内周面、又は第2円筒体の軸方向一端側の内周面に設けられた請求項1に記載の流体動圧軸受装置用軸受部材。
The concave portion is provided on the end surface on the other axial end side of the first cylindrical body, or on the end surface on the one axial end side of the second cylindrical body,
2. The fluid dynamic bearing device according to claim 1, wherein the middle relief portion is provided on an inner peripheral surface on the other axial end side of the first cylindrical body or on an inner peripheral surface on one axial end side of the second cylindrical body. Bearing member.
第1および第2円筒体のうち、前記凹部が設けられる円筒体の降伏点を相対的に大きくした請求項1又は2に記載の流体動圧軸受装置用軸受部材。   The bearing member for a fluid dynamic bearing device according to claim 1 or 2, wherein a yield point of a cylindrical body provided with the concave portion is relatively large among the first and second cylindrical bodies. 第1円筒体と第2円筒体との間に配置され、内周に前記中逃げ部が設けられた第3円筒体をさらに有し、前記凹部が、第3円筒体の軸方向一端側および他端側の端面にそれぞれ設けられた請求項1に記載の流体動圧軸受装置用軸受部材。   A third cylinder disposed between the first cylinder and the second cylinder and provided with the intermediate relief portion on an inner periphery thereof, wherein the concave portion has one axial end side of the third cylinder and The bearing member for a fluid dynamic bearing device according to claim 1, wherein the bearing member is provided on an end surface on the other end side. 第3円筒体の降伏点を、第1および第2円筒体の降伏点よりも大きくした請求項4に記載の流体動圧軸受装置用軸受部材。   The bearing member for a fluid dynamic bearing device according to claim 4, wherein the yield point of the third cylindrical body is larger than the yield points of the first and second cylindrical bodies. 第3円筒体を溶製材で形成した請求項5に記載の流体動圧軸受装置用軸受部材。   The bearing member for a fluid dynamic bearing device according to claim 5, wherein the third cylindrical body is formed of a molten material. 前記ラジアル軸受面に動圧発生部が設けられた請求項1〜6の何れか一項に記載の流体動圧軸受装置用軸受部材。   The fluid dynamic pressure bearing device bearing member according to any one of claims 1 to 6, wherein a dynamic pressure generating portion is provided on the radial bearing surface. 請求項1〜7の何れか一項に記載の流体動圧軸受装置用軸受部材と、該軸受部材を内周に固定したハウジングとを備える流体動圧軸受装置。   A fluid dynamic pressure bearing device comprising: the fluid dynamic pressure bearing device bearing member according to claim 1; and a housing in which the bearing member is fixed to an inner periphery. 軸方向に連ねて配置した複数の円筒体にサイジングを施すことにより、軸方向で隣り合う円筒体同士が結合され、前記複数の円筒体のうち軸方向の一端側に配置された焼結金属製の第1円筒体および軸方向の他端側に配置された焼結金属製の第2円筒体の内周面のそれぞれに、前記サイジングに伴って成形されたラジアル軸受面が設けられ、両ラジアル軸受面間に両ラジアル軸受面よりも大径の中逃げ部が設けられた流体動圧軸受装置用の軸受部材を製造するための方法であって、
軸方向で互いに対峙する2つの端面のうち、何れか一方にのみ凹部が設けられると共に他方が軸方向と直交する方向の平坦面に形成された前記複数の円筒体にサイジングを施すことを特徴とする流体動圧軸受装置用軸受部材の製造方法。
By sizing a plurality of cylindrical bodies arranged in a row in the axial direction, cylindrical bodies adjacent in the axial direction are coupled to each other, and a sintered metal made of one of the plurality of cylindrical bodies is disposed on one end side in the axial direction. A radial bearing surface formed in accordance with the sizing is provided on each of the inner peripheral surface of the first cylindrical body and the second cylindrical body made of sintered metal disposed on the other end side in the axial direction. A method for producing a bearing member for a fluid dynamic bearing device in which a middle clearance portion having a larger diameter than both radial bearing surfaces is provided between the bearing surfaces,
A sizing is performed on the plurality of cylindrical bodies formed on a flat surface in a direction perpendicular to the axial direction, with a recess provided only on one of two end faces facing each other in the axial direction. A method for manufacturing a bearing member for a fluid dynamic bearing device.
前記一方を有する円筒体の降伏点を相対的に大きくし、前記他方を有する円筒体の降伏点を相対的に小さくした請求項9に記載の流体動圧軸受装置用軸受部材の製造方法。   The method for manufacturing a bearing member for a fluid dynamic bearing device according to claim 9, wherein a yield point of the cylindrical body having the one is relatively increased, and a yield point of the cylindrical body having the other is relatively decreased.
JP2015059691A 2015-03-23 2015-03-23 Bearing member of fluid dynamic pressure bearing device and manufacturing method thereof Pending JP2016180427A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015059691A JP2016180427A (en) 2015-03-23 2015-03-23 Bearing member of fluid dynamic pressure bearing device and manufacturing method thereof
PCT/JP2016/056947 WO2016152474A1 (en) 2015-03-23 2016-03-07 Bearing member, fluid dynamic pressure bearing device equipped with same, and method of manufacturing bearing member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015059691A JP2016180427A (en) 2015-03-23 2015-03-23 Bearing member of fluid dynamic pressure bearing device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2016180427A true JP2016180427A (en) 2016-10-13

Family

ID=57130987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015059691A Pending JP2016180427A (en) 2015-03-23 2015-03-23 Bearing member of fluid dynamic pressure bearing device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2016180427A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106523528A (en) * 2017-01-16 2017-03-22 江苏汇创机电科技股份有限公司 Oil-containing bearing used for brushless direct current motor
JP2021133845A (en) * 2020-02-28 2021-09-13 株式会社山田製作所 Steering gear box

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106523528A (en) * 2017-01-16 2017-03-22 江苏汇创机电科技股份有限公司 Oil-containing bearing used for brushless direct current motor
JP2021133845A (en) * 2020-02-28 2021-09-13 株式会社山田製作所 Steering gear box
JP7369643B2 (en) 2020-02-28 2023-10-26 株式会社山田製作所 steering gear box

Similar Documents

Publication Publication Date Title
KR100951630B1 (en) Hydrodynamic bearing device
JP5674495B2 (en) Fluid dynamic bearing device
JPH1137156A (en) Manufacture of dynamic type oil-containing porous bearing
CN107781293B (en) Dynamic pressure bearing, method of manufacturing the same, fluid dynamic pressure bearing device, motor, and molding die
JP2016180427A (en) Bearing member of fluid dynamic pressure bearing device and manufacturing method thereof
EP3051159B1 (en) Sintered metal bearing and method for producing same
JP2011047005A (en) Method of manufacturing bearing sleeve and fluid dynamic bearing device
US20070292059A1 (en) Fluid Dynamic Bearing Apparatus
JP2017166575A (en) Dynamic pressure bearing and process of manufacture thereof
WO2016152474A1 (en) Bearing member, fluid dynamic pressure bearing device equipped with same, and method of manufacturing bearing member
JP6757219B2 (en) Shaft members for fluid bearing equipment, their manufacturing methods, and fluid bearing equipment
JP4420339B2 (en) Manufacturing method of hydrodynamic bearing
JP2005127524A (en) Dynamic-pressure bearing device
JP7094118B2 (en) Sintered metal dynamic pressure bearing
JP2005265180A (en) Dynamic pressure bearing device
JP2016180496A (en) Bearing member and manufacturing method thereof
JP5901979B2 (en) Method for manufacturing fluid dynamic bearing device
JP5606831B2 (en) Bearing member and manufacturing method thereof
WO2024057868A1 (en) Hydrodynamic bearing, hydrodynamic bearing device, and motor
JP2009014121A (en) Dynamic pressure bearing device and its manufacturing method
JP2013053692A (en) Fluid dynamic pressure bearing device and method of manufacturing the same
JP2010133437A (en) Fluid dynamic-pressure bearing device, and method and device of manufacturing the same
JP2007100803A (en) Method for manufacturing oil impregnated sintered bearing, and sizing pin to be used for the method
JP2000192945A (en) Bearing device and its manufacture
TW202314135A (en) Dynamic bearing and fluid dynamic bearing device provide with same