JP2016176601A - 航空機アクチュエータの油圧システム - Google Patents
航空機アクチュエータの油圧システム Download PDFInfo
- Publication number
- JP2016176601A JP2016176601A JP2016102773A JP2016102773A JP2016176601A JP 2016176601 A JP2016176601 A JP 2016176601A JP 2016102773 A JP2016102773 A JP 2016102773A JP 2016102773 A JP2016102773 A JP 2016102773A JP 2016176601 A JP2016176601 A JP 2016176601A
- Authority
- JP
- Japan
- Prior art keywords
- actuator
- pressure oil
- aircraft
- control valve
- spool
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Fluid-Pressure Circuits (AREA)
Abstract
【課題】機体側油圧源の機能の喪失時又は低下時でもアクチュエータを駆動でき、機体効率の低下を防止でき、システム全体としての発熱を抑制でき、システム構成の小型化及び軽量化を図ることができる、航空機アクチュエータの油圧システムを提供する。【解決手段】バックアップ用油圧ポンプ17は、機体側油圧源104の機能の喪失又は低下が発生したときにアクチュエータ11aに対して圧油を供給する。制御弁15aは、アクチュエータ11aに対する圧油の給排を制御してアクチュエータ11aの作動を制御する。制御弁15aは、圧油ポートが設けられた本体部27、本体部27内でスライド移動して圧油の経路切り替えるスプール部28、駆動部29を有する。駆動部29は、スプール部28の端部に連結され、電気信号に基づいてスプール部28の位置を制御するようにスプール部28を電磁力によって駆動する。【選択図】図2
Description
本発明は、油圧作動式のアクチュエータによって航空機の動翼を駆動する、航空機アクチュエータの油圧システムに関する。
航空機においては、動翼(操縦翼面)として、補助翼(エルロン)、方向舵(ラダー)、昇降舵(エレベータ)等の舵面として構成される主操縦翼面、或いは、フラップ、スポイラー等として構成される二次操縦翼面が設けられている。そして、このような動翼を駆動するアクチュエータとして、油圧作動式のアクチュエータがよく用いられている。また、このようなアクチュエータに対しては、航空機の機体に設置された油圧源である機体側油圧源から圧油が供給される。しかしながら、機体側油圧源の機能(圧油供給機能)の喪失又は低下が発生することがある。これに対し、特許文献1においては、機体側油圧源の機能の喪失又は低下が発生した場合にもアクチュエータに対して圧油を供給することが可能な油圧システム(航空機アクチュエータの油圧システム)が開示されている。
特許文献1に開示された航空機アクチュエータの油圧システムには、機体側油圧源とは独立して設けられたポンプと、そのポンプを駆動する電動モータとが、備えられている。ポンプは、アクチュエータから排出される圧油を昇圧してアクチュエータに供給可能に設けられている。電動モータは、機体側油圧源において圧力低下が生じてその機能の喪失又は低下が発生したときに上記ポンプを駆動するように構成されている。
また、機体側油圧源及び上記のポンプと、アクチュエータとを連通する経路には、アクチュエータへの圧油の供給及びアクチュエータからの圧油の排出を制御することでアクチュエータの作動を制御する制御弁が設けられる。アクチュエータの作動は閉ループ制御によって制御され、上記の制御弁としては、電気油圧式サーボ弁を備えた弁構造が用いられる。
特許文献1においては、電気式制御弁(22)とモード切替弁(25)とを備えた弁構造を有する制御弁が開示されている。電気式制御弁(22)は、アクチュエータと、機体側油圧源及び上記のポンプとの間において、アクチュエータに対する圧油の供給方向及び排出方向を切り替える方向切替弁として構成されている。モード切替弁(25)は、電気油圧式サーボ弁として設けられ、スプールの両端に導入されるパイロット圧油によってスプールの位置が制御され、アクチュエータの作動を制御するように構成されている。尚、このモード切替弁(25)は、ダンピングモード位置及びバイパスモード位置にも切替可能に構成されている。
また、特許文献2においては、機体側油圧源とアクチュエータとの間の経路に設けられ、アクチュエータへの圧油の供給及びアクチュエータからの圧油の排出を制御する制御弁として、電気油圧式サーボ弁を備えたマニホールド装置が開示されている。
尚、一般的に、電気油圧式サーボ弁は、パイロットステージとメインステージとを備えて構成されている。パイロットステージにおいては、コントローラからの電気信号に基づいて、ノズルフラッパ式の油圧増幅機構が駆動され、メインステージにおけるスプールの両端に導入されるパイロット圧油の圧力が制御される。そして、パイロットステージで生成されるパイロット圧油によって、メインステージのスプールの位置が制御される。これにより、アクチュエータへの圧油の供給及びアクチュエータからの圧油の排出が制御され、アクチュエータの作動が制御される。
また、特許文献3においては、航空機に搭載された電子機器を冷却する冷却機器が開示されている。この冷却機器は、機体の外部の空気を電子機器まで誘導して冷却した後に外部へと排出する機構として構成されている。このため、この冷却機器によると、冷却機器の大型化の抑制が可能となる。
航空機において機体側油圧源の機能の喪失又は低下が発生した場合であっても、特許文献1に開示されたような航空機アクチュエータの油圧システムを作動させることによってアクチュエータを駆動することができる。しかし、機体側油圧源の機能の喪失時又は低下時には、上記の油圧システムの連続運転が行われることになるため、この油圧システムの温度が上昇することになる。このため、油圧システムの温度上昇を抑制するため、アクチュエータ、バックアップ用油圧ポンプ、電動モータ及び制御弁を含むシステム全体としての発熱量に応じた冷却能力を有する冷却機器が必要となる。しかしながら、油圧システムにおける発熱量が多くなると、冷却機器の大型化も招くことになる。
一方、特許文献3においては、前述のように、航空機に搭載された電子機器を冷却する冷却機器が開示されている。しかしながら、この冷却機器は、機体の外部の空気を冷却対象の機器まで誘導した後に外部へと排出する機構として構成されているため、大型化が抑制されるものの、航空機の飛行の際における抵抗が増大することになる。このため、油圧システムを冷却するための機器として特許文献3に開示された冷却機器が設けられると、航空機の機体効率が低下してしまうことになる。
また、航空機に設置される機器においては、機体燃費向上の観点から、軽量化及び小型化が図られることが求められ、油圧システムにおいても、軽量化及び小型化が図られることが望まれる。このため、油圧システム全体としての発熱が抑制され、冷却機器の小型化或いは削減が図られる必要がある。
本発明は、上記実情に鑑みることにより、機体側油圧源の機能の喪失時又は低下時であってもアクチュエータを駆動可能であって、機体効率の低下を防止できるとともにシステム全体としての発熱を抑制でき、システム構成の小型化及び軽量化を図ることができる、航空機アクチュエータの油圧システムを提供することを目的とする。
上記目的を達成するための第1発明に係る航空機アクチュエータの油圧システムは、油圧作動式のアクチュエータによって航空機の動翼を駆動する、航空機アクチュエータの油圧システムに関する。そして、第1発明に係る航空機アクチュエータの油圧システムは、前記航空機の機体に設置された機体側油圧源からの圧油が供給されることで作動し、前記動翼を駆動する前記アクチュエータと、前記機体側油圧源の機能の喪失又は低下が発生したときに前記アクチュエータに対して圧油を供給可能なバックアップ用油圧ポンプと、前記バックアップ用油圧ポンプを駆動する電動モータと、前記バックアップ用油圧ポンプ及び前記機体側油圧源と、前記アクチュエータとを連通する経路に設けられ、前記アクチュエータへの圧油の供給及び当該アクチュエータからの圧油の排出を制御することで当該アクチュエータの作動を制御する制御弁と、を備え、前記制御弁は、圧油の供給及び排出が行われる圧油ポートが設けられた本体部と、前記本体部内においてスライド移動自在に設置されて圧油の経路を切り替え可能なスプール部と、前記スプール部の端部に連結されるとともに電気信号に基づいて当該スプール部の位置を制御するように当該スプール部を電磁力によって駆動する駆動部と、を有していることを特徴とする。
この構成によると、機体側油圧源の機能の喪失又は低下が発生した場合であっても、バックアップ用油圧ポンプから圧油が供給され、アクチュエータを駆動することができる。また、制御弁は、電気油圧式サーボ弁としてではなく、スプール部の端部に駆動部が連結され、駆動部が電気信号に基づいてスプール部の位置を制御するようにスプール部を電磁力によって駆動するように構成されている。即ち、上記の構成によると、アクチュエータへの圧油の供給及びアクチュエータからの圧油の排出を制御することでアクチュエータの作動を制御する制御弁が、上位のコントローラからの電気信号に基づいてスプール部を電磁力によって直接に駆動する直接駆動式の弁構造として構成されている。
本願発明者は、アクチュエータ、バックアップ用油圧ポンプ、電動モータ、及び電気油圧式サーボ弁を含む制御弁を備えた従来の油圧システムの発熱の要因について鋭意研究を重ねた。その結果、電気油圧式サーボ弁における油の漏洩に伴うバックアップ用油圧ポンプ及び電動モータでの仕事量の増大が、上記の油圧システムの発熱要因として非常に大きく影響していることを知見した。更に、本願発明者は、制御弁が、油の漏洩を大幅に低減できる上記の直接駆動式の弁構造として構成されることで、油の漏洩に伴うバックアップ用油圧ポンプ及び電動モータでの仕事量を低減でき、油圧システムにおける発熱を大幅に低減できることを検証した。尚、適用対象となるアクチュエータが、大型航空機のアクチュエータであって且つ出力の大きいアクチュエータであるエレベータ又はラダーの場合、本発明の構成が適用された油圧システムでは、従来の油圧システムに比して、10%から15%程度の発熱量の低減効果が得られることが確認された。また、適用対象が小型航空機のアクチュエータの場合、本発明の構成が適用された油圧システムでは、従来の油圧システムに比して、50%程度の発熱量の低減効果が得られることが確認された。
よって、上記の構成によると、油圧システム全体としての発熱が抑制されるため、冷却機器の小型化或いは削減を図ることができる。これにより、油圧システム全体としての軽量化及び小型化を図ることができる。また、冷却機器の小型化或いは削減を図ることができるため、機体の外部の空気を冷却対象の機器まで誘導した後に外部へと排出する冷却機器が不要となる。このため、機体効率の低下も防止されることになる。
従って、上記の構成によると、機体側油圧源の機能の喪失時又は低下時であってもアクチュエータを駆動可能であって、機体効率の低下を防止できるとともにシステム全体としての発熱を抑制でき、システム構成の小型化及び軽量化を図ることができる、航空機アクチュエータの油圧システムを提供することができる。
第2発明に係る航空機アクチュエータの油圧システムは、第1発明の航空機アクチュエータの油圧システムにおいて、前記バックアップ用油圧ポンプ、前記電動モータ、及び前記制御弁は、前記航空機において前記動翼が設けられる翼の内部に設置されていることを特徴とする。
この構成によると、バックアップ用油圧ポンプ、電動モータ、及び制御弁は、動翼が設けられた翼の内部に設置されるため、アクチュエータにより近い領域に設置されることになる。このため、機体側に設置される場合のような長大な配管系統等が不要となる。これにより、航空機アクチュエータの油圧システムの更なる軽量化及び小型化を図ることができる。
尚、近年においては、燃費向上のための機体の効率向上を目的として翼の薄型化を図る薄翼化の対応が望まれている。そして、薄翼化の対応に伴って、アクチュエータの出力レベルを低下させることなく、翼内に設置される油圧システムの更なる小型化が図られることが望ましい。この場合、バックアップ用油圧ポンプが小型化されるとともにバックアップ用油圧ポンプの回転速度の高速化が図られることで、アクチュエータの出力レベルを低下させることなく、翼内に設置される油圧システムの更なる小型化を図ることができる。また、一般的に、電動モータとそれによって回転駆動されるポンプとの合計の発熱量は、ポンプの回転速度の増加に対して比例的に増加し、ポンプの大きさの増大に伴う摩擦面積の増加に対して高次元(2次元以上)で比例して増加する傾向がある。このため、バックアップ用油圧ポンプが小型化されるとともにバックアップ用油圧ポンプの回転速度の高速化が図られることで、アクチュエータの出力レベルが低下することなく、バックアップ用油圧ポンプ及び電動モータの合計の発熱量が、減少することになる。よって、この場合、油圧システムにおける発熱を更に抑制することができる。
第3発明に係る航空機アクチュエータの油圧システムは、第1発明又は第2発明の航空機アクチュエータの油圧システムにおいて、前記制御弁に対して前記電気信号を出力して前記駆動部を駆動することで、当該制御弁を介して前記アクチュエータの作動を制御するアクチュエータコントローラを更に備え、前記制御弁の前記本体部と前記アクチュエータコントローラの筐体とが、一体に固定され、或いは共通のベース部材に対して固定されていることを特徴とする。
この構成によると、制御弁に電気信号を出力して駆動部を駆動する上位のコントローラとしてのアクチュエータコントローラの筐体と、制御弁の本体部とが、一体に固定され、或いは共通のベース部材に固定される。このため、制御弁の駆動のために必要な電流を、制御弁に直接に固定され或いはベース部材を介して固定されたアクチュエータコントローラを介して供給することができる。これにより、電流を供給するための配線を大幅に簡素化でき、構成の更なる簡素化を図ることができる。
第4発明に係る航空機アクチュエータの油圧システムは、第1発明乃至第3発明のいずれかの航空機アクチュエータの油圧システムにおいて、前記バックアップ用油圧ポンプは、前記電動モータによって回転駆動される回転速度が、複数段階に切り替えられることを特徴とする。
アクチュエータは、天候や気流の状態に応じて航空機の飛行状態が急激に変化する状況、或いは、航空機が離陸動作又は着陸動作を行う状況では、高出力での作動が要求されることになる。一方、航空機の飛行状態が安定している状況では、低出力で作動するアクチュエータで対応が可能となる。このため、上記の構成によると、バックアップ用油圧ポンプの回転速度が複数段階に切替可能に構成されるため、要求されるアクチュエータの出力レベルに応じて、バックアップ用油圧ポンプの回転速度を変更することができる。これにより、バックアップ用油圧ポンプ及び電動モータの運転を更に効率化でき、発熱を更に抑制することができる。
本発明によると、機体側油圧源の機能の喪失時又は低下時であってもアクチュエータを駆動可能であって、機体効率の低下を防止できるとともにシステム全体としての発熱を抑制でき、システム構成の小型化及び軽量化を図ることができる、航空機アクチュエータの油圧システムを提供することができる。
以下、本発明を実施するための形態について図面を参照しつつ説明する。尚、本発明の実施形態は、油圧作動式のアクチュエータによって航空機の動翼を駆動する、航空機アクチュエータの油圧システムとして広く適用することができるものである。
図1は、本発明の一実施の形態に係る航空機アクチュエータの油圧システム1(以下、単に「油圧システム1」とも称する)が適用される航空機100の一部を示す模式図であって、航空機100の機体101の後部の部分と一対の水平尾翼(102、102)とを模式的に示す図である。尚、図1の模式図では、機体101の後部の垂直尾翼についての図示が省略されている。
一対の水平尾翼(102、102)には、航空機100の舵面を構成する動翼(操縦翼面)として、エレベータ(昇降舵)103がそれぞれ設けられている。そして、各水平尾翼102におけるエレベータ103は、図1に例示するように、複数(例えば、2つ)のアクチュエータ11(11a、11b)によって駆動されるように構成されている。各水平尾翼102の内部には、各エレベータ103を駆動するアクチュエータ(11a、11b)と、そのうちの一方のアクチュエータ11aに対して圧油を供給するように構成された油圧装置12とが設置されている。そして、本実施形態に係る油圧システム1は、アクチュエータ11aと油圧装置12とを備え、アクチュエータ11aによってエレベータ103を駆動するように構成されている。
本実施形態においては、一対の水平尾翼(102、102)のそれぞれに設置されるアクチュエータ(11a、11b)及び油圧装置12は同様に構成されており、各水平尾翼102にそれぞれ設置される油圧システム1も同様に構成されている。そこで、以下の説明においては、一方の水平尾翼102に設置されるアクチュエータ(11a、11b)及び油圧装置12と、そのうちのアクチュエータ11a及び油圧装置12を含む油圧システム1とについて説明する。そして、他方の水平尾翼102に設置されるアクチュエータ(11a、11b)及び油圧装置12と、そのうちのアクチュエータ11a及び油圧装置12を含む油圧システム1との説明を省略する。
図2は、油圧システム1を含む油圧回路を模式的に示す油圧回路図である。尚、図2は、一方の水平尾翼102に設けられたエレベータ103を駆動するアクチュエータ(11a、11b)と、そのうちの一方のアクチュエータ11aに対して圧油を供給するように構成された油圧装置12とを含む油圧回路を示す油圧回路図として図示されている。
図2に示すように、アクチュエータ(11a、11b)のそれぞれは、シリンダ13、ピストン14aが設けられたロッド14、等を備えている。そして、アクチュエータ(11a、11b)のそれぞれにおいては、シリンダ13内がピストン14aによって2つの油室(13a、13b)に区画されて構成されている。即ち、2つの油室(13a、13b)の間は、シリンダ13内で変位可能なピストン14aによって、圧油が移動しないように区画されている。
また、アクチュエータ11aのシリンダ13における各油室(13a、13b)は、後述する油圧装置12に含まれる制御弁15aを介して第1機体側油圧源104及びリザーバ回路106に対して連通可能に構成されている。一方、アクチュエータ11bのシリンダ13における各油室(13a、13b)は、制御弁15bを介して第2機体側油圧源105及びリザーバ回路107に対して連通可能に構成されている。
第1機体側油圧源104及び第2機体側油圧源105のそれぞれは、圧油を供給する油圧ポンプを有し、互いに独立した系統として機体101の内部に設置された油圧源である機体側油圧源として設けられている。そして、第1及び第2機体側油圧源(104、105)のそれぞれからの圧油が供給されることで、エレベータ103を駆動するアクチュエータ11とエレベータ103以外の各動翼を駆動するアクチュエータ(図示せず)とが作動するように構成されている。
また、アクチュエータ11に対しては、第1機体側油圧源104は、一方の水平尾翼102に設置されたアクチュエータ11aと他方の水平尾翼102に設置されたアクチュエータ11bとに圧油を供給可能に接続されている。一方、第2機体側油圧源105は、一方の水平尾翼102に設置されたアクチュエータ11bと他方の水平尾翼102に設置されたアクチュエータ11aとに対して圧油を供給可能に接続されている。
リザーバ回路106は、圧油として供給された後にアクチュエータ11から排出される油(作動油)が流入して戻るタンク(図示せず)を備えている。そして、リザーバ回路106は、第1機体側油圧源104に連通するように構成されている。また、リザーバ回路106から独立した系統として構成されるリザーバ回路107は、圧油として供給された後にアクチュエータ11から排出される油(作動油)が流入して戻るタンク(図示せず)を備えている。そして、リザーバ回路107は、第1機体側油圧源104から独立した系統として構成される第2機体側油圧源105に連通するように構成されている。
尚、リザーバ回路106は、一方の水平尾翼102に設置されたアクチュエータ11aと他方の水平尾翼102に設置されたアクチュエータ11bとに接続されるとともに、第1機体側油圧源104に接続されている。これにより、リザーバ回路106に戻った油が第1機体側油圧源104で昇圧され、所定のアクチュエータ11に供給される。一方、リザーバ回路107は、一方の水平尾翼102に設置されたアクチュエータ11bと他方の水平尾翼102に設置されたアクチュエータ11aとに接続されるとともに、第2機体側油圧源105に接続されている。これにより、リザーバ回路107に戻った油が第2機体側油圧源105で昇圧され、所定のアクチュエータ11に供給される。
次に、油圧システム1における油圧装置12について説明する。図1及び図2に示す油圧装置12は、エレベータ103を駆動する油圧作動式のアクチュエータ11aに対して圧油を供給するように構成されている。そして、油圧装置12は、水平尾翼102の内部に設置されている。
尚、本実施形態では、エレベータ103として構成された動翼を駆動するアクチュエータ11aに対して油圧装置12が圧油を供給する油圧システム1の形態を例にとって説明するが、この通りでなくてもよい。即ち、油圧装置12がエルロン(補助翼)等のエレベータ以外の動翼を駆動するアクチュエータに対して圧油を供給するように構成された油圧システムが実施されてもよい。
油圧装置12は、制御弁15a、アクチュエータコントローラ16a、バックアップ用油圧ポンプ17、電動モータ18、ドライバ19、等を備えて構成されている。油圧装置12における制御弁15a、アクチュエータコントローラ16a、バックアップ用油圧ポンプ17、電動モータ18、及びドライバ19は、水平尾翼102の内部に設置されている。
制御弁15aは、第1機体側油圧源104及び後述のバックアップ用油圧ポンプ17と、アクチュエータ11aとを連通する経路に設けられている。そして、制御弁15aは、アクチュエータ11aへの圧油の供給及びアクチュエータ11aからの圧油の排出を制御することで、アクチュエータ11aの作動を制御するバルブ機構として設けられている。尚、本実施形態では、制御弁15aは、第1機体側油圧源104に連通する供給通路104a及びリザーバ回路106に連通する排出通路106aと、アクチュエータ11aの油室(13a、13b)にそれぞれ連通する給排通路(20a、21a)との接続状態を切り替えるように構成されている。尚、図示が省略されているが、制御弁15aとアクチュエータ11aとの間には、油室(13a、13b)間の連通状態(モード)を切り替えるモード切替弁が設けられている。
また、制御弁15bは、第2機体側油圧源105に連通する供給通路105a及びリザーバ回路107に連通する排出通路107aと、アクチュエータ11bの油室(13a、13b)にそれぞれ連通する給排通路(20b、21b)との接続状態を切り替えるバルブ機構として設けられている。そして、制御弁15bは、アクチュエータ11bへの圧油の供給及びアクチュエータ11bからの圧油の排出を制御することで、アクチュエータ11bの作動を制御するように構成されている。尚、制御弁15bの構造は、制御弁15aと同様に構成されている。
アクチュエータコントローラ16aは、制御弁15aに対して制御信号としての電気信号を出力して制御弁15aを作動させ、制御弁15aを介してアクチュエータ11aの作動を制御するコントローラとして設けられている。また、アクチュエータコントローラ16aは、エレベータ103の作動を指令する更に上位のコンピュータであるフライトコントローラ25からの指令信号に基づいて、アクチュエータ11aを制御するように構成されている。
アクチュエータコントローラ16bは、制御弁15bに対して制御信号としての電気信号を出力して制御弁15bを作動させ、制御弁15bを介してアクチュエータ11bの作動を制御するコントローラとして設けられている。また、アクチュエータコントローラ16bは、フライトコントローラ25からの指令信号に基づいて、アクチュエータ11bを制御するように構成されている。
また、アクチュエータコントローラ16a及びアクチュエータコントローラ16bは、分散処理方式のコントローラとして設置されている。アクチュエータコントローラ16a及び制御弁15aは、一体に固定されており、更に、アクチュエータ11aに対して設置され、或いは、アクチュエータ11aの近傍に設置される。アクチュエータコントローラ16b及び制御弁15bは、一体に固定されており、更に、アクチュエータ11bに対して設置され、或いは、アクチュエータ11bの近傍に設置される。
図3は、一体に固定された制御弁15a及びアクチュエータコントローラ16aを示す図であって、制御弁15aについては断面を示す図である。図3に示すように、制御弁15aに備えられて圧油の供給及び排出が行われる圧油ポートが設けられた本体部27と、アクチュエータコントローラ16aの筐体26とは、一体に固定されている。そして、制御弁15aの駆動のために必要な電流は、図示しない電源からアクチュエータコントローラ16aを介して、制御弁15aに供給される。また、図示は省略されているが、アクチュエータコントローラ16b及び制御弁15bについても、アクチュエータコントローラ16a及び制御弁15aと同様に構成されている。
尚、本実施形態では、複数の異なるアクチュエータコントローラ(16a、16b)に対して1つのフライトコントローラ25からの指令信号が入力されるように構成されている場合を例にとって説明したが、この通りでなくてもよい。例えば、複数の異なるアクチュエータコントローラ(16a、16b)に対して、それぞれ異なるフライトコントローラからの指令信号が入力されるように構成されていてもよい。
バックアップ用油圧ポンプ17は、例えば、可変容量式の油圧ポンプとして構成されている。このバックアップ用油圧ポンプ17は、その吸込み側が排出通路106aに連通するように接続され、その吐出側が逆止弁22を介して供給通路104aに圧油を供給可能に連通するように接続されている。そして、バックアップ用油圧ポンプ17は、第1機体側油圧源104における油圧ポンプの故障や油漏れ等によって第1機体側油圧源104の機能(圧油供給機能)の喪失又は低下が発生したときにアクチュエータ11aに対して圧油を供給可能な油圧ポンプとして設けられている。
また、供給通路104aにおけるバックアップ用油圧ポンプ17の吐出側が接続する箇所の上流側(第1機体側油圧源104側)には、アクチュエータ11aへの圧油の流れを許容してその逆方向の油の流れを規制する逆止弁23が設けられている。そして、排出通路106aにおけるバックアップ用油圧ポンプ17の吸込み側が接続する箇所の下流側(リザーバ回路106側)には、アクチュエータ11aから排出された油の圧力が上昇した際にリザーバ回路106へ圧油を排出するリリーフ弁24が設けられている。また、このリリーフ弁24には、供給通路104aに連通するとともにバネが配置されたパイロット圧室が設けられている。
供給通路104aから供給される圧油の圧力が所定の圧力値よりも低下すると、パイロット圧油として供給通路104aから上記のパイロット圧室に供給されている圧油の圧力(パイロット圧)も所定の圧力値より低下し、排出通路106aがリリーフ弁24によって遮断されることになる。第1機体側油圧源104の機能の喪失時又は低下時には、上述した逆止弁(22、23)及びリリーフ弁24が設けられていることにより、アクチュエータ11aから排出された油がリザーバ回路106に戻ることなくバックアップ用油圧ポンプ17で昇圧され、その昇圧された圧油がアクチュエータ11aに供給されることになる。
尚、フライトコントローラ25は、第1機体側油圧源104の吐出圧力又は供給通路104aを通過する圧油の圧力を検知する圧力センサ(図示せず)に対して、その圧力センサで検知された圧力検知信号が入力されるように接続されている。そして、フライトコントローラ25は、上記の圧力検知信号に基づいて、第1機体側油圧源104の機能の喪失又は低下を検知するように構成されている。
電動モータ18は、バックアップ用油圧ポンプ17に対して、カップリングを介して連結され、又はカップリングを介さずに直結され、このバックアップ用油圧ポンプ17を駆動するように構成されている。尚、この電動モータ18は、ドライバ19を介して、フライトコントローラ25からの指令信号に基づいて運転状態が制御される。また、ドライバ19は、フライトコントローラ25からの指令信号に基づいて電動モータ18へ供給される電力及び電動モータ18の運転速度(回転速度)を制御してこの電動モータ18を駆動する回路基板等を備えて構成されている。
また、本実施形態では、バックアップ用油圧ポンプ17は、電動モータ18によって回転駆動される回転速度が、複数段階に切り替えられるように構成されている。例えば、バックアップ用油圧ポンプ17の回転速度は、高速回転及び低速回転の2段階に切替可能に構成されている。
天候や気流の状態に応じて航空機の飛行状態が急激に変化する状況、或いは、航空機が離陸動作又は着陸動作を行う状況など、アクチュエータ11aにおいて高出力での作動が要求される場合には、バックアップ用油圧ポンプ17の回転速度が、高速回転の回転速度に設定される。一方、航空機の飛行状態が安定している状況など、低出力で作動するアクチュエータ11aにて対応可能な場合には、バックアップ用油圧ポンプ17の回転速度が、上記の高速回転よりも回転速度が低い低速回転の回転速度に設定される。高速回転の回転速度は、例えば、10000rpmから12000rpmまでの範囲の所定の回転速度に設定される。低速回転の回転速度は、例えば、5000rpmから6000rpmまでの範囲の所定の回転速度に設定される。
尚、バックアップ用油圧ポンプ17の回転速度は、3段階以上に切替可能に構成されていてもよい。例えば、バックアップ用油圧ポンプ17の回転速度が、高速回転、中速回転及び低速回転の3段階に切替可能に構成されていてもよい。3段階の速度設定のうち回転速度が最も高い高速回転の回転速度は、例えば、10000rpmから12000rpmまでの範囲の所定の回転速度に設定される。3段階の速度設定のうち回転速度が2番目に高い中速回転の回転速度は、例えば、5000rpmから6000rpmまでの範囲の所定の回転速度に設定される。3段階の速度設定のうち回転速度が最も低い低速回転の回転速度は、例えば、2000rpmから3000rpmまでの範囲の所定の回転速度に設定される。
次に、制御弁15aの構造について図3及び図4を参照しながら詳しく説明する。尚、図4は、図3に示す制御弁15aの断面の一部を拡大して示す図である。図3及び図4に示すように、制御弁15aは、本体部27、スプール部28、駆動部29、等を備えて構成されている。
本体部27は、スプール部28を内蔵するとともに、駆動部29が固定されて取り付けられる構造体として設けられている。そして、本体部27は、ハウジング30と、スリーブ31と、を備えて構成されている。
ハウジング30は、アクチュエータコントローラ16aの筐体26に対して一体に固定されている。スリーブ31は、ハウジング30の内側に設置され、スプール部28を内蔵している。ハウジング30及びスリーブ31は、例えば、いずれも筒状に形成されている。そして、スリーブ31は、その外周がハウジング30の内周に密着した状態で、ハウジング30に対して固定されている。
また、本体部27には、圧油の供給及び排出が行われる複数の圧油ポート(32a、32b、32c、32d、32e、23f)が設けられている。各圧油ポート(32a、32b、32c、32d、32e、23f)は、ハウジング30及びスリーブ31に亘って設けられている。そして、圧油ポート32bを除く各圧油ポート(32a、32c、32d、32e、23f)は、ハウジング30の外周側からスリーブ31の内周側に亘って連通可能に設けられている。一方、圧油ポート32bは、スリーブ31の内周側に連通可能に設けられている。また、各圧油ポート(32a、32b、32c、32d、32e、32f)は、ハウジング30の内周及びスリーブ31の外周に沿って溝状に延びるようにも設けられている。
圧油ポート32aは、供給通路104aに連通している。圧油ポート32bは、ハウジング30において貫通孔として形成された連通路39を介して圧油ポート32fに連通している。圧油ポート32cは、給排通路21aに連通している。圧油ポート32dは、供給通路104aに連通している。圧油ポート32eは、給排通路20aに連通している。圧油ポート32fは、排出通路106aに連通している。
スプール部28は、本体部27内においてスライド移動自在に設置され、圧油ポート(32a、32b、32c、32d、32e、32f)間における連通状態を切り替えて圧油の経路を切り替え可能な機構として設けられている。そして、スプール部28は、スプール軸33、第1スプール筒体34、第2スプール筒体35、スライダ36、等を備えて構成されている。
スプール軸33は、例えば、丸棒状の軸部材として設けられている。そして、スプール軸33は、スプール部28の中心軸を構成しており、スプール部28の長手方向である軸方向に沿って延びるように設けられている。スプール軸33における一方の端部33aは、後述する第1スプール筒体34の一方の端部の内周に対して、例えば螺合によって、固定されている。また、スプール軸33における一方の端部33aと反対側であって駆動部29側の端部である他方の端部は、後述する駆動部29の駆動軸40に対して連結されている。
第1スプール筒体34は、円筒状の部材として設けられ、内側にスプール軸33が貫通した状態で配置されている。そして、前述のように、スプール軸33における一方の端部33aが第1スプール筒体34における一方の端部の内周に固定されている。また、第1スプール筒体34における駆動部29側の端部である他方の端部には、径方向の外側に向かって拡径するように広がったフランジ部34aが設けられている。
第2スプール筒体35は、円筒状の部材として設けられ、内側を第1スプール筒体34が貫通している。第1スプール筒体34と第2スプール筒体35とは、同心状に配置されている。そして、第2スプール筒体35は、その内周が第1スプール筒体34の外周に対して摺動自在な状態で、第1スプール筒体34の外側に設置されている。
また、第2スプール筒体35の一方の端部からは、第1スプール筒体34の一方の端部が突出している。尚、第2スプール筒体35から突出した第1スプール筒体34の一方の端部は、スリーブ31の内側に配置されている。第2スプール筒体35における駆動部29側の端部である他方の端部は、第1スプール筒体34のフランジ部34aに当接可能に配置されている。第2スプール35の他方の端部は、フランジ部34aに対して、駆動部29に対向する側と反対側で当接している。
また、第2スプール筒体35には、他方の端部側の位置であってその端部の先端部分から駆動部29側と反対側に偏った位置において、径方向の外側に向かって拡径するように広がったフランジ部35aが設けられている。フランジ部35aには、バネ46における一方の端部が駆動部29側から当接している。これにより、第2スプール筒体35は、フランジ部35aにおいて、バネ46によって、駆動部29側と反対側に向かって付勢されている。
尚、バネ46は、コイルバネとして設けられている。バネ46においてフランジ部35aに当接する一方の端部の内側には、第1スプール筒体34のフランジ部34aと第2スプール筒体35の他方の端部とが配置されている。バネ46における他方の端部は、駆動部29に固定されたバネ受け47に対して支持されている。
また、第2スプール筒体35は、その外周において、スリーブ31の内周に対して摺動してスライド移動自在に支持されている。そして、第2スプール筒体35の外周には、ノッチ状に形成されて周方向に溝状に延びる複数の連通溝(37a、37b、37c)が設けられている。連通溝37aは、圧油ポート(32b、32c、32d)に対して連通可能に設けられている。連通溝37bは、圧油ポート(32d、32e)に連通可能に設けられている。連通溝37cは、圧油ポート(32e、32f)に連通可能に設けられている。そして、連通溝(37a、37b、37c)は、第2スプール筒体35がスプール部28の軸方向に沿って変位することで、後述するように、圧油ポート(32a、32b、32c、32d、32e、32f)間における連通状態を切り替え可能に構成されている。
スライダ36は、円筒状の部材として設けられ、内側を第1スプール筒体34が貫通している。そして、スライダ36と第1スプール筒体34とが同心状に配置され、スライダ36が第1スプール筒体34の一方の端部に配置されている。また、スライダ36は、その内周が第1スプール筒体34の外周に対して摺動自在な状態で、第1スプール筒体34の外側に設置されている。更に、スライダ36は、その外周において、スリーブ31の内周に対して摺動してスライド移動自在に支持されている。
また、スライダ36における一方の端部は、第1スプール筒体34の一方の端部に取り付けられたストッパリング48に対して当接し、位置決めされている。尚、ストッパリング48は、リング状の部材として設けられている。そして、ストッパリング48の中央の貫通孔には、第1スプール筒体34の一方の端部において段状に突出する先端部分として設けられた段部34bが挿入されている。また、段部34bは、ストッパリング48を貫通して突出し、その外周にはネジ部分が設けられている。この段部34bのネジ部分に固定ナット49が螺合することで、ストッパリング48が、第1スプール筒体34の一方の端部に固定されている。
また、第1スプール筒体34の外周と、スリーブ31の内周と、スライダ36の他方の端部と、第2スプール筒体35の一方の端部とで区画された領域は、圧力室38を構成している。圧力室38には、圧油ポート32aが連通している。これにより、供給通路104aから供給される圧油が、圧力室38に導入されるように構成されている。
圧力室38に圧油が導入されると、スライダ36がストッパリング48に対して押し付けられた状態が維持される。更に、圧力室38に圧油が導入された状態では、第2スプール筒体35がバネ46からの付勢力に抗して第1スプール筒体34のフランジ部34aに押し付けられた状態も維持される。
上記により、圧力室38に圧油が導入されている状態においては、スプール軸33がスプール部28の軸方向に変位した際には、第1スプール筒体34、第2スプール筒体35及びスライダ36が、スプール軸33とともに変位することになる。即ち、機体側油圧源104及びバックアップ用油圧ポンプ17のうちの少なくともいずれかからの圧油が正常に供給されている場合には、第1スプール筒体34、第2スプール筒体35及びスライダ36が、スプール軸33とともに変位することになる。
駆動部29は、スプール部28の端部に連結されるとともに電気信号に基づいてスプール部28の位置を制御するようにスプール部28を電磁力によって駆動する機構として設けられている。そして、上記の電気信号は、アクチュエータコントローラ16aから制御弁15aに入力される。即ち、アクチュエータコントローラ16aは、制御弁15aに対して制御信号としての電気信号を出力して駆動部29を駆動する。
駆動部29は、駆動軸40、コア41、コイル部42、支持部43、ケース44、板バネ(45a、45b)、等を備えて構成されている。ケース44は、駆動軸40、コア41、コイル部42、支持部43、板バネ(45a、45b)を内側に収納する構造体として設けられている。そして、ケース44は、本体部27のハウジング30に対して固定されている。
また、駆動軸40は、ケース44内において、支持部43に対してスプール部28の軸方向に沿ってスライド移動自在に支持されている。そして、駆動軸40は、軸方向における中央部分において、可動鉄心として設けられたコア41が固定されている。また、駆動軸40における一方の端部には、スプール部28のスプール軸33の他方の端部が連結されている。これにより、駆動軸40がスプール部28の軸方向に沿って変位することで、駆動軸40とともにスプール軸33がスプール部28の軸方向に変位するように構成されている。
また、支持部43は、ブロック状の構造部材として設けられている。そして、支持部43は、駆動軸40を軸方向にスライド移動自在に支持するとともに、コア部41の周囲に配置されたコイル部42を保持している。
また、支持部43における一方の端部には板バネ45aが配置され、支持部43における他方の端部には板バネ45bが配置されている。板バネ45aは、駆動軸40の一方の端部に取り付けられ、板バネ45bは、駆動軸40の他方の端部に取り付けられている。これらの板バネ(45a、45b)によって、駆動軸40とともに変位するコア41の中立位置が所定の位置に位置決めされている。即ち、コイル部42とコア41との間で生じる電磁力が発生していない状態におけるコイル部42の内側のコア41の位置である中立位置が、所定の位置に位置決めされている。
また、コイル部42への通電は、アクチュエータコントローラ16aからの前述の電気信号によって行われる。そして、コイル部42は、アクチュエータコントローラ16aから上記の電気信号として供給される電流が供給されることによって、消磁状態から励磁状態へと切り替えられる。また、アクチュエータコントローラ16aからコイル部16aへと上記の電気信号として供給される電流に応じて、コイル部42とコア41との間で電磁力が生じ、コア41が駆動される。コア41が駆動されることで、コア41が固定された駆動軸40に連結されたスプール部28が駆動されることになる。尚、駆動軸40の軸方向におけるコア41の位置は、コイル部42へと供給される上記の電流の大きさに応じて比例的に制御される。
また、制御弁15aには、本体部27における駆動部29が設けられる側の端部と反対側の端部において、位置検出器50が設置されている。位置検出器50は、スプール部28の本体部27に対する軸方向における位置を検出する機構として設けられている。そして、位置検出器50は、コイル部51、プローブ部52、ケース53、等を備えて構成されている。
ケース53は、本体部27のハウジング30に設置され、内側にコイル部52が収納されている。コイル部51においては、1次側及び2次側のコイルが設けられている。プローブ部52は、固定ナット49を介してスプール部28のスプール軸33の一方の端部に対して固定されている。これにより、プローブ部52は、スプール部28とともに変位するように構成されている。そして、プローブ部52には、ケース53に内蔵されたコイル部51の内側で相対変位する可動鉄心が設けられている。これらの構成により、位置検出器50においては、コイル部51に対するプローブ部52の相対位置が検出される。そして、位置検出器50は、コイル部51に対するプローブ52の相対位置を検出することで、本体部27に対するスプール部28の相対位置を検出するように構成されている。
尚、位置検出器50では、コイル部51において1次側のコイルが励磁された状態でプローブ部52が変位することで2次側のコイルで発生した誘起電圧に基づく信号が位置検出信号として出力される。そして、この出力された位置検出信号は、アクチュエータコントローラ16aに入力される。アクチュエータコントローラ16aは、位置検出器50からの位置検出信号に基づいて、駆動部29の作動を制御し、スプール部28の位置のフィードバック制御を行うように構成されている。
ここで、制御弁15aの作動について説明する。制御弁15aは、アクチュエータコントローラ16aからの制御信号としての電気信号に基づいて、作動する。電気信号が駆動部29に入力されると、前述のように、コイル部42とコア41との間で生じる電磁力によって、コイル部42に対してコア41が変位する。
上記により、コア41とともに駆動軸40も変位する。そして、駆動軸40とともに、スプール部28が本体部27に対して変位する。即ち、駆動軸40の変位とともに、駆動軸40に連結されたスプール軸33、スプール軸33に固定された第1スプール筒体34、第1スプール筒体34のフランジ部34aに付勢された第2スプール筒体35が、変位する。また、このとき、圧力室38に圧油が導入されているため、圧油によってフランジ部34aに押し付けられた第2スプール筒体35とストッパリング48に押し付けられたスライダ36とが、第1スプール筒体34とともに変位する。また、スプール部28の本体部27に対する変位方向及び変位量は、アクチュエータコントローラ16aから駆動部29に対して出力される電気信号に基づいて制御されることになる。
また、図3に示す状態から、スプール部28が、駆動部29側から位置検出器50側に向かって変位すると、圧油ポート32dと圧油ポート32eとが、連通溝37bを介して連通する。これにより、供給通路104aから圧油ポート32dに導入された圧油が、連通溝37bを通過して圧油ポート32eへと流動することになる。そして、圧油ポート32eへと流動した圧油は、更に、給排通路20aを介してアクチュエータ11aの油室13aへと流動することになる。
また、上記の場合、即ち、図3に示す状態から、スプール部28が、駆動部29側から位置検出器50側に向かって変位したときには、圧油ポート32bと圧油ポート32cとが、連通溝37aを介して連通する。これにより、油室13bから流出して給排通路21aを通過し、圧油ポート32cに導入された圧油が、更に、連通溝37a、圧油ポート32b、連通路39を通過して圧油ポート32fへと流動することになる。そして、圧油ポート32fへと流動した圧油は、更に、排出通路106aを介してリザーバ回路106へと流動することになる。
一方、図3に示す状態から、スプール部28が、位置検出器50側から駆動部29側に向かって変位すると、圧油ポート32dと圧油ポート32cとが、連通溝37aを介して連通する。これにより、供給通路104aから圧油ポート32dに導入された圧油が、連通溝37aを通過して圧油ポート32cへと流動することになる。そして、圧油ポート32cへと流動した圧油は、更に、給排通路21aを介してアクチュエータ11aの油室13bへと流動することになる。
また、上記の場合、即ち、図3に示す状態から、スプール部28が、駆動部29側から位置検出器50側に向かって変位したときには、圧油ポート32eと圧油ポート32fとが、連通溝37cを介して連通する。これにより、油室13aから流出して給排通路20aを通過し、圧油ポート32eに導入された圧油が、更に、連通溝37cを通過して圧油ポート32fへと流動することになる。そして、圧油ポート32fへと流動した圧油は、更に、排出通路106aを介してリザーバ回路106へと流動することになる。
尚、制御弁15aにおいては、前述のように、機体側油圧源104及びバックアップ用油圧ポンプ17のうちの少なくともいずれかからの圧油が正常に供給されている場合には、第1スプール筒体34、第2スプール筒体35及びスライダ36が、スプール軸33とともに変位することになる。しかし、機体側油圧源104及びバックアップ用油圧ポンプ17のいずれからも十分な圧力の圧油が供給されない状態になると、バネ46の付勢力によって、第2スプール筒体35が、第1スプール筒体34に対して変位することになる。そして、第2スプール筒体35が、スライダ36に対して接近又は当接した状態となる。
上記の状態では、圧油ポート32eにおいてスリーブ31の内周側に開口した2つの連通孔のいずれもが、連通溝37cに対応する位置で、第2スプール筒体35によって封鎖されることになる。そして、給排通路20aを介した圧油の移動が封鎖されることになる。これにより、アクチュエータ11aにおいて、シリンダ13に対するロッド14の変位が規制されてロックされることになる。そして、エレベータ103の位置状態が保持されることになる。
次に、油圧システム1の作動について説明する。第1機体側油圧源104の機能の喪失及び低下が発生していない状態では、バックアップ用油圧ポンプ17の運転は行われない。この状態では、アクチュエータ11aに対しては、制御弁15aを介して第1油圧供給源104からの圧油が油室(13a、13b)の一方に供給され、油室(13a、13b)の他方から油が排出されて制御弁15aを介してリザーバ回路106に戻されることになる。また、アクチュエータコントローラ16aからの制御信号としての電気信号に基づいて制御弁15aの接続状態が切り替えられることで、圧油の供給及び圧油の排出が行われる油室(13a、13b)の切り替えが行われる。そして、油室(13a、13b)への圧油の給排が行われることで、シリンダ13に対してロッド14が変位してアクチュエータ11aが作動し、エレベータ103が駆動される。
一方、第1機体側油圧源104の機能の喪失及び低下が発生すると、フライトコントローラ25からの指令信号に基づいて、ドライバ19を介して電動モータ18に電気エネルギーが供給されて電動モータ18の運転が開始され、バックアップ用油圧ポンプ17の運転が開始される。そして、アクチュエータ11aに対しては、制御弁15aを介してバックアップ用油圧ポンプ17からの圧油が油室(13a、13b)の一方に供給され、油室(13a、13b)の他方から圧油が排出されて制御弁15aを介してバックアップ用油圧ポンプ17に吸い込まれて昇圧されることになる。また、アクチュエータコントローラ16aからの電気信号に基づいて制御弁15aの接続状態が切り替えられることで、圧油の供給及び圧油の排出が行われる油室(13a、13b)の切り替えが行われる。これにより、アクチュエータ11aが作動してエレベータ103が駆動される。
以上説明したように、油圧システム1によると、第1機体側油圧源104の機能の喪失又は低下が発生した場合であっても、バックアップ用油圧ポンプ17から圧油が供給され、アクチュエータ11aを駆動することができる。また、制御弁15aは、電気油圧式サーボ弁としてではなく、スプール部28の端部に駆動部29が連結され、駆動部29が電気信号に基づいてスプール部28の位置を制御するようにスプール部28を電磁力によって駆動するように構成されている。即ち、油圧システム1によると、アクチュエータ11aへの圧油の供給及びアクチュエータ11aからの圧油の排出を制御することでアクチュエータ11aの作動を制御する制御弁15aが、アクチュエータコントローラ16aからの電気信号に基づいてスプール部28を電磁力によって直接に駆動する直接駆動式の弁構造として構成されている。
アクチュエータ、バックアップ用油圧ポンプ、電動モータ、及び電気油圧式サーボ弁を含む制御弁を備えた従来の油圧システムにおいては、電気油圧式サーボ弁における油の漏洩に伴うバックアップ用油圧ポンプ及び電動モータでの仕事量の増大が、この従来の油圧システムの発熱要因として非常に大きく影響している。これに対し、本実施形態の油圧システム1においては、制御弁15aが、油の漏洩を大幅に低減できる直接駆動式の弁構造として構成されている。このため、本実施形態によると、油の漏洩に伴うバックアップ用油圧ポンプ17及び電動モータ18での仕事量を低減でき、油圧システム1における発熱を大幅に低減することができる。
よって、本実施形態によると、油圧システム1全体としての発熱が抑制されるため、冷却機器の小型化或いは削減を図ることができる。これにより、油圧システム1全体としての軽量化及び小型化を図ることができる。また、冷却機器の小型化或いは削減を図ることができるため、機体の外部の空気を冷却対象の機器まで誘導した後に外部へと排出する冷却機器が不要となる。このため、機体効率の低下も防止されることになる。
従って、本実施形態によると、機体側油圧源の機能の喪失時又は低下時であってもアクチュエータを駆動可能であって、機体効率の低下を防止できるとともにシステム全体としての発熱を抑制でき、システム構成の小型化及び軽量化を図ることができる、航空機アクチュエータの油圧システム1を提供することができる。
また、本実施形態によると、バックアップ用油圧ポンプ17、電動モータ18、及び制御弁15aは、エレベータ103が設けられた水平尾翼102の内部に設置されるため、アクチュエータ11aにより近い領域に設置されることになる。このため、機体101側に設置される場合のような長大な配管系統等が不要となる。これにより、油圧システム1の更なる軽量化及び小型化を図ることができる。
尚、近年においては、燃費向上のための機体の効率向上を目的として翼の薄型化を図る薄翼化の対応が望まれている。そして、薄翼化の対応に伴って、アクチュエータの出力レベルを低下させることなく、翼内に設置される油圧システムの更なる小型化が図られることが望ましい。本実施形態の場合、バックアップ用油圧ポンプ17が小型化されるとともにバックアップ用油圧ポンプ17の回転速度の高速化が図られることで、アクチュエータ11aの出力レベルを低下させることなく、水平尾翼102内に設置される油圧システム1の更なる小型化を図ることができる。
また、図5は、ポンプの大きさと、ポンプ及び電動モータの発熱量と、ポンプの回転速度との一般的な関係について示す図である。図5に示す図において、横軸はポンプの回転速度を示しており、縦軸はポンプ及び電動モータの発熱量を示している。図5に示すように、一般的に、電動モータとそれによって回転駆動されるポンプとの合計の発熱量は、ポンプの回転速度の増加に対しては比例的に増加するが、ポンプの大きさの増大に対してはそのポンプの大きさの増大に伴う摩擦面積の増加とともに高次元(2次元以上)で比例して増加する傾向がある。このため、大型ポンプを低速回転で運転することで所望される出力レベルを確保する形態よりも、小型ポンプを高速回転で運転することで所望される出力レベルを確保する形態の方が、発熱量を低減できることになる。即ち、バックアップ用油圧ポンプ17が小型化されるとともにバックアップ用油圧ポンプ17の回転速度の高速化が図られることで、アクチュエータ11aの出力レベルが低下することなく、バックアップ用油圧ポンプ17及び電動モータ18の合計の発熱量が、減少することになる。よって、この場合、油圧システム1における発熱を更に抑制することができる。
また、本実施形態によると、制御弁15aに電気信号を出力して駆動部29を駆動する上位のコントローラとしてのアクチュエータコントローラ16aの筐体26と、制御弁15aの本体部27とが、一体に固定される。このため、制御弁15aの駆動のために必要な電流を、制御弁15aに直接に固定されたアクチュエータコントローラ16aを介して供給することができる。これにより、電流を供給するための配線を大幅に簡素化でき、構成の更なる簡素化を図ることができる。
アクチュエータ11aは、天候や気流の状態に応じて航空機100の飛行状態が急激に変化する状況、或いは、航空機100が離陸動作又は着陸動作を行う状況では、高出力での作動が要求されることになる。一方、航空機100の飛行状態が安定している状況では、低出力で作動するアクチュエータ11aで対応が可能となる。このため、本実施形態によると、バックアップ用油圧ポンプ17の回転速度が複数段階に切替可能に構成されるため、要求されるアクチュエータ11aの出力レベルに応じて、バックアップ用油圧ポンプ17の回転速度を変更することができる。これにより、バックアップ用油圧ポンプ17及び電動モータ18の運転を更に効率化でき、発熱を更に抑制することができる。
以上、本発明の実施形態について説明したが、本発明は、上述した実施形態に限られるものではなく、特許請求の範囲に記載した限りにおいて様々に変更して実施することができる。例えば、次のような変形例を実施してもよい。
(1)上述の実施形態では、エレベータを駆動する航空機アクチュエータの油圧システムを例にとって説明したが、この通りでなくてもよい。エルロン等のエレベータ以外の動翼を駆動する航空機アクチュエータの油圧システムが実施されてもよい。
(2)アクチュエータ、油圧装置、機体側油圧源を接続する油圧回路形態については、前述の実施形態で例示した回路形態に限らず、種々変更されて実施されてもよい。
(3)制御弁の構造については、前述の実施形態で例示した形態に限らず、直接駆動式の弁構造であればよく、種々変更されて実施されてもよい。例えば、駆動部が、電動モータを含んで構成され、スプール部の端部に対して、直接に又は歯車機構部等を介して連結された形態が実施されてもよい。
(4)上述の実施形態では、制御弁の本体部とアクチュエータコントローラの筐体とが、一体に固定された形態を例にとって説明したが、この通りでなくてもよい。制御弁の本体部とアクチュエータコントローラの筐体とが、共通のベース部材を介して固定されていてもよい。また、制御弁の本体部とアクチュエータコントローラの筐体とが、別体に設けられて、互いに離れて設置されていてもよい。
本発明は、油圧作動式のアクチュエータによって航空機の動翼を駆動する、航空機アクチュエータの油圧システムとして、広く適用することができるものである。
1 航空機アクチュエータの油圧システム
11a アクチュエータ
15a 制御弁
17 バックアップ用油圧ポンプ
18 電動モータ
27 本体部
28 スプール部
29 駆動部
32a、32b、32c、32d、32e、32f 圧油ポート
100 航空機
102 水平尾翼(翼)
103 エレベータ(動翼)
104 第1機体側油圧源(機体側油圧源)
11a アクチュエータ
15a 制御弁
17 バックアップ用油圧ポンプ
18 電動モータ
27 本体部
28 スプール部
29 駆動部
32a、32b、32c、32d、32e、32f 圧油ポート
100 航空機
102 水平尾翼(翼)
103 エレベータ(動翼)
104 第1機体側油圧源(機体側油圧源)
Claims (4)
- 油圧作動式のアクチュエータによって航空機の動翼を駆動する、航空機アクチュエータの油圧システムであって、
前記航空機の機体に設置された機体側油圧源からの圧油が供給されることで作動し、前記動翼を駆動する前記アクチュエータと、
前記機体側油圧源の機能の喪失又は低下が発生したときに前記アクチュエータに対して圧油を供給可能なバックアップ用油圧ポンプと、
前記バックアップ用油圧ポンプを駆動する電動モータと、
前記バックアップ用油圧ポンプ及び前記機体側油圧源と、前記アクチュエータとを連通する経路に設けられ、前記アクチュエータへの圧油の供給及びアクチュエータからの圧油の排出を制御することで当該アクチュエータの作動を制御する制御弁と、
を備え、
前記制御弁は、圧油の供給及び排出が行われる圧油ポートが設けられた本体部と、前記本体部内においてスライド移動自在に設置されて圧油の経路を切り替え可能なスプール部と、前記スプール部の端部に連結されるとともに電気信号に基づいて当該スプール部の位置を制御するように当該スプール部を電磁力によって駆動する駆動部と、を有していることを特徴とする、航空機アクチュエータの油圧システム。 - 請求項1に記載の航空機アクチュエータの油圧システムであって、
前記バックアップ用油圧ポンプ、前記電動モータ、及び前記制御弁は、前記航空機において前記動翼が設けられる翼の内部に設置されていることを特徴とする、航空機アクチュエータの油圧システム。 - 請求項1又は請求項2に記載の航空機アクチュエータの油圧システムであって、
前記制御弁に対して前記電気信号を出力して前記駆動部を駆動することで、当該制御弁を介して前記アクチュエータの作動を制御するアクチュエータコントローラを更に備え、
前記制御弁の前記本体部と前記アクチュエータコントローラの筐体とが、一体に固定され、或いは共通のベース部材を介して固定されていることを特徴とする、航空機アクチュエータの油圧システム。 - 請求項1乃至請求項3のいずれか1項に記載の航空機アクチュエータの油圧システムであって、
前記バックアップ用油圧ポンプは、前記電動モータによって回転駆動される回転速度が、複数段階に切り替えられることを特徴とする、航空機アクチュエータの油圧システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016102773A JP2016176601A (ja) | 2016-05-23 | 2016-05-23 | 航空機アクチュエータの油圧システム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016102773A JP2016176601A (ja) | 2016-05-23 | 2016-05-23 | 航空機アクチュエータの油圧システム |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012006747A Division JP2013147049A (ja) | 2012-01-17 | 2012-01-17 | 航空機アクチュエータの油圧システム |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016176601A true JP2016176601A (ja) | 2016-10-06 |
Family
ID=57069775
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016102773A Pending JP2016176601A (ja) | 2016-05-23 | 2016-05-23 | 航空機アクチュエータの油圧システム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2016176601A (ja) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07158603A (ja) * | 1993-12-10 | 1995-06-20 | Tokimec Inc | 往復動反転駆動システム制御方法 |
JPH1030857A (ja) * | 1996-07-15 | 1998-02-03 | Mitsubishi Electric Corp | 航空機等の高速移動体に内装された電子機器の冷却装置 |
JP2000170935A (ja) * | 1998-12-02 | 2000-06-23 | Teijin Seiki Co Ltd | 複合機能型流体制御弁 |
US20020121087A1 (en) * | 2000-06-28 | 2002-09-05 | Van Den Bossche Dominique Alain | Hydraulic actuating system with electric control |
US20040075020A1 (en) * | 2002-10-22 | 2004-04-22 | Trikha Arun K. | Method and apparatus for controlling aircraft devices with multiple actuators |
JP2005240974A (ja) * | 2004-02-27 | 2005-09-08 | Mitsubishi Heavy Ind Ltd | 流体圧アクチュエータ、その動作方法、及び、航空機の操舵システム |
US20060226285A1 (en) * | 2005-03-25 | 2006-10-12 | Nabtesco Aerospace, Inc. | Local backup hydraulic actuator for aircraft control systems |
JP2007046790A (ja) * | 2006-10-12 | 2007-02-22 | Nabtesco Corp | アクチュエーションシステム |
JP2007239974A (ja) * | 2006-03-13 | 2007-09-20 | Sumitomo Precision Prod Co Ltd | スナビング機能に優れるアクチュエータ |
JP2008025726A (ja) * | 2006-07-21 | 2008-02-07 | Nabtesco Corp | マニホールド装置及び流体装置 |
JP2011515631A (ja) * | 2008-03-10 | 2011-05-19 | パーカー・ハニフィン・コーポレーション | 複数のアクチュエータを備える油圧システム及び関連の制御方法 |
JP2011247334A (ja) * | 2010-05-26 | 2011-12-08 | Nabtesco Corp | 航空機アクチュエータの油圧システム |
-
2016
- 2016-05-23 JP JP2016102773A patent/JP2016176601A/ja active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07158603A (ja) * | 1993-12-10 | 1995-06-20 | Tokimec Inc | 往復動反転駆動システム制御方法 |
JPH1030857A (ja) * | 1996-07-15 | 1998-02-03 | Mitsubishi Electric Corp | 航空機等の高速移動体に内装された電子機器の冷却装置 |
JP2000170935A (ja) * | 1998-12-02 | 2000-06-23 | Teijin Seiki Co Ltd | 複合機能型流体制御弁 |
US20020121087A1 (en) * | 2000-06-28 | 2002-09-05 | Van Den Bossche Dominique Alain | Hydraulic actuating system with electric control |
US20040075020A1 (en) * | 2002-10-22 | 2004-04-22 | Trikha Arun K. | Method and apparatus for controlling aircraft devices with multiple actuators |
JP2005240974A (ja) * | 2004-02-27 | 2005-09-08 | Mitsubishi Heavy Ind Ltd | 流体圧アクチュエータ、その動作方法、及び、航空機の操舵システム |
US20060226285A1 (en) * | 2005-03-25 | 2006-10-12 | Nabtesco Aerospace, Inc. | Local backup hydraulic actuator for aircraft control systems |
JP2007239974A (ja) * | 2006-03-13 | 2007-09-20 | Sumitomo Precision Prod Co Ltd | スナビング機能に優れるアクチュエータ |
JP2008025726A (ja) * | 2006-07-21 | 2008-02-07 | Nabtesco Corp | マニホールド装置及び流体装置 |
JP2007046790A (ja) * | 2006-10-12 | 2007-02-22 | Nabtesco Corp | アクチュエーションシステム |
JP2011515631A (ja) * | 2008-03-10 | 2011-05-19 | パーカー・ハニフィン・コーポレーション | 複数のアクチュエータを備える油圧システム及び関連の制御方法 |
JP2011247334A (ja) * | 2010-05-26 | 2011-12-08 | Nabtesco Corp | 航空機アクチュエータの油圧システム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2013147049A (ja) | 航空機アクチュエータの油圧システム | |
JP5503431B2 (ja) | 航空機アクチュエータの油圧システム | |
JP5658117B2 (ja) | 航空機アクチュエータの油圧システム | |
US8540188B2 (en) | Aircraft actuator hydraulic apparatus | |
EP2631171B1 (en) | Aircraft actuator hydraulic system | |
US20110290353A1 (en) | Hydraulic system for aircraft actuators | |
EP1565373B1 (en) | Augmenting flight control surface actuation system and method | |
JP2017015255A (ja) | 電気静油圧アクチュエータおよび油圧アクチュエータの制御・減衰方法 | |
EP2386485B1 (en) | Hydraulic apparatus for aircraft actuators | |
US8596575B2 (en) | Aircraft actuator | |
US8302629B2 (en) | Valve unit | |
JP2016176601A (ja) | 航空機アクチュエータの油圧システム | |
JP5841741B2 (ja) | 航空機用アクチュエータ制御装置 | |
EP3257746B1 (en) | Electro hydrostatic actuators | |
US11821443B2 (en) | Actuator overpressurising assembly | |
EP4046907B1 (en) | Blade pitch control | |
JP2002323010A (ja) | アクチュエータ | |
JP2013036616A (ja) | 作動流体供給装置及び電動アクチュエータ | |
GB2490031A (en) | Load limited actuator with two pistons | |
SE1200337A1 (sv) | Kompressorvolymkontrollsystem | |
JP2004340386A (ja) | アクチュエーションシステム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170410 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170418 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20171027 |