JP2016176372A - 翼車および自然エネルギー発電機 - Google Patents

翼車および自然エネルギー発電機 Download PDF

Info

Publication number
JP2016176372A
JP2016176372A JP2015055840A JP2015055840A JP2016176372A JP 2016176372 A JP2016176372 A JP 2016176372A JP 2015055840 A JP2015055840 A JP 2015055840A JP 2015055840 A JP2015055840 A JP 2015055840A JP 2016176372 A JP2016176372 A JP 2016176372A
Authority
JP
Japan
Prior art keywords
main shaft
vertical main
blade
impeller
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015055840A
Other languages
English (en)
Inventor
浩行 野田
Hiroyuki Noda
浩行 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2015055840A priority Critical patent/JP2016176372A/ja
Priority to CN201680015461.3A priority patent/CN107407254B/zh
Priority to KR1020177025924A priority patent/KR102456995B1/ko
Priority to PCT/JP2016/057585 priority patent/WO2016148015A1/ja
Priority to TW105107830A priority patent/TW201706497A/zh
Publication of JP2016176372A publication Critical patent/JP2016176372A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Wind Motors (AREA)
  • Synchronous Machinery (AREA)
  • Hydraulic Turbines (AREA)

Abstract

【課題】垂直主軸を持つ翼車において、翼が受けるエネルギーに対して回転エネルギーに変換する変換効率を高めると共に、翼の強度を向上させることができる翼車および自然エネルギー発電機を提供する。【解決手段】この翼車は、軸心回りに回転自在に設けられる垂直主軸と、この垂直主軸に一体に設けられる支持体と、垂直主軸に支持体を介して連結され風または水を受けて垂直主軸の軸心と同心の軸心回りに回転する翼24とを備える。翼24は、垂直主軸と平行に延びるストレート部28と、このストレート部28の両端部から延びる翼先端部29とを有する。翼先端部29は、同翼先端部を垂直主軸の軸心を含む平面で切断した断面が、基端から先端に向かうに従って前記垂直主軸側に近づく湾曲形状となる断面形状とした。【選択図】図3

Description

この発明は、垂直主軸を持つ翼車および自然エネルギー発電機に関し、翼が受ける風力や水力、潮力エネルギーに対して回転エネルギーに変換する変換効率を高めると共に、翼の強度を向上させる技術に関する。
自然エネルギー発電機の風車や水車は、水平軸式と垂直軸式とに大別され、垂直軸式は、風向きや流水方向、潮流方向に対する制御が不要なことから比較的に小型の風車や水車に用いられている。
垂直軸式の発電用の風車や水車において、風力や水力、潮力エネルギーを回転エネルギーに変換する変換効率を高めるように翼の先端部の形状が設計されている。例えば、翼の先端部を垂直主軸に近づけるように傾斜させることで、風や流水、潮流から受けるエネルギーを効率良く回転エネルギーに変換することが可能となる。この傾斜させた翼先端部をウイングレットと呼ぶ。このウイングレットを設けることで、翼先端からの翼端渦を低減でき高効率な翼となる(特許文献1)。
特許第4173727号公報
自然エネルギー発電機において、翼が受けるエネルギーに対して、いかに効率良く回転エネルギーに変換できるかは非常に重要な要素である。この変換効率(パワー係数)は理論的に16/27が限界とされている(ベッツの限界)。この限界値に対して現在の翼の変換効率は0.3〜0.45程度となっており、この変換効率を上げるためにさらなる翼の改良が必要となる。
図10(A)は従来例の垂直軸式発電用の風車や水車の翼50の正面図であり、図10(B)は図10(A)のXB-XB線断面図である。この翼50において、ストレート部51とウイングレット52との成す角度θを定められた角度以下としている場合、これらストレート部51とウイングレット52とを繋ぐ繋ぎ部53に応力が集中するおそれがある。この場合、翼の強度上問題である。
繋ぎ部53の角度θを単に大きくすると、風車や水車のサイズにより翼の全長Laが規定されていることから、ストレート部51の長さLvが短くなる。この場合、受風面積や受水面積が実質減少することで前記変換効率が低下する。
ストレート部51の長さLvを確保したうえで、繋ぎ部53の角度θを大きくすることも考えられる。この場合も前記のように翼50の全長Laが規定されていることから、ウイングレット52の水平方向長さLhが短くなる。そうすると翼端渦を低減する効果が劣る。
この発明の目的は、垂直主軸を持つ翼車において、翼が受けるエネルギーに対して回転エネルギーに変換する変換効率を高めると共に、翼の強度を向上させることができる翼車および自然エネルギー発電機を提供することである。
この発明の翼車は、軸心回りに回転自在に設けられる垂直主軸と、この垂直主軸に一体に設けられる支持体と、前記垂直主軸に前記支持体を介して連結され風または水を受けて前記垂直主軸の軸心と同心の軸心回りに回転する翼とを備えた翼車であって、
前記翼は、前記垂直主軸と平行に延びるストレート部と、このストレート部の両端部から延びる翼先端部とを有し、この翼先端部は、同翼先端部を前記垂直主軸の軸心を含む平面で切断した断面が、基端から先端に向かうに従って前記垂直主軸側に近づく湾曲形状となる断面形状としたことを特徴とする。
前記翼車は、風車または水車である。
この構成によると、翼先端部の前記断面が基端から先端に向かうに従って垂直主軸側に近づく断面形状としたため、翼先端からの翼端渦を低減することができる。
特に翼先端部を先端に向かうに従って垂直主軸側に近づける形状を湾曲形状としたため、一段に傾斜させた従来例に比べて、翼先端部に局部的に急な屈曲部分を生じさせることなく、翼先端部を全体として大きく傾斜させることができる。そのため、翼全体の長さを一定とした場合に、翼先端部の水平方向長さを所望長さに確保しながら、ストレート部の長さを長く確保できる。
このようにストレート部の長さを長く得られるため、翼が受ける風力や水力、潮力エネルギー(これらを総称して「自然エネルギー」または単に「エネルギー」と称す)に対して回転エネルギーに変換する変換効率を高めることができる。また、翼先端部の水平方向長さを所望長さに確保することで、翼先端から発生する翼端渦を確実に低減でき、かつ翼先端部の局部的な曲がり角度を緩やかにできるため、翼先端部の曲がり部に作用する応力を分散でき、翼の強度を向上させることができる。
前記翼先端部は、基端から先端に向かうに従って幅狭となる先細形状としても良い。この場合、翼先端を例えば平坦形状とするよりも翼端渦をより低減することができる。したがって、翼が受けるエネルギーに対して回転エネルギーに変換する変換効率をさらに高めることができる。
この発明の自然エネルギー発電機は、この発明におけるいずれかの翼車と、この翼車により駆動される発電機とを備える。この構成によると、翼が受けるエネルギーに対して回転エネルギーに変換する変換効率を従来品よりも高めることができるため、従来、設置が見送られてきたような場所に、この自然エネルギー発電機を設置することが可能となる。また従来品よりも翼の強度を向上させることができるため、例えば、翼材料の低減を図りまたメンテナンス性の向上を図ることができる。
前記発電機は、出力巻線が巻かれた出力鉄心と、主界磁巻線および副界磁巻線が巻かれた界磁鉄心とのいずれか一方がステータとなり、他方がロータとなり、前記各界磁巻線に整流手段が接続され、前記翼が回転し前記ステータとロータとが相対回転することにより発電電力を得る自励式であって、発電の初期励磁に必要な程度の磁力を生じさせる初期励磁手段を有するものとしても良い。
この構成の場合、前記発電機が自励式であるため、他励のための給電が不要で構成が簡単であり、また磁界を与える永久磁石が不要で、コギングトルクも問題とならない程度に小さい。コギングトルクが小さいため、小さなトルクで始動させることができる。始動時は磁界が必要であり、残留磁束があれば始動できるが、長期の放置や保守で残留磁束が消滅することがあり、残留磁束が消滅していると始動することができない。しかし、前記初期励磁手段を設けることで、確実な始動が行える。界磁となる磁束は回転するに従って増大するため、初期励磁に必要な磁束は僅かであり、前記コギングトルクへの影響も小さくて、僅かなトルクで回転を開始し発電が行える。
このように自励式で前記初期励磁手段を設けた発電機は、僅かなトルクで回転可能でかつ確実に発電が可能という利点が得られる。一方、前記湾曲形状とした翼先端部を有する垂直主軸型の翼車は、微風または低流速の水でも回転が可能という利点がある。そのため、この湾曲形状とした翼先端部を有する垂直主軸型の翼車と、自励式で前記初期励磁手段を設けた発電機とを組み合わせることで、その微風または低流速の水でも回転が生じる翼車の利点と、僅かなトルクで回転できて発電できる発電機の特徴が効果的に組み合わされることになり、従来の自然エネルギー発電機では発電できなかったごく僅かな微風または低流速の水での発電が可能となる。
この発明の翼車は、軸心回りに回転自在に設けられる垂直主軸と、この垂直主軸に一体に設けられる支持体と、前記垂直主軸に前記支持体を介して連結され風または水を受けて前記垂直主軸の軸心と同心の軸心回りに回転する翼とを備えた翼車であって、前記翼は、前記垂直主軸と平行に延びるストレート部と、このストレート部の両端部から延びる翼先端部とを有し、この翼先端部は、同翼先端部を前記垂直主軸の軸心を含む平面で切断した断面が、基端から先端に向かうに従って前記垂直主軸側に近づく湾曲形状となる断面形状とした。このため、翼が受けるエネルギーに対して回転エネルギーに変換する変換効率を高めると共に、翼の強度を向上させることができる。
この発明の自然エネルギー発電機は、この発明のいずれかの翼車と、この翼車により駆動される発電機とを備えるため、垂直主軸を持つ翼車において、翼が受けるエネルギーに対して回転エネルギーに変換する変換効率を高め、従来の自然エネルギー発電機では発電できなかったごく僅かな微風または低流速の水での発電が可能となると共に、翼の強度を向上させることができる。
この発明の実施形態に係る翼車の破断平面図である。 同翼車の正面図である。 (A)は同翼車の翼の正面図、(B)は図3(A)のIIIB-IIIB線断面図である。 図3(B)のIV-IV線断面図である。 図3(B)のV部の拡大図である。 (A)は参考提案例に係る翼車の翼の正面図、(B)は図6(A)のVIB-VIB線断面図である。 この発明の実施形態に係る発電機の発電機本体の破断正面図と回路図とを組み合わせた説明図である。 同発電機本体を直線状に展開して示す説明図である。 同発電機本体の電気回路構成を示す回路図である。 (A)は従来例の翼車の翼の正面図、(B)は図10(A)のXB-XB線断面図である。
この発明の実施形態に係る翼車および自然エネルギー発電機を図1ないし図5と共に説明する。図1は、この実施形態に係る翼車18の破断平面図である。図2はこの翼車18の正面図である。この翼車18は、翼24が上下方向に延びるいわゆる直線翼垂直軸型翼車である。図1および図2に示すように、自然エネルギー発電機19は、翼車18と、この翼車18により駆動される発電機26(後述する)とを備える。翼車18は、回転体であるロータRtと、固定体である固定基台Kdとを有する。固定基台Kdは、支持板体20と、枠体21と、基台25とを有する。支持板体20は、接地面に載置される平板状の板体であって、この支持板体20の上面に基台25が設置されている。この基台25の内部には、後述する発電機26が設けられている。
枠体21は、支持板体20から上方に延びる複数(この例では4本)の支柱21aと、これら支柱21aを水平方向に連結する複数の連結部材21bと、複数の架設部材21cとを有する。これら連結部材21bは、隣接する支柱21aの上端部同士を互いに連結する上段の複数の連結部材21bと、隣接する支柱21aの下端付近部を互いに連結する下段の複数の連結部材21bとを含む。上段(図2の上側)の連結部材21bのうち定められた連結部材21bと、この連結部材21bに対向する連結部材21bとにわたって架設部材21cが架設されている。また下段(図2下側)の連結部材21bのうち定められた連結部材21bと、この連結部材21bに対向する連結部材21bとにわたって架設部材21cが架設されている。
ロータRtは、垂直主軸22と、支持体23と、翼24とを有する。
各架設部材21c,21cの長手方向中間部に、それぞれ軸受27,27を介して垂直主軸22が回転自在に支持されている。垂直主軸22は上下方向に延び、この垂直主軸22の下端部が、基台25の内部に繋がっている。垂直主軸22の長手方向中間付近部から複数の支持体23がそれぞれ半径方向外方に延びるように設けられている。これら支持体23は、例えば、この翼車の正面視において平行で、且つ、同翼車の平面視において同位相となるように設けられている。
複数の支持体23における両側の先端部には、それぞれ翼24が設けられている。この例では、上下の支持体23,23の一端部に一枚の翼24が連結され、上下の支持体23,23の他端部に他の一枚の翼24が連結されている。これら翼24,24は、垂直主軸22を中心として180度位相の異なる位置に設けられる。各翼24は、上下方向に沿って延び、枠体21内において同枠体21に干渉しないように設けられる。各翼24は、様々な方向からの風または水を受けて垂直主軸22の軸心L1回りに回転する。
図3(A)はこの翼車の翼24の正面図であり、図3(B)は図3(A)のIIIB-IIIB線断面図である。図3(A),(B)に示すように、翼24は、ストレート部28と、このストレート部28の長手方向両端からそれぞれ延びる翼先端部29,29とを有する。ストレート部28および各翼先端部29,29は同一材料から一体に形成される。ストレート部28は、垂直主軸22(図2)と平行に延び、且つ、図3(A)に示す正面視で上下方向のいずれの位置においても同一幅を成す。またストレート部28は、図3(B)に示すように、上下方向のいずれの位置においても同一の厚みに形成される。
図4は、図3(B)のIV-IV線断面図である。
図1および図4に示すように、複数(この例では2枚)の翼24は、それぞれ垂直主軸22の軸心L1(図2)に垂直な平面で切断して見た断面が翼24の回転方向に対し非対称で、且つ、同断面にて厚肉側となる部分(同図4上側部分)を各翼24の回転方向先端としている。さらに各翼24のストレート部28の外側面28aを半径方向外方に凸となる湾曲面とし、ストレート部28の内側面28bの大部分を平坦面28baとしている。
なお内側面28bの大部分を平坦面28baとする代わりに、内側面28bを外側面28aよりも曲率半径の大きい湾曲面としても良い。ストレート部28の内側面28bにおける、外側面28aの円周方向一端(図4上側)との繋ぎ部は円弧面28bbを成す。この円弧面28bbと平坦面28baとの繋ぎ部は段差なく滑らかに続くように形成されている。
ストレート部28の内側面28bと、外側面28aの円周方向他端(図4下側)との繋ぎ部は、鋭角となる角部に形成されている。ストレート部28の内側面28bにおける平坦面28baのうち円弧面28bb寄りの部分に、支持体23の先端部が連結されている。前記平坦面28baは、支持体23の長手方向に対し垂直な平面を成し、この垂直な平面が上下方向に沿って延びる。
図2および図3に示すように、翼先端部29,29は、各々の翼先端からの翼端渦を低減するいわゆるウイングレットである。翼先端部29は、この翼先端部29を前記軸心L1を含む平面で切断して見た断面(主軸断面)が、基端から先端に向かうに従って垂直主軸L1側に近づく湾曲形状となる断面形状としている。上下の翼先端部29,29は、ストレート部28の長手方向中間部の中心線L2に対し、線対称となる同一形状に形成されている。
図5は、図3(B)のV部つまり上側の翼先端部29の拡大図である。なお前述のように上下の翼先端部29,29は線対称となる同一形状であるから、上側の翼先端部29についてのみ符号を付して詳細に説明し、下側の翼先端部29については図3(B)にて上側の翼先端部29と同一の符号を付してその詳細な説明を省略する。図3(B)および図5に示すように、この翼先端部29は、ストレート部28の長手方向先端30に繋がる湾曲部分29aから成る。
この湾曲部分29aは先端に向かうに従って垂直主軸側に緩やかに曲がるように形成されている。湾曲部分29aの主軸断面は、垂直主軸側の内面側部分29aaと、この内面側部分29aaとは逆側の外面側部分29abとを含む。内面側部分29aaは、ストレート部28の内側面28bに段差なく円滑に繋がり、外面側部分29abはストレート部28の外側面28aに段差なく円滑に繋がる。これら内面側部分29aa,外面側部分29abは、それぞれ定められた曲率半径Ra,Rbから成る。これら内面側部分29aa,外面側部分29abの曲率中心c1,c2は、例えば、ストレート部28と垂直主軸22(図2)との中間付近で、且つ、ストレート部28の長手方向先端30と略同じ高さに位置している。これら内面側部分29aa,外面側部分29abの曲率中心c1,c2は互いに異なる位置に設定される。また湾曲部分29aは、前記主軸断面における厚みt1が上端に向かうに従って薄肉となる断面形状に形成される。なお曲率半径Ra,Rbは、例えば、実験やシミュレーション等の結果から適宜に定められる。
以上説明した翼車18の翼24によると、翼先端部29の主軸断面が基端から先端に向かうに従って垂直主軸側に近づく断面形状としたため、翼先端からの翼端渦を低減することができる。
特に翼先端部29を先端に向かうに従って垂直主軸側に近づける形状を湾曲形状としたため、一段に傾斜させた従来例に比べて、翼先端部29に局部的に急な屈曲部分を生じさせることなく、翼先端部29を全体として大きく傾斜させることができる。そのため、翼全体の長さを一定とした場合に、翼先端部29の水平方向長さLhを所望長さに確保しながら、ストレート部28の長さLvを長く確保できる。以上のように翼先端からの翼端渦を確実に低減できるうえ、所望の受風面積または受水面積を確保し得るため、僅かな微風または低流速の水でも回転が可能となる。
このようにストレート部28の長さLvを長く得られるため、翼24が受けるエネルギーに対して回転エネルギーに変換する変換効率を高めることができる。また、翼先端部29の水平方向長さLhを所望長さに確保することで、翼先端から発生する翼端渦を確実に低減でき、かつ翼先端部29の局部的な曲がり角度を緩やかにできるため、翼先端部29の曲がり部に作用する応力を分散でき、翼24の強度を向上させることができる。
翼先端部29は、基端から先端に向かうに従って幅狭となる先細形状としたため、翼先端を例えば平坦形状とするよりも翼端渦をより低減することができる。したがって、翼24が受けるエネルギーに対して回転エネルギーに変換する変換効率をさらに高めることができる。
他の実施形態について説明する。
以下の説明においては、各形態で先行する形態で説明している事項に対応している部分には同一の参照符号を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、特に記載のない限り先行して説明している形態と同様とする。同一の構成から同一の作用効果を奏する。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組合せることも可能である。
図6(A)は参考提案例に係る翼車の翼24Aの正面図であり、図6(B)は図6(A)のVIB-VIB線断面図である。この翼車は、翼24Aのストレート部28Aが主軸22に対し半径方向外方に延びる水平軸式である。つまり主軸22はその軸心L1回りに回転自在に設けられ、この主軸22の外周に円周方向一定間隔おきに複数(例えば、2〜5枚程度:図6(A)では一枚のみ表示している)の翼24Aが固定される。翼24Aのストレート部28Aは、図6(A)に示す正面視で基端から先端に向かうに従って幅広に形成される。その他前述の実施形態と同一構成となっている。翼24Aは主軸22の回転軸心から離れる程トルクを大きく確保し得る。なお、翼先端部29を傾斜させる方向を、主軸22の基端側に向けても良いし、主軸22の先端側に向けても良い。この構成によると、ストレート部28Aが基端から先端に向かうに従って幅広に形成される、つまり面積が大きくなっているため、トルクを大きく確保できるストレート部28Aの先端の変換効率をより高め得る。また翼先端部29の前記断面が基端から先端に向かうに従って垂直主軸側に近づく断面形状としたため、翼24Aが受けるエネルギーに対して回転エネルギーに変換する変換効率を高めると共に、翼24Aの強度を向上することができる。
発電機26について図7ないし図9と共に説明する。
基台25(図2)の内部には、垂直主軸22(図2)の回転により後述のロータ5を回転させ発電を行う発電機26が設けられている。図7は、発電機26の発電機本体1の破断正面図と回路図とを組み合わせた説明図である。同図7において、発電機26の発電機本体1は、環状のステータ4と、このステータ4の内側にステータ4の中心周りで回転自在に設置されたロータ5とを有する。例えば、このロータ5と前述の垂直主軸(図2)とが同軸に連結されている。ステータ4は出力鉄心6と出力巻線7とを有する。この実施形態は2極発電機に適用した例であり、出力鉄心6は、円環状のヨーク部6aの円周方向2箇所に、内側へ突出する歯状の磁極部6bが形成されている。各磁極部6bに前記出力巻線7が巻かれている。
図8に示すように、各磁極部6bの出力巻線7は、出力鉄心6の隣り合う磁極部6bの内径側を向く磁極面に互いに異なる磁極が現れるように直列に接続されている。出力巻線7の両端が端子7a,7bとなり、これら端子7a,7bに図7のように外部負荷3を接続し、発電機から電流を外部に取り出す。
図7および図8に示すように、ロータ5は、界磁鉄心8と、この界磁鉄心8に巻かれた主界磁巻線9および副界磁巻線10とを有する。界磁鉄心8は、中心孔を有する鉄心本体8aの外周に、外径側へ突出する複数の歯状の磁極部8bが円周方向に並んで設けられている。この磁極部8bは、出力鉄心6の一つの磁極部6bに対してそれぞれ3つずつ設けられている。
主界磁巻線9は、隣合う2つの磁極部8b,8bに渡って巻かれ、この2つの磁極部8b,8bに渡って巻かれた各主界磁巻線9は、2つ一組となった隣合う磁極組同士の磁極面に異なる磁極が現れるように直列に接続されている。副界磁巻線10は、主界磁巻線9と一つの磁極部8bの分だけ位相をずらせて、主界磁巻線9と同様に、隣合う2つの磁極部8b,8bに渡って巻かれている。この2つの磁極部8b,8bに渡って巻かれた各副界磁巻線10は、2つ一組となった隣合う磁極組同士の磁極面に異なる磁極が現れるように直列に接続されている。主界磁巻線9および副界磁巻線10の各直列接続体の両端の端子を、それぞれ符号9a,9b,10a,10bで図8に示す。
図9に示すように、主界磁巻線9には並列に整流素子(整流手段)11が接続され、主界磁巻線9には整流素子11が流すことができる向きの電流が流れる。副界磁巻線10は主界磁巻線9と直列に接続され、かつ直列に整流素子(整流手段)12が接続され、副界磁巻線10には主界磁巻線9と同じ方向の電流のみが流れる。図中の矢印は電流の流れる方向を示す。
この発電機26は、このような副界磁巻線10を有する構成の自励型の発電機において、発電の初期励磁に必要な程度の磁力を生じさせる初期励磁手段2を有する。図7に示すように、出力巻線7に、スイッチング手段13を介して着磁用電源14が外部負荷3と並列に接続されている。着磁用電源14とスイッチング手段13とで初期励磁手段2が構成される。スイッチング手段13は、半導体スイッチッング素子または有接点のスイッチが用いられる。着磁用電源14は2次電池またはコンデンサ等の蓄電手段である。外部負荷3が2次電池の場合は、それを着磁用電源として用いても良い。
着磁をするには、所定の大きさの電流を極短時間流せば良い。着磁の程度は、発電の開始のための初期励磁に必要な残留磁気が得られる程度で良く、電流の大きさとスイッチング手段13のオン時間とで定められる。スイッチング手段13の開閉操作は、開閉制御手段15によって行われる。開閉制御手段15は、例えば、ロータ5の回転を検出する回転検出手段16の検出信号を監視し、ロータ5が静止状態から回転を開始したことが検出されると、スイッチング手段13を着磁に必要な設定時間だけオンさせる。
なお、ロータ5の回転の停止時間が短い場合は残留磁気が十分に残っているため、開閉制御手段15は、設定時間以上のロータ5の停止の後に回転を開始した場合のみスイッチング手段13をオンさせるなど、設定条件に従ってスイッチング手段13をオンさせるように制御としても良い。また、所定の回転数になっても発電を開始しない時だけ着磁をするようにしてもよいし、所定の時間ごとに発電機の回転が停止しているときに着磁をしてもよい。
この実施形態では出力巻線7に着磁用電源14を接続したが、図9に示すように、界磁巻線9,10にスイッチング手段13を介して着磁用電源14を接続しても良い。この例の場合も、着磁用電源14は2次電池またはコンデンサである。着磁をするには、所定の大きさの電流を極短時間流せば良い。スイッチング手段13は、図7の実施形態と同様に開閉制御手段15で開閉制御される。
ロータ5が回転し発電を行っている場合の動作を説明する。
図9に示すように、主界磁巻線9には並列に整流素子11が接続されているため、主界磁巻線9には整流素子11が流すことができる向きの電流が流れる。そのため、主界磁巻線9に流すことができる電流によって決まる向きの磁束が発生する。また、電磁誘導により、電流がつくる磁束と同方向の磁束の減少を妨げる向きに電流が流れるが、磁束が増えるのを阻止する向きには電流は流れない。そのため、磁束の減少は妨げられるが、磁束の増加は妨げられない。副界磁巻線10には直列に整流素子12が接続され、主界磁巻線9と同じ方向の電流のみが流れる。
図7乃至図9に示すように、出力鉄心6または界磁鉄心8の残留磁気により、主界磁巻線9に電流が流れる。この電流により主界磁巻線9がつくる磁束により副界磁巻線10に鎖交する磁束が変化して、副界磁巻線10に電圧が発生する。この電圧で副界磁巻線10が主界磁巻線9を介して電流を供給し、主界磁巻線9に流れる電流を増加させる。副界磁巻線10に電圧が誘起されずに電流を供給していない時、主界磁巻線9には整流子11を通して還流電流が流れ、主界磁巻線9の磁束を維持する。
主界磁巻線9に電流が供給され、主界磁巻線9がつくる磁束が大きくなるので、副界磁巻線10に鎖交する磁束も大きくなり、さらに大きい電流が主界磁巻線9に供給される。このように、主界磁巻線9の電流が次第に増加し、発電に必要な界磁磁束がつくられる。出力鉄心6と界磁鉄心8の相対運動により、出力巻線7の鎖交磁束が変化して電圧が発生する。
上記のように、ロータ5が回転を行っている間に発電を行うが、ロータ5がある程度長い時間を停止していると、出力鉄心6および界磁鉄心8のいずれにも残留磁気がなく、または残留磁気が不十分であって、発電を開始できない。そこで、この実施形態では、ロータ5の停止後の回転の開始時に、初期励磁手段2のスイッチング手段13をオンにして着磁用電源14から出力巻線7に着磁電流を流し、出力鉄心6を着磁する。磁束は前記のように回転を続けると次第に大きくなるため、着磁の程度は、発電の開始のための初期励磁に必要な残留磁気が得られる程度で良い。そのため、着磁をするには、所定の大きさの電流を極短時間流せば良い。この着磁により、ロータ5の長時間の停止後にも、回転の再開により発電が確実に開始される。
スイッチング手段13を設けた実施形態の場合は、ロータ5の停止後の回転の開始時に、初期励磁手段2のスイッチング手段13をオンにして着磁用電源14から主界磁巻線8に着磁電流を流し、界磁鉄心8を着磁する。このように界磁鉄心8を着磁した場合も、ロータ5の長時間の停止後にも、発電が開始される。
これら実施形態の発電機26によると、次の利点が得られる。
発電機26が自励式であるため、他励のための給電が不要で構成が簡単であり、また磁界を与える永久磁石が不要で、コギングトルクも問題とならない程度に小さい。コギングトルクが小さいため、小さなトルクで始動させることができる。始動時は磁界が必要であり、残留磁束があれば始動できるが、長期の放置や保守で残留磁束が消滅することがあり、残留磁束が消滅していると始動することができない。しかし、前記初期励磁手段2を設けることで、確実な始動が行える。界磁となる磁束は回転するに従って増大するため、初期励磁に必要な磁束は僅かであり、前記コギングトルクへの影響も小さくて、僅かなトルクで回転を開始し発電が行える。
このように自励式で前記初期励磁手段2を設けた発電機26は、僅かなトルクで回転可能でかつ確実に発電が可能という利点が得られる。一方、前記湾曲形状とし翼先端部29を有する垂直主軸型の翼車18は、微風または低流速の水でも回転が可能という利点がある。そのため、この湾曲形状とした翼先端部29を有する垂直主軸型の翼車18と、自励式で前記初期励磁手段2を設けた発電機26とを組み合わせることで、その微風または低流速の水でも回転が生じる翼車18の利点と、僅かなトルクで回転できて発電できる発電機26の特徴が効果的に組み合わされることになり、従来の自然エネルギー発電機では発電できなかったごく僅かな微風または低流速の水での発電が可能となる。
自励式であるが、発電の初期励磁に必要な磁力を発生することが可能な程度に、発電機のいずれかの鉄心を着磁する初期励磁手段2を設けたため、回転の停止後や分解保守の後であっても、また低速回転であっても、確実に発電を開始することができる。前記初期励磁手段2は必要となるが、この初期励磁手段2は発電の初期励磁に必要な磁力を発生することが可能な程度に着磁を行えるものであれば足りるため、他励式の発電機における外部電源に比べて飛躍的に小型のもので済む。
なお、上記実施形態では、ステータ4側を出力鉄心6、ロータ5側を界磁鉄心8としたが、これとは逆にステータ4側を界磁鉄心9,10とし、ロータ5側を出力鉄心6としても良い。また上記実施形態では2極発電機としたが、4極、8極、16極など、多極の発電機としても良い。なお発電機は、自励式に限定されず他励式や他の各種の形式の発電機であっても良い。
湾曲部分29aの内面側部分29aa,外面側部分29abは、同一の曲率半径から成るものとし、かつ湾曲部分29aの前記主軸断面における厚みt1を上下方向のいずれの位置においても同一肉厚としても良い。
湾曲部分29aの内面側部分29aa,外面側部分29abは、それぞれ基端からある一定の位置まで、定められた曲率半径から成るものとし、前記一定の位置から先端まで二次曲線等の放物線状の曲線から成るものとしても良い。この曲率半径と放物線状の曲線との関係を逆にしても良い。その他曲率半径と放物線状の曲線とを複合的に組み合わせたものとしても良い。
一本の垂直主軸22に対して上下方向に複数段の翼24を設けても良い。この場合、翼車の設置面積に対して翼24の受風面積を増加させることができる。
翼枚数は一段当たり二枚に限定されるものではなく、3枚以上としても良い。
発電機26は、界磁の生成に永久磁石を用いた同期発電機を用いても良い。
1本の垂直主軸22に対して複数の発電機26を設け、前記1本の垂直主軸22の回転により各発電機26を個別に発電することも可能である。
以上、実施形態に基づいてこの発明を実施するための形態を説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではない。この発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
2…初期励磁手段
4…ステータ
5…ロータ
6…出力鉄心
7…出力巻線
8…界磁鉄心
9…主界磁巻線
10…副界磁巻線
11,12…整流素子(整流手段)
18…翼車
19…自然エネルギー発電機
22…垂直主軸
23…支持体
24,24A…翼
26…発電機
28…ストレート部
29…翼先端部

Claims (4)

  1. 軸心回りに回転自在に設けられる垂直主軸と、この垂直主軸に一体に設けられる支持体と、前記垂直主軸に前記支持体を介して連結され風または水を受けて前記垂直主軸の軸心と同心の軸心回りに回転する翼とを備えた翼車であって、
    前記翼は、前記垂直主軸と平行に延びるストレート部と、このストレート部の両端部から延びる翼先端部とを有し、この翼先端部は、同翼先端部を前記垂直主軸の軸心を含む平面で切断した断面が、基端から先端に向かうに従って前記垂直主軸側に近づく湾曲形状となる断面形状としたことを特徴とする翼車。
  2. 請求項1に記載の翼車において、前記翼先端部は、基端から先端に向かうに従って幅狭となる先細形状とした翼車。
  3. 請求項1または請求項2に記載の翼車と、この翼車により駆動される発電機とを備える自然エネルギー発電機。
  4. 請求項3に記載の自然エネルギー発電機において、前記発電機は、出力巻線が巻かれた出力鉄心と、主界磁巻線および副界磁巻線が巻かれた界磁鉄心とのいずれか一方がステータとなり、他方がロータとなり、前記各界磁巻線に整流手段が接続され、前記翼が回転し前記ステータとロータとが相対回転することにより発電電力を得る自励式であって、発電の初期励磁に必要な程度の磁力を生じさせる初期励磁手段を有する自然エネルギー発電機。
JP2015055840A 2015-03-16 2015-03-19 翼車および自然エネルギー発電機 Pending JP2016176372A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015055840A JP2016176372A (ja) 2015-03-19 2015-03-19 翼車および自然エネルギー発電機
CN201680015461.3A CN107407254B (zh) 2015-03-16 2016-03-10 叶轮及具有叶轮的自然能源发电装置
KR1020177025924A KR102456995B1 (ko) 2015-03-16 2016-03-10 날개차 및 이것을 구비하는 자연 에너지 발전 장치
PCT/JP2016/057585 WO2016148015A1 (ja) 2015-03-16 2016-03-10 翼車およびこれを備える自然エネルギー発電装置
TW105107830A TW201706497A (zh) 2015-03-16 2016-03-15 葉輪及設有葉輪之自然能源發電裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015055840A JP2016176372A (ja) 2015-03-19 2015-03-19 翼車および自然エネルギー発電機

Publications (1)

Publication Number Publication Date
JP2016176372A true JP2016176372A (ja) 2016-10-06

Family

ID=57071108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015055840A Pending JP2016176372A (ja) 2015-03-16 2015-03-19 翼車および自然エネルギー発電機

Country Status (1)

Country Link
JP (1) JP2016176372A (ja)

Similar Documents

Publication Publication Date Title
KR102456995B1 (ko) 날개차 및 이것을 구비하는 자연 에너지 발전 장치
JP2012527864A (ja) 垂直軸風車およびそのための発電機
JP2012527864A5 (ja)
US20120169063A1 (en) Permanent magnet generator
WO2019129049A1 (zh) 双叶轮逆向旋转且沿同一轴线构建的垂直轴风力发电机
WO2016148016A1 (ja) 翼車およびこれを備える自然エネルギー発電装置
JP2007336777A (ja) 風力発電装置
JP6537858B2 (ja) 翼車および自然エネルギー発電機
JP2016169711A (ja) 風力発電用の風車および風力発電機
KR101230054B1 (ko) 슬롯이 있는 소형 풍력발전기용 종축자속형 영구자석 동기발전기
CN101931297A (zh) 无定子铁芯的盘式永磁发电机
Patel et al. Design and performance analysis of a magnetically levitated vertical axis wind turbine based axial flux PM generator
KR101276000B1 (ko) 비자성 회전자 이너 아우터 고정자 발전기의 구조
JP6632805B2 (ja) 翼車および自然エネルギー発電機
US20160312768A1 (en) Wind Power Generating Apparatus
JP2016176372A (ja) 翼車および自然エネルギー発電機
CN107528441B (zh) 一种外转子风力发电机
CN101943128B (zh) 一种垂直轴磁悬浮风力发电机
JP2015050892A (ja) 発電システム
EP2184484A1 (en) Wind-power generator
WO2016013477A1 (ja) 発電機
CN207945045U (zh) 一种桨叶可变角度的垂直轴风力发电机
CN204992810U (zh) 一种发动机焊机用转子无绕组的发电机
RU2246032C1 (ru) Ветроэлектрогенератор
CN207701286U (zh) 一种海上风力发电机