JP2016171303A - 紫外線発光装置、それを備えた装置および紫外線発光装置の製造方法 - Google Patents

紫外線発光装置、それを備えた装置および紫外線発光装置の製造方法 Download PDF

Info

Publication number
JP2016171303A
JP2016171303A JP2015239563A JP2015239563A JP2016171303A JP 2016171303 A JP2016171303 A JP 2016171303A JP 2015239563 A JP2015239563 A JP 2015239563A JP 2015239563 A JP2015239563 A JP 2015239563A JP 2016171303 A JP2016171303 A JP 2016171303A
Authority
JP
Japan
Prior art keywords
emitting device
ultraviolet light
light emitting
plate
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015239563A
Other languages
English (en)
Inventor
宏典 石井
Hironori Ishii
宏典 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Publication of JP2016171303A publication Critical patent/JP2016171303A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

【課題】本発明は、生産性に優れ、光学部材の位置決めの精度が良い紫外線発光装置の製造方法、並びに、小型化が可能かつ簡易な構造で光出力が向上した紫外線発光装置、および、それを備えた装置を提供することを目的とする。【解決手段】紫外線発光装置1は、基板10と、基板10の第1主面S1側に形成された半導体積層部20と、半導体積層部20に電気的に接続する第1電極部31及び第2電極部32とを有する半導体チップ100と、平面視したときに第1主面S1よりも大きい面積を有する第1板状部51と、第1板状部51の一方の面S3側に同一部材で一体形成された凸状部53とを有する光学部材50と、第1板状部51の他方の面S4と基板10の第2主面S2とを接着する接着層40とを備える。【選択図】図2

Description

本発明は紫外線発光装置、それを備えた装置および紫外線発光装置の製造方法に関する。
窒化物半導体をベースとする半導体装置は、その広いバンドギャップを有する特徴を活かし、光を発光する発光装置や光を受光する受光装置、パワーデバイスなどへの適用が期待されている。特に、紫外線発光装置は、殺菌用途に利用可能であり、その開発が期待されている。紫外線発光装置に関する従来の技術として、例えば特許文献1〜3に開示された技術がある。
特許文献1には、発光素子、電子素子、半導体センサなどの半導体デバイスの基板などに用いられるAlN結晶の表面処理方法とAlN結晶の表面処理方法により得られたサファイア基板とに関する技術が開示されている。特許文献1には、ヘテロエピタキシャルでの課題を解決するために、AlN結晶基板における一方の主面側にホモエピタキシャル成長された3層以上の半導体層と、AlN結晶基板の他方の主面に形成された第1の電極と、半導体層の最外半導体層上に形成された第2の電極とを含む発光素子と、発光素子を搭載する導電体とを備え、上記発光素子は、AlN結晶基板側が発光面側であり、最外半導体層側が搭載面側であり、上記半導体層は、p型半導体層と、n型半導体層と、p型半導体層とn型半導体層との間に形成される発光層とを含むことが開示されている。
特許文献2には、発光ダイオード(LED:Light Emitting Diode)から放出された光を、レンズを介して空気中に均一な色及び強度で放出するパッケージ構造が提案されている。レンズを搭載することで、光方向の制御が可能となる。このパッケージの工程において、基板上に形成された複数のLEDは、まず個片化され、サブマウントに搭載された後に、レンズが形成される。
特許文献3には、LEDのパッケージの製造方法に関する技術が開示されており、キャビティに接続された空気排出路によって、レンズを接着する過程でレンズがパッケージ本体から剥離することを防止する技術が記載されている。
特開2005−277423号公報 特表2006―519500号公報 特表2014−532986号公報
上述の通り、紫外線発光装置のパッケージ方法は種々知られている。特許文献3に記載された紫外線発光装置では、紫外線発光素子上にレンズを配置しているが、紫外線が直接当たらないようにキャビティ上平面にレンズを設置する場合、レンズを接着する過程で、キャビティ内で圧縮された空気によってレンズがパッケージ本体から剥離してしまい、接着不良が発生しやすい。そのためパッケージ本体に空気排出通路を設ける必要が生じ、全体として複雑な機構となるという問題がある。
また、特許文献2及び3に記載された従来のレンズ付きパッケージの工程では、ウェハをダイシングして個片化した後に、個片化したそれぞれの素子上にレンズを設置するため、生産性が悪いという問題がある。また個片化した素子上に素子よりも幅広な半球レンズを搭載する場合、レンズの位置決め精度が悪いという問題がある。
上述した従来のレンズ付き紫外線発光装置では、レンズ剥離防止のために構造が複雑になったり、レンズの位置決め精度が悪いため光出力が低く、小型化にも適さないという問題もある。
本発明は、このような事情に鑑みてなされたものであって、生産性に優れ、光学部材の位置決めの精度が良い紫外線発光装置の製造方法、並びに、小型化が可能かつ簡易な構造で光出力が向上した紫外線発光装置、および、それを備えた装置を提供することを目的とする。
本発明の一態様による紫外線発光装置の製造方法は、基板と、前記基板の第1主面側に形成された半導体積層部と、前記半導体積層部に電気的に接続する第1電極部及び第2電極部とを有する半導体パターンを複数有する半導体ウエハの前記基板の第2主面上に、接着層を介して、第1板状部と、該第1板状部の一方の面側に同一部材で一体形成された複数の凸状部とを有する光学部材を貼りつける工程と、前記第1主面側からダイシング法で各々の半導体パターンを分割して素子化するダイシング工程と、を備えることを特徴とする。
また本発明の一態様による紫外線発光装置は、基板と、前記基板の第1主面側に形成された半導体積層部と、前記半導体積層部に電気的に接続する第1電極部及び第2電極部とを有する半導体チップと、平面視したときに前記第1主面よりも大きい面積を有する第1板状部と、該第1板状部の一方の面側に同一部材で一体形成された凸状部とを有する光学部材と、前記第1板状部の他方の面と前記基板の第2主面とを接着する接着層とを備えることを特徴とする。
また、本発明の一態様による装置は、上記本発明の一態様による紫外線発光装置を備えることを特徴とする。
本発明の一態様によれば、生産性に優れ、光学部材の位置決め精度が良い紫外線発光装置の製造方法、および小型化が可能かつ簡易な構造で光出力が向上した紫外線発光装置およびそれを備えた装置を提供することができる。
本発明の第1の実施形態の紫外線発光装置の製造方法を説明するための平面模式図および断面模式図である。 本発明の第1の実施形態の紫外線発光装置を説明するための平面模式図および断面模式図である。 本発明の第2の実施形態の紫外線発光装置の製造方法を説明するための平面模式図および断面模式図である。 本発明の第2の実施形態の紫外線発光装置を説明するための平面模式図および断面模式図である。 本発明の第3の実施形態の紫外線発光装置および紫外線発光装置の製造方法を説明するための平面模式図および断面模式図である。 従来の紫外線発光装置を説明するための断面模式図である。
以下、本発明を実施するための形態(本実施形態)について説明する。
<紫外線発光装置の製造方法>
本実施形態の紫外線発光装置の製造方法は、基板と、前記基板の第1主面側に形成された半導体積層部と、前記半導体積層部に電気的に接続する第1電極部及び第2電極部とを有する半導体パターンを複数有する半導体ウエハの前記基板の第2主面上に、接着層を介して、第1板状部と、該第1板状部の一方の面側に同一部材で一体形成された複数の凸状部とを有する光学部材を貼りつける工程と、前記第1主面側からダイシング法で各々の半導体パターンを分割して素子化するダイシング工程と、を備える。
本実施形態の紫外線発光装置の製造方法は、光学部材を貼りつける工程の後にダイシング工程を実施するため、ダイシング工程の後にレンズを搭載する従来の紫外線発光装置と比較して、生産性に優れ、レンズの配置の位置精度が向上する。
<紫外線発光装置>
本実施形態の紫外線発光装置は、基板と、前記基板の第1主面側に形成された半導体積層部と、前記半導体積層部に電気的に接続する第1電極部及び第2電極部とを有する半導体チップと、平面視したときに前記第1主面よりも大きい面積を有する第1板状部と、該第1板状部の一方の面側に同一部材で一体形成された凸状部とを有する光学部材と、前記第1板状部の他方の面と前記基板の第2主面とを接着する接着層とを備える。
本実施形態の紫外線発光装置は、光学部材が、第1板状部と、第1板状部の一方の面側に同一部材で一体形成された凸状部とを有し、光学部材の第1板状部の他方の面が、基板の第2主面と接着層を介して接続され、平面視したときに第1板状部の面積が、基板の第1主面の面積よりも大きいことにより、小型化が可能かつ簡易な構造で、光出力が向上するという効果を奏する。
以下、上述した本実施形態の紫外線発光装置および紫外線発光装置の製造方法における各構成要件について説明する。なお、以下に記載される各構成要件における特徴は、本発明の技術思想を逸脱しない範囲でそれぞれ単独または組み合わせて適用可能である。
<基板>
本実施形態の紫外線発光装置及び紫外線発光装置の製造方法における基板は、第1主面上に半導体積層部を形成可能なものであれば特に制限されず、サファイア(Al)、スピネル(MgAl)、酸化亜鉛(ZnO)、酸化マグネシウム(MgO)などの酸化物単結晶、Si、SiC、GaAs、GaP、AlN、GaNなどの基板を使用することができる。基板は、上記に列挙した基板材料に加えて、さらに同一組成または別組成のバッファ層を有していてもよい。例えばサファイア上に窒化アルミニウムのバッファ層を有するものも全体として基板となる。また、後の工程で元の基板を除去するような場合は、残ったバッファ層を基板となる。
基板の面方位は特に限定されず、ジャスト基板であっても、オフ角を付与した基板であっても良い。また、厚みについても特に限定されることはなく、ハンドリングが可能な厚み以上で適正なものを用いることができる。
<半導体積層部>
本実施形態の紫外線発光装置および紫外線発光装置の製造方法における半導体積層部は、基板の第1主面上に形成された第1半導体層と、第1半導体層上に形成された発光層及び発光層上に形成された第2半導体層を少なくとも有する。半導体積層部は、これら第1半導体層、発光層及び第2半導体層以外に、電極との良好なオーミック接触を実現するためのコンタクト層や、発光効率を向上させるためのバリア層(ブロック層)などの別の層をさらに備えていてもよい。発光層は、発光効率を向上させるために、単一又は多重量子井戸構造であることが好ましい。半導体積層部に用いる材料としては、LEDの発光波長に応じて公知の材料を採用できる。一例としては、InAlGa(1−x−y)N(0≦x≦1、0≦y≦1、0≦x+y≦1)、やAlGaInP(0≦x≦1、0≦y≦1、0≦x+y≦1)で表されるIII−V族化合物半導体材料を用いることができる。
半導体積層部は、予め設定した電圧が印加されると、中心発光波長が230nm以上320nm以下の紫外線を発光してもよい。波長が230nm以上320nm以下の紫外線を発光する紫外線LEDは、殺菌やタンパク質成分の分離などさまざまなアプリケーションに適用することができる。
第1半導体層は、例えば、InAlGa(1−x−y)N(0≦x≦1、0≦y≦1、0≦x+y≦1)、やAlGaInP(0≦x≦1、0≦y≦1、0≦x+y≦1)から構成される複数の層を有している。これら複数の層の少なくとも一部は発光層の格子パラメータに近づくように擬似格子整合的に歪まされている。または、第1半導体層は、一層又は複数層のInAlGa(1−x−y)N(0≦x≦1、0≦y≦1、0≦x+y≦1)やAlGaInP(0≦x≦1、0≦y≦1、0≦x+y≦1)を有している。これらのInAlGa(1−x−y)NやAlGaInPの組成式のx及びyが第1半導体層の厚みと共に変化する(すなわち、厚み方向に沿って線形的又は段階的に変化する)組成であってもよい。
ドーピングに用いられる不純物としては、p型不純物としてマグネシウム(Mg)が例示され、n型不純物としてシリコン(Si)が例示される。
第1半導体層のうち、基板との界面を含む部位は、基板または基板が有するバッファ層とほぼ同一の組成を有していることが好ましい。これにより、第1半導体層の2次元の成長が促進され、不都合なアイランド形成を回避することができる。また、そのようなアイランド形成を回避することにより、第1半導体層及び後続の成長層での不都合な弾性の歪み緩和が起こることを回避することができる。
発光層は、例えば多重量子井戸(MQW:Multi Quantum Well)層を含む。MQW層は、複数の量子井戸を含み、その量子井戸のそれぞれは、例えばInAlGaN、又は、AlGaNから構成されている。
一例を挙げると、MQW層は、AlGa1−xN量子井戸及びAlGa1−yN量子井戸を含み、その一方が他方の上に積層された構造を有する。ここで、AlGa1−xN量子井戸のxと、AlGa1−yN量子井戸のyは、互いに異なる値である。xとyの差は、活性領域での電子及び正孔の良好な閉じ込めが得られるように十分に大きくなっていることが好ましい。これにより、放射性の再結合の、非放射性の再結合に対する比を高くすることができる。
AlGa1−xN量子井戸及びAlGa1−yN量子井戸を含むMQW層において、xとyの値を例示すると、xとyとの差は約0.05であり、xは約0.35で、yは約0.4である。なお、xとyの差が過度に大きい(例えば、約0.3より大きい)と、MQW層の形成中に不都合なアイランド形成が起こってしまう。このため、xとyの差は例えば0.3以下であることが好ましい。
また、MQW層は、AlGa1−xN量子井戸及びAlGa1−yN量子井戸の対を1周期として複数の周期を含んでもよく、全体の厚み(すなわち、総厚)が約50nm未満であってもよい。
また、発光層は任意の薄い電子ブロック(又はn型コンタクトがデバイスの上部に置かれている場合には正孔ブロック)層を有していてもよい。この電子ブロック層は、例えば、Mgのような1つ以上の不純物でドーピングされたAlGa1−xNから構成されていてもよい。電子ブロック層の厚みは、例えば約20nmである。
第2半導体層は、発光層上に形成され、例えば、不純物でドープされたInAlGaN、又は、不純物でドープされたAlGaNから構成されている。不純物としては、p型不純物としてマグネシウム(Mg)が例示され、n型不純物としてシリコン(Si)が例示される。
第2半導体層はn型又はp型にドープされているが、第1半導体層とは反対の導電性を有している。例えば、第1半導体層はSi等のn型不純物がドープされてn型の導電性を示している場合、第2半導体層はMg等のp型不純物がドープされてp型の導電性を示している。第2半導体層の厚みは、例えば50nmから100nm程度である。
また、第2半導体層は、第2導電型にドープされた半導体材料を含むキャップ層を有していてもよい。第2半導体層がp型の導電性を示している場合、このキャップ層は、例えばMgでドープされたGaNを含み、10nmから100nm程度の厚み、好ましくは約50nmの厚みを有する。
半導体チップが有する半導体積層部の数は1つでもよいし、複数であってもよい。単位面積当たりの発光量を向上させる観点から、半導体チップは並列接続された複数の半導体積層部を備えることが好ましい場合もある。また、半導体積層部の形状も特に制限されず、例えば平面視で矩形状、円形状または楕円形状、多角形状、またはそれらを組み合わせた形状等でもよい。
[光学部材]
本実施形態の紫外線発光装置の製造方法における光学部材は、第1板状部と凸状部との間に、第1板状部及び凸状部と同一部材で一体形成された第2板状部をさらに有し、第2板状部はダイシング工程で外力を加える領域の直下に存在しないことが好ましい。
第2板状部がダイシング工程で外力を加える領域の直下に存在しないことにより、ダイシング工程において各々の半導体パターンをより容易に分割することが可能になり、生産性が向上し、また製造段階における紫外線発光装置への外力によるダメージを低減することが可能になる。
また、本実施形態の紫外線発光装置における光学部材は、光出力向上の観点から、第1板状部と凸状部との間に、第1板状部及び凸状部と同一部材で一体形成された第2板状部をさらに有し、平面視したときに第2板状部の面積が、基板の第1主面の面積よりも小さいことが好ましい。光学部材は、第1板状部と凸状部との間にこのような構成の第2板状部を備えていることにより、半導体積層部から出力された光が効率的に外部に取り出される。これにより、紫外線発光装置は光出力の向上を図ることができる。
光学部材は、紫外線の吸収による劣化を抑制するという観点から、紫外線透過率が260から320nmの領域で90%以上である事が好ましい。
本実施形態の紫外線発光装置及び紫外線発光装置の製造方法における光学部材の製造方法は特に制限されないが、例えば切削による切り出し等により加工形成する方法が挙げられる。本実施形態では、光学部材の製造方法は、安価かつ任意の形状で容易に加工が可能である観点から、金型を用いたゾル−ゲル法を用いることが好ましい。光学部材の形成材料は、一例としては石英やサファイアなどが挙げられる。また、一般的に上述したゾル−ゲル法を用いた場合、光学部材の形成材料は樹脂材料となる。樹脂材料は特に制限されないが、例えば、熱硬化性のエポキシ樹脂やアクリル樹脂、又は光硬化性のエポキシ樹脂やアクリル樹脂などが適用可能である。また、これらの樹脂に無機微粒子を分散させた有機無機複合材料を用いることもできる。無機微粒子としては、例えば酸化物微粒子、硫化物微粒子、セレン化物微粒子、テルル化物微粒子が挙げられる。より具体的に無機微粒子としては、例えば、酸化ジルコニウム、酸化チタン、酸化亜鉛、酸化スズ及び硫化亜鉛等の微粒子を挙げることができる。無機微粒子は、単独で用いても2種以上を併用してもよい。また、無機微粒子は、複数の成分による複合物であってもよい。
本実施形態の紫外線発光装置の製造方法における光学部材の厚さは特に制限されないが、ダイシング工程において各々の半導体パターンをより容易に分割することを可能にする観点から薄い方が好ましく、半導体ウエハよりも薄いことが好ましい。
[接着層]
本実施形態の紫外線発光装置及び紫外線発光装置の製造方法における接着層は、紫外線の吸収による劣化を抑制するという観点から、紫外線透過率が260nmから320nmの波長領域で90%以上である事が好ましい。
発光層から生成した紫外線は基板の第2主面を通して放出される。接着層に用いられる材料としては、紫外線に耐性があれば特に限定されない。接着層は、例えばシリコーンを主成分とする樹脂で形成されている。その中でも接着性の観点から、接着層に用いられる材料は、ジメチルシリコーンやシリコーンオイルなどの熱硬化型の樹脂が望ましい。
また接着層の厚みは、紫外線の吸収による劣化を抑制するという観点から、0.1μm以上10μm以下であることが好ましい。
シリコーン樹脂は紫外線を吸収してしまうようなフェニル基などを有しないものが好ましく、ジメチルシリコーンやシリコーンオイルを用いることが特に望ましい。適用可能なシリコーン樹脂としてはダウコーニング社のOE、JCRシリーズや、Schott社のDeep UV200などを用いることが出来る。またガラスをベースにした材料も使用可能であり、旭硝子株式会社のサイトップ(登録商標)や、Crystal Material社のNovaxilなども使用可能であるが、上記の材料に限定されるものではない。
[第1、第2電極部]
本実施形態の紫外線発光装置および紫外線発光装置の製造方法における第1及び第2電極部は、半導体積層部の発光層に電力を供給するための電極部である。第1及び第2電極部の形状や配置については特に制限されないが、半導体積層部がメサ型構造の場合、メサ頂部とメサ底部のそれぞれに第1及び第2電極部のいずれか一端が配置される例が挙げられる。また、他には素子上面と下面のそれぞれに第1及び第2電極部のいずれか一端が配置される例などがある。
第1及び第2電極部は、導電性の材料で形成され、例えば金(Au)、ニッケル(Ni)、アルミニウム(Al)、チタン(Ti)又はそれらの組み合わせなどで構成されている。一例を挙げると、p型の半導体層に接続する第1電極部はNi/Au合金で形成され、n型の半導体層に接続する第1電極部はTi/Al/Ti/Auスタックで形成されている構成が挙げられる。第1及び第2電極部は、例えばスパッタリング又は蒸着によって形成される。
また、第1及び第2電極部は紫外線反射器としての機能も含んでいてよい。紫外線反射器は、第1及び第2電極部に向かって発光する光子を再度方向付けする(すなわち、光子が半導体積層部から逃げないようにする)こと及び、所望の発光面(例えば、底部表面)に向けて光子を再度方向付けることによって、デバイスの活性領域において生成される光子の抽出効率を改善するように設計される。
[アレイ構造]
本実施形態に係る紫外線発光装置及び紫外線発光装置の製造方法では、一装置、すなわち接着層で接着された半導体チップ及び光学部材の組あたりの光出力向上の観点からアレイ状に連結されていることが好ましい。
接着層で接着された半導体チップ及び光学部材の組がアレイ状に連結されている紫外線発光装置の製造方法は特に制限されないが、例えばダイシング工程において、それぞれ独立して発光部を有する半導体パターンを複数有するようにウエハから分割して素子化する方法が挙げられる。本実施形態の紫外線発光装置の製造方法は、ダイシング工程の前に光学部材を貼りつける工程を有しているため、ダイシング工程の後にレンズを搭載する従来の紫外線発光装置と比較して、生産性や各レンズの配置の位置精度を向上させながらアレイ状に連結された紫外線発光装置を得ることが可能になる。
<装置>
本発明の一実施形態に係る装置は、本発明の一実施形態に係る紫外線発光装置を備えるものである。
本発明の一実施形態に係る紫外線発光装置は、各種の装置に適用可能である。
本発明の一実施形態に係る紫外線発光装置は、紫外線ランプが用いられている既存の全ての装置に適用・置換可能である。特に、波長280nm以下の深紫外線を用いている装置に適用可能である。
本発明の一実施形態に係る紫外線発光装置は、例えば、医療・ライフサイエンス分野、環境分野、産業・工業分野、生活・家電分野、農業分野、その他分野の装置に適用可能である。
本発明の一実施形態に係る紫外線発光装置は、薬品や化学物質の合成・分解装置、液体・気体・固体(容器、食品、医療機器等)殺菌装置、半導体等の洗浄装置、フィルム・ガラス・金属等の表面改質装置、半導体・フラットパネルディスプレイ(FPD)・プリント回路基板(PCB)・その他電子品製造用の露光装置、印刷・コーティング装置、接着・シール装置、フィルム・パターン・モックアップ等の転写・成形装置、紙幣・傷・血液・化学物質等の測定・検査装置に適用可能である。
液体殺菌装置の例としては、冷蔵庫内の自動製氷装置・製氷皿および貯氷容器・製氷機用の給水タンク、冷凍庫、製氷機、加湿器、除湿器、ウォーターサーバの冷水タンク・温水タンク・流路配管、据置型浄水器、携帯型浄水器、給水器、給湯器、排水処理装置、ディスポーザ、便器の排水トラップ、洗濯機、透析用水殺菌モジュール、腹膜透析のコネクタ殺菌器、災害用貯水システム等が挙げられるがこの限りではない。
気体殺菌装置の例としては、空気清浄器、エアコンディショナー、天井扇、床面用や寝具用の掃除機、布団乾燥機、靴乾燥機、洗濯機、衣類乾燥機、室内殺菌灯、保管庫の換気システム、靴箱、タンス等が挙げられるがこの限りではない。
固体殺菌装置(表面殺菌装置を含む)の例としては、真空パック器、ベルトコンベヤ、医科用・歯科用・床屋用・美容院用のハンドツール殺菌装置、歯ブラシ、歯ブラシ入れ、箸箱、化粧ポーチ、排水溝のふた、便器の局部洗浄器、便器フタ等が挙げられるがこの限りではない。
次に、図面を参酌しながら、本実施形態の紫外線発光装置の製造方法及び紫外線発光装置をより詳細に説明する。
<第1の実施形態>
図1は、第1の実施形態の紫外線発光装置の製造方法を説明するための平面模式図及び断面模式図である。図1中の上段には、紫外線発光装置1の平面模式図が示され、図1中の下段には、紫外線発光装置1の断面模式図が示されている。なお、図1では説明を簡略化するために、複数の半導体パターン2が形成された半導体ウエハ5の中で、4つの半導体パターン2を有する部分を抜き出しているが本実施形態はこれに限定されない。
図1(a)は、光学部材50(図1(a)では不図示)を貼りつける工程に供する半導体ウエハ5を図示している。半導体ウエハ5は、基板10と、基板10の第1主面S1側に形成された半導体積層部20と、半導体積層部20に電気的に接続する第1電極部31と第2電極部32とを有する半導体パターン2を4つ(図1(a)では2つの半導体パターン2が図示されている)有している。
半導体積層部20は、基板10の第1主面S1側に形成された、第1導電型の第1半導体層21と、発光層22と、第2導電型の第2半導体層23とを含む積層構造であることが好ましい。半導体積層部20の材料、組成および構造を所望のものにすることにより、所望の波長の紫外線を発光することが可能になる。発光層は量子井戸構造を有していてもよい。半導体積層部20は、例えば有機金属気相成長法(MOCVD:Metal Organic Chemical Vapor Deposition)法で形成することができる。
半導体パターン2は、例えばフォトリソグラフィ及びドライエッチング技術で行うことができる。第1電極部31及び第2電極部32は、例えばスパッタリング法又は蒸着法と、リフトオフ技術とを用いて形成することが可能である。
また、図示はしていないが、基板10の第2主面S2を機械的化学的な手法で研削してもよい。第2主面S2は、第1主面S1に対して基板10の裏面に相当する。例えば基板10の厚さを研削前の厚さの半分以下にまで薄く加工することが可能である。基板10の厚さを100μm以上薄くする場合は、機械的に研削する。基板10として窒化アルミニウム基板を用いる場合、窒化アルミニウムはダイヤモンドと同等の高度を有するため、細かい砥粒のダイヤモンドで削ることが好ましい。但し基板10を機械的に研削する場合は、基板10の第2主面S2にサブミクロンオーダーでの擦り傷が残存する場合がある。そこで、このような擦り傷が第2主面S2に残存した場合は、第2主面S2を機械的化学的研磨法(CMP)法で研磨することによって、擦り傷を除去してもよい。
図1(b)は、光学部材50を貼りつける工程を示す図である。図1(a)に示すように、光学部材50を貼りつける工程では、半導体ウエハ5の基板10の第2主面S2上に、接着層40を介して、第1板状部51と、第1板状部51の一方の面S3側に同一部材で一体形成された4つの凸状部53と有する光学部材50を貼りつける。一方の面S3は、第2主面S2と同方向に向く面である。図1(b)に示すように、各半導体パターンの特定の領域(図1(b)では発光層が形成されるメサ形状の半導体積層部20の領域)に対応した領域に光学部材50の凸状部53が配置されることが、光出力向上の観点から好ましい。図1(b)に示すように、アレイ状に予め形成された光学部材50を用いることにより、例えば半導体ウエハ5上に形成された数個の半導体パターン2と光学部材50との位置合わせを正確に行えば、半導体ウエハ5上に形成された残余の半導体パターン2と光学部材50との位置合わせも完了する。このため、本実施形態によれば、高精度な位置合わせを短時間に行うことが可能となる。図示はしていないが、例えば半導体ウエハ5側と光学部材50側の両方に何らかの位置合わせ用の部分(マーキングや嵌合可能な凹凸等)を予め形成しておくことにより、より短時間に位置合わせが可能になる。
接着層40はいかなる方法で準備されてもよい。例えば、接着層40は、半導体パターン2毎にディスペンス法やスタンプ法で塗布してもよいし、スピンコート法を用いて基板10の第2主面S2の全面に薄膜を形成しても良い。あるいは、光学部材50側に予め接着層40を形成して基板10の第2主面S2に貼り付けてもよい。接着層40はいかなる材料であってもよいが、入手容易性や接着性の関係からシリコーン樹脂を用いることが好適である。シリコーン樹脂は紫外線を10%弱吸収してしまうため、シリコーン樹脂の厚みによっては直ぐに劣化してしまう可能性がある。そのためシリコーン樹脂の厚みは、薄いほど望ましく、かつ光学部材50と基板10との接着性を維持するために0.1μm以上の厚みが好ましい。このためシリコーン樹脂の厚みとしては0.1μm以上10μm以下の範囲であることが好ましい。接着層40を硬化する場合は、硬化時の光学部材50の反りを防止するために、適度な加重を掛けながら硬化させてもよい。
図1(c)は、半導体ウエハ5の基板10の第1主面S1側からダイシング法で各々の半導体パターン2を分割して素子化するダイシング工程を図示している。図1(c)中の上段に示す4つの破線正方形枠の間隙がダイシングによる切断部となる。半導体積層部20へのダメージを低減する観点から、各半導体パターン2を隔てる領域に、ダイシングブレードやレーザーブレード等で外部から何らかの作用を施し、必要に応じてさらに外力等を加え、各々の半導体パターン2が分割されて素子化される。
窒化アルミニウム基板等の硬度が高く、ブレードダイシングでの加工が困難な場合がある基板10を用いる場合は、レーザ光を照射して溝を形成し、その後、この溝に沿って基板10を機械的に分断することで、基板10の個片化を実施することが好ましい。この加工に使用するレーザ光の種類は特には限定されないが、基板10への熱負荷を減らすために高密度なレーザ光が望ましく、例えば、波長365nmのレーザ光や、波長265nmのレーザ光が望ましい。また、このレーザ光を用いたダイシングは、ステルスダイシング法で行ってもよい。
また光学部材50を分断するために、ブレードダイシングでレンズ台座分割し、レーザーダイシング法で基板10に溝を形成して、組み合わせてブレードで個片化してもよい。
図2は、素子化した紫外線発光装置1の模式図である。図2(a)は上面から見た紫外線発光装置1の平面模式図であり、図2(b)は図2(a)中に示すA−A線で切断した紫外線発光装置1の断面模式図であり、図2(c)は下面から見た紫外線発光装置1の底面模式図である。
紫外線発光装置1は、基板10と、基板10の第1主面S1側に形成された半導体積層部20と、半導体積層部20に電気的に接続する第1電極部31及び第2電極部32とを有する半導体チップ100と、光学部材50と、基板10と光学部材50とを接着する接着層40とを備えている。光学部材50は、第1板状部51と、第1板状部51の一方の面S3側に同一部材で一体形成された凸状部53とを有している、光学部材50の第1板状部51の他方の面S4は、基板10の第2主面S2と接着層40を介して接続されている。他方の面S4は、第1主面S1と同方向に向く面である。また、他方の面S4は、第2主面S2に対向する面である。
紫外線発光装置1は、基板10の第1主面S1側からダイシング法で分割して素子化されているので基板10の第1主面S1の縁部が除去されている。このため、紫外線発光装置1は、平面視したときに第1板状部51の面積M1が、基板10の第1主面S1の面積M2よりも大きくなっている。
本実施形態の紫外線発光装置1に備えられた光学部材50は、第1板状部51と、第1板状部51の一方の面S3側に同一部材で一体形成された凸状部53とを有している。光学部材50の第1板状部51の他方の面S4は、基板10の第2主面S2と接着層40を介して接続されている。紫外線発光装置1を平面視したときに第1板状部51の面積M1は、基板10の第1主面S1の面積M2よりも大きく形成されている。これにより、紫外線発光装置1は、半導体ウエハを素子化した後にレンズを搭載する従来の紫外線発光装置と比較して、小型化が可能かつ簡易な構造を有し、かつ光学部材50の配置の位置精度が向上する。このため、紫外線発光装置1は光出力の向上を図ることができる。
<第2の実施形態>
図3は、本発明の第2の実施形態の紫外線発光装置1の製造方法を説明するための模式図である。図3中の上段には、紫外線発光装置1の平面模式図が示され、図3中の下段には、上段中に示すA−A線で切断した紫外線発光装置1の断面模式図が示されている。
図3(a)に示すように、第2の実施形態による紫外線発光装置1の製造方法では、光学部材50(図3(a)では不図示)を貼りつける工程に供する半導体ウエハ5は、第1の実施形態による紫外線発光装置1の製造方法における半導体ウエハ5と同一の構造を有している。
図3(b)に示すように、第1の実施形態の紫外線発光装置1の製造方法と比較すると、第2の実施形態による紫外線発光装置1の製造方法は、基板10の第2主面S2に貼り付けられる光学部材50が、第1板状部51及び凸状部53に加え、さらに第2板状部52を備えている点で相違する。第2板状部52をさらに備えていることにより、図3(c)に図示するダイシング工程において外力を加える領域の直下に第2板状部52が存在しないことにより、この外力が加わる領域の光学部材50の厚みが相対的に薄くなるため、各々の半導体パターン2を更に容易に分割することが可能になる。図3(c)中の上段に示す4つの破線正方形枠の間隙がダイシングによる切断部となる。このように、第2板状部52はこの切断部に存在していないので、第2の実施形態による紫外線発光装置1の製造方法によれば、生産性が向上し、また紫外線発光装置1への外力によるダメージを低減することが可能になる。
図4は、第2の実施形態による紫外線発光装置1の製造方法によって得られた、第2の実施形態による紫外線発光装置1の模式図である。図4(a)は上面から見た紫外線発光装置1の平面模式図であり、図4(b)は図4(a)中に示すA−A線で切断した紫外線発光装置1の断面模式図であり、図4(c)は下面から見た紫外線発光装置1の底面模式図である。
第2の実施形態による紫外線発光装置1は、平面視したときに第2板状部52の面積M3が、基板10の第1主面S1の面積M2よりも小さくなっている。この構成となるように紫外線発光装置1を製造すれば、製造段階での紫外線発光装置1への外力によるダメージを低減することが可能になる。これにより、紫外線発光装置1は光出力のより一層の向上を図ることができる。
<第3の実施形態>
図5は、本発明の第3の実施形態による紫外線発光装置の製造方法を説明するための模式図である。図3中の上段には、紫外線発光装置1の平面模式図が示され、図3中の下段には、上段中に示すA−A線で切断した紫外線発光装置1の断面模式図が示されている。第1の実施形態による紫外線発光装置1の製造方法と比較すると、図5(c)に示すダイシング工程におけるダイシング領域が異なる。
つまり、図5(a)に示すように、第3の実施形態による紫外線発光装置1の製造方法では、光学部材50(図5(a)では不図示)を貼りつける工程に供する半導体ウエハ5は、第1の実施形態による紫外線発光装置1の製造方法における半導体ウエハ5と同一の構造を有している。また、図5(b)に示すように、第3の実施形態による紫外線発光装置1の製造方法では、接着層40を介して半導体ウエハ5に接着される光学部材50は、第1の実施形態による紫外線発光装置1の製造方法における光学部材50と同一の構造を有している。
一方、図5(c)に示すように、第3の実施形態による紫外線発光装置1の製造方法では、2つの半導体パターン2が1つの個片化された素子に含まれるようにダイシングされる。図5(c)中の上段に示す2つの破線長方形枠の長手方向の間隙がダイシングによる切断部となる。これにより、各々に光学部材50が搭載され、かつ、アレイ状に連結された紫外線発光装置1を容易かつ高精度に得ることが可能になる。
次に、本実施形態の紫外線発光装置の製造方法及び紫外線発光装置を、実施例に基づいてさらに詳細に説明する。
(実施例1)
本実施形態の実施例1による紫外線発光装置について図1及び図2を参照しつつ説明する。
厚さ425μmのAlN単結晶基板(以下、比較例を除いて、単に「基板」と称する場合がある)10の第1主面S1上に、MOCVD法により、AlN層を4μm、N型Al0.7Ga0.3N層を2μm、発光層としてのAlGaN層、P型Al0.1Ga0.9N層、P型GaN層を200nmを積層成膜し、外部から電力を印加するためのメサ構造を形成し、N型Al0.7Ga0.3N層の表面の一部に第1電極部31、P型GaN層の表面の一部に第2電極部32を形成し、図1(a)に示す形態の紫外線発光装置1の半導体パターン2を有する半導体ウエハ5を用意した。一つの紫外線発光装置1の半導体パターン2は平面視したときに820μm×820μmのパターンとした。
次いで、AlN単結晶基板10の第2主面S2を機械的研磨およびKOHを用いたCMP(化学的機械的研磨法)により処理し、基板10の厚みを200μmとした。
次いで、研磨後のAlN単結晶基板10の第2主面S2にジメチルシリコーン系のシリコーン樹脂をスタンプ法で塗布し、凸状部53と第1板状部51を有する光学部材50を、図1(b)に示す形態を有するようにAlN単結晶基板10の第2主面S2に接着した。凸状部53の中心が半導体ウエハ5の各半導体パターン2のメサ構造の中心に位置するパターンとなるようにゾル−ゲル法で形成した光学部材50を用いた。第1板状部51の厚みは0.2mmとし、凸状部53の厚みは0.3mmとした。シリコーン樹脂の接着層40の厚みは0.9μmとなるようにシリコーン樹脂の塗布量および光学部材の押し付け力を制御した。
次いで、半導体ウエハ5の基板10の第1主面S1側からレーザーでハーフカットしその後金属ブレードでハーフカット部をたたく事で、個片化し、500個の紫外線発光装置1を得た。
得られた紫外線発光装置1の断面及び平面を確認したところ、平面視したとき、第1板状部51の面積M1は0.67mmであり、基板10の第1主面S1の面積M2は0.64mmであり、凸状部53の面積は0.28mmであった。
光学部材50の凸状部53の中心と半導体パターン2のメサ構造の中心とのずれはいずれも8μm以内に収まっていた。
得られた紫外線発光装置1に100mAの定電流を48時間連続通電して光強度の変化を確認したところ、初期(0時間)の光強度は2.2mWであり、48時間経過後の光出力は2.1mWであった。48時間連続通電後の紫外線発光装置1を観察したところ、接着層40であるシリコーン樹脂には亀裂等は見られなかった。
(実施例2)
本実施形態の実施例2による紫外線発光装置について図1及び図2を参照しつつ説明する。
シリコーン樹脂の厚みを8μmとした以外は実施例1と同様の方法で紫外線発光装置1を得た。得られた紫外線発光装置1の断面および平面を確認したところ、平面視したとき、第1板状部51の面積M1は0.67mmであり、基板10の第1主面S1の面積M2は0.64mmであり、凸状部53の面積は0.28mmであった。光学部材50の凸状部53の中心と半導体パターン2のメサ構造の中心とのずれはいずれも8μm以内に収まっていた。
得られた紫外線発光装置1に100mAの定電流を48時間連続通電して光強度の変化を確認したところ、初期(0時間)の光強度は1.8mWであり、48時間経過後の光出力は1.8mWであった。48時間連続通電後の紫外線発光装置1を観察したところ、接着層40であるシリコーン樹脂には亀裂等は見られなかった。
(実施例3)
本実施形態の実施例3による紫外線発光装置について図1及び図2を参照しつつ説明する。
シリコーン樹脂の厚みを15μmとした以外は実施例1と同様の方法で紫外線発光装置1を得た。得られた紫外線発光装置1の断面および平面を確認したところ、平面視したとき、第1板状部51の面積M1は0.67mmであり、基板10の第1主面S1の面積M2は0.64mmであり、凸状部53の面積は0.28mmであった。光学部材50の凸状部53の中心と半導体パターン2のメサ構造の中心とのずれはいずれも8μm以内に収まっていた。
(実施例4)
本実施形態の実施例4による紫外線発光装置について図1及び図2を参照しつつ説明する。
シリコーン樹脂の厚みを41μmとした以外は実施例1と同様の方法で紫外線発光装置1を得た。得られた紫外線発光装置1の断面および平面を確認したところ、平面視したとき、第1板状部51の面積M1は0.67mmであり、基板10の第1主面S1の面積M2は0.64mmであり、凸状部53の面積は0.28mmであった。光学部材50の凸状部53の中心と半導体パターン2のメサ構造の中心とのずれはいずれも8μm以内に収まっていた。
(比較例)
比較例としての紫外線発光装置について図6を参照しつつ説明する。図6は、比較例としての従来の紫外線発光装置3の断面模式図である。
厚さ425μmのAlN単結晶基板(以下、本比較例において単に「基板」と称する場合がある)110の第1主面S10上に、MOCVD法により、AlN層を4μm、N型Al0.7Ga0.3N層を2μm、発光層としてのAlGaN層、P型Al0.1Ga0.9N層、P型GaN層を200nmを積層成膜し、外部から電力を印加するためのメサ構造を形成し、N型Al0.7Ga0.3N層の表面の一部に第1電極部131、P型GaN層の表面の一部に第2電極部132を形成し、実施例1における半導体パターン2と同形状の紫外線発光装置3の半導体パターン200を有する半導体ウエハを用意した。
次いで、AlN単結晶基板110の第2主面S20を機械的研磨およびKOHを用いたCMP(化学的機械的研磨法)により処理し、基板110の厚みを200μmとした。
次いで、半導体ウエハの基板110の第1主面S10側からレーザーでハーフカットしその後金属ブレードでハーフカット部をたたく事で個片化した。
次いで、個片化されたAlN単結晶基板110の第2主面S20にジメチルシリコーン系のシリコーン樹脂をスタンプ法で塗布し、図6に示す形態を有する光学部材150をAlN単結晶基板110の第2主面S20に接着した。光学部材150としては直径2.5mmの半球石英レンズを用いた。シリコーン樹脂の接着層140の厚みは8μmとなるようにシリコーン樹脂の塗布量および光学部材150の押し付け力を制御した。
得られた紫外線発光装置3の断面および平面を確認したところ、平面視したとき、光学部材150の面積は19.6mmであり、基板110の第1主面S10の面積は0.64mmであった。光学部材150の中心と半導体パターン200のメサ構造の中心とのずれは平均で55μmであった。
得られた紫外線発光装置3に100mAの定電流を印加したところ、光出力は0.6mWであった。
(実施例5)
本実施形態の実施例5による紫外線発光装置について図3及び図4を参照しつつ説明する。
厚さ425μmのAlN単結晶基板10の第1主面S1上に、MOCVD法により、AlN層を4μm、N型Al0.7Ga0.3N層を2μm、発光層としてのAlGaN層、P型Al0.1Ga0.9N層、P型GaN層を200nmを積層成膜し、外部から電力を印加するためのメサ構造を形成し、N型Al0.7Ga0.3N層の表面の一部に第1電極部、P型GaN層の表面の一部に第2電極部を形成し、図3(a)に示す形態を有する紫外線発光装置1の半導体パターン2を有する半導体ウエハ5を用意した。一つの紫外線発光装置1の半導体パターン2は平面視したときに820μm×820μmのパターンとした。
次いで、AlN単結晶基板10の第2主面S2を機械的研磨およびKOHを用いたCMP(化学的機械的研磨法)により処理し、基板の厚みを200μmとした。
次いで、研磨後のAlN単結晶基板10の第2主面S2にジメチルシリコーン系のシリコーン樹脂をスタンプ法で塗布し、凸状部53と第1板状部51と第2板状部52とを有する光学部材50を、図3(b)に示す形態を有するようにAlN単結晶基板の第2主面S1に接着した。光学部材50としては凸状部53の中心が半導体ウエハ5の各半導体パターン2のメサ構造の中心に位置するパターンとなるようにゾル−ゲル法で形成したものを用いた。第1板状部51の厚みは0.2mmとし、第2板状部52の厚みは0.1mmとし、凸状部53の厚みは0.3mmとした。シリコーン樹脂を形成材料とする接着層40の厚みは0.9μmとなるようにシリコーン樹脂の塗布量及び光学部材50の押し付け力を制御した。
次いで、半導体ウエハ5の基板10の第1主面S1側からレーザースクライブを行い、光学部材50の第2板状部52間の溝部に刃先を押し当てることで個片化し、500個の紫外線発光装置1を得た。
得られた紫外線発光装置1の断面および平面を確認したところ、平面視したとき、光学部材(第1板状部51の外縁で囲まれる領域)の面積は0.67mmであり、基板10の第1主面S1の面積M1は0.64mmであり、第2板状部52(第2板状部52の外縁で囲まれる領域)の面積M3は0.52mmであり、凸状部53の面積は0.28mmであった。光学部材50の凸状部53の中心と半導体パターン2のメサ構造の中心とのずれはいずれも3μm以内に収まっていた。これは第2板状部52と第1板状部51との段差領域によって位置決めがより高精度になったことと、ダイシング領域の位置決めがさらに高精度かつ低応力になったこととに起因する。
(実施例6)
本実施形態の実施例6による紫外線発光装置について図5を参照しつつ説明する。
図5(c)に示すように、2つの半導体発光素子パターンを含むように個片化した以外は実施例1と同様の方法で紫外線発光装置1を得た。
得られた紫外線発光装置1の断面および平面を確認したところ、平面視したときの光学部材50の面積は0.678mmであり、基板10の第1主面S1の面積M1は0.64mmであり、第2板状部52の面積M3は0.52mmであり、凸状部53の面積は0.28mmであった。光学部材50の凸状部53の中心と半導体パターン2のメサ構造の中心とのずれはいずれも8μm以内に収まっていた。
得られた紫外線発光装置1に100mAの定電流を印加したところ、光出力は4.3mWであった。
1,3 紫外線発光装置
2,200 半導体パターン
5 半導体ウエハ
10,110 基板
20 半導体積層部
21 第1半導体層
22 発光層
23 第2半導体層
31,131 第1電極部
32,132 第2電極部
40,140 接着層
50,150 光学部材
51 第1板状部
52 第2板状部
53 凸状部
100 半導体チップ
140 接着層
S1,S10 第1主面
S2,S20 第2主面
S3 一方の面
S4 他方の面

Claims (10)

  1. 基板と、前記基板の第1主面側に形成された半導体積層部と、前記半導体積層部に電気的に接続する第1電極部及び第2電極部とを有する半導体パターンを複数有する半導体ウエハの前記基板の第2主面上に、接着層を介して、第1板状部と、該第1板状部の一方の面側に同一部材で一体形成された複数の凸状部とを有する光学部材を貼りつける工程と、
    前記第1主面側からダイシング法で各々の半導体パターンを分割して素子化するダイシング工程と、を備える
    紫外線発光装置の製造方法。
  2. 前記光学部材は、前記第1板状部と前記凸状部との間に、前記第1板状部及び前記凸状部と同一部材で一体形成された第2板状部をさらに有し、
    前記ダイシング工程で外力を加える領域の直下に前記第2板状部が存在しない
    請求項1に記載の紫外線発光装置の製造方法。
  3. 前記光学部材は、ゾル−ゲル法を用いて形成される
    請求項1又は2に記載の紫外線発光装置の製造方法。
  4. 基板と、前記基板の第1主面側に形成された半導体積層部と、前記半導体積層部に電気的に接続する第1電極部及び第2電極部とを有する半導体チップと、
    平面視したときに前記第1主面よりも大きい面積を有する第1板状部と、該第1板状部の一方の面側に同一部材で一体形成された凸状部とを有する光学部材と、
    前記第1板状部の他方の面と前記基板の第2主面とを接着する接着層と
    を備える紫外線発光装置。
  5. 前記光学部材は、前記第1板状部と前記凸状部との間に、前記第1板状部及び前記凸状部と同一部材で一体形成された第2板状部をさらに有し、
    平面視したときに前記第2板状部の面積は、前記第1主面の面積よりも小さい
    請求項4に記載の紫外線発光装置。
  6. 前記接着層で接着された前記半導体チップ及び前記光学部材の組がアレイ状に連結されている
    請求項4又は5に記載の紫外線発光装置。
  7. 前記光学部材及び前記接着層の紫外線透過率は、いずれも波長260〜300nmの領域で90%以上である
    請求項4〜6のいずれか一項に記載の紫外線発光装置。
  8. 前記接着層はシリコーンを主成分とする樹脂で形成されており、
    前記接着層の厚みは0.1μm以上10μm以下である
    請求項4〜7のいずれか一項に記載の紫外線発光装置。
  9. 中心発光波長が230nm以上320nm以下である
    請求項4〜8のいずれか一項に記載の紫外線発光装置。
  10. 請求項4〜9のいずれか一項に記載の紫外線発光装置を備える装置。
JP2015239563A 2015-03-12 2015-12-08 紫外線発光装置、それを備えた装置および紫外線発光装置の製造方法 Pending JP2016171303A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015049380 2015-03-12
JP2015049380 2015-03-12

Publications (1)

Publication Number Publication Date
JP2016171303A true JP2016171303A (ja) 2016-09-23

Family

ID=56982629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015239563A Pending JP2016171303A (ja) 2015-03-12 2015-12-08 紫外線発光装置、それを備えた装置および紫外線発光装置の製造方法

Country Status (1)

Country Link
JP (1) JP2016171303A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166473A1 (ja) * 2020-02-19 2021-08-26 ソニーセミコンダクタソリューションズ株式会社 発光装置およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166473A1 (ja) * 2020-02-19 2021-08-26 ソニーセミコンダクタソリューションズ株式会社 発光装置およびその製造方法

Similar Documents

Publication Publication Date Title
JP7136834B2 (ja) 小型光源を有する波長変換発光デバイス
JP7086133B2 (ja) 波長変換発光デバイス
US9472729B2 (en) Method of manufacturing semiconductor light emitting device package including light transmissive substrate having wavelength conversion regions
US11901342B2 (en) Discontinuous patterned bonds for semiconductor devices and associated systems and methods
CN105393373B (zh) 具有光学元件和反射体的发光器件
US8704257B2 (en) Light-emitting element and the manufacturing method thereof
US8753909B2 (en) Light-emitting device and manufacturing method thereof
JP2022043283A (ja) 発光素子
US20230109959A1 (en) Ultrathin solid state dies and methods of manufacturing the same
JP2015535144A (ja) フィルタ及び保護層を含む発光デバイス
JP2016111085A (ja) 紫外発光素子パッケージ
US8384099B2 (en) GaN based LED having reduced thickness and method for making the same
CN108258106A (zh) 用于紫外光发射装置的封装和封装紫外光发射装置的方法
JP2015179734A (ja) 半導体発光装置の製造方法および半導体発光装置
JP2012256678A (ja) 半導体発光素子の製造方法
US9356189B2 (en) Light-emitting device and method for manufacturing the same
JP2016171303A (ja) 紫外線発光装置、それを備えた装置および紫外線発光装置の製造方法
US9082892B2 (en) GaN Based LED having reduced thickness and method for making the same
JP2010199248A (ja) 発光装置
KR102029861B1 (ko) 발광 소자 제조 방법, 발광 소자 제조 장치 및 이에 의해 제조된 발광 소자
JP2016111364A (ja) 発光装置、及びこの発光装置を備える装置
JP2021153123A (ja) 紫外光発光素子及び紫外光発光装置
KR20160034565A (ko) 발광소자 및 조명시스템