JP2016171066A - Heater and semiconductor manufacturing device using the same - Google Patents

Heater and semiconductor manufacturing device using the same Download PDF

Info

Publication number
JP2016171066A
JP2016171066A JP2016016125A JP2016016125A JP2016171066A JP 2016171066 A JP2016171066 A JP 2016171066A JP 2016016125 A JP2016016125 A JP 2016016125A JP 2016016125 A JP2016016125 A JP 2016016125A JP 2016171066 A JP2016171066 A JP 2016171066A
Authority
JP
Japan
Prior art keywords
heater
heat generating
heater element
generating portion
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016016125A
Other languages
Japanese (ja)
Other versions
JP6571550B2 (en
Inventor
弘 古谷
Hiroshi Furuya
弘 古谷
佐藤 裕輔
Yusuke Sato
裕輔 佐藤
鈴木 邦彦
Kunihiko Suzuki
邦彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuflare Technology Inc
Original Assignee
Nuflare Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuflare Technology Inc filed Critical Nuflare Technology Inc
Priority to KR1020160026097A priority Critical patent/KR101874168B1/en
Priority to CN201910150071.2A priority patent/CN110034048B/en
Priority to US15/064,105 priority patent/US10237917B2/en
Priority to CN201610130482.1A priority patent/CN105957820B/en
Publication of JP2016171066A publication Critical patent/JP2016171066A/en
Application granted granted Critical
Publication of JP6571550B2 publication Critical patent/JP6571550B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/023Industrial applications
    • H05B1/0233Industrial applications for semiconductors manufacturing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heater whose life is extended by inhibiting a current from being concentrated on a folding portion of a heater element during energization.SOLUTION: A heater includes: a heater element 16a having a planar heat generating part 160, a linear slit 163 whose one end is arranged in the outer periphery of the heat generating part and other end is arranged in a folding portion of the heat generating part, respectively, and linearly formed as an opening, and a folding part 162 which is formed as the opening continuous to the other end and whose opening diameter is larger than the slit width of the linear slit, and generating heat by energization; and a pair of electrodes 16b, 16c which is connected to a prescribed surface of the heater element and to which a voltage is applied during energization to the heater element.SELECTED DRAWING: Figure 1

Description

本発明は、ヒータおよびこれを用いた半導体製造装置に関する。   The present invention relates to a heater and a semiconductor manufacturing apparatus using the heater.

近年、半導体装置の低価格化、高性能化の要求に伴い、ウェーハの成膜工程における高い生産性とともに、膜厚均一性の向上など高品質化が要求されている。   In recent years, along with demands for lowering the cost and higher performance of semiconductor devices, there has been a demand for higher quality such as improvement in film thickness uniformity as well as high productivity in the wafer film forming process.

このような要求を満たすために、枚葉式のエピタキシャル成膜装置を用い、例えば反応室内において900rpm以上でウェーハを高速回転しながら、反応室内にプロセスガスを供給し、抵抗発熱体で構成されたヒータを用いて裏面側よりウェーハを加熱する裏面加熱方式が用いられている。   In order to satisfy these requirements, a single-wafer epitaxial film forming apparatus is used, for example, a process gas is supplied into the reaction chamber while rotating the wafer at a high speed of 900 rpm or more in the reaction chamber, and a heater composed of a resistance heating element. A backside heating method is used in which the wafer is heated from the backside using the above.

特開平10−208855号公報JP-A-10-208855

上記のようなエピタキシャル成膜装置では、熱応答性を向上させるためにヒータの熱容量を低減することが求められている。ヒータの熱容量を低減する方法としては、ヒータの厚みを薄くすることが考えられるが、所望の電気抵抗値に調整するためにはヒータの折り返し幅を広くしなければならない。   In the epitaxial film forming apparatus as described above, it is required to reduce the heat capacity of the heater in order to improve the thermal responsiveness. As a method for reducing the heat capacity of the heater, it is conceivable to reduce the thickness of the heater. However, in order to adjust the heater to a desired electric resistance value, the folded width of the heater must be increased.

しかしながら、電流はヒータエレメントを均一に流れるのではなく、折り返し部に集中する。その結果、折り返し部の破損によりヒータ寿命が短くなってしまうという問題があった。   However, the current does not flow uniformly through the heater element but concentrates on the folded portion. As a result, there is a problem that the heater life is shortened due to breakage of the folded portion.

そこで、本発明は、上記従来技術の問題に鑑み、通電時にヒータエレメントの折り返し部での電流集中を抑制し、ヒータ寿命を延ばすことを目的とする。   In view of the above-described problems of the prior art, an object of the present invention is to suppress current concentration at the folded portion of the heater element during energization and extend the life of the heater.

本発明の一実施形態に係るヒータは、面状の発熱部と、一端が発熱部の外周に、他端が発熱部の折り返し部内にそれぞれ配置されて直線状に開口形成された直線状スリットと、他端に連続して開口形成され、開口径が直線状スリットのスリット幅よりも大きい折り返し部と、を有し、通電により発熱するヒータエレメントと、ヒータエレメントの所定面に接続され、ヒータエレメントへの通電時に電圧が印加される一対の電極と、を備えることを特徴とする。   A heater according to an embodiment of the present invention includes a planar heat generating portion, a linear slit having one end disposed on the outer periphery of the heat generating portion, and the other end disposed in the folded portion of the heat generating portion, and having a linear opening. A heater element that has an opening formed continuously at the other end and has a folded portion whose opening diameter is larger than the slit width of the linear slit, and is connected to a predetermined surface of the heater element, and is connected to a predetermined surface of the heater element. And a pair of electrodes to which a voltage is applied when energized.

また、本発明の一実施形態に係るヒータでは、ヒータエレメントは、一対の電極から発熱部内へ流れる電流が等分される配置で発熱部内に蛇行状に開口形成された蛇行状スリットを更に含むことが好ましい。   In the heater according to an embodiment of the present invention, the heater element further includes a serpentine slit formed in a serpentine shape in the heat generating portion so that a current flowing from the pair of electrodes into the heat generating portion is equally divided. Is preferred.

また、本発明の一実施形態に係るヒータでは、蛇行状スリットは、発熱部の中心部で分断されることが好ましい。   Moreover, in the heater which concerns on one Embodiment of this invention, it is preferable that a meandering slit is parted by the center part of a heat-emitting part.

また、本発明の一実施形態に係るヒータでは、直線状スリットは、他端から所定距離の間の端部が発熱部の外縁の同心円に沿う方向に屈曲し、折り返し部は、同心円上で前記本体部の中心線より所定の角度ずれるように配置されていることが好ましい。   In the heater according to an embodiment of the present invention, the linear slit bends in a direction along the concentric circle of the outer edge of the heat generating portion at the end between the predetermined distance from the other end, and the folded portion is the concentric circle on the concentric circle. It is preferable that they are arranged so as to deviate from the center line of the main body by a predetermined angle.

また、本発明の一実施形態に係るヒータでは、直線状スリットは、一端に面取り加工が施されていることが好ましい。   Moreover, in the heater which concerns on one Embodiment of this invention, it is preferable that the linear slit is chamfered in the end.

本発明の一実施形態に係る半導体製造装置は、ウェーハが導入される反応室と、反応室にプロセスガスを供給するガス供給機構と、反応室よりガスを排気するガス排気機構と、ウェーハが載置されるウェーハ支持部材と、ウェーハ支持部材の外周部に接続され、ウェーハを回転させる回転部材と、回転部材と接続され、回転部材の回転駆動を制御する回転駆動制御機構と、ヒータと、を備えることを特徴とする。ヒータは、面状の発熱部と、一端が発熱部の外周に、他端が発熱部の折り返し部内にそれぞれ配置されて直線状に開口形成された直線状スリットと、他端に連続して開口形成され、開口幅が直線状スリットのスリット幅よりも大きい折り返し部と、を有し、通電により発熱するヒータエレメントと、ヒータエレメントの所定面に接続され、ヒータエレメントへの通電時に電圧が印加される一対の電極と、を有する。   A semiconductor manufacturing apparatus according to an embodiment of the present invention includes a reaction chamber into which a wafer is introduced, a gas supply mechanism that supplies process gas to the reaction chamber, a gas exhaust mechanism that exhausts gas from the reaction chamber, and a wafer. A wafer supporting member to be placed, a rotating member connected to the outer peripheral portion of the wafer supporting member, rotating the wafer, a rotation driving control mechanism connected to the rotating member and controlling the rotational driving of the rotating member, and a heater, It is characterized by providing. The heater has a sheet-like heat generating part, a linear slit that has one end disposed on the outer periphery of the heat generating part and the other end in the folded part of the heat generating part, and a continuous opening at the other end. A heater element that is formed and has a folded portion whose opening width is larger than the slit width of the linear slit, and is connected to a predetermined surface of the heater element that generates heat when energized, and a voltage is applied when the heater element is energized. A pair of electrodes.

本発明によれば、通電時にヒータエレメントの折り返し部での電流集中を抑制し、ヒータ寿命を延ばすことができる。   ADVANTAGE OF THE INVENTION According to this invention, the electric current concentration in the folding | returning part of a heater element can be suppressed at the time of electricity supply, and a heater lifetime can be extended.

第1の実施形態の抵抗加熱ヒータを構成するヒータエレメントを示す上面図である。It is a top view which shows the heater element which comprises the resistance heater of 1st Embodiment. 従来型のヒータエレメントにおける折り返し部周辺の発熱分布を説明する図である。It is a figure explaining the heat_generation | fever distribution around the folding | turning part in the conventional heater element. 図1に示すヒータエレメントにおける折り返し部周辺の発熱分布を説明する図である。It is a figure explaining the heat_generation | fever distribution around the folding | turning part in the heater element shown in FIG. 第1の実施形態の抵抗加熱ヒータを用いた半導体製造装置の概略構成を示す図である。It is a figure which shows schematic structure of the semiconductor manufacturing apparatus using the resistance heater of 1st Embodiment. 第2の実施形態の抵抗加熱ヒータを構成するヒータエレメントを示す上面図である。It is a top view which shows the heater element which comprises the resistance heater of 2nd Embodiment. 図5に示すヒータエレメントの電気的接続を示す図である。It is a figure which shows the electrical connection of the heater element shown in FIG. 第3の実施形態の抵抗加熱ヒータを構成するヒータエレメントを示す上面図である。It is a top view which shows the heater element which comprises the resistance heater of 3rd Embodiment. 第1の実施形態のヒータエレメントにおける発熱分布を説明する図である。It is a figure explaining the heat_generation | fever distribution in the heater element of 1st Embodiment. 図7に示すヒータエレメントにおける発熱分布を説明する図である。It is a figure explaining the heat_generation | fever distribution in the heater element shown in FIG. 第4の実施形態の抵抗加熱ヒータを構成するヒータエレメントを示す上面図である。It is a top view which shows the heater element which comprises the resistance heater of 4th Embodiment.

以下、本発明の実施形態を図面に基づいて説明する。
<第1の実施形態>
図1は、本実施形態のヒータである抵抗加熱ヒータを構成するヒータエレメント16aを示す上面図である。図1に示されるように、ヒータエレメント16aは、外形が円盤状の発熱部160と、直線状に開口形成された直線状スリット163と、を有する。直線状スリット163は、一端が発熱部160の外周に、他端が発熱部160内にそれぞれ配置されている。そして、この他端に連続して開口成形され、開口径が直線状スリット163のスリット幅よりも大きい折り返し部162が設けられている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<First Embodiment>
FIG. 1 is a top view showing a heater element 16a constituting a resistance heater which is a heater of the present embodiment. As shown in FIG. 1, the heater element 16 a includes a heat generating portion 160 whose outer shape is a disk shape, and a linear slit 163 that is linearly open. One end of the linear slit 163 is disposed on the outer periphery of the heat generating part 160, and the other end is disposed in the heat generating part 160. Then, a folded portion 162 that is continuously formed at the other end and has an opening diameter larger than the slit width of the linear slit 163 is provided.

本実施形態においては、さらに、図1中のY軸方向の距離が発熱部160の中心点に最も近い2つの直線状スリット163を除き、残りの6つの直線状スリット163の端から所定の距離D(例えば5〜10mm)までの端部163cが、直線状スリット163の図1中のX軸方向部分である本体部163bの中心線よりヒータエレメント16aの外縁の同心円Eに沿う方向に屈曲している。   In the present embodiment, the distance in the Y-axis direction in FIG. 1 is a predetermined distance from the ends of the remaining six linear slits 163 except for the two linear slits 163 that are closest to the center point of the heat generating portion 160. An end portion 163c up to D (for example, 5 to 10 mm) is bent in a direction along a concentric circle E on the outer edge of the heater element 16a from the center line of the main body portion 163b which is the X-axis direction portion of the linear slit 163 in FIG. ing.

また、発熱部160内の各折り返し部162は、端部163cと連続していずれも同心円E上で本体部163bの中心線より所定の角度θずれるように配置されており、発熱部160は全体として点対称の形状となっている。 図2は、従来型のヒータエレメント16aにおける折り返し部162周辺の発熱分布を説明する図である。ここでは、折り返し部162で電流集中が生じ、高温になるまで発熱していることが示されている。また、先端部分の周辺領域についても、温度勾配が大きく、発熱量も大きくなっている。   Further, each folded portion 162 in the heat generating portion 160 is arranged continuously on the concentric circle E so as to deviate from the center line of the main body portion 163b by a predetermined angle θ continuously with the end portion 163c. As a point-symmetric shape. FIG. 2 is a view for explaining the heat generation distribution around the folded portion 162 in the conventional heater element 16a. Here, it is shown that current concentration occurs in the folded portion 162 and heat is generated until the temperature becomes high. In addition, the temperature gradient is large and the amount of heat generation is also large in the peripheral region of the tip portion.

これに対し、図3は、本実施形態のヒータエレメント16aにおける折り返し部162周辺の発熱分布を説明する図である。ここでは、図2の場合と異なり、折り返し部162は、開口径W2でスリット163のスリット幅W1よりも広い幅を有している。このため、折り返し部162の周辺において電流が先端部分の一点に集中することがなくなり、温度勾配も緩やかになっている。   On the other hand, FIG. 3 is a view for explaining the heat generation distribution around the folded portion 162 in the heater element 16a of the present embodiment. Here, unlike the case of FIG. 2, the folded portion 162 has an opening diameter W <b> 2 and a width wider than the slit width W <b> 1 of the slit 163. For this reason, the current does not concentrate on one point in the front end portion around the folded portion 162, and the temperature gradient becomes gentle.

このようなヒータエレメント16aは、ヒータエレメント16aを支持するヒータ電極部16b,16cと接着、融着などにより一体形成され、ヒータを構成する。ヒータエレメント16aおよびヒータ電極部16b,16cには、例えば、SiC粉末を焼結して得られるSiC焼結体が用いられる。このとき、SiC粉末に添加される不純物濃度を制御することにより、電気抵抗率を調整することが可能である。また、所望の形状・厚さに加工することが可能であり、例えば、ヒータエレメント16aの直径はφ250mm、厚さは2mmとすることができる。なお、直線状スリット163、折り返し部162は、SiC焼結基板にワイヤ放電加工を施すことにより形成することができる。さらに、ヒータエレメント表面には高純度のSiC膜が形成され、不純物の拡散が防止される。   Such a heater element 16a is integrally formed with the heater electrode portions 16b and 16c that support the heater element 16a by adhesion, fusion, or the like, and constitutes a heater. For the heater element 16a and the heater electrode portions 16b and 16c, for example, a SiC sintered body obtained by sintering SiC powder is used. At this time, the electrical resistivity can be adjusted by controlling the impurity concentration added to the SiC powder. Further, it can be processed into a desired shape and thickness. For example, the heater element 16a can have a diameter of φ250 mm and a thickness of 2 mm. In addition, the linear slit 163 and the folding | turning part 162 can be formed by performing a wire electric discharge process to a SiC sintered substrate. Furthermore, a high-purity SiC film is formed on the surface of the heater element to prevent impurity diffusion.

このようなヒータは、半導体製造装置において、半導体基板(ウェーハ)を裏面より加熱するためのヒータとして用いられる。   Such a heater is used as a heater for heating a semiconductor substrate (wafer) from the back surface in a semiconductor manufacturing apparatus.

図4は、本実施形態の抵抗加熱ヒータを用いた半導体製造装置の概略構成を示す図である。図4に示されるように、半導体製造装置は、成膜処理を行うための反応室10を有している。この反応室10の上部には、ガス供給口11a,11bが設けられている。ガス供給口11a,11bからは、原料ガス(例えば、アンモニアガス(NHガス)、トリメチルアルミニウムガス(TMAガス)、トリメチルガリウムガス(TMGガス)、トリエチルガリウムガス(TEGガス)、トリエチルインジウムガス(TMIガス)、ビズ(シクロペンタジエニル)マグネシウムガス(CpMgガス)、モノメチルシランガス(SiHCHガス)、モノシランガス(SiHガス)、ジクロルシランガス(SiHClガス)、トリクロルシランガス(SiHClガス))およびキャリアガス(例えば水素(H)ガス)を含むプロセスガスが反応室10の内部に導入される。 FIG. 4 is a diagram showing a schematic configuration of a semiconductor manufacturing apparatus using the resistance heater according to the present embodiment. As shown in FIG. 4, the semiconductor manufacturing apparatus has a reaction chamber 10 for performing a film forming process. Gas supply ports 11 a and 11 b are provided in the upper part of the reaction chamber 10. From the gas supply ports 11a and 11b, raw material gases (for example, ammonia gas (NH 3 gas), trimethylaluminum gas (TMA gas), trimethylgallium gas (TMG gas), triethylgallium gas (TEG gas), triethylindium gas ( TMI gas), Biz (cyclopentadienyl) magnesium gas (Cp 2 Mg gas), monomethylsilane gas (SiH 3 CH 3 gas), monosilane gas (SiH 4 gas), dichlorosilane gas (SiH 2 Cl 2 gas), trichlorosilane gas A process gas including (SiHCl 3 gas)) and a carrier gas (for example, hydrogen (H 2 ) gas) is introduced into the reaction chamber 10.

また、ガス供給口11a,11bの下方には、孔が多数形成された整流板12がウェーハwの表面に対向するように配置されている。整流板12は、ウェーハwの表面にガス供給口11a,11bから供給されたプロセスガスを整流状態でウェーハw上に供給する。   Further, below the gas supply ports 11a and 11b, a rectifying plate 12 having a large number of holes is disposed so as to face the surface of the wafer w. The rectifying plate 12 supplies the process gas supplied from the gas supply ports 11a and 11b to the surface of the wafer w on the wafer w in a rectified state.

反応室10の内部には、導入されたウェーハwを載置するサセプタ13が設けられている。また、サセプタ13の外周部は、円筒状の回転部材14の上部に固定されている。サセプタ13は、反応室10の内部で高温状態になることから、例えばSiC材料を用いて製造される。尚、本実施形態では、ウェーハ支持部材の例として円板状のサセプタ13を用いているが、環状のホルダーを用いることもできる。   A susceptor 13 on which the introduced wafer w is placed is provided inside the reaction chamber 10. The outer periphery of the susceptor 13 is fixed to the upper part of the cylindrical rotating member 14. Since the susceptor 13 is in a high temperature state inside the reaction chamber 10, the susceptor 13 is manufactured using, for example, a SiC material. In this embodiment, the disk-shaped susceptor 13 is used as an example of the wafer support member, but an annular holder can also be used.

回転部材14は、回転胴14a、回転ベース14b、および回転軸14cを有している。回転胴14aは、サセプタ13の外周部を支持し、回転ベース14bの外周上部に固定された環状の部品である。回転ベース14bは、円筒状の回転軸14cが固定されている。回転軸14cの軸中心は、ウェーハwの中心を通る。   The rotating member 14 has a rotating body 14a, a rotating base 14b, and a rotating shaft 14c. The rotating drum 14a is an annular component that supports the outer peripheral portion of the susceptor 13 and is fixed to the upper peripheral portion of the rotating base 14b. A cylindrical rotating shaft 14c is fixed to the rotating base 14b. The axis center of the rotating shaft 14c passes through the center of the wafer w.

また、回転軸14cは、反応室10の外部まで延設されており、回転駆動制御機構15に接続されている。回転駆動制御機構15は、回転軸14cを回転させることにより、回転ベース14bおよび回転胴14aを介してサセプタ13を例えば50−3000rpmで回転させる。   The rotating shaft 14 c extends to the outside of the reaction chamber 10 and is connected to the rotation drive control mechanism 15. The rotation drive control mechanism 15 rotates the susceptor 13 at, for example, 50 to 3000 rpm via the rotation base 14b and the rotation cylinder 14a by rotating the rotation shaft 14c.

回転胴14a内には、ウェーハwを裏面から加熱するための上述したヒータ16が設けられている。ヒータ16は、アーム状の電極部品であるブースバー17a,17bによって支持されている。ブースバー17a,17bは、ヒータ電極部16b,16cを支持する側とは反対側の端部において電極18a,18bと接続されている。   The above-described heater 16 for heating the wafer w from the back surface is provided in the rotating drum 14a. The heater 16 is supported by booth bars 17a and 17b which are arm-shaped electrode parts. The booth bars 17a and 17b are connected to the electrodes 18a and 18b at the end opposite to the side supporting the heater electrode portions 16b and 16c.

ブースバー17a,17bは、導電性と高耐熱性を兼ね備えた電極部品であり、例えば、C(カーボン)材からなる。電極18a,18bは、Mo(モリブデン)等の金属部材であり、上端側でブースバー17a,17bに接続され、他端側で外部電源(図示省略する)に接続されている。外部電源から電極18a,18bに例えば115V、50Hzの電圧が印加され、ブースバー17a,17bおよびヒータ電極部16b,16cを介してヒータエレメント16aが発熱する。   The booth bars 17a and 17b are electrode parts having both conductivity and high heat resistance, and are made of, for example, a C (carbon) material. The electrodes 18a and 18b are metal members such as Mo (molybdenum), and are connected to the booth bars 17a and 17b on the upper end side and connected to an external power source (not shown) on the other end side. For example, a voltage of 115 V and 50 Hz is applied to the electrodes 18a and 18b from the external power source, and the heater element 16a generates heat through the booth bars 17a and 17b and the heater electrode portions 16b and 16c.

また、図4に示されるように、反応室10の上部には、ウェーハwの表面温度(面内温度)を測定するために放射温度計19a,19bが設けられている。本実施形態では、反応室10の上壁の一部および整流板12を透明石英製とすることで、放射温度計19a,19bによる温度測定は整流板12によって妨げられないものとする。放射温度計19a,19bは、ヒータ16の発熱に応じて変化するウェーハwの中心部および外周部における表面温度をそれぞれ計測し、その温度データを温度制御機構20へ出力する。温度制御機構20は、温度データに基づいてヒータ16の出力制御を行い、ウェーハwの表面温度が所定の成膜温度(例えば、1100℃)となるように加熱する。   As shown in FIG. 4, radiation thermometers 19 a and 19 b are provided in the upper part of the reaction chamber 10 in order to measure the surface temperature (in-plane temperature) of the wafer w. In this embodiment, a part of the upper wall of the reaction chamber 10 and the rectifying plate 12 are made of transparent quartz, so that temperature measurement by the radiation thermometers 19a and 19b is not hindered by the rectifying plate 12. The radiation thermometers 19 a and 19 b measure the surface temperatures at the center and the outer periphery of the wafer w that change according to the heat generated by the heater 16, and output the temperature data to the temperature control mechanism 20. The temperature control mechanism 20 controls the output of the heater 16 based on the temperature data, and heats the wafer w so that the surface temperature of the wafer w becomes a predetermined film formation temperature (for example, 1100 ° C.).

また、図4に示されるように、反応室10の下部には、反応時に余剰となったプロセスガスおよび反応副生成物を含むガスを排気するためにガス排気口21a,21bが設けられている。ガス排気口21a,21bは、調整弁22および真空ポンプ23からなるガス排気機構24にそれぞれ接続されている。ガス排気機構24は、制御機構(図示省略する)により制御され、反応室10内を所定の圧力に調整する。   As shown in FIG. 4, gas exhaust ports 21 a and 21 b are provided in the lower part of the reaction chamber 10 in order to exhaust the gas containing process gas and reaction by-products that have become excessive during the reaction. . The gas exhaust ports 21 a and 21 b are connected to a gas exhaust mechanism 24 including a regulating valve 22 and a vacuum pump 23, respectively. The gas exhaust mechanism 24 is controlled by a control mechanism (not shown) and adjusts the inside of the reaction chamber 10 to a predetermined pressure.

このように、本実施形態によれば、ヒータエレメント16aの折り返し部162を設けることにより、通電時の電流集中を大幅に抑制することができる。   Thus, according to the present embodiment, by providing the folded portion 162 of the heater element 16a, current concentration during energization can be significantly suppressed.

また、電流は最短距離で流れようとするため、折り返し部162の外側では電流が流れず発熱しない領域が生じるが、直線状スリット163の端部を傾斜させて配置することにより、電流が流れる領域を広くすることができ、さらなる電流集中の抑制を図ることができる。   Further, since the current tends to flow at the shortest distance, a region where no current flows and heat is not generated outside the folded portion 162 is generated, but the region where the current flows is formed by inclining the end of the linear slit 163. Can be widened, and further suppression of current concentration can be achieved.

このように、電流集中を抑制することにより、ヒータ寿命を延ばすことができるため、ヒータの部材交換頻度を減少させ、半導体製造装置の低コスト化およびダウンタイム低減を図ることができる。   In this way, by suppressing the current concentration, the heater life can be extended, so that the frequency of replacing the member of the heater can be reduced, and the cost of the semiconductor manufacturing apparatus can be reduced and the downtime can be reduced.

<第2の実施形態>
本発明の第2の実施形態について説明する。尚、第1の実施形態において付された符号と共通する符号は同一の対象を示す。図5は、本実施形態の抵抗加熱ヒータを構成するヒータエレメント26aを示す上面図である。図5に示されるように、ヒータエレメント26aは、外形が円盤状の発熱部260と、発熱部260内に形成された蛇行状スリット261と、一端が発熱部260の外周に配置され、他端に発熱部260の折り返し部262が形成された例えば8カ所の直線状スリット263を有している。折り返し部262の幅(径)は、蛇行状スリット261、直線状スリット263のスリット幅よりも大きい。
<Second Embodiment>
A second embodiment of the present invention will be described. In addition, the code | symbol common with the code | symbol attached | subjected in 1st Embodiment shows the same object. FIG. 5 is a top view showing the heater element 26a constituting the resistance heater according to this embodiment. As shown in FIG. 5, the heater element 26 a has a heat generating part 260 whose outer shape is a disk, a serpentine slit 261 formed in the heat generating part 260, one end disposed on the outer periphery of the heat generating part 260, and the other end For example, there are eight linear slits 263 in which folded portions 262 of the heat generating portion 260 are formed. The width (diameter) of the folded portion 262 is larger than the slit width of the meandering slit 261 and the linear slit 263.

スリット261,263は、これらによりヒータ電極部26b,26cと接続部26b´,26c´間でそれぞれ電流が分離して流れる距離が等しくなるように配置されている。   The slits 261 and 263 are arranged so that the distances through which currents are separated and flow between the heater electrode portions 26b and 26c and the connection portions 26b ′ and 26c ′ are equal.

このように構成されるヒータは、図5に示されるように、ヒータ電極部26bとの接続部26b´とヒータ電極部26cとの接続部26c´間に電圧が印加されると、図中の矢印に示されるように、電流が蛇行状スリット261,直線状スリット263によって2つの経路に分かれて流れることにより発熱する。   As shown in FIG. 5, when a voltage is applied between the connecting portion 26b 'to the heater electrode portion 26b and the connecting portion 26c' to the heater electrode portion 26c, the heater configured in this way As indicated by the arrows, heat is generated when current flows in two paths by meandering slits 261 and linear slits 263.

図6は、図5に示すヒータエレメント26aの電気的接続を示す図である。ここでは、後述するように、ヒータエレメント26a、ヒータ電極部16b、16c、ブースバー17a,17b、および外部電源に接続された電極18a,18bにより電気回路が構成されることが示されている。また、抵抗発熱体であるヒータエレメント26aは内部で並列化されており、ヒータ電極部16b,16cにそれぞれ接続されている。上述のように、ヒータエレメント16a内の電流が分離して流れる2経路の距離は等しくなるため、2つの抵抗成分R1,R2は等しい。従って、ヒータ電極部16b,16cからヒータエレメント26aに流れる電流量をIとすると、ヒータエレメント26a内の2経路における電流量はI/2となる。   FIG. 6 is a diagram showing an electrical connection of the heater element 26a shown in FIG. Here, as will be described later, the heater element 26a, the heater electrode portions 16b and 16c, the booth bars 17a and 17b, and the electrodes 18a and 18b connected to an external power source are shown to constitute an electric circuit. Further, the heater elements 26a, which are resistance heating elements, are internally arranged in parallel and are connected to the heater electrode portions 16b and 16c, respectively. As described above, since the distance between the two paths through which the current in the heater element 16a flows is equal, the two resistance components R1 and R2 are equal. Therefore, if the amount of current flowing from the heater electrode portions 16b and 16c to the heater element 26a is I, the amount of current in the two paths in the heater element 26a is I / 2.

このように、本実施形態によれば、蛇行状スリット261を設けることにより、ヒータエレメント26aの発熱部260に2つの経路に分かれて電流が流れるため、折り返し部262に流れる電流量を従来のものより低減することができる。この結果、第1の実施形態の場合よりも、形状は複雑になるが、通電時にヒータエレメント26aの折り返し部262での電流集中を大幅に抑制し、ヒータ寿命を延ばすことができる。そして、ヒータ26の部材交換頻度を減少させ、半導体製造装置の低コスト化およびダウンタイム低減を図ることができる。   As described above, according to the present embodiment, by providing the meandering slit 261, current flows through the heat generating portion 260 of the heater element 26a in two paths, so that the amount of current flowing through the folded portion 262 is the conventional amount. It can be further reduced. As a result, although the shape is more complicated than in the case of the first embodiment, current concentration at the folded portion 262 of the heater element 26a can be significantly suppressed during energization, and the heater life can be extended. Then, the frequency of replacing the member of the heater 26 can be reduced, and the cost and downtime of the semiconductor manufacturing apparatus can be reduced.

尚、本実施形態では、ヒータエレメント26aにおける電流を2つの経路としたが、適宜スリットを形成することにより、電流が分離して流れる距離が等しい3つ以上の経路としてもよい。また、ヒータエレメント26aは円盤形状に限定されない。なお、本実施形態のように電流経路を分割することによる効果は、折り返し部262を設けない場合であっても同様である。   In the present embodiment, the current in the heater element 26a has two paths. However, by forming slits as appropriate, three or more paths having the same distance through which the current flows can be separated. The heater element 26a is not limited to a disk shape. Note that the effect obtained by dividing the current path as in this embodiment is the same even when the folded portion 262 is not provided.

<第3の実施形態>
図7は、本実施形態の抵抗加熱ヒータを構成するヒータエレメント36aを示す上面図である。第2の実施形態との違いは、発熱部360において、スリットで分離された位置の電位がほぼ同じになるヒータエレメント36aの中心部や、ヒータ電極部16b,16cとの接続位置の近傍等に蛇行状スリット361を設けていない点である。
<Third Embodiment>
FIG. 7 is a top view showing the heater element 36a constituting the resistance heater of the present embodiment. The difference from the second embodiment is that, in the heat generating part 360, in the central part of the heater element 36a where the potential at the position separated by the slit is substantially the same, in the vicinity of the connection position with the heater electrode parts 16b and 16c, etc. The point is that the meandering slit 361 is not provided.

また、ヒータエレメント36aには、反応室10内に導入されたウェーハwを受け取り、サセプタ13上に載置する突き上げピン(図示省略する)の通路となる3つのピン孔364が、発熱面積の減少を抑えるために、スリット361と連結するように形成されている。更に、ピン孔364により導電部分が狭くならないよう、近接する直線状スリット363に電流弧状部363aが形成されている。   In addition, the heater element 36a has three pin holes 364 that receive the wafer w introduced into the reaction chamber 10 and serve as passages for push-up pins (not shown) placed on the susceptor 13, thereby reducing the heat generation area. In order to suppress this, it is formed so as to be connected to the slit 361. Further, a current arc portion 363 a is formed in the adjacent linear slit 363 so that the conductive portion is not narrowed by the pin hole 364.

本実施形態によれば、蛇行状スリット361が、等電位のヒータエレメント36aの中心部で分断されている。このため、電流分布に影響を与えることなく、蛇行状スリット361の総面積を小さく抑えることができ、図6に示した第2の実施形態の場合よりもヒータ36全体としての強度を向上させることができる。   According to the present embodiment, the serpentine slit 361 is divided at the center of the equipotential heater element 36a. For this reason, the total area of the meandering slit 361 can be kept small without affecting the current distribution, and the strength of the heater 36 as a whole can be improved compared to the case of the second embodiment shown in FIG. Can do.

図8は、第1の実施形態と同様のヒータエレメント16aを示す図である。折り返し部162の周縁部Aの外周のBでは、Aにおける発熱量の約55%程度となり、折り返し部162から離間したCにおける発熱量はAにおける発熱量の13%程度となる。さらに電流が流れにくいDにおける発熱量はAにおける発熱量の6%程度となり、面内の発熱量にばらつきがあることがわかる。   FIG. 8 is a view showing a heater element 16a similar to that of the first embodiment. At the outer periphery B of the peripheral portion A of the folded portion 162, the amount of heat generated at A is about 55%, and the amount of heat generated at C separated from the folded portion 162 is about 13% of the amount of heat generated at A. Furthermore, the amount of heat generated in D, where current is difficult to flow, is about 6% of the amount of heat generated in A, indicating that there is variation in the amount of heat generated in the surface.

一方、図9に示す本実施形態のヒータエレメント36aにおいては、折り返し部362の周縁部A´における発熱量が、図8のAにおける発熱量に対して75%程度に低減される。また、A´における発熱量に対して、B´では約60%、C´では約30%となり、D´のように電流が流れにくい部分の面積も小さくなる。このように、蛇行状スリット361を設けることにより、さらに電界集中が抑えられるとともに、面内分布が改善されることがわかる。   On the other hand, in the heater element 36a of the present embodiment shown in FIG. 9, the heat generation amount at the peripheral edge A ′ of the folded portion 362 is reduced to about 75% with respect to the heat generation amount in A of FIG. In addition, the heat generation amount at A ′ is about 60% for B ′ and about 30% for C ′, and the area where the current hardly flows like D ′ becomes small. Thus, it can be seen that by providing the serpentine slit 361, the electric field concentration is further suppressed and the in-plane distribution is improved.

<第4の実施形態>
図10は、本実施形態の抵抗加熱ヒータを構成するヒータエレメント46aを示す上面図である。図10に示されるように、本実施形態に係るヒータエレメント46aでは、直線状スリット463は、発熱部460の外周側の端部の全てに面取り加工が施されている点が異なっている。なお、スリット端部のみならず、発熱部460の全ての角部に面取り加工が施されていてもよい。このように、電流の流れにくい端部において面取り加工を施すことにより、温度分布への影響を抑えてヒータエレメント46aの破損の防止を図ることができる。
<Fourth Embodiment>
FIG. 10 is a top view showing the heater element 46a constituting the resistance heater according to the present embodiment. As shown in FIG. 10, the heater element 46 a according to the present embodiment is different in that the linear slit 463 is chamfered on all of the end portions on the outer peripheral side of the heat generating portion 460. Note that chamfering may be performed not only on the slit end but also on all corners of the heat generating portion 460. As described above, by chamfering the end portion where current does not easily flow, the influence on the temperature distribution can be suppressed and the heater element 46a can be prevented from being damaged.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施しうるものであり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

10…反応室、
11a,11b…ガス供給口、
12…整流板、
13…サセプタ、
14…回転部材、
15…回転駆動制御機構、
16…ヒータ、
16a,26a,36a,46a…ヒータエレメント、
16b,16c…ヒータ電極部、
17a,17b…ブースバー、
18a,18b…電極、
19a,19b…放射温度計、
20…温度制御機構、
160,260,360,460…発熱部、
261,361…蛇行状スリット
163,263,363,463…直線状スリット、
162,262,362…折り返し部。
10 ... reaction chamber,
11a, 11b ... gas supply ports,
12 ... Rectifying plate,
13 ... susceptor,
14 ... Rotating member,
15 ... Rotation drive control mechanism,
16 ... heater,
16a, 26a, 36a, 46a ... heater element,
16b, 16c ... heater electrode part,
17a, 17b ... booth bar,
18a, 18b ... electrodes,
19a, 19b ... radiation thermometer,
20 ... temperature control mechanism,
160, 260, 360, 460 ... heating unit,
261,361 ... serpentine slits 163, 263, 363, 463 ... linear slits,
162, 262, 362... Folded portion.

Claims (6)

面状の発熱部と、一端が前記発熱部の外周に、他端が前記発熱部内にそれぞれ配置されて直線状に開口形成された直線状スリットと、前記他端に連続して開口形成され、開口幅が前記直線状スリットのスリット幅より大きい折り返し部と、を有し、通電により発熱するヒータエレメントと、
前記ヒータエレメントの所定面に接続され、前記ヒータエレメントへの通電時に電圧が印加される一対の電極と、
を備えることを特徴とするヒータ。
A sheet-like heat generating portion, one end on the outer periphery of the heat generating portion, the other end in the heat generating portion and a linear slit formed in a straight line, and an opening formed continuously to the other end, A heater element that has an opening width larger than the slit width of the linear slit, and generates heat when energized;
A pair of electrodes connected to a predetermined surface of the heater element, to which a voltage is applied when energizing the heater element;
A heater comprising:
前記ヒータエレメントは、前記一対の電極から前記発熱部内へ流れる電流が等分される配置で前記発熱部内に蛇行状に開口形成された蛇行状スリットを更に含むことを特徴とする請求項1記載のヒータ。   2. The heater element according to claim 1, further comprising a serpentine slit formed in a serpentine shape in the heat generating portion in an arrangement in which a current flowing from the pair of electrodes into the heat generating portion is equally divided. heater. 前記蛇行状スリットは、前記発熱部の中心部で分断されることを特徴とする請求項2記載のヒータ。   The heater according to claim 2, wherein the serpentine slit is divided at a central portion of the heat generating portion. 前記直線状スリットは、前記他端から所定距離の間の端部が前記発熱部の外縁の同心円に沿う方向に屈曲し、
前記折り返し部は、前記同心円上で本体部の中心線より所定の角度ずれるように配置されることを特徴とする請求項1乃至請求項3のいずれか記載のヒータ。
The linear slit bends in a direction along a concentric circle on the outer edge of the heat generating portion, with an end between a predetermined distance from the other end,
The heater according to any one of claims 1 to 3, wherein the folded portion is arranged on the concentric circle so as to be shifted from the center line of the main body portion by a predetermined angle.
前記直線状スリットは、前記一端に面取り加工が施されていることを特徴とする請求項1乃至請求項4のいずれか一項記載のヒータ。   The heater according to any one of claims 1 to 4, wherein the linear slit is chamfered at the one end. ウェーハが導入される反応室と、
前記反応室にプロセスガスを供給するガス供給機構と、
前記反応室よりガスを排気するガス排気機構と、
前記ウェーハが載置されるウェーハ支持部材と、
前記ウェーハ支持部材の外周部に接続され、前記ウェーハを回転させる回転部材と、
前記回転部材と接続され、前記回転部材の回転駆動を制御する回転駆動制御機構と、
面状の発熱部と、一端が前記発熱部の外周に、他端が前記発熱部の折り返し部内にそれぞれ配置されて直線状に開口形成された直線状スリットと、前記他端に連続して開口形成され、開口幅が直線状スリットの幅より大きい前記折り返し部と、を有し、通電により発熱するヒータエレメントと、前記ヒータエレメントの所定面に接続され、前記ヒータエレメントへの通電時に電圧が印加される一対の電極と、を有するヒータと、
を備えることを特徴とする半導体製造装置。
A reaction chamber into which the wafer is introduced;
A gas supply mechanism for supplying a process gas to the reaction chamber;
A gas exhaust mechanism for exhausting gas from the reaction chamber;
A wafer support member on which the wafer is placed;
A rotating member connected to the outer periphery of the wafer support member and rotating the wafer;
A rotation drive control mechanism that is connected to the rotation member and controls the rotation drive of the rotation member;
A sheet-like heat generating portion, a linear slit having one end disposed on the outer periphery of the heat generating portion, the other end disposed in the folded portion of the heat generating portion, and a linear opening, and an opening continuous to the other end A heater element that is formed and has an opening width larger than the width of the linear slit, and that is connected to a predetermined surface of the heater element that is heated by energization, and a voltage is applied when the heater element is energized A heater having a pair of electrodes;
A semiconductor manufacturing apparatus comprising:
JP2016016125A 2015-03-09 2016-01-29 Heater and semiconductor manufacturing apparatus using the same Active JP6571550B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020160026097A KR101874168B1 (en) 2015-03-09 2016-03-04 Heater and apparatus for manufacturing semiconductor apparatus using the same
CN201910150071.2A CN110034048B (en) 2015-03-09 2016-03-08 Heater and apparatus for manufacturing semiconductor device using the same
US15/064,105 US10237917B2 (en) 2015-03-09 2016-03-08 Heater and apparatus for manufacturing semiconductor device using heater
CN201610130482.1A CN105957820B (en) 2015-03-09 2016-03-08 Heater and semiconductor device manufacturing apparatus using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015045838 2015-03-09
JP2015045838 2015-03-09

Publications (2)

Publication Number Publication Date
JP2016171066A true JP2016171066A (en) 2016-09-23
JP6571550B2 JP6571550B2 (en) 2019-09-04

Family

ID=56984064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016016125A Active JP6571550B2 (en) 2015-03-09 2016-01-29 Heater and semiconductor manufacturing apparatus using the same

Country Status (3)

Country Link
JP (1) JP6571550B2 (en)
KR (1) KR101874168B1 (en)
CN (1) CN110034048B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021514110A (en) * 2018-02-20 2021-06-03 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated PBN heater for ALD temperature uniformity
CN113056960A (en) * 2018-11-26 2021-06-29 大日本印刷株式会社 Transparent heating element, heating element with cover, sensor device, and moving body

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53144544U (en) * 1977-04-21 1978-11-14
JPH0319292U (en) * 1989-07-07 1991-02-26
JPH07106261A (en) * 1993-10-08 1995-04-21 Toshiba Mach Co Ltd Heating equipment
JPH10208855A (en) * 1997-01-23 1998-08-07 Toshiba Ceramics Co Ltd Surface heater
JPH11317284A (en) * 1998-04-30 1999-11-16 Komatsu Ltd Temperature control device
JP2015041447A (en) * 2013-08-21 2015-03-02 信越化学工業株式会社 Ceramic heater having three-dimensional shape

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3233482B2 (en) * 1993-03-15 2001-11-26 東芝機械株式会社 Vapor phase growth equipment
JPH11273835A (en) * 1998-01-26 1999-10-08 Toyo Tanso Kk Carbon heater
JP2001342071A (en) * 2000-05-26 2001-12-11 Shin Etsu Chem Co Ltd Ceramic heater
JP2002246155A (en) * 2001-02-16 2002-08-30 Ibiden Co Ltd Ceramic heater
JP5378677B2 (en) * 2006-12-15 2013-12-25 日本碍子株式会社 Ceramic heater
US7812289B2 (en) * 2006-12-15 2010-10-12 Ngk Insulators, Ltd. Ceramic heater
JP5903114B2 (en) * 2014-01-31 2016-04-13 貞徳舎株式会社 Electric heater, method of manufacturing electric heater, and heating apparatus provided with the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53144544U (en) * 1977-04-21 1978-11-14
JPH0319292U (en) * 1989-07-07 1991-02-26
JPH07106261A (en) * 1993-10-08 1995-04-21 Toshiba Mach Co Ltd Heating equipment
JPH10208855A (en) * 1997-01-23 1998-08-07 Toshiba Ceramics Co Ltd Surface heater
JPH11317284A (en) * 1998-04-30 1999-11-16 Komatsu Ltd Temperature control device
JP2015041447A (en) * 2013-08-21 2015-03-02 信越化学工業株式会社 Ceramic heater having three-dimensional shape

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021514110A (en) * 2018-02-20 2021-06-03 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated PBN heater for ALD temperature uniformity
CN113056960A (en) * 2018-11-26 2021-06-29 大日本印刷株式会社 Transparent heating element, heating element with cover, sensor device, and moving body

Also Published As

Publication number Publication date
KR20160110130A (en) 2016-09-21
CN110034048A (en) 2019-07-19
KR101874168B1 (en) 2018-07-03
JP6571550B2 (en) 2019-09-04
CN110034048B (en) 2023-05-26

Similar Documents

Publication Publication Date Title
CN105957820B (en) Heater and semiconductor device manufacturing apparatus using same
JP6108051B1 (en) Electrostatic chuck device
US20090159590A1 (en) Substrate temperature adjusting-fixing devices
JP4421624B2 (en) Semiconductor manufacturing apparatus and heater
JP7216746B2 (en) ceramic heater
JP6850138B2 (en) Holding device
JP2007088484A (en) Heater
JP2018170508A (en) Electrostatic chuck
JP2010080909A (en) Heater, manufacturing apparatus for semiconductor device, and manufacturing method for semiconductor device
JP6571550B2 (en) Heater and semiconductor manufacturing apparatus using the same
JP2017041465A (en) Induction heating device
TWI803534B (en) Electrostatic chuck device
JP2016143760A (en) Electrostatic chuck device
JP2016129183A (en) Electrostatic chuck device
JP5712782B2 (en) Susceptor support shaft for epitaxial wafer growth apparatus and epitaxial growth apparatus
JP2018005998A (en) Ceramic heater
JP2012182221A (en) Substrate supporting member
JP6994953B2 (en) Holding device
KR101426729B1 (en) Heater and film forming apparatus
JP2019220645A (en) Holding device
JP5535955B2 (en) Vapor growth equipment
JP2010244864A (en) Substrate heating structural body
JP7376753B1 (en) multi zone heater
JP7494972B1 (en) Electrostatic Chuck
US20230311258A1 (en) Electrostatic chuck

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190808

R150 Certificate of patent or registration of utility model

Ref document number: 6571550

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250