JP2016170294A - Wavelength control filter, and light emitting device and illumination device having the same - Google Patents

Wavelength control filter, and light emitting device and illumination device having the same Download PDF

Info

Publication number
JP2016170294A
JP2016170294A JP2015050411A JP2015050411A JP2016170294A JP 2016170294 A JP2016170294 A JP 2016170294A JP 2015050411 A JP2015050411 A JP 2015050411A JP 2015050411 A JP2015050411 A JP 2015050411A JP 2016170294 A JP2016170294 A JP 2016170294A
Authority
JP
Japan
Prior art keywords
dye
wavelength control
control filter
light
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015050411A
Other languages
Japanese (ja)
Other versions
JP6562343B2 (en
Inventor
佐智子 土井
Sachiko Doi
佐智子 土井
哲 山内
Satoru Yamauchi
哲 山内
英樹 和田
Hideki Wada
英樹 和田
由合香 椿野
Yurika Tsubakino
由合香 椿野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015050411A priority Critical patent/JP6562343B2/en
Publication of JP2016170294A publication Critical patent/JP2016170294A/en
Application granted granted Critical
Publication of JP6562343B2 publication Critical patent/JP6562343B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

PROBLEM TO BE SOLVED: To provide a wavelength control filter with high color rendering capability and light resistance for use with light emitting devices.SOLUTION: A wavelength control filter 1 consists of a base material 31 made of a translucent resin, and a pigment 32 for controlling wavelength of light added to the base material 31, and comprises a plurality of types of resin layers 3A, 3B with different concentration of the pigment 32 with respect to the base material 31. With such a configuration, the resin layer 3A containing the pigment 32 provides high color rendering property, and forming the resin layers 3B containing no pigment 32 to increase the thickness of the entire wavelength control filter 1 while making the pigment concentration of the resin layer 3A relatively higher minimizes reduction in wavelength controlling capability of the pigment 32 and increases light resistance.SELECTED DRAWING: Figure 4

Description

本発明は、発光ダイオード(LED)から出射された光の波長を制御する波長制御フィルタ及びそれを用いた発光装置並びに照明装置に関する。   The present invention relates to a wavelength control filter that controls the wavelength of light emitted from a light emitting diode (LED), a light emitting device using the same, and an illumination device.

発光ダイオード(以下、LED)は、低電力で高輝度の発光が可能であり、しかも長寿命であることから、白熱灯や蛍光灯等に代替する照明装置用の光源として利用されている。また、青色LEDが出射する青色光を蛍光体に当てて黄色光を出力し、青色光と黄色光とを混色させて白色光を作り出す、いわゆる白色LEDがある。白色LEDは、発光強度及び発光効率において優れ、これを用いた照明装置が、シーリングライト及びベースライトといった光を拡散させる照明器具や、ダウンライト及びスポットライトといった光を集光させる照明器具等に利用されている。   A light emitting diode (hereinafter referred to as an LED) is capable of emitting light with high power and high luminance and has a long lifetime, and is therefore used as a light source for a lighting device that replaces an incandescent lamp or a fluorescent lamp. In addition, there is a so-called white LED in which blue light emitted from a blue LED is applied to a phosphor to output yellow light, and white light is generated by mixing blue light and yellow light. White LEDs are excellent in luminous intensity and luminous efficiency, and lighting devices using them are used for lighting fixtures that diffuse light such as ceiling lights and base lights, and lighting fixtures that collect light such as downlights and spotlights. Has been.

しかしながら、上述したような一般的な白色LEDは、演色性が低いので、食品や衣類等を照明する照明器具には適していなかった。そこで、LED光源の前面に、575〜600nmの波長域に吸収ピークを有する可視光選択吸収材料(以下、色素)を含有するフィルタ層を設けた照明装置が知られている(例えば、特許文献1参照)。この特許文献1に記載の発明によれば、フィルタ層が、照明光の575〜600nmの波長域の強度を低下させて、黄色光成分を低減する。その結果、赤色の見え方が良好で、照明光の演色性を高めることができる。   However, since the general white LED as described above has low color rendering properties, it is not suitable for lighting fixtures that illuminate food, clothing, and the like. Then, the illuminating device which provided the filter layer containing the visible light selective absorption material (henceforth pigment | dye) which has an absorption peak in a wavelength range of 575-600 nm in the front surface of a LED light source is known (for example, patent document 1). reference). According to the invention described in Patent Document 1, the filter layer reduces the intensity of the illumination light in the wavelength region of 575 to 600 nm to reduce the yellow light component. As a result, the appearance of red is good and the color rendering properties of illumination light can be enhanced.

特開2010−267571号公報JP 2010-267571 A

ところで、上述したフィルタ層において、色素は、フィルタ層の母材となる透光性樹脂に対して均一に分散されており、同じ波長吸収量を有するフィルタ層を比較した場合、フィルタ層の厚みが厚ければ、色素の含有濃度は低く設定され、フィルタ層の厚みが薄ければ、色素の含有濃度は高く設定される。しかしながら、上記のようなフィルタ層は、色素の対母材濃度が低い程、波長制御機能の低下が早い傾向がある。そのため、例えば、LED光源の保護カバー等の構造部材をフィルタとする場合には、フィルタには一定以上の厚みが必要となる一方で、色素の含有濃度が低くなり、フィルタの耐光性が低下する虞がある。また、上記のようなフィルタ層は、厚みが薄い程、色素の波長制御機能の低下が早い傾向がある。そのため、保護カバー等に貼付できるように、色素濃度が高いフィルタ層を薄いシート状に形成した場合には、色素濃度を高く設定できる一方で、厚みが薄いので、フィルタの耐光性が低下する虞がある。   By the way, in the filter layer described above, the pigment is uniformly dispersed with respect to the translucent resin that is the base material of the filter layer. When comparing filter layers having the same wavelength absorption amount, the thickness of the filter layer is If it is thick, the pigment concentration is set low, and if the filter layer is thin, the pigment concentration is set high. However, in the filter layer as described above, the wavelength control function tends to decrease more rapidly as the dye base material concentration is lower. For this reason, for example, when a structural member such as a protective cover of an LED light source is used as a filter, the filter needs to have a certain thickness or more, while the concentration of the pigment is lowered and the light resistance of the filter is lowered. There is a fear. In addition, the filter layer as described above tends to decrease in the wavelength control function of the dye as the thickness decreases. Therefore, when the filter layer having a high dye concentration is formed in a thin sheet so that it can be attached to a protective cover or the like, the dye concentration can be set high, but the light resistance of the filter may be reduced because the thickness is thin. There is.

本発明は、上記課題を解決するものであり、高い演色性を得ることができ、しかも耐光性の高い波長制御フィルタ及びそれを用いた発光装置並びに照明装置を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a wavelength control filter that can achieve high color rendering properties and has high light resistance, and a light emitting device and a lighting device using the same.

上記課題を解決するため、本発明は、透光性樹脂と、前記透光性樹脂に添加されて光の波長を制御する色素と、を有する波長制御フィルタであって、前記透光性樹脂に対する前記色素の濃度が異なる複数種類の樹脂層が積層されていることを特徴とする。   In order to solve the above-described problems, the present invention provides a wavelength control filter having a light-transmitting resin and a pigment that is added to the light-transmitting resin to control the wavelength of light, and A plurality of types of resin layers having different dye concentrations are laminated.

本発明によれば、波長制御フィルタを色素を含有する樹脂層で形成することにより、高い演色性を得ることができる。また、色素の濃度が異なる複数種類の樹脂層のうち、ある樹脂層の色素濃度を相対的に高くする一方で、色素の濃度が低い又はそれを含まない樹脂を積層させて波長制御フィルタ全体の厚みを持たせることで、色素の波長制御機能の低下を抑制し、耐光性を高めることができる。   According to the present invention, high color rendering properties can be obtained by forming the wavelength control filter with a resin layer containing a pigment. In addition, among a plurality of types of resin layers having different dye concentrations, the dye concentration of a certain resin layer is relatively high, while a resin having a low dye concentration or a layer containing no resin is laminated to By giving the thickness, it is possible to suppress a decrease in the wavelength control function of the dye and to improve light resistance.

本発明の一の実施形態に係る発光装置の分解斜視図。1 is an exploded perspective view of a light emitting device according to an embodiment of the present invention. 同発光装置に用いられるLED光源の側断面図。The sectional side view of the LED light source used for the light-emitting device. 同LED光源の発光スペクトルを示す図。The figure which shows the emission spectrum of the LED light source. 同発光装置に用いられる波長制御フィルタ(実施例1)の斜視図及び部分側面図。The perspective view and partial side view of the wavelength control filter (Example 1) used for the light-emitting device. 上記発光装置の波長制御部に用いられるテトラアザポルフィリン化合物の構造式を示す図。The figure which shows structural formula of the tetraaza porphyrin compound used for the wavelength control part of the said light-emitting device. 波長制御部に用いられるテトラアザポルフィリン化合物の光吸収スペクトルを示す図。The figure which shows the light absorption spectrum of the tetraaza porphyrin compound used for a wavelength control part. 上記発光装置の出射光のスペクトルを示す図。The figure which shows the spectrum of the emitted light of the said light-emitting device. 上記波長制御フィルタの色素濃度と耐光性との関係を説明するための図。The figure for demonstrating the relationship between the pigment density | concentration of the said wavelength control filter, and light resistance. 一般的な波長制御フィルタ(比較例)の斜視図及び部分側面図。The perspective view and partial side view of a general wavelength control filter (comparative example). 上記発光装置に用いられる波長制御フィルタ(実施例2)の斜視図及び部分側面図。The perspective view and partial side view of the wavelength control filter (Example 2) used for the said light-emitting device. 上記発光装置に用いられる波長制御フィルタ(実施例3)の斜視図及び部分側面図。The perspective view and partial side view of the wavelength control filter (Example 3) used for the said light-emitting device. 上記発光装置に用いられる波長制御フィルタ(実施例4)の斜視図及び部分側面図。The perspective view and partial side view of the wavelength control filter (Example 4) used for the said light-emitting device. 上記波長制御フィルタの厚みと耐光性との関係を説明するための図。The figure for demonstrating the relationship between the thickness of the said wavelength control filter, and light resistance. 上記発光装置に用いられる波長制御フィルタ(変形例)の斜視図及び部分側面図。The perspective view and partial side view of the wavelength control filter (modification) used for the said light-emitting device. 上記発光装置を用いた照明装置の斜視図。The perspective view of the illuminating device using the said light-emitting device.

本発明の一実施形態に係る発光装置について、図1乃至図9を参照して説明する。図1に示すように、本実施形態の発光装置1は、LED光源2と、LED光源2の前面に設けられた波長制御フィルタ3と、を備える。なお、LED光源2の前面とは、LED光源2から光が出射される方向に対向する面を言う。   A light emitting device according to an embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, the light emitting device 1 of this embodiment includes an LED light source 2 and a wavelength control filter 3 provided on the front surface of the LED light source 2. The front surface of the LED light source 2 refers to a surface facing the direction in which light is emitted from the LED light source 2.

LED光源2は、一方の面に発光部4を有するLEDモジュールが用いられ、このLEDモジュールが基板5に実装されている。LED光源2には、例えば、発光ピーク波長が460nmの青色光を放射するGaN系青色LEDチップにYAG系黄色蛍光体を被覆され、青色光と黄色光との混光により白色光を出射するLEDモジュールが用いられる。本実施形態のように、LED光源2が単体である場合には、汎用のチップオンボード(COB)型のLEDパッケージが好適に用いられる。   As the LED light source 2, an LED module having a light emitting unit 4 on one surface is used, and this LED module is mounted on a substrate 5. The LED light source 2 is, for example, an LED in which a GaN-based blue LED chip that emits blue light with an emission peak wavelength of 460 nm is coated with a YAG-based yellow phosphor, and white light is emitted by mixed light of blue light and yellow light. Modules are used. When the LED light source 2 is a single unit as in this embodiment, a general-purpose chip-on-board (COB) type LED package is preferably used.

具体的には、図2に示すように、LED光源2は、アルミニウム又はセラミック等から成る断面矩形状の基板20と、基板20上に実装されたLEDチップ21と、LEDチップ21を取り囲むバンク22と、バンク22に充填される封止部材23と、を備える。なお、図例では、LEDチップ21を2個用いた構成を示すが、これに限定されない。封止部材23には、例えば、シリコーン樹脂等が用いられ、LEDチップ21からの出射光の波長を変換する蛍光体24が含有される。基板20の上面にはカソード電極25及びアノード電極26が夫々設けられ、これらカソード電極25及びアノード電極26は、ワイヤ27によってLEDチップ21の各電極端子に夫々接続される。   Specifically, as shown in FIG. 2, the LED light source 2 includes a substrate 20 having a rectangular cross section made of aluminum or ceramic, an LED chip 21 mounted on the substrate 20, and a bank 22 surrounding the LED chip 21. And a sealing member 23 filled in the bank 22. In the example shown in the figure, a configuration using two LED chips 21 is shown, but the present invention is not limited to this. For example, a silicone resin or the like is used for the sealing member 23 and contains a phosphor 24 that converts the wavelength of light emitted from the LED chip 21. A cathode electrode 25 and an anode electrode 26 are respectively provided on the upper surface of the substrate 20, and the cathode electrode 25 and the anode electrode 26 are connected to each electrode terminal of the LED chip 21 by wires 27.

バンク22の内周は、上面視で円形状であり、この円周内に蛍光体24を含有する封止部材23が充填されることにより、バンク22の開口から露出した封止部材23の表面が、光を出射する発光部4となる。   The inner periphery of the bank 22 has a circular shape when viewed from above, and the surface of the sealing member 23 exposed from the opening of the bank 22 is filled with the sealing member 23 containing the phosphor 24 in the periphery. Becomes the light emitting section 4 that emits light.

本実施形態のLED光源2では、LEDチップ21が、例えば、図3に示すように、波長460nm付近に発光ピーク波長を有する光を出射し、蛍光体24は、波長610nm付近に発光ピーク波長を有する光を発光する。LED光源2は、これらの光を混色することで得た白色光を出射することができる。   In the LED light source 2 of the present embodiment, for example, as shown in FIG. 3, the LED chip 21 emits light having a light emission peak wavelength in the vicinity of a wavelength of 460 nm, and the phosphor 24 has a light emission peak wavelength in the vicinity of a wavelength of 610 nm. The light it has is emitted. The LED light source 2 can emit white light obtained by mixing these lights.

図4に示すように、波長制御フィルタ3は、透光性樹脂から成る母材31と、母材31に添加されて光の波長を制御する色素32と、を有する(図4の拡大図参照)。また、波長制御フィルタ3は、母材31に対する色素32の濃度が異なる複数種類の樹脂層が積層されている。ここで言う色素32の濃度が異なる複数種類の樹脂層には、色素32を含有しない樹脂層を含む。また、波長制御フィルタ3は、色素32の濃度が相対的に高い樹脂層が、色素32の濃度が相対的に低い又は色素32を含有しない樹脂層により挟まれている。   As shown in FIG. 4, the wavelength control filter 3 includes a base material 31 made of a translucent resin, and a dye 32 that is added to the base material 31 and controls the wavelength of light (see the enlarged view of FIG. 4). ). The wavelength control filter 3 includes a plurality of types of resin layers having different concentrations of the pigment 32 with respect to the base material 31. The plurality of types of resin layers having different concentrations of the pigment 32 referred to here include a resin layer not containing the pigment 32. In the wavelength control filter 3, a resin layer having a relatively high concentration of the dye 32 is sandwiched between resin layers having a relatively low concentration of the dye 32 or not containing the dye 32.

以下、図4に示す構成例を、実施例1に係る波長制御フィルタ3iとする。この実施例1に係る波長制御フィルタ3iは、後述する比較例の波長制御フィルタ3r(色素濃度x、図9参照)に比べて、2倍の濃度(色素濃度2x)で色素32が添加された樹脂層3Aと、色素32が添加されていない樹脂層3Bと、から成る。また、色素32の濃度が相対的に高い樹脂層3Aが、色素32を含有しない2層の樹脂層3Bにより挟まれている。この実施例1に係る波長制御フィルタ3iは、30mm平方、厚さ2mmの板材として作成され、色素濃度2xの樹脂層3Aの厚みが1mm、色素32を含まない樹脂層3Bの厚みが夫々0.5mmとなっている。   Hereinafter, the configuration example illustrated in FIG. 4 is referred to as a wavelength control filter 3i according to the first embodiment. In the wavelength control filter 3i according to Example 1, the dye 32 was added at a double concentration (dye concentration 2x) as compared with a wavelength control filter 3r (dye concentration x, see FIG. 9) of a comparative example described later. It consists of a resin layer 3A and a resin layer 3B to which no pigment 32 is added. In addition, the resin layer 3 </ b> A having a relatively high concentration of the dye 32 is sandwiched between two resin layers 3 </ b> B that do not contain the dye 32. The wavelength control filter 3i according to Example 1 is formed as a plate having a thickness of 30 mm square and a thickness of 2 mm, the thickness of the resin layer 3A having a dye concentration of 2x is 1 mm, and the thickness of the resin layer 3B not including the dye 32 is 0.00. It is 5 mm.

母材31は、透光性を有する任意の樹脂材料又はガラス等により構成される。例えば、光学的に透明な材料としては、ポリメタクリル酸メチル、ポリカーボネート、環状ポリオレフィン、環状ポリオレフィンコポリマ、ポリメチルペンテン等の熱可塑性樹脂が挙げられる。また、乳白色半透明な材料としては、ポリエチレン、ポリプロピレン等の熱可塑性樹脂が挙げられる。更に、メタクリル酸樹脂やシリコーン樹脂に架橋成分を加えた後に、熱又は電子線、紫外線等のエネルギーを与えて硬化させる熱硬化性樹脂等も挙げられる。また、母材31には、用途に応じて、紫外線吸収剤、光安定剤、酸化防止剤、加水分解防止剤等が母材となる樹脂材料に対して適宜に添加されてもよい。なお、本実施形態では、波長制御フィルタ3として、平坦な板状部材を図示しているが、LED光源からの出射光を拡散又は集光する形状に形成加工された配光制御部材であってもよい。   The base material 31 is made of any resin material or glass having translucency. For example, examples of the optically transparent material include thermoplastic resins such as polymethyl methacrylate, polycarbonate, cyclic polyolefin, cyclic polyolefin copolymer, and polymethylpentene. Examples of the milky white translucent material include thermoplastic resins such as polyethylene and polypropylene. Furthermore, after adding a crosslinking component to a methacrylic acid resin or a silicone resin, a thermosetting resin that is cured by applying heat or energy such as an electron beam or ultraviolet rays may be used. In addition, an ultraviolet absorber, a light stabilizer, an antioxidant, a hydrolysis inhibitor, and the like may be appropriately added to the base material 31 with respect to the resin material that is the base material, depending on the application. In the present embodiment, a flat plate-shaped member is illustrated as the wavelength control filter 3, but a light distribution control member formed and processed into a shape that diffuses or condenses light emitted from the LED light source. Also good.

色素32は、特定波長の光を選択的に吸収する性質を有する化合物である。例えば、テトラアザポルフィリン、テトラフェニルポルフィリン、オクタエチルポルフィリン、フタロシアニン、シアニン、ピロメテン、スクアリリウム、キサンテン、ジオキサン、オキソノール等の有機化合物を主体とする色素が挙げられる。特に、図5に示すような、テトラアザポルフィリン化合物は、光源からの光照射に対しても堅牢性が高いので、好適に用いられる。なお、図中のMは中心金属となる元素を、R1〜R8は置換基を示す。   The dye 32 is a compound having a property of selectively absorbing light of a specific wavelength. Examples thereof include dyes mainly composed of organic compounds such as tetraazaporphyrin, tetraphenylporphyrin, octaethylporphyrin, phthalocyanine, cyanine, pyromethene, squarylium, xanthene, dioxane and oxonol. In particular, a tetraazaporphyrin compound as shown in FIG. 5 is preferably used because it has high fastness to light irradiation from a light source. In the figure, M represents an element serving as a central metal, and R1 to R8 represent substituents.

本実施形態においては、色素32として、波長450〜650nmの範囲に最大吸光波長を有する色素が用いられる。特に、波長570〜590nmの範囲に最大吸光波長を有する色素であるテトラアザポルフィリンが好適に用いられる。図6は、母材31のアクリル樹脂(VH001(三菱レイヨン(株)製))に、中心金属に銅を有するテトラアザポルフィリン化合物を30ppmの濃度で添加して作製された波長制御フィルタ3の吸光特性を、自記分光光度計(U4100,(株)日立ハイテクノロジー製)に測定した結果を示す。   In the present embodiment, as the dye 32, a dye having a maximum absorption wavelength in the wavelength range of 450 to 650 nm is used. In particular, tetraazaporphyrin, which is a dye having a maximum absorption wavelength in the wavelength range of 570 to 590 nm, is preferably used. FIG. 6 shows the absorption of a wavelength control filter 3 prepared by adding a tetraazaporphyrin compound having copper as a central metal to an acrylic resin (VH001 (manufactured by Mitsubishi Rayon Co., Ltd.)) as a base material 31 at a concentration of 30 ppm. The characteristic was measured with a self-recording spectrophotometer (U4100, manufactured by Hitachi High-Technology Corporation).

LED光源2は、図3に示した発光特性を有するLED光源2からの出射光が、図6に示した吸収特性を有する色素を含有する波長制御部6を透過し、波長制御された白色光を出射する。図7は、発光装置1が出射する白色光の分光特性を示す。なお、同図の分光スペクトルは、瞬間マルチ測光システム(MCPD−7700(大塚電子製))により計測された。LED光源2が出射する白色光は、波長570〜590nmの範囲の波長が吸収されているので、黄色光成分が低減されており、高い演色性を得ることができる。   In the LED light source 2, the emitted light from the LED light source 2 having the light emission characteristics shown in FIG. 3 is transmitted through the wavelength control unit 6 containing the pigment having the absorption characteristics shown in FIG. Is emitted. FIG. 7 shows the spectral characteristics of white light emitted from the light emitting device 1. In addition, the spectral spectrum of the figure was measured by the instantaneous multiphotometry system (MCPD-7700 (made by Otsuka Electronics)). Since the white light emitted from the LED light source 2 has a wavelength in the range of 570 to 590 nm, the yellow light component is reduced and high color rendering can be obtained.

ここで、色素濃度が波長制御フィルタの耐熱耐光性に与える影響について、図8を参照して説明する。具体的には、夫々作成されたサンプルを耐熱耐光試験槽に投入し、試験前後での主吸収ピークの維持率に基づいて評価する耐熱耐光試験を行った。耐熱耐光試験の概要は下記の通りである。
・試験槽: ダイプラウィンテス(株)製メタルウェザー試験機
・試験条件:75℃
・分光光度計:(株)日立ハイテクノロジー製U4100
・残存率の導出法:分光光度計にて試験サンプルの全光線透過率を測定し、色素の最大吸収波長(ここでは595nm)の初期透過率(T0)及び試験後の透過率(T1)を測定し、下記計算式(1)から残存率を計算した。
(数1)
残存率=(TB−T1))/(TB−T0)×100・・・・式(1)
ただし、TBは基材の透過率
Here, the influence of the dye concentration on the heat resistance and light resistance of the wavelength control filter will be described with reference to FIG. Specifically, each of the prepared samples was put into a heat and light resistance test tank, and a heat and light resistance test for evaluating based on the maintenance rate of the main absorption peak before and after the test was performed. The outline of the heat and light resistance test is as follows.
・ Test tank: Metal weather testing machine made by Daipura Wintes Co., Ltd. ・ Test conditions: 75 ° C
・ Spectrophotometer: U4100 manufactured by Hitachi High-Technology Corporation
Derivation method of residual rate: Measure the total light transmittance of the test sample with a spectrophotometer, and determine the initial transmittance (T0) and the transmittance after the test (T1) of the maximum absorption wavelength (595 nm in this case) of the dye. The residual ratio was calculated from the following calculation formula (1).
(Equation 1)
Residual rate = (TB−T1)) / (TB−T0) × 100 (1)
Where TB is the transmittance of the substrate

図8は、フィルタ厚が同じで、色素濃度を1〜3倍に変化させた場合における波長制御フィルタ3の耐熱耐光性試験の結果を示す。この結果から、色素濃度が異なる場合、色素濃度が高いものの方が、耐熱耐光性が高いことが示された。   FIG. 8 shows the results of a heat and light resistance test of the wavelength control filter 3 when the filter thickness is the same and the dye concentration is changed 1 to 3 times. From these results, it was shown that when the dye concentration is different, the one with the higher dye concentration has higher heat resistance and light resistance.

図9は、比較例に係る波長制御フィルタ3rの構成例を示している。この比較例に係る波長制御フィルタ3rは、上記第1の実施例の波長制御フィルタ3iの樹脂層3A(色素濃度2x、図4参照)と同じ外形寸法であるが、色素濃度が半分(色素濃度x)である。このように、母材31に対して色素32が均一に分散されていると、色素濃度が低くなるので、波長制御機能が低下し易くなり、フィルタの耐光性が低下する虞がある。   FIG. 9 shows a configuration example of the wavelength control filter 3r according to the comparative example. The wavelength control filter 3r according to this comparative example has the same outer dimensions as the resin layer 3A (the dye concentration 2x, see FIG. 4) of the wavelength control filter 3i of the first embodiment, but the dye concentration is half (the dye concentration). x). As described above, when the pigment 32 is uniformly dispersed in the base material 31, the pigment concentration is lowered, so that the wavelength control function is likely to be lowered, and the light resistance of the filter may be lowered.

これに対して、第1の実施例に係る波長制御フィルタ3iによれば、樹脂層3Aの色素濃度が高く、その一方で、色素32を含有しない樹脂層3Bを設けて、フィルタの全厚、及び全体での色素含有量を、比較例に係る波長制御フィルタ3rと同じにしている。従って、第1の実施例に係る波長制御フィルタ3iによれば、比較例に係る波長制御フィルタ3rと同じ波長制御性能を持つことで、照明光の高い演色性を実現ながらも、フィルタの耐光性を向上させることができる。   On the other hand, according to the wavelength control filter 3i according to the first embodiment, the resin layer 3A has a high pigment concentration, while the resin layer 3B not containing the pigment 32 is provided, and the total thickness of the filter, The overall pigment content is the same as that of the wavelength control filter 3r according to the comparative example. Therefore, according to the wavelength control filter 3i according to the first embodiment, having the same wavelength control performance as the wavelength control filter 3r according to the comparative example, the light resistance of the filter is achieved while realizing high color rendering properties of illumination light. Can be improved.

図10は、実施例2に係る波長制御フィルタ3iiの構成例を示している。この実施例2に係る波長制御フィルタ3iiは、比較例の波長制御フィルタ3r(色素濃度xとする、図9参照)に比べて、2.88倍の濃度(色素濃度2.88x)で色素32が添加された樹脂層3Cと、色素32が添加されていない樹脂層3Bと、から成る。また、色素32の濃度が相対的に高い樹脂層(本例では樹脂層3C)の正面視寸法が、フィルタ寸法よりも小さく、樹脂層3Cの周縁が、色素32の濃度が相対的に低い又は色素32を含有しない樹脂層(本例では樹脂層3B)により覆われている。具体的には、樹脂層3Cは、25mm平方、厚さ1mmの層状に形成され、色素32を含まない2.5mm幅の樹脂層3Bが、樹脂層3Cの4方を覆っている。この実施例2に係る波長制御フィルタ3iiによれば、樹脂層3Cが外部に露出していないので、色素32が外気中の水分や酸素と接触することがないと考えられる。従って、比較例に係る波長制御フィルタ3rと同じ波長制御性能を持ちながらも、フィルタの耐光性を特に向上させることができる。   FIG. 10 illustrates a configuration example of the wavelength control filter 3ii according to the second embodiment. The wavelength control filter 3ii according to Example 2 is a dye 32 having a density (dye density 2.88x) that is 2.88 times that of the comparative wavelength control filter 3r (referred to as dye density x, see FIG. 9). The resin layer 3C to which is added, and the resin layer 3B to which the pigment 32 is not added. In addition, the frontal dimension of the resin layer (resin layer 3C in this example) having a relatively high concentration of the dye 32 is smaller than the filter dimension, and the periphery of the resin layer 3C has a relatively low concentration of the dye 32 or It is covered with a resin layer that does not contain the pigment 32 (in this example, the resin layer 3B). Specifically, the resin layer 3C is formed in a layer shape of 25 mm square and 1 mm in thickness, and a 2.5 mm width resin layer 3B that does not include the pigment 32 covers the four sides of the resin layer 3C. According to the wavelength control filter 3ii according to Example 2, since the resin layer 3C is not exposed to the outside, it is considered that the pigment 32 does not come into contact with moisture or oxygen in the outside air. Therefore, the light resistance of the filter can be particularly improved while having the same wavelength control performance as the wavelength control filter 3r according to the comparative example.

図11は、実施例3に係る波長制御フィルタ3iiiの構成例を示している。この実施例3に係る波長制御フィルタ3iiiは、比較例の波長制御フィルタ3r(色素濃度xとする、図9参照)に比べて、0.2倍の濃度(色素濃度0.2x)で色素32が添加された樹脂層3Dと、1.8倍の濃度(色素濃度1.8x)で色素32が添加された樹脂層3Eと、から成る。また、色素32の濃度が相対的に高い樹脂層3Eが、色素32の濃度が相対的に低い2層の樹脂層3Dにより挟まれている。   FIG. 11 illustrates a configuration example of the wavelength control filter 3iii according to the third embodiment. The wavelength control filter 3iii according to Example 3 has a dye 32 with a concentration (dye concentration of 0.2x) 0.2 times that of the comparative wavelength control filter 3r (referred to as dye concentration x, see FIG. 9). Is added to the resin layer 3D, and the resin layer 3E to which the pigment 32 is added at a density 1.8 times (pigment concentration 1.8x). The resin layer 3E having a relatively high concentration of the dye 32 is sandwiched between two resin layers 3D having a relatively low concentration of the dye 32.

図12は、実施例4に係る波長制御フィルタ3ivの構成例を示している。この実施例4に係る波長制御フィルタ3ivは、比較例の波長制御フィルタ3r(色素濃度xとする、図9参照)に比べて、0.9倍の濃度(色素濃度0.9x)で色素32が添加された樹脂層3Fと、1.2倍の濃度(色素濃度1.2x)で色素32が添加された樹脂層3Gと、0.7倍の濃度(色素濃度0.7x)で色素32が添加された樹脂層3Hと、から成る。また、色素32の濃度が相対的に高い樹脂層3Gが、色素32の濃度が相対的に低い2層の樹脂層3F、Hにより挟まれている。   FIG. 12 illustrates a configuration example of the wavelength control filter 3iv according to the fourth embodiment. The wavelength control filter 3iv according to Example 4 is a dye 32 having a density (dye density 0.9x) 0.9 times that of the comparative wavelength control filter 3r (dye density x, see FIG. 9). Is added to the resin layer 3F, the resin layer 3G to which the dye 32 is added at 1.2 times the density (dye density 1.2x), and the dye 32 at the 0.7 times density (the dye density 0.7x). And a resin layer 3H to which is added. The resin layer 3G having a relatively high concentration of the dye 32 is sandwiched between the two resin layers 3F and H having a relatively low concentration of the dye 32.

下記表1は、上述した実施例1〜実施例4、及び比較例に係る波長制御フィルタ3i〜3iv、3rについて、耐光性試験を行った結果を示す。試験は、上記図8を用いて説明した耐熱耐光試験と手順と同様に行い、残存率80%へ到達する日数で耐光性を評価した。   Table 1 below shows the results of a light resistance test performed on the above-described wavelength control filters 3i to 3iv and 3r according to Examples 1 to 4 and Comparative Example. The test was performed in the same manner as the heat and light resistance test and procedure described with reference to FIG. 8, and the light resistance was evaluated by the number of days to reach the remaining rate of 80%.

表1の結果より、実施例1〜実施例4において、比較例よりも高い耐光性が得られることが示された。また、実施例1及び実施例3のように、色素32の濃度が相対的に高い樹脂層3A、3Eが、色素32の濃度が相対的に低い又は色素32を含有しない樹脂層2B,3Dで挟まれた構成において、特に高い耐光性が得られることが示された。また、実施例2では、樹脂層3Cの色素32の濃度が最も高く、しかも色素32を含有しない樹脂層2Bによってその周縁まで覆われているので、極めて高い耐光性が得られることが示された。   From the results in Table 1, it was shown that in Examples 1 to 4, higher light resistance than that of the comparative example was obtained. Further, as in Example 1 and Example 3, the resin layers 3A and 3E in which the concentration of the pigment 32 is relatively high are resin layers 2B and 3D in which the concentration of the pigment 32 is relatively low or does not contain the pigment 32. It was shown that particularly high light resistance can be obtained in the sandwiched configuration. Moreover, in Example 2, since the density | concentration of the pigment | dye 32 of the resin layer 3C was the highest and it was covered to the periphery by the resin layer 2B which does not contain the pigment | dye 32, it was shown that extremely high light resistance is obtained. .

このように、本実施形態の波長制御フィルタ1によれば、色素32を含有する樹脂層3Aにより、高い演色性を得ることができる。また、樹脂層3Aの色素濃度を相対的に高くする一方で、色素32を含まない樹脂層3Bにより波長制御フィルタ1全体の厚みを持たせることで、色素32の波長制御機能の低下を抑制し、耐光性を高めることができる。   Thus, according to the wavelength control filter 1 of this embodiment, high color rendering properties can be obtained by the resin layer 3 </ b> A containing the pigment 32. Moreover, while making the pigment | dye density | concentration of the resin layer 3A relatively high, the fall of the wavelength control function of the pigment | dye 32 is suppressed by giving the thickness of the whole wavelength control filter 1 by the resin layer 3B which does not contain the pigment | dye 32. , Light resistance can be enhanced.

フィルタの厚みが波長制御フィルタの耐熱耐光性に与える影響について、図13を参照して説明する。ここでも、作成されたサンプルを耐熱耐光試験槽に投入し、試験前後での主吸収ピークの維持率に基づいて評価する耐熱耐光試験を行った。耐熱耐光試験の概要は上記図8で説明した手順と同様である。図13は、色素濃度が同じで、フィルタ厚を1、2倍に変化させた場合における波長制御フィルタ3の耐熱耐光性試験の結果を示す。この結果から、フィルタ厚が異なる場合、フィルタ厚が厚いものの方が、耐熱耐光性が高いことが示された。   The influence of the filter thickness on the heat resistance and light resistance of the wavelength control filter will be described with reference to FIG. Also in this case, the prepared sample was put into a heat and light resistance test tank, and a heat and light resistance test for evaluating based on the maintenance rate of the main absorption peak before and after the test was performed. The outline of the heat and light resistance test is the same as the procedure described in FIG. FIG. 13 shows the results of a heat and light resistance test of the wavelength control filter 3 when the dye concentration is the same and the filter thickness is changed by 1 or 2 times. From these results, it was shown that when the filter thickness is different, the thicker filter thickness is higher in heat resistance and light resistance.

上述したいずれの実施例においても、複数種類の樹脂層のうち、色素32の濃度が相対的に高い樹脂層3A,3C,3E,3Gの厚みが、色素32の濃度が相対的に低い又は含有しない樹脂層3B,3D,3F,3Hの厚みよりも厚くなるように形成されている。すなわち、色素32の濃度が低い樹脂層よりも、色素32の濃度が高い樹脂層の厚みを厚くすることで、より高い耐光性を得ることができる。   In any of the embodiments described above, the thickness of the resin layers 3A, 3C, 3E, and 3G in which the concentration of the pigment 32 is relatively high among the plurality of types of resin layers is relatively low or contained. The resin layers 3B, 3D, 3F, and 3H that are not formed are formed to be thicker. That is, higher light resistance can be obtained by increasing the thickness of the resin layer having a high concentration of the dye 32 than the resin layer having a low concentration of the dye 32.

図14は、上記実施形態の変形例に係る波長制御フィルタ3mを示す。波長制御フィルタ3mでは、色素32の濃度が相対的に高い樹脂層3Iと、色素32を含有しない樹脂層3Bと、から成る。また、色素32の濃度が相対的に高い樹脂層3Iは、同一平面において短冊状に形成されており、各樹脂層3I間には、色素32を含有しない樹脂層3Bが充填されている。   FIG. 14 shows a wavelength control filter 3m according to a modification of the above embodiment. The wavelength control filter 3m includes a resin layer 3I having a relatively high concentration of the dye 32 and a resin layer 3B that does not contain the dye 32. The resin layer 3I having a relatively high concentration of the pigment 32 is formed in a strip shape on the same plane, and a resin layer 3B not containing the pigment 32 is filled between the resin layers 3I.

図13で示したように、波長制御フィルタの耐光性は、色素濃度が高く、且つフィルタ厚が厚いほど高くなる。しかしながら、図6で示したような透過率を実現するためには、フィルタ全体での色素含有量は一定にする必要がある。そこで、図14に示したように、樹脂層3Iを短冊状にすることで、色素濃度を高く且つ層厚を厚くする一方で、各樹脂層3I間に色素32を含まない層を介在させることで、所望の透過率を実現することができる。なお、波長制御フィルタ3の正面視形状は、例示した正方形に限らず、円形、長方形又は任意の多角形であってもよい。   As shown in FIG. 13, the light resistance of the wavelength control filter increases as the dye concentration increases and the filter thickness increases. However, in order to realize the transmittance as shown in FIG. 6, the pigment content in the entire filter needs to be constant. Therefore, as shown in FIG. 14, by making the resin layer 3I into a strip shape, the pigment concentration is increased and the layer thickness is increased, while a layer not containing the pigment 32 is interposed between the resin layers 3I. Thus, a desired transmittance can be realized. The front view shape of the wavelength control filter 3 is not limited to the illustrated square, and may be a circle, a rectangle, or an arbitrary polygon.

本実施形態の波長制御フィルタ3を用いた発光装置1は、例えば、図15に示すような照明装置10に適用される。ここでは、球形の器具筐体11内に、LED光源(不図示)が内蔵され、器具筐体11に設けられた開口に円形の波長制御フィルタ3が取り付けられた構成を示す。この照明装置10によれば、耐光性の高い波長制御フィルタ3を用いたことにより、長期間に亘って安定的に演色性の高い照明光を照射することができる。   The light emitting device 1 using the wavelength control filter 3 of the present embodiment is applied to, for example, an illumination device 10 as shown in FIG. Here, a configuration in which an LED light source (not shown) is built in a spherical instrument housing 11 and a circular wavelength control filter 3 is attached to an opening provided in the instrument housing 11 is shown. According to this illuminating device 10, by using the wavelength control filter 3 with high light resistance, it is possible to irradiate illumination light with high color rendering properties stably over a long period of time.

なお、本発明は、上述した実施形態に限らず、種々の変形が可能である。例えば、上記実施例に係る波長制御フィルタ3は、いずれも色素濃度の異なる2種又は3種の樹脂層を3層積層させた構成としたが、樹脂層は3種以上、また、4層以上積層させた構成であってもよい。また、波長制御フィルタ3を、別途の透光性部材に貼付してもよい。この場合、別途の透光性部材のうち、LED光源2の発光部4と対向する部分に限定的に設けてもよい。また、図10(実施例2)で示したような、色素32の濃度が相対的に高い樹脂層3Cが、LED光源2の発光部4と対向する部分に限定的に設けられてもよい。   The present invention is not limited to the above-described embodiment, and various modifications can be made. For example, the wavelength control filter 3 according to the above example has a structure in which two or three types of resin layers having different dye concentrations are laminated, but the resin layer has three or more types, or four or more layers. A laminated structure may be used. Moreover, you may affix the wavelength control filter 3 on a separate translucent member. In this case, you may provide in a limited part in the part facing the light emission part 4 of the LED light source 2 among separate translucent members. Further, as shown in FIG. 10 (Example 2), the resin layer 3 </ b> C having a relatively high concentration of the dye 32 may be provided in a limited manner in a portion facing the light emitting unit 4 of the LED light source 2.

1 発光装置
10 照明装置
2 LED光源
3 波長制御フィルタ
3A〜3I 樹脂層
31 母材(透光性樹脂)
32 色素
DESCRIPTION OF SYMBOLS 1 Light-emitting device 10 Illuminating device 2 LED light source 3 Wavelength control filter 3A-3I Resin layer 31 Base material (translucent resin)
32 Dye

Claims (9)

透光性樹脂と、前記透光性樹脂に添加されて光の波長を制御する色素と、を有する波長制御フィルタであって、
前記透光性樹脂に対する前記色素の濃度が異なる複数種類の樹脂層が積層されていることを特徴とする波長制御フィルタ。
A wavelength control filter comprising a translucent resin and a dye that is added to the translucent resin to control the wavelength of light,
A wavelength control filter, wherein a plurality of types of resin layers having different dye concentrations with respect to the translucent resin are laminated.
前記複数種類の樹脂層は、前記色素を含有しない樹脂層を含み、
前記色素の濃度が相対的に高い樹脂層は、前記色素の濃度が相対的に低い又は前記色素を含有しない樹脂層により挟まれていることを特徴とする波長制御フィルタ。
The plurality of types of resin layers include a resin layer not containing the pigment,
The wavelength control filter, wherein the resin layer having a relatively high concentration of the dye is sandwiched between resin layers having a relatively low concentration of the dye or not containing the dye.
前記色素の濃度が相対的に高い樹脂層の周縁が、前記色素の濃度が相対的に低い又は前記色素を含有しない樹脂層により覆われていることを特徴とする請求項2に記載の波長制御フィルタ。   The wavelength control according to claim 2, wherein a peripheral edge of the resin layer having a relatively high concentration of the dye is covered with a resin layer having a relatively low concentration of the dye or not containing the dye. filter. 前記複数種類の樹脂層のうち、前記色素の濃度が相対的に高い樹脂層の厚みが、前記色素の濃度が相対的に低い又は前記色素を含有しない樹脂層の厚みよりも厚いことを特徴とする請求項2又は請求項3に記載の波長制御フィルタ。   Of the plurality of types of resin layers, the thickness of the resin layer having a relatively high concentration of the dye is relatively low or thicker than the thickness of the resin layer not containing the dye. The wavelength control filter according to claim 2 or 3, wherein: 前記色素は、波長450〜600nmの範囲に最大吸光波長を有することを特徴とする請求項1乃至請求項4のいずれか一項に記載の波長制御フィルタ。   The wavelength control filter according to claim 1, wherein the dye has a maximum absorption wavelength in a wavelength range of 450 to 600 nm. 前記色素は、テトラアザポルフィリン化合物であることを特徴とする請求項1乃至請求項5のいずれか一項に記載の波長制御フィルタ。   The wavelength control filter according to claim 1, wherein the dye is a tetraazaporphyrin compound. 前記テトラアザポルフィリン化合物の中心金属が銅であることを特徴とする請求項6に記載の波長制御フィルタ。   The wavelength control filter according to claim 6, wherein a central metal of the tetraazaporphyrin compound is copper. 請求項1乃至請求項7のいずれか一項に記載の波長制御フィルタと、前記波長制御フィルタへ向けて光を出射するLED光源と、を備えたことを特徴とする発光装置。   A light emitting device comprising: the wavelength control filter according to claim 1; and an LED light source that emits light toward the wavelength control filter. 請求項8に記載の発光装置を用いた照明装置。   The illuminating device using the light-emitting device of Claim 8.
JP2015050411A 2015-03-13 2015-03-13 Wavelength control filter, light emitting device and lighting device using the same Active JP6562343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015050411A JP6562343B2 (en) 2015-03-13 2015-03-13 Wavelength control filter, light emitting device and lighting device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015050411A JP6562343B2 (en) 2015-03-13 2015-03-13 Wavelength control filter, light emitting device and lighting device using the same

Publications (2)

Publication Number Publication Date
JP2016170294A true JP2016170294A (en) 2016-09-23
JP6562343B2 JP6562343B2 (en) 2019-08-21

Family

ID=56983697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015050411A Active JP6562343B2 (en) 2015-03-13 2015-03-13 Wavelength control filter, light emitting device and lighting device using the same

Country Status (1)

Country Link
JP (1) JP6562343B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111952426A (en) * 2020-07-21 2020-11-17 广东广腾达科技有限公司 Quantum dot light-emitting diode and packaging method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH117253A (en) * 1997-06-16 1999-01-12 Seiko Epson Corp Display device
US20040179283A1 (en) * 2003-03-14 2004-09-16 Jones Michael R. Dye-based filter
WO2009031406A1 (en) * 2007-09-05 2009-03-12 Yamamoto Chemicals, Inc. Tetraazaporphyrin mixture, optical filter made by using the same, and displays
JP2013033833A (en) * 2011-08-01 2013-02-14 Panasonic Corp Wavelength conversion film and light emitting device and lighting device which use the same
JP2014136771A (en) * 2013-01-17 2014-07-28 Yamamoto Chem Inc Wavelength conversion layer, and wavelength conversion filter using the same
JP2014199831A (en) * 2011-08-12 2014-10-23 シャープ株式会社 Light-emitting device, phosphor sheet, backlight system, and process of manufacturing light-emitting device
JP2015018677A (en) * 2013-07-10 2015-01-29 パナソニック株式会社 Lighting device
JP2015018612A (en) * 2013-07-08 2015-01-29 パナソニック株式会社 Luminaire

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH117253A (en) * 1997-06-16 1999-01-12 Seiko Epson Corp Display device
US20040179283A1 (en) * 2003-03-14 2004-09-16 Jones Michael R. Dye-based filter
WO2009031406A1 (en) * 2007-09-05 2009-03-12 Yamamoto Chemicals, Inc. Tetraazaporphyrin mixture, optical filter made by using the same, and displays
JP2013033833A (en) * 2011-08-01 2013-02-14 Panasonic Corp Wavelength conversion film and light emitting device and lighting device which use the same
JP2014199831A (en) * 2011-08-12 2014-10-23 シャープ株式会社 Light-emitting device, phosphor sheet, backlight system, and process of manufacturing light-emitting device
JP2014136771A (en) * 2013-01-17 2014-07-28 Yamamoto Chem Inc Wavelength conversion layer, and wavelength conversion filter using the same
JP2015018612A (en) * 2013-07-08 2015-01-29 パナソニック株式会社 Luminaire
JP2015018677A (en) * 2013-07-10 2015-01-29 パナソニック株式会社 Lighting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111952426A (en) * 2020-07-21 2020-11-17 广东广腾达科技有限公司 Quantum dot light-emitting diode and packaging method thereof
CN111952426B (en) * 2020-07-21 2022-03-25 广东广腾达科技有限公司 Quantum dot light-emitting diode and packaging method thereof

Also Published As

Publication number Publication date
JP6562343B2 (en) 2019-08-21

Similar Documents

Publication Publication Date Title
JP5906433B2 (en) Lighting device
JP4989936B2 (en) Lighting device
KR101046079B1 (en) LED element and LED luminaire using the same
JP6160954B2 (en) Lighting device
EP2639830B1 (en) Spectral light distribution for a light emitting device, and illumination apparatus and luminaire using same
JP2006059625A (en) Led illumination device, pendant illumination fixture, and street lgt
JP2013219340A (en) Light-emitting diode and luminaire and lighting fixture using the same
JP2014075186A (en) Illumination device
JP6284079B2 (en) Light emitting device, illumination light source, and illumination device
JP2009302339A (en) Semiconductor light emitting device
JP5974394B2 (en) White light emitting device and lighting apparatus using the same
JP2015176949A (en) Light emitting device, manufacturing method for the same, light source for illumination and lighting device
JP2013171777A (en) Lighting device
WO2014045489A1 (en) Illumination light source and illumination device
JP2014164830A (en) Light emitting module and illumination device
JP2013045530A (en) Light emitting device and lighting fixture
JP2016170355A (en) Wavelength control filter, and light emitting device and illumination device having the same
JP6562343B2 (en) Wavelength control filter, light emitting device and lighting device using the same
JP2017054994A (en) Light emitting device and luminaire
JP2013026046A (en) Lighting device
JP2012174538A (en) Lighting system with low insect-inducing property
JP3126565U (en) Luminance enhancement structure for light-emitting components with LEDs
JP6745471B2 (en) Light emitting device and lighting device using the same
JP2012113960A (en) Lighting system
JP7241276B2 (en) street lighting fixture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190712

R151 Written notification of patent or utility model registration

Ref document number: 6562343

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151