JP5974394B2 - White light emitting device and lighting apparatus using the same - Google Patents

White light emitting device and lighting apparatus using the same Download PDF

Info

Publication number
JP5974394B2
JP5974394B2 JP2011065049A JP2011065049A JP5974394B2 JP 5974394 B2 JP5974394 B2 JP 5974394B2 JP 2011065049 A JP2011065049 A JP 2011065049A JP 2011065049 A JP2011065049 A JP 2011065049A JP 5974394 B2 JP5974394 B2 JP 5974394B2
Authority
JP
Japan
Prior art keywords
light
wavelength
phosphor
emitting device
led
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011065049A
Other languages
Japanese (ja)
Other versions
JP2012204413A (en
Inventor
尚子 竹井
尚子 竹井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2011065049A priority Critical patent/JP5974394B2/en
Publication of JP2012204413A publication Critical patent/JP2012204413A/en
Application granted granted Critical
Publication of JP5974394B2 publication Critical patent/JP5974394B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)

Description

本発明は、LED等の固体発光素子の光により蛍光体を励起して発光する発光装置に関する。   The present invention relates to a light-emitting device that emits light by exciting a phosphor with light from a solid-state light-emitting element such as an LED.

従来から、スーパーマーケット等に設置され、陳列棚に並べられた食肉等の照射体を照明する照明器具として、蛍光灯等の光源に、所定波長の光をカットする光学フィルタを被覆することにより、商品を鮮明に見せるために適した光を照射するものが用いられている。近年は、蛍光灯等に換えて、低電力で高輝度の発光が可能なLEDを光源に用いた照明器具が普及しており、例えば、白色光を出射するLEDに光学フィルタを用いて、商品を鮮明に見せるために適した光を照射できるようにした照明器具が用いられている。   Conventionally, as a lighting fixture that illuminates an irradiation body such as meat that is installed in a supermarket and arranged on a display shelf, a light source such as a fluorescent lamp is covered with an optical filter that cuts light of a predetermined wavelength. The one that emits light suitable for making the image look clear is used. In recent years, in place of fluorescent lamps and the like, lighting fixtures using LEDs that can emit light with high power and high brightness as a light source have become widespread. For example, products that use optical filters for LEDs that emit white light Lighting fixtures that can irradiate with light suitable for making the image look clear are used.

白色光を出射するLEDとしては、近紫外光又は紫光、若しくは青光を出射するLEDと、このLEDからの光の波長を変換する複数の蛍光体とを組み合わせ、これら複数の蛍光体によって波長変換された光を混色させて白色光を作り出す、いわゆる白色LEDが知られている。また、この種のLEDに、所定の波長の光の透過を減少させるフィルタを備えた白色発光装置が知られている(例えば、特許文献1参照)。   As an LED that emits white light, an LED that emits near-ultraviolet light, violet light, or blue light is combined with a plurality of phosphors that convert the wavelength of light from the LED, and wavelength conversion is performed by the plurality of phosphors. A so-called white LED is known in which white light is generated by mixing the emitted light. Also, a white light emitting device is known in which this type of LED is provided with a filter that reduces the transmission of light of a predetermined wavelength (see, for example, Patent Document 1).

ところで、食肉を照射する光のスペクトルとしては、黄色光成分の強度が相対的に低く、緑色及び赤色光成分が強調されたものが好ましい。このようなスペクトルを有する光を用いることにより、食肉がくすんで見えることなく、鮮明に演出することができる。つまり、黄色光成分の波長をカットすることができる光学フィルタをLEDに被覆した発光装置を用いれば、食肉等の照射体を鮮明に演出することができる。   By the way, as a spectrum of the light which irradiates meat, the thing with which the intensity | strength of a yellow light component is comparatively low and green and a red light component are emphasized is preferable. By using light having such a spectrum, the meat can be clearly produced without the appearance of dull meat. That is, if a light emitting device in which an LED is coated with an optical filter capable of cutting the wavelength of the yellow light component, an irradiated body such as meat can be clearly produced.

特開2008−311532号公報JP 2008-311532 A

しかしながら、昼白色の光を出射するLEDのスペクトルは、図6(a)に示すように、一般的に黄色光成分が最大ピーク強度であり、この波長域の光成分が多い。そのため、この波長域の光の透過を制限する光学フィルタを用いると、LEDの出射光の大部分をカットすることになり、十分な光束が得られない虞がある。また、電球色の光を出射するLEDに、上述した光学フィルタを用いると、図6(b)に示すように、透過光における緑色光成分と赤色光成分とのバランスが悪くなり、周囲に対して違和感のある光となる虞がある。そこで更に、赤色光成分の一部をカットし、周囲に対して違和感のない光にすることも可能であるが、その際には光束が十分に得られないことがある。   However, as shown in FIG. 6A, the spectrum of an LED that emits daylight white light generally has a yellow light component having a maximum peak intensity, and has many light components in this wavelength region. Therefore, when an optical filter that restricts the transmission of light in this wavelength region is used, most of the light emitted from the LED is cut, and there is a possibility that a sufficient luminous flux cannot be obtained. Further, when the above-described optical filter is used for the LED that emits light bulb-colored light, as shown in FIG. 6B, the balance between the green light component and the red light component in the transmitted light is deteriorated and There is a risk that the light becomes uncomfortable. Therefore, it is also possible to cut a part of the red light component so that the light does not feel uncomfortable with respect to the surroundings, but in that case, a sufficient luminous flux may not be obtained.

本発明は、上記問題を解決するものであり、照射光に含まれる黄色光成分を低減し、且つ十分な光束を得ることができる白色発光装置及びこれを用いた照明器具を提供することを目的とする。   An object of the present invention is to solve the above problems, and to provide a white light emitting device capable of reducing a yellow light component contained in irradiation light and obtaining a sufficient luminous flux, and a lighting fixture using the same. And

上記目的を達成するために本発明の発光装置は、10〜550nmの波長領域に含まれる光を発する固体発光素子と、前記固体発光素子の発光面側に設けられ、特定の波長の光の透過を減少させる光学フィルタと、前記固体発光素子と前記光学フィルタとの間に設けられた波長変換部材と、を備え、前記固体発光素子は、少なくとも430〜470nmの波長領域内にピーク波長を有する光を発光し、前記波長変換部材は、前記固体発光素子からの光によって励起され、630〜680nmの波長領域内にピーク波長を有する光に変換する第1の蛍光体と、500〜550nmの波長領域内にピーク波長を有する光に変換する第2の蛍光体と、を有し、前記第1の蛍光体及び前記第2の蛍光体から放射される光強度が、互いに同程度となるように構成され、前記630〜680nmの波長領域内のピーク波長の光強度と、前記500〜550nmの波長領域内のピーク波長の光強度とが、前記430〜470nmの波長領域内のピーク波長の光強度よりも高く、前記光学フィルタは、580〜600nmの波長領域の光の透過を選択的に減少させ、且つ前記光学フィルタの透過率は、50%以下であることを特徴とする。 In order to achieve the above object, a light-emitting device of the present invention is provided with a solid-state light-emitting element that emits light included in a wavelength region of 10 to 550 nm and a light-emitting surface side of the solid-state light-emitting element, and transmits light with a specific wavelength And a wavelength conversion member provided between the solid-state light-emitting element and the optical filter, the solid-state light-emitting element having light having a peak wavelength in a wavelength region of at least 430 to 470 nm. And the wavelength conversion member is excited by light from the solid state light emitting device and converts the light into a light having a peak wavelength in a wavelength range of 630 to 680 nm, and a wavelength range of 500 to 550 nm. A second phosphor that converts the light into a peak wavelength, and the light intensities emitted from the first phosphor and the second phosphor are comparable to each other. It is configured, and the light intensity of the peak wavelength in the wavelength range of the 630-680 nm, and the light intensity of the peak wavelength in the wavelength range of the 500~550nm is, the light of a peak wavelength in the wavelength range of the 430~470nm It is higher than the intensity , and the optical filter selectively reduces transmission of light in a wavelength region of 580 to 600 nm, and the transmittance of the optical filter is 50% or less.

上記白色発光装置は、照明器具に用いられることが好ましい。   The white light emitting device is preferably used for a lighting fixture.

本発明の白色発光装置によれば、固体発光素子からの光を、630〜680nm及び500〜550nmの波長領域内にピーク波長を有する光に変換する第1及び第2の蛍光体を用いている。従って、波長変換部材から放射される光に含まれる黄色光成分を少なくすることができ、この波長領域を含む560〜620nmの波長領域の光の透過を減少させる光学フィルタを用いても、光束の減少を抑制することができる。   According to the white light emitting device of the present invention, the first and second phosphors that convert light from the solid light emitting element into light having peak wavelengths in the wavelength regions of 630 to 680 nm and 500 to 550 nm are used. . Therefore, the yellow light component contained in the light emitted from the wavelength conversion member can be reduced, and even if an optical filter that reduces the transmission of light in the wavelength region of 560 to 620 nm including this wavelength region is used, Reduction can be suppressed.

本発明の一実施形態に係る白色発光装置の側断面図。1 is a side sectional view of a white light emitting device according to an embodiment of the present invention. (a)(b)同白色発光装置に用いられる光源部の例を示す側断面図。(A) (b) Side sectional drawing which shows the example of the light source part used for the white light-emitting device. 同光源部の波長変換部材に用いられる第1及び第2の蛍光体からの光の各分光スペクトルを示す図。The figure which shows each spectrum of the light from the 1st and 2nd fluorescent substance used for the wavelength conversion member of the light source part. 同白色発光装置の出射光の分光スペクトルを示す図。The figure which shows the spectral spectrum of the emitted light of the same white light-emitting device. 食肉の分光反射特性図。Spectral reflection characteristic diagram of meat. (a)は昼白色光を出射するLEDに黄色光成分をカットする光学フィルタを用いた場合における分光スペクトルを示す図、(b)は電球色光を出射するLEDに黄色光成分をカットする光学フィルタを用いた場合における分光スペクトルを示す図。(A) is a figure which shows the spectrum in the case of using the optical filter which cuts a yellow light component for LED which radiate | emits daylight white light, (b) is the optical filter which cuts a yellow light component to LED which radiate | emits a bulb color light The spectrum which shows the spectrum in the case of using.

本発明の一実施形態に係る白色発光装置について、図1乃至図5を参照して説明する。本実施形態の白色発光装置1は、図1に示すように、複数の光源部2と、これら光源部2が搭載される配線基板3と、この配線基板3の周縁部に沿って設けられ、光源部2からの光を所定方向に配光する反射枠4と、を備える。また、白色発光装置1は、光源部2の光出射方向に設けられ、光源部2からの光のうち特定の波長の光の透過を減少させる光学フィルタ5を備える。この光学フィルタ5は、光源部2と一定の間隔で保持されるように、反射枠4の開口縁に固定される。   A white light emitting device according to an embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, the white light emitting device 1 of the present embodiment is provided along a plurality of light source parts 2, a wiring board 3 on which these light source parts 2 are mounted, and a peripheral part of the wiring board 3. And a reflection frame 4 that distributes light from the light source unit 2 in a predetermined direction. In addition, the white light emitting device 1 includes an optical filter 5 that is provided in the light emission direction of the light source unit 2 and reduces transmission of light having a specific wavelength out of light from the light source unit 2. The optical filter 5 is fixed to the opening edge of the reflection frame 4 so as to be held at a constant interval from the light source unit 2.

光源部2は、図2(a)(b)に示すように、固体発光素子(以下、LED)21と、このLED21を実装する実装基板22と、LED21の光出射方向に設けられ、LED21からの光の波長を変換する波長変換部材6と、を備える。光源部2は、例えば、図2(a)に示すように、実装基板22が、LED21を囲うように形成された枠体を備え、波長変換部材6が枠体の開口縁に配置される。また、枠体内に適宜に封止材等が充填されてもよく、この充填材に波長変換部材6とは別種の蛍光体が含有されてもよく、更に光拡散材や紫外線吸収剤等が添加されてもよい。また、光源部2は、図2(b)に示すように、実装基板22が矩形板状部材であってもよく、この場合、波長変換部材6はLED21の光出射面を被覆するように設けられる。また、光源部2は、例えば、図2(a)に示すように、実装基板22が、LED21を囲うように形成された枠体を備えており、波長変換部材6が枠体の開口縁と、LED21の光出射面を被覆するように配置されたものでもよい。   As shown in FIGS. 2A and 2B, the light source unit 2 is provided in a light emitting direction of the solid-state light emitting element (hereinafter referred to as LED) 21, a mounting substrate 22 on which the LED 21 is mounted, and the LED 21. And a wavelength conversion member 6 that converts the wavelength of the light. For example, as illustrated in FIG. 2A, the light source unit 2 includes a frame body formed so that the mounting substrate 22 surrounds the LEDs 21, and the wavelength conversion member 6 is disposed at the opening edge of the frame body. Further, the frame body may be appropriately filled with a sealing material or the like, and the filler may contain a different type of phosphor from the wavelength conversion member 6, and further a light diffusing material, an ultraviolet absorber or the like is added. May be. In addition, as shown in FIG. 2B, the light source unit 2 may have a rectangular plate member as the mounting substrate 22. In this case, the wavelength conversion member 6 is provided so as to cover the light emitting surface of the LED 21. It is done. Further, for example, as shown in FIG. 2A, the light source unit 2 includes a frame body formed so that the mounting substrate 22 surrounds the LEDs 21, and the wavelength conversion member 6 has an opening edge of the frame body. The LED 21 may be disposed so as to cover the light emission surface.

LED21には、10〜500nmのいずれかの帯域の波長を含む光を発する固体発光素子(LEDチップ)が用いられる。具体的には、紫外光(ピーク波長10〜350nm)、紫色光(ピーク波長350〜430nm)、青色光(ピーク波長430〜470nm)、緑色光(ピーク波長470〜550nm)を放射するLEDチップが挙げられる。なお、本実施形態においては、430〜470nmの青色光を放射するLEDチップを用いるものとする。この波長域は、後述する蛍光体との組み合わせにより、自然な白色光を生成し易く、また、紫外光を含まないので、蛍光体やその他樹脂材料にダメージを与え難いというメリットがある。   For the LED 21, a solid light emitting element (LED chip) that emits light including a wavelength in any band of 10 to 500 nm is used. Specifically, LED chips that emit ultraviolet light (peak wavelength 10 to 350 nm), violet light (peak wavelength 350 to 430 nm), blue light (peak wavelength 430 to 470 nm), and green light (peak wavelength 470 to 550 nm) Can be mentioned. In the present embodiment, an LED chip that emits blue light of 430 to 470 nm is used. This wavelength range is advantageous in that natural white light is easily generated by combination with a phosphor to be described later, and since it does not include ultraviolet light, it is difficult to damage the phosphor and other resin materials.

LED21は、シリコーン樹脂やエポキシ樹脂、ガラス等の透明材料(不図示)で封止されていてもよく、透明レンズ体で被覆されていてもよい。透明部材でLED21を覆った状態の形状は、特に限定されず、例えば、砲弾型や半円球状等として集光レンズ機能を持たせてもよい。また、バインダ中に拡散材(酸化アルミニウム、シリカ等の無機材料、フッ素系樹脂等の有機材料から成る粒子)や顔料等を適宜に分散させてもよい。なお、後述する蛍光体が分散されたバインダで成形体を形成し、この成形体によりLED21を覆ってもよい。また、LED21は、発光部に有機材料を用いたOLEDであってもよい。   The LED 21 may be sealed with a transparent material (not shown) such as silicone resin, epoxy resin, or glass, or may be covered with a transparent lens body. The shape of the state in which the LED 21 is covered with the transparent member is not particularly limited, and for example, a condensing lens function may be provided as a bullet shape or a semi-spherical shape. Further, a diffusion material (particles made of an inorganic material such as aluminum oxide or silica, or an organic material such as a fluorine resin), a pigment, or the like may be appropriately dispersed in the binder. In addition, a molded body may be formed with a binder in which a phosphor described later is dispersed, and the LED 21 may be covered with the molded body. Further, the LED 21 may be an OLED using an organic material for the light emitting portion.

実装基板22は、ガラスエポキシ等から形成された汎用の基板であり、その平面外形は、LED21の形状に応じた形状、例えば矩形状であり、LED21と電気的に接続される各種の導電パターン(不図示)が形成されている。また、実装基板22には、スルーホール(不図示)が形成され、LED21のアノード・カソード電極から取出されたリード線は、このスルーホールを挿通されて、配線基板3に形成された配線パターンに電気的に接続される。   The mounting substrate 22 is a general-purpose substrate formed of glass epoxy or the like, and its planar outer shape is a shape corresponding to the shape of the LED 21, for example, a rectangular shape, and various conductive patterns (such as a rectangular shape) electrically connected to the LED 21. (Not shown) is formed. Further, a through hole (not shown) is formed in the mounting substrate 22, and the lead wire taken out from the anode / cathode electrode of the LED 21 is inserted through the through hole to form a wiring pattern formed on the wiring substrate 3. Electrically connected.

波長変換部材6は、LED21から放射された500nm以下の光によって励起し、630〜680nmの波長領域内にピーク波長を有する光に変換する第1の蛍光体61と、500〜550nmの波長領域内にピーク波長を有する光に変換する第2の蛍光体62と、を有する。これら第1の蛍光体61及び第2の蛍光体62は、シリコーン樹脂やエポキシ樹脂等の透明材料から成るバインダ60中に分散されて保持されている。また、このバインダ60には、適宜に拡散材(酸化アルミニウム、シリカ等の無機材料、フッ素系樹脂等の有機材料から成る粒子等の拡散材)や、顔料等が分散されてもよい。   The wavelength conversion member 6 is excited by light of 500 nm or less emitted from the LED 21 and converted into light having a peak wavelength in the wavelength region of 630 to 680 nm, and in the wavelength region of 500 to 550 nm. A second phosphor 62 that converts the light into light having a peak wavelength. The first phosphor 61 and the second phosphor 62 are dispersed and held in a binder 60 made of a transparent material such as a silicone resin or an epoxy resin. In addition, a diffusion material (a diffusion material such as particles made of an inorganic material such as aluminum oxide or silica, or an organic material such as a fluorine resin), a pigment, or the like may be appropriately dispersed in the binder 60.

図3は、第1の蛍光体61及び第2の蛍光体62の分光スペクトルの例を示す。本例において、第1の蛍光体61の分光スペクトルは、650nm付近に極大値を有し、第2の蛍光体62の分光スペクトルは、530nm付近に極大値を有する。また、第1の蛍光体61及び第2の蛍光体62には、各分光スペクトルにおけるピーク波長の半値幅が小さな光を放射するものが好適に用いられる。こうすれば、光源部2からの出射光において、被照射物(特に食肉)の演出性を維持しながら、自然な白色光とすることができる。   FIG. 3 shows an example of spectral spectra of the first phosphor 61 and the second phosphor 62. In this example, the spectrum of the first phosphor 61 has a maximum value near 650 nm, and the spectrum of the second phosphor 62 has a maximum value near 530 nm. Moreover, what radiates | emits the light with a small half value width of the peak wavelength in each spectrum is suitably used for the 1st fluorescent substance 61 and the 2nd fluorescent substance 62. FIG. If it carries out like this, in the emitted light from the light source part 2, it can be set as natural white light, maintaining the presentation property of to-be-irradiated object (especially meat).

また、波長変換部材6は、これら第1の蛍光体61及び第2の蛍光体62から放射される光強度が、互いに同程度となるように構成される。こうすれば、白色発光装置1の照射光において、各蛍光体からの放射光がバランスよく含まれるので、より自然な白色光を得ることができる。第1の蛍光体61及び第2の蛍光体62には、それらの材料自体の光強度が同程度であるものが好ましい。仮に、第1の蛍光体61自体の光強度が、第2の蛍光体62自体の光強度よりも強い場合、バインダに分散される第1の蛍光体61の濃度を、第2の蛍光体62より低いようにすればよい。第2の蛍光体62自体の光強度が強い場合も、上記と同様に、第2の蛍光体62の濃度を低くすればよい。   The wavelength conversion member 6 is configured such that the light intensities emitted from the first phosphor 61 and the second phosphor 62 are approximately the same. By so doing, the emitted light from the white light emitting device 1 includes the emitted light from each phosphor in a well-balanced manner, so that more natural white light can be obtained. The first phosphor 61 and the second phosphor 62 preferably have the same light intensity. If the light intensity of the first phosphor 61 itself is higher than the light intensity of the second phosphor 62 itself, the concentration of the first phosphor 61 dispersed in the binder is changed to the second phosphor 62. It should be lower. Even when the light intensity of the second phosphor 62 itself is high, the concentration of the second phosphor 62 may be lowered as described above.

配線基板3は、電気絶縁性を有し、且つ熱伝導率の高い基板であり、例えば、酸化アルミニウム(Al)や窒化アルミニウム(AlN)等の金属酸化物(セラミックスを含む)、金属窒化物、又は金属、樹脂等の材料から構成される。配線基板3の一表面には、金(Au)又は銀(Ag)等の導電性金属から成る配線パターンが設けられ、この配線パターンが光源部2と電気的に接続される。配線パターンの一端側には、Au、半田等の金属材料から成るバンプ(不図示)を介して接合される素子端子部(不図示)が形成され、他端側に外部接続用端子部が形成される。また、配線パターンは、素子端子部及び外部接続用端子部を除き、絶縁層によって覆われている。 The wiring substrate 3 is a substrate having electrical insulation properties and high thermal conductivity. For example, metal oxides (including ceramics) such as aluminum oxide (Al 2 O 3 ) and aluminum nitride (AlN), metal It is made of a material such as nitride, metal, or resin. A wiring pattern made of a conductive metal such as gold (Au) or silver (Ag) is provided on one surface of the wiring board 3, and this wiring pattern is electrically connected to the light source unit 2. An element terminal portion (not shown) is formed on one end side of the wiring pattern via a bump (not shown) made of a metal material such as Au or solder, and an external connection terminal portion is formed on the other end side. Is done. The wiring pattern is covered with an insulating layer except for the element terminal portion and the external connection terminal portion.

反射枠4は、光源部2に対向する面が反射性を有する円錐筒形状にの構造部材である。こののもとしては、例えば、ABS樹脂やアクリル樹脂、ポリスチレン樹脂等のプラスチック材料を所定形状に形成し、その表面に金属反射膜又は反射性塗料等を被覆したものや、アルミニウム等の金属材料を形成したもの等が用いられる。   The reflection frame 4 is a structural member having a conical cylinder shape whose surface facing the light source unit 2 has reflectivity. As this, for example, a plastic material such as ABS resin, acrylic resin, polystyrene resin or the like is formed into a predetermined shape and the surface thereof is coated with a metal reflective film or reflective paint, or a metal material such as aluminum is used. Those formed are used.

光学フィルタ5は、560〜620nmの波長領域の光の透過を減少させるものであり、例えば、光吸収フィルタ又は光反射フィルタが用いられる。光吸収フィルタとしては、ガラスやプラスチック等の透明材料に、特定の染料や色素、顔料等の添加剤を単独又は複数種を組合せて含有した材料や、特定の波長の光のみを吸収するような金属イオンをドープした材料を、平板状に加工したもの等が挙げられる。光反射フィルタとしては、板状のガラスやプラスチック表面にコーティング膜を形成したものが挙げられ、このコーティング膜は単一の材料で形成されていてもよく、又は複数の材料で複数層形成されてもよい。   The optical filter 5 reduces the transmission of light in the wavelength region of 560 to 620 nm, and for example, a light absorption filter or a light reflection filter is used. As a light absorption filter, a transparent material such as glass or plastic, a material containing a specific dye, pigment, pigment or other additive alone or in combination of a plurality of types, or a material that absorbs only light of a specific wavelength. A material obtained by processing a metal ion-doped material into a flat plate shape can be used. Examples of the light reflection filter include a plate-like glass or plastic surface formed with a coating film, and this coating film may be formed of a single material, or a plurality of layers may be formed of a plurality of materials. Also good.

本実施形態においては、光学フィルタ5として、酸化チタン等の高屈折率材料と、酸化ケイ素等の低屈折材料とを積層させた光学多層膜が好適に用いられる。この光学多層膜は、高屈折率材料と低屈折材料とを、所定の膜厚で、且つ所定の積層数とすることにより、特定の波長の光を干渉させて、その波長の光の透過を選択的に減少させることができる。   In the present embodiment, as the optical filter 5, an optical multilayer film in which a high refractive index material such as titanium oxide and a low refractive material such as silicon oxide are laminated is suitably used. This optical multilayer film has a high refractive index material and a low refractive material with a predetermined film thickness and a predetermined number of layers, thereby allowing light of a specific wavelength to interfere and transmitting light of that wavelength. It can be selectively reduced.

次に、上記のように構成された白色発光装置1の動作について説明する。LED21のアノード・カソード電極間に電圧が印加されると、LED21は、430〜470nmの青色光を放射する。波長変換部材6に含有される第1の蛍光体61及び第2の蛍光体62は、LED21からの光によって励起し、夫々630〜680nm及び500〜550nmの波長領域内にピーク波長を有する光を放射する。これら430〜470nm、630〜680nm及び500〜550nmの各色光は、波長変換部材6に混光され、波長変換部材6の表面から白色光として出射される。この白色光は、光学フィルタ5によって、580〜600nmの波長領域の光の透過が制限されて、光学フィルタ5の表面から出射される。   Next, the operation of the white light emitting device 1 configured as described above will be described. When a voltage is applied between the anode and cathode electrodes of the LED 21, the LED 21 emits blue light of 430 to 470 nm. The first phosphor 61 and the second phosphor 62 contained in the wavelength conversion member 6 are excited by light from the LED 21 and emit light having peak wavelengths in the wavelength regions of 630 to 680 nm and 500 to 550 nm, respectively. Radiate. These 430 to 470 nm, 630 to 680 nm, and 500 to 550 nm color lights are mixed into the wavelength conversion member 6 and emitted as white light from the surface of the wavelength conversion member 6. The white light is emitted from the surface of the optical filter 5 with the optical filter 5 restricting transmission of light in the wavelength region of 580 to 600 nm.

図4は、上述のようにして構成された白色発光装置1の照射光の分光スペクトルを示す。この分光スペクトルに見られる430〜470nmの波長領域内のピーク波長は、LED21の放射光に起因するものである。また、630〜680nm波長領域内のピーク波長は第1の蛍光体61に、500〜550nmの波長領域内のピーク波長は第2の蛍光体62に起因するものである。これら第1の蛍光体61及び第2の蛍光体62は、放射される光の半値幅が小さくなるものが好ましく、特に、550〜630nmの波長域における光強度が小さくなるものが特に好ましい。こうすれば、黄色光成分の光強度が少なくなる一方で、赤色光成分及び緑色成分の光強度が強くなるので、被照射物である食品の赤みを強調することができる。また、本例においては、光学フィルタ5には、580〜600nmの波長領域の光の透過を減少させるように構成されたものを用いている。   FIG. 4 shows a spectral spectrum of the irradiation light of the white light emitting device 1 configured as described above. The peak wavelength in the wavelength region of 430 to 470 nm seen in this spectrum is due to the emitted light of the LED 21. The peak wavelength in the 630 to 680 nm wavelength region is attributed to the first phosphor 61, and the peak wavelength in the 500 to 550 nm wavelength region is attributed to the second phosphor 62. The first phosphor 61 and the second phosphor 62 preferably have a small half-value width of emitted light, and particularly preferably have a small light intensity in the wavelength range of 550 to 630 nm. By so doing, the light intensity of the yellow light component is reduced, while the light intensity of the red light component and the green component is increased, so that the redness of the food that is the object to be irradiated can be emphasized. In this example, the optical filter 5 is configured to reduce the transmission of light in the wavelength region of 580 to 600 nm.

また、図5は、肉の分光反射特性の例を示す。この分光反射特性に示されるように、食肉の分光反射率のピークは、600nmより長い波長領域にあり、600nmより短い波長領域(例えば黄色光領域等)では、急激に分光反射率が低下するようになる。   FIG. 5 shows an example of the spectral reflection characteristics of meat. As shown in this spectral reflection characteristic, the peak of the spectral reflectance of meat is in a wavelength region longer than 600 nm, and in a wavelength region shorter than 600 nm (for example, a yellow light region), the spectral reflectance suddenly decreases. become.

すなわち、図4に示した分光スペクトルの照射光によれば、食品(特に食肉)の分光反射率が高い波長域である630〜680nmを中心とする赤色光成分を取出すことにより、被照射物である食品の赤みを強調することができる。また、580〜600nmを中心とする黄色光成分を減少させることにより、被照射物である食品を、くすませずに見せることができ、食品を演出する効果をより向上させることができる。更に、500〜550nmを中心とする緑色光成分を取出すことにより、自然な白色光を実現することができる。   That is, according to the irradiation light of the spectral spectrum shown in FIG. 4, by taking out the red light component centering around 630 to 680 nm, which is a wavelength region where the spectral reflectance of food (especially meat) is high, The redness of a food can be emphasized. Moreover, by reducing the yellow light component centered at 580 to 600 nm, the food that is the object to be irradiated can be seen without being dull, and the effect of producing the food can be further improved. Furthermore, natural white light can be realized by taking out a green light component centered at 500 to 550 nm.

光学フィルタ5は、上述したように、560〜620nmの波長領域の光の透過を減少させるものであればよい。ただし、光の透過を減少させる波長領域が広い場合、光源部2からの光の多くをカットしてしまい、光束を大幅に減少させる虞がある。従って、この場合は、光学フィルタ5の透過率は、50%程度であることが好ましい。こうすれば、光束の大幅な減少を抑制し、且つ照射光の黄色光成分を減少させ、被照射物である食品をくすませずに見せる効果が得られる。   As described above, the optical filter 5 only needs to reduce the transmission of light in the wavelength region of 560 to 620 nm. However, when the wavelength region for reducing the transmission of light is wide, most of the light from the light source unit 2 is cut, and there is a possibility that the light flux is significantly reduced. Therefore, in this case, the transmittance of the optical filter 5 is preferably about 50%. In this way, it is possible to obtain an effect of suppressing a significant decrease in the luminous flux and reducing the yellow light component of the irradiation light so that the food that is the object to be irradiated is not dulled.

これに対して、上記図4における580〜600nmのように、光の透過を減少させる波長領域が狭い場合、光学フィルタ5の透過率は、50%以であることが好ましい。580〜600nmの波長領域は、くすみの原因となる黄色光成分を含んでいる。従って、この波長領域の光の透過を選択的に制限することにより、照射光における黄色光成分を集中的に抑制することができ、更に食品を演出する効果を向上させることができる。また、この分光スペクトルの照射光によれば、狭い波長領域を選択的に制限するので、光束を大幅に減少させることがなく、被照射物を高照度で照明することができる。 In contrast, as 580~600nm in FIG 4, when the wavelength region for reducing the transmission of light is small, the transmittance of the optical filter 5 is preferably a lower 50% or less. The wavelength range of 580 to 600 nm contains a yellow light component that causes dullness. Therefore, by selectively restricting the transmission of light in this wavelength region, the yellow light component in the irradiation light can be intensively suppressed, and the effect of producing food can be further improved. Further, according to the irradiation light of this spectral spectrum, a narrow wavelength region is selectively limited, so that the irradiated object can be illuminated with high illuminance without significantly reducing the luminous flux.

(実施例1)
ピーク波長が450nmの青色光を放射するLED21を実装基板22に実装した。そして、ピーク波長が650nmであるの赤色光を放射する第1の蛍光体61と、ピーク波長が530nmの緑色光を放射する第2の蛍光体62とを、シリコーン樹脂中に分散して成る波長変換部材6を、LED21の表面に被覆した。更に、その出射面側に、波長580〜600nmの透過率が50%である光学フィルタ5を設置して、実施例1の白色発光装置1を作製した。
Example 1
The LED 21 that emits blue light having a peak wavelength of 450 nm was mounted on the mounting substrate 22. A wavelength obtained by dispersing a first phosphor 61 that emits red light having a peak wavelength of 650 nm and a second phosphor 62 that emits green light having a peak wavelength of 530 nm in a silicone resin. The conversion member 6 was coated on the surface of the LED 21. Furthermore, an optical filter 5 having a transmittance of 50% at a wavelength of 580 to 600 nm was installed on the exit surface side, and the white light emitting device 1 of Example 1 was produced.

(比較例1)
色温度が2700Kの電球色のLEDを所定の配線基板に実装し、その出射面側に波長580〜600nmの透過率が50%である光学フィルタ5を設置して、比較例1の発光装置を作製した。なお、比較例1の発光装置により照射される分光スペクトルは、上述した図6(b)の例に参照される。
(Comparative Example 1)
The light-emitting device of Comparative Example 1 is mounted by mounting a light bulb color LED having a color temperature of 2700 K on a predetermined wiring board, and installing an optical filter 5 having a transmittance of 50% at a wavelength of 580 to 600 nm on the emission surface side. Produced. In addition, the spectral spectrum irradiated by the light-emitting device of the comparative example 1 is referred to the example of FIG.

(照射光の評価)
まず、上述のようにして作製された実施例1及び比較例1の白色発光装置の照射光における光束を、汎用される全光束測定装置を用いて測定した。また、各発光装置からの光により食品を照射した際に、好ましく見えるかどうかの評価指標として、彩度評価に適したメトリッククロマ値(C ab)で評価した。メトリッククロマ値の評価では、照射体への照明の際、その値が大きいほど、彩度が高くなり、照射体をより好ましく演出できることになる。このメトリッククロマ値は、照射光の分光分布と被照射体である食肉の分光反射率から、CIEL色空間(CIE1976L表色系で表される均等色空間)の色度座標を算出し、a、bの値から下式により算出する。下式におけるa、bは、CIEL色空間における知覚色度指数である。
(Evaluation of irradiation light)
First, the light flux in the irradiation light of the white light emitting devices of Example 1 and Comparative Example 1 manufactured as described above was measured using a general-purpose total light flux measuring device. Moreover, when food was irradiated with light from each light-emitting device, the evaluation was made with a metric chroma value (C * ab ) suitable for chroma evaluation as an evaluation index as to whether or not the food was visible. In the evaluation of the metric chroma value, when the illuminating body is illuminated, the larger the value, the higher the saturation, and the illuminating body can be rendered more preferably. This metric chroma values, from the spectral reflectance of the meat the spectral distribution and the irradiated object of the irradiation light, CIEL * a * b * color space (CIE1976L * a * b * uniform color space, represented by a color system) Is calculated from the values of a * and b * by the following equation. In the following formula, a * and b * are perceptual chromaticity indexes in the CIEL * a * b * color space.

[数1]
ab=(a*2十b*21/2
[Equation 1]
C * ab = (a * 20 + b * 2 ) 1/2

上述のようにして測定された光束及びメトリッククロマ値を下記の表1に示す。なお、光束は、比較例を100としたときの比で示した。   The luminous flux and metric chroma values measured as described above are shown in Table 1 below. The luminous flux is shown as a ratio when the comparative example is 100.

Figure 0005974394
Figure 0005974394

実施例1及び比較例1においては、同様の光学フィルタ5が用いられ、夫々の黄色光成分が好適に制限されるので、いずれも大きなメトリッククロマ値が得られることが示された。一方、実施例1における光束は、比較例1の1.3倍であった。すなわち、波長変換部材6に、ピーク波長が650nmであるの赤色光を放射する第1の蛍光体61と、ピーク波長が530nmの緑色光を放射する第2の蛍光体62とを選択的に用いている。そのため、実施例1の光源部2からの白色光は、比較例1の電球色光に比べて、黄色光成分の光強度を小さくすることができる。従って、実施例1においては、光学フィルタ5による黄色光成分の減少量が、比較例1よるも少なくなるので、光束を減らすことなく、高いメトリッククロマ値を得ることができる。   In Example 1 and Comparative Example 1, the same optical filter 5 was used, and each yellow light component was suitably limited, so that it was shown that a large metric chroma value can be obtained in both cases. On the other hand, the luminous flux in Example 1 was 1.3 times that of Comparative Example 1. That is, the first phosphor 61 that emits red light having a peak wavelength of 650 nm and the second phosphor 62 that emits green light having a peak wavelength of 530 nm are selectively used for the wavelength conversion member 6. ing. Therefore, the white light from the light source part 2 of Example 1 can make the light intensity of a yellow light component small compared with the light bulb color light of Comparative Example 1. Therefore, in Example 1, since the amount of reduction of the yellow light component by the optical filter 5 is smaller than that in Comparative Example 1, a high metric chroma value can be obtained without reducing the luminous flux.

なお、本発明は、上記の実施形態の構成に限られず、発明の要旨を変更しない範囲で種々の変形が可能である。例えば、波長変換部材6は、LED21と光学フィルタ5との間に設けられていればよく、上述した光源部2として構成されていなくてもよい。また、LED21と光学フィルタ5との間には、波長変換部材6の他に、光分散材等を含む透明部材が設けられてよい。また、波長変換部材6は、第1の蛍光体61と第2の蛍光体62とを別々のバインダに含有させ、それらを積層させることによって作製されてもよい。また、白色発光装置1は、第1の蛍光体61のみを含む波長変換部材6を備えた光源部2と、第2の蛍光体62のみを含む波長変換部材6を備えた光源部2とを、夫々複数個、配線基板3上に配置して、これら光源部2の光を混光させるものであってもよい。なお、白色発光装置1を用いた照明器具は、照射光を食品(特に食肉)へ照射するに限らず、食品以外の衣料品等の各種展示商品にも適用することができる。   In addition, this invention is not restricted to the structure of said embodiment, A various deformation | transformation is possible in the range which does not change the summary of invention. For example, the wavelength conversion member 6 may be provided between the LED 21 and the optical filter 5 and may not be configured as the light source unit 2 described above. In addition to the wavelength conversion member 6, a transparent member including a light dispersion material or the like may be provided between the LED 21 and the optical filter 5. Moreover, the wavelength conversion member 6 may be produced by containing the first phosphor 61 and the second phosphor 62 in separate binders and laminating them. Further, the white light emitting device 1 includes the light source unit 2 including the wavelength conversion member 6 including only the first phosphor 61 and the light source unit 2 including the wavelength conversion member 6 including only the second phosphor 62. A plurality of them may be arranged on the wiring board 3 to mix the light of these light source units 2. Note that the lighting fixture using the white light emitting device 1 is not limited to irradiating food (especially meat) with irradiation light, but can also be applied to various display products such as clothing other than food.

1 発光装置
21 LED(固体発光素子)
5 光学フィルタ
6 波長変換部材
61 第1の蛍光体
62 第2の蛍光体
1 Light Emitting Device 21 LED (Solid State Light Emitting Element)
5 Optical Filter 6 Wavelength Conversion Member 61 First Phosphor 62 Second Phosphor

Claims (2)

10〜550nmの波長領域に含まれる光を発する固体発光素子と、前記固体発光素子の発光面側に設けられ、特定の波長の光の透過を減少させる光学フィルタと、前記固体発光素子と前記光学フィルタとの間に設けられた波長変換部材と、を備え、
前記固体発光素子は、少なくとも430〜470nmの波長領域内にピーク波長を有する光を発光し、
前記波長変換部材は、前記固体発光素子からの光によって励起され、630〜680nmの波長領域内にピーク波長を有する光に変換する第1の蛍光体と、500〜550nmの波長領域内にピーク波長を有する光に変換する第2の蛍光体と、を有し、
前記第1の蛍光体及び前記第2の蛍光体から放射される光強度が、互いに同程度となるように構成され、
前記630〜680nmの波長領域内のピーク波長の光強度と、前記500〜550nmの波長領域内のピーク波長の光強度とが、前記430〜470nmの波長領域内のピーク波長の光強度よりも高く、
前記光学フィルタは、580〜600nmの波長領域の光の透過を選択的に減少させ、且つ前記光学フィルタの透過率は、50%以下であることを特徴とする白色発光装置。
A solid-state light-emitting element that emits light included in a wavelength region of 10 to 550 nm, an optical filter that is provided on a light-emitting surface side of the solid-state light-emitting element and reduces transmission of light of a specific wavelength, the solid-state light-emitting element, and the optical A wavelength conversion member provided between the filter and
The solid state light emitting element emits light having a peak wavelength in a wavelength region of at least 430 to 470 nm;
The wavelength conversion member is excited by light from the solid state light emitting device, and converts the first phosphor to light having a peak wavelength in a wavelength region of 630 to 680 nm, and a peak wavelength in a wavelength region of 500 to 550 nm. A second phosphor that converts to light having
The light intensities emitted from the first phosphor and the second phosphor are configured to be approximately equal to each other,
The light intensity of the peak wavelength in the wavelength range of 630 to 680 nm and the light intensity of the peak wavelength in the wavelength range of 500 to 550 nm are higher than the light intensity of the peak wavelength in the wavelength range of 430 to 470 nm. ,
2. The white light emitting device according to claim 1, wherein the optical filter selectively reduces transmission of light in a wavelength region of 580 to 600 nm, and the transmittance of the optical filter is 50% or less.
請求項1に記載の白色発光装置を用いたことを特徴とする照明器具。   A luminaire using the white light emitting device according to claim 1.
JP2011065049A 2011-03-23 2011-03-23 White light emitting device and lighting apparatus using the same Active JP5974394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011065049A JP5974394B2 (en) 2011-03-23 2011-03-23 White light emitting device and lighting apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011065049A JP5974394B2 (en) 2011-03-23 2011-03-23 White light emitting device and lighting apparatus using the same

Publications (2)

Publication Number Publication Date
JP2012204413A JP2012204413A (en) 2012-10-22
JP5974394B2 true JP5974394B2 (en) 2016-08-23

Family

ID=47185122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011065049A Active JP5974394B2 (en) 2011-03-23 2011-03-23 White light emitting device and lighting apparatus using the same

Country Status (1)

Country Link
JP (1) JP5974394B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107068838B (en) * 2011-06-03 2021-11-30 西铁城电子株式会社 Device for displaying a display and system for displaying a display
JP2014186998A (en) * 2013-02-25 2014-10-02 Rohm Co Ltd Led lighting fixture and show case
ES2868300T3 (en) * 2015-09-01 2021-10-21 Signify Holding Bv Meat lighting system with improved efficiency and red supersaturation
JP6769449B2 (en) * 2018-01-30 2020-10-14 日亜化学工業株式会社 Lighting equipment
CN111885953B (en) * 2018-03-28 2023-11-07 松下知识产权经营株式会社 Light emitting device for endoscope, and endoscope and fluorescence imaging method using same
CN108346733A (en) * 2018-04-10 2018-07-31 江苏华旦科技有限公司 A kind of light engine and application thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4542329B2 (en) * 2002-11-25 2010-09-15 パナソニック株式会社 LED lighting source
JP2007025285A (en) * 2005-07-15 2007-02-01 Harison Toshiba Lighting Corp Back light for liquid crystal
JP2008010518A (en) * 2006-06-27 2008-01-17 Citizen Holdings Co Ltd Fluorescent device
JP2008085232A (en) * 2006-09-28 2008-04-10 Casio Comput Co Ltd Liquid crystal display device
JP2010225842A (en) * 2009-03-24 2010-10-07 Toyoda Gosei Co Ltd Light source for back light of liquid crystal display, back light of liquid crystal display, and liquid crystal display
JP2010267571A (en) * 2009-05-18 2010-11-25 Toshiba Lighting & Technology Corp Lighting device
JP2012199288A (en) * 2011-03-18 2012-10-18 Panasonic Corp Backlight device and liquid crystal display device

Also Published As

Publication number Publication date
JP2012204413A (en) 2012-10-22

Similar Documents

Publication Publication Date Title
EP3064039B1 (en) Lamps for enhanced optical brightening and color preference
JP6913790B2 (en) Indoor light source and lighting equipment
US8847264B2 (en) Luminaire
US9070843B2 (en) Semiconductor light-emitting device, exhibit-irradiating illumination device, meat-irradiating illumination device, vegetable-irradiating illumination device, fresh fish-irradiating illumination device, general-purpose illumination device, and semiconductor light-emitting system
US9279549B2 (en) Light-emitting module with wavelength converters and light-absorbing substance
JP5443959B2 (en) Lighting device
JP5974394B2 (en) White light emitting device and lighting apparatus using the same
US9537062B2 (en) Solid state light emitter package, a light emission device, a flexible LED strip and a luminaire
JP2009065137A (en) Light-emitting device
JP2010267571A (en) Lighting device
TW201115788A (en) Improved white light LED lighting device
JP2020532874A (en) D50 / D65 High color rendering standard LED light emitting module and lighting device
JP2007288138A (en) Light emitting device
JP2014112621A (en) Semiconductor light-emitting device and luminaire
JP2018129492A (en) Light-emitting device, and illuminating device
JP6712768B2 (en) Light emitting device and lighting device
JP6354607B2 (en) Light emitting device
JP2001148509A (en) Illuminating light source
US10168007B2 (en) Light-emitting device and illuminating apparatus
JP2015106502A (en) Luminaire
JP2016502760A (en) Light emitting device
JP5178349B2 (en) Light emitting device and lighting unit
JP2016170294A (en) Wavelength control filter, and light emitting device and illumination device having the same
JP2024075530A (en) Light source
JP2014099499A (en) Light-emitting device and process of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140423

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141008

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20141023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160629

R151 Written notification of patent or utility model registration

Ref document number: 5974394

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151