JP2016165667A - Electrolytic water generator - Google Patents

Electrolytic water generator Download PDF

Info

Publication number
JP2016165667A
JP2016165667A JP2015045627A JP2015045627A JP2016165667A JP 2016165667 A JP2016165667 A JP 2016165667A JP 2015045627 A JP2015045627 A JP 2015045627A JP 2015045627 A JP2015045627 A JP 2015045627A JP 2016165667 A JP2016165667 A JP 2016165667A
Authority
JP
Japan
Prior art keywords
electrolysis
chamber
water
flow rate
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015045627A
Other languages
Japanese (ja)
Other versions
JP2016165667A5 (en
JP6412447B2 (en
Inventor
義信 小泉
Yoshinobu Koizumi
義信 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Trim Co Ltd
Original Assignee
Nihon Trim Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Trim Co Ltd filed Critical Nihon Trim Co Ltd
Priority to JP2015045627A priority Critical patent/JP6412447B2/en
Priority to CN201610086827.8A priority patent/CN105948176B/en
Priority to KR1020160027116A priority patent/KR20160110149A/en
Publication of JP2016165667A publication Critical patent/JP2016165667A/en
Publication of JP2016165667A5 publication Critical patent/JP2016165667A5/ja
Application granted granted Critical
Publication of JP6412447B2 publication Critical patent/JP6412447B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • C02F2201/4614Current
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46145Fluid flow
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrolytic water generator capable of generating electrolytic water at a constant dissolved hydrogen concentration regardless of a flow rate of water supplied to an electrolytic tank.SOLUTION: There is provided an electrolytic water generator 1 which comprises an electrolytic tank 4 in which an electrolytic chamber 40 is formed, an anode feeder 41 and a cathode feeder 42 which are arranged opposite to each other in the electrolytic chamber 40, a diaphragm 43 which is arranged between the anode feeder 41 and the cathode feeder 42 and divides the electrolytic chamber 40 into an anode chamber 40a and a cathode chamber 40b, a flow rate sensor 5 for detecting a flow rate of water supplied to the electrolytic chamber 40 per unit time and control means 6 for controlling the electrolysis current fed to the feeders 41 and 42. The control means 6 adjusts the dissolved gas concentration of the electrolytic water generated in the electrolytic chamber 40 so as to be constant by controlling the electrolysis current based on the flow rate detected by the flow rate sensor 5. Thus, electrolytic water at a constant dissolved gas concentration can be generated regardless of a flow rate of water supplied to an electrolytic tank.SELECTED DRAWING: Figure 1

Description

本発明は、水を電気分解して電解水を生成する電解水生成装置に関する。   The present invention relates to an electrolyzed water generating apparatus that electrolyzes water to generate electrolyzed water.

従来、隔膜で仕切られた陽極室と陰極室とからなる電解室を有する電解槽を備え、電解室に供給される水道水等を電気分解する電解水生成装置が知られている。一般に、電解水生成装置によって生成される電解水のpH値は、電解室に供給される水の流量に依存する。そこで、電解室に供給される水の流量を検出する流量センサーを設け、検出された流量がどの流量区分に属するかを判断し、流量区分毎に電解電圧を補正することにより、上記pH値を安定させた電解水生成装置が提案されている。(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, an electrolyzed water generating apparatus that includes an electrolytic cell having an electrolysis chamber composed of an anode chamber and a cathode chamber partitioned by a diaphragm and electrolyzes tap water or the like supplied to the electrolysis chamber is known. In general, the pH value of electrolyzed water generated by the electrolyzed water generating device depends on the flow rate of water supplied to the electrolysis chamber. Therefore, by providing a flow sensor for detecting the flow rate of water supplied to the electrolysis chamber, determining which flow rate category the detected flow rate belongs to, and correcting the electrolysis voltage for each flow rate category, the pH value can be adjusted. A stabilized electrolyzed water generator has been proposed. (For example, refer to Patent Document 1).

特許第4378803号公報Japanese Patent No. 4378803

しかしながら、上記特許文献1に開示されている電解水生成装置では、同文献中図2、3及び5に記載されているように、各流量区分内でpH値の変動が生ずるだけでなく、流量区分が切り替わったとき、pH値が不連続に大きく変動する。   However, in the electrolyzed water generating device disclosed in the above-mentioned Patent Document 1, not only the pH value fluctuates in each flow rate section but also the flow rate as described in FIGS. When the section is switched, the pH value fluctuates greatly.

ところで、電解室での電気分解で生ずる電解水に溶け込んだ溶存ガス濃度も、上記pH値と同様に、電解室に供給される水の流量に依存する。従って、上記特許文献1に開示されている電解水生成装置では、各流量区分内で溶存ガス濃度の変動が生ずるだけでなく、流量区分が切り替わったとき、溶存ガス濃度が不連続に大きく変動する。   By the way, the concentration of dissolved gas dissolved in the electrolyzed water generated by electrolysis in the electrolysis chamber also depends on the flow rate of water supplied to the electrolysis chamber, similarly to the pH value. Therefore, in the electrolyzed water generating device disclosed in Patent Document 1, not only the dissolved gas concentration varies within each flow rate segment, but also the dissolved gas concentration varies discontinuously and greatly when the flow rate segment is switched. .

本発明は、以上のような実状に鑑み案出されたもので、電解室に供給される水の流量に関わらず、一定の溶存ガス濃度の電解水を生成できる電解水生成装置を提供することを主たる目的としている。   The present invention has been devised in view of the above circumstances, and provides an electrolyzed water generating device capable of generating electrolyzed water having a constant dissolved gas concentration regardless of the flow rate of water supplied to the electrolysis chamber. Is the main purpose.

本発明は、電気分解される水が供給される電解室が形成された電解槽と、前記電解室内で、互いに対向して配置された陽極給電体及び陰極給電体と、前記陽極給電体と前記陰極給電体との間に配され、かつ、前記電解室を前記陽極給電体側の陽極室と、前記陰極給電体側の陰極室とに区分する隔膜とを備えた電解水生成装置であって、前記電解室に供給される水の単位時間あたりの流量を検出する流量センサーと、前記給電体に供給される電解電流を制御する制御手段とをさらに備え、前記制御手段は、前記流量センサーによって検出された前記流量に基づいて前記電解電流を制御することにより、前記電解室で生成される電解水の溶存ガス濃度を一定となるように調整することを特徴とする。   The present invention includes an electrolytic cell in which an electrolysis chamber to which water to be electrolyzed is formed, an anode power feeding body and a cathode power feeding body arranged to face each other in the electrolysis chamber, the anode power feeding body, and the An electrolyzed water generating device provided with a diaphragm disposed between a cathode power supply and dividing the electrolysis chamber into an anode chamber on the anode power supply side and a cathode chamber on the cathode power supply side, The apparatus further comprises a flow rate sensor for detecting a flow rate of water supplied to the electrolysis chamber per unit time, and a control means for controlling the electrolysis current supplied to the power feeder, the control means being detected by the flow rate sensor. Further, by controlling the electrolysis current based on the flow rate, the dissolved gas concentration of the electrolyzed water generated in the electrolysis chamber is adjusted to be constant.

本発明に係る前記電解水生成装置において、前記制御手段は、予め定められている前記流量及び前記電解電流と前記溶存ガス濃度との相関に基づいて前記給電体に供給する電解電流を決定することが望ましい。   In the electrolyzed water generating apparatus according to the present invention, the control means determines an electrolysis current to be supplied to the power feeder based on a predetermined flow rate and a correlation between the electrolysis current and the dissolved gas concentration. Is desirable.

本発明に係る前記電解水生成装置において、前記制御手段は、前記流量センサーによって検出された前記流量の一次関数
I =a×F+b
を用いて、前記電解電流を決定することが望ましい。
ただし、
I:電解電流
F:単位時間あたりの流量
a:定数
b:定数
とする。
In the electrolyzed water generating apparatus according to the present invention, the control means is a linear function of the flow rate detected by the flow sensor I = a × F + b
It is desirable to determine the electrolysis current using
However,
I: Electrolytic current F: Flow rate per unit time a: Constant b: Constant.

本発明に係る前記電解水生成装置において、前記電解電流を検出する電流検出手段をさらに備え、前記制御手段は、前記電流検出手段によって検出された電解電流が前記決定した電解電流と一致するように、前記給電体間に印加する電圧を制御することが望ましい。   The electrolyzed water generating apparatus according to the present invention further includes current detection means for detecting the electrolysis current, and the control means is configured so that the electrolysis current detected by the current detection means matches the determined electrolysis current. It is desirable to control the voltage applied between the power feeders.

本発明に係る前記電解水生成装置において、ユーザーが、前記電気分解によって前記電解室で生成される電解水の溶存ガス濃度を設定するための操作手段をさらに備え、前記制御手段は、前記操作手段によって設定された溶存ガス濃度に応じて、前記一次関数の前記定数aを決定することが望ましい。   In the electrolyzed water generating apparatus according to the present invention, the user further includes operation means for setting a dissolved gas concentration of electrolyzed water generated in the electrolysis chamber by the electrolysis, and the control means includes the operation means. It is desirable to determine the constant a of the linear function according to the dissolved gas concentration set by (1).

本発明に係る前記電解水生成装置において、前記電解槽は、前記隔膜が固体高分子膜を含む第1電解槽と、前記第1電解槽の下流側に設けられた第2電解槽とを有し、前記制御手段は、前記第1電解槽の電解電流と前記第2電解槽の電解電流とを別々に制御することが望ましい。   In the electrolyzed water generating apparatus according to the present invention, the electrolytic cell includes a first electrolytic cell in which the diaphragm includes a solid polymer membrane, and a second electrolytic cell provided on the downstream side of the first electrolytic cell. The control means preferably controls the electrolysis current of the first electrolysis tank and the electrolysis current of the second electrolysis tank separately.

本発明に係る前記電解水生成装置において、前記電解槽は、前記隔膜が固体高分子膜を含む第1電解槽と、前記第1電解槽の下流側に設けられた第2電解槽とを有し、前記制御手段は、前記第1電解槽の電解電流と前記第2電解槽の電解電流とを、定数aが異なる前記一次関数を用いて別々に決定することが望ましい。   In the electrolyzed water generating apparatus according to the present invention, the electrolytic cell includes a first electrolytic cell in which the diaphragm includes a solid polymer membrane, and a second electrolytic cell provided on the downstream side of the first electrolytic cell. Preferably, the control means separately determines the electrolysis current of the first electrolyzer and the electrolysis current of the second electrolyzer using the linear functions having different constants a.

本発明に係る前記電解水生成装置において、前記制御手段は、前記流量センサーによって検出された前記流量及び前記陽極給電体に供給される電解電流に基づいて前記陰極室で生成される電解水の溶存ガス濃度を計算することが望ましい。   In the electrolyzed water generating apparatus according to the present invention, the control means dissolves electrolyzed water generated in the cathode chamber based on the flow rate detected by the flow rate sensor and an electrolysis current supplied to the anode feeder. It is desirable to calculate the gas concentration.

本発明に係る前記電解水生成装置において、前記制御手段によって計算された前記溶存ガス濃度を表示する表示部をさらに備えることが望ましい。   The electrolyzed water generating apparatus according to the present invention preferably further includes a display unit that displays the dissolved gas concentration calculated by the control unit.

本発明の電解水生成装置は、電解槽に供給される水の単位時間あたりの流量を検出する流量センサーと、陽極給電体に供給される電解電流を制御する制御手段とを備える。制御手段は、流量センサーによって検出された流量に基づいて電解電流を制御することにより、電解室で生成される電解水の溶存ガス濃度を一定となるように調整する。従って、電解槽に供給される水の流量に関わらず、一定の溶存ガス濃度の電解水を生成できる。   The electrolyzed water generating apparatus of the present invention includes a flow rate sensor that detects a flow rate per unit time of water supplied to the electrolytic cell, and a control unit that controls the electrolysis current supplied to the anode feeder. The control means adjusts the dissolved gas concentration of the electrolyzed water generated in the electrolysis chamber to be constant by controlling the electrolysis current based on the flow rate detected by the flow sensor. Therefore, electrolyzed water having a constant dissolved gas concentration can be generated regardless of the flow rate of water supplied to the electrolytic cell.

本発明の電解水生成装置の一実施形態の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of one Embodiment of the electrolyzed water generating apparatus of this invention. 図1の電解水生成装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the electrolyzed water generating apparatus of FIG. 図2のごとく動作する電解水生成装置において、電解槽に供給される水の流量、制御手段によって制御される電解電流及び電解水素水の溶存水素濃度の関係を示すグラフである。3 is a graph showing the relationship between the flow rate of water supplied to the electrolytic cell, the electrolysis current controlled by the control means, and the dissolved hydrogen concentration of the electrolytic hydrogen water in the electrolyzed water generating apparatus operating as shown in FIG. 図1の電解水生成装置における図2とは別の動作を示すフローチートである。FIG. 3 is a flow chart showing an operation different from that in FIG. 2 in the electrolyzed water generator of FIG. 1. 図4のごとく動作する電解水生成装置において、電解槽に供給される水の流量、制御手段によって制御される電解電流及び電解水素水の溶存水素濃度の関係を示すグラフである。FIG. 5 is a graph showing the relationship between the flow rate of water supplied to the electrolytic cell, the electrolysis current controlled by the control means, and the dissolved hydrogen concentration of electrolytic hydrogen water in the electrolyzed water generating apparatus operating as shown in FIG. 4. 本発明の電解水生成装置の別の実施形態の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of another embodiment of the electrolyzed water generating apparatus of this invention.

以下、本発明の実施の一形態が図面に基づき説明される。
(第1実施形態)
図1は、本実施形態の電解水生成装置1の概略構成を示している。本実施形態では、電解水生成装置1として、例えば、家庭の飲用水の生成に用いられる家庭用電解水生成装置が示されている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 shows a schematic configuration of an electrolyzed water generating apparatus 1 of the present embodiment. In the present embodiment, as the electrolyzed water generating device 1, for example, a home electrolyzed water generating device used for generating home drinking water is shown.

電解水生成装置1は、水を浄化する浄水カートリッジ2と、浄化された水が供給される電解室40が形成された電解槽4と、電解室40に供給される水の流量を検出する流量センサー5と、電解水生成装置1各部の制御を司る制御手段6とを備えている。   The electrolyzed water generating apparatus 1 includes a water purification cartridge 2 for purifying water, an electrolysis tank 4 in which an electrolysis chamber 40 to which purified water is supplied is formed, and a flow rate for detecting the flow rate of water supplied to the electrolysis chamber 40. The sensor 5 and the control means 6 which controls each part of the electrolyzed water generating apparatus 1 are provided.

本実施形態では、浄水カートリッジ2は、電解槽4の上流に設けられている。浄水カートリッジ2には、原水が供給される。原水には、一般的には水道水が利用されるが、その他、例えば、井戸水、地下水等を用いることができる。浄水カートリッジ2は、原水を濾過により浄化し、得られた浄水を電解室40に供給する。   In the present embodiment, the water purification cartridge 2 is provided upstream of the electrolytic cell 4. Raw water is supplied to the water purification cartridge 2. As the raw water, tap water is generally used, but well water, ground water, and the like can be used. The purified water cartridge 2 purifies the raw water by filtration and supplies the obtained purified water to the electrolysis chamber 40.

浄水カートリッジ2は、電解槽4の下流に設けられていてもよい。この場合、浄水カートリッジ2は、電解室40によって電気分解された水を浄化する。   The water purification cartridge 2 may be provided downstream of the electrolytic cell 4. In this case, the water purification cartridge 2 purifies the water electrolyzed by the electrolysis chamber 40.

本実施形態では、浄水カートリッジ2によって浄化された水は、電解室40で電気分解される。電解室40の内部には、陽極給電体41及び陰極給電体42が互いに対向して配置されている。陽極給電体41と陰極給電体42との間には隔膜43が配設されている。隔膜43は、電解室40を陽極給電体41側の陽極室40aと陰極給電体42側の陰極室40bとに区分する。   In the present embodiment, the water purified by the water purification cartridge 2 is electrolyzed in the electrolysis chamber 40. Inside the electrolysis chamber 40, an anode power supply 41 and a cathode power supply 42 are arranged to face each other. A diaphragm 43 is disposed between the anode power supply 41 and the cathode power supply 42. The diaphragm 43 divides the electrolysis chamber 40 into an anode chamber 40a on the anode power supply 41 side and a cathode chamber 40b on the cathode power supply 42 side.

電解室40の陽極室40a及び陰極室40bの両方に水が供給され、陽極給電体41及び陰極給電体42に直流電圧が印加されることにより、電解室40内で水の電気分解が生ずる。   Water is supplied to both the anode chamber 40 a and the cathode chamber 40 b of the electrolysis chamber 40, and a DC voltage is applied to the anode power supply 41 and the cathode power supply 42, whereby water is electrolyzed in the electrolysis chamber 40.

隔膜43は、電気分解で生じたイオンを通過させる。隔膜43を介して陽極給電体41と、陰極給電体42とが電気的に接続される。電解室40内で水が電気分解されることにより、陰極室40bでは、水素ガスが溶け込んだ電解水素水が得られ、陽極室40aでは酸素ガスが溶け込んだ電解酸素水が得られる。   The diaphragm 43 allows ions generated by electrolysis to pass through. The anode power supply 41 and the cathode power supply 42 are electrically connected via the diaphragm 43. By electrolyzing water in the electrolysis chamber 40, electrolysis hydrogen water in which hydrogen gas is dissolved is obtained in the cathode chamber 40b, and electrolysis oxygen water in which oxygen gas is dissolved is obtained in the anode chamber 40a.

隔膜43は、例えば、ポリテトラフルオロエチレン(PTFE)親水膜によって構成されている。   The diaphragm 43 is made of, for example, a polytetrafluoroethylene (PTFE) hydrophilic film.

陰極室40bで得られた電解水素水及び陽極室40aで得られた電解酸素水は、流路切替弁11を介して水栓部に供給され、吐出される。流路切替弁11は、陰極室40bで得られた電解水素水の流路と、陽極室40aで得られた電解酸素水の流路とを分離しながら、接続先を切り替え可能に構成されている。以下、陰極室40bで生成された電解水素水を使用する場合について説明するが、陽極室40aで生成された電解酸素水を使用する場合でも同様である。   The electrolyzed hydrogen water obtained in the cathode chamber 40b and the electrolyzed oxygen water obtained in the anode chamber 40a are supplied to the faucet part via the flow path switching valve 11 and discharged. The flow path switching valve 11 is configured to be able to switch the connection destination while separating the flow path of the electrolytic hydrogen water obtained in the cathode chamber 40b and the flow path of the electrolytic oxygen water obtained in the anode chamber 40a. Yes. Hereinafter, although the case where the electrolytic hydrogen water produced | generated by the cathode chamber 40b is used is demonstrated, it is the same also when the electrolytic oxygen water produced | generated by the anode chamber 40a is used.

流量センサー5は、電解室40に供給される水の単位時間あたりの流量(以下、単に「電解室40に供給される水の流量」と記すこともある)を定期的に(例えば、0.1秒ごとに)検出し、その値に相当する信号を制御手段6に出力する。電解室40に供給される水の流量とは、電解水生成装置1への単位時間あたりの通水量であり、電解室40すなわち陽極室40a及び陰極室40bに単位時間に供給される水の総流量である。   The flow rate sensor 5 periodically (for example, 0. 0) supplies a flow rate per unit time of water supplied to the electrolysis chamber 40 (hereinafter, simply referred to as “flow rate of water supplied to the electrolysis chamber 40”). And detect a signal corresponding to that value to the control means 6. The flow rate of water supplied to the electrolysis chamber 40 is the amount of water flow per unit time to the electrolyzed water generator 1, and the total amount of water supplied to the electrolysis chamber 40, that is, the anode chamber 40a and the cathode chamber 40b per unit time. Flow rate.

本実施形態では、流量センサー5は、浄水カートリッジ2と電解槽4との間に設けられている。流量センサー5は、電解室40に供給される水の流量を直接的又は間接的に検出できればよいので、浄水カートリッジ2の上流又は電解槽4の下流に設けられていてもよい。また、陽極室40a及び陰極室40bの流量比率が既知である場合には、陽極室40a又は陰極室40bに供給される水の流量を検出し、電解室40に供給される水の流量を推定してもよい。   In the present embodiment, the flow sensor 5 is provided between the water purification cartridge 2 and the electrolytic cell 4. The flow rate sensor 5 only needs to be able to detect the flow rate of water supplied to the electrolysis chamber 40 directly or indirectly, and may be provided upstream of the water purification cartridge 2 or downstream of the electrolytic cell 4. If the flow rate ratio between the anode chamber 40a and the cathode chamber 40b is known, the flow rate of water supplied to the anode chamber 40a or the cathode chamber 40b is detected, and the flow rate of water supplied to the electrolysis chamber 40 is estimated. May be.

陽極給電体41及び陰極給電体42の極性及び印加される電圧は、制御手段6によって制御される。制御手段6は、例えば、各種の演算処理、情報処理等を実行するCPU(Central Processing Unit)及びCPUの動作を司るプログラム及び各種の情報を記憶するメモリ等を有している。   The polarity of the anode feeder 41 and the cathode feeder 42 and the applied voltage are controlled by the control means 6. The control means 6 includes, for example, a CPU (Central Processing Unit) that executes various arithmetic processes and information processing, a program that controls the operation of the CPU, and a memory that stores various information.

制御手段6は、流量センサー5から入力された上記信号に基づいて、上記メモリに格納された情報を参照し、給電体41、42に供給する電解電流を制御する。電解電流の制御は、制御手段6が陽極給電体41と陰極給電体42との間に印加する電圧を制御することによって実現される。   The control means 6 refers to the information stored in the memory based on the signal input from the flow sensor 5 and controls the electrolytic current supplied to the power feeding bodies 41 and 42. The control of the electrolysis current is realized by controlling the voltage applied between the anode power supply 41 and the cathode power supply 42 by the control means 6.

陽極給電体41と制御手段6との間の電流供給ラインには、電流検出手段7が設けられている。電流検出手段7は、陰極給電体42と制御手段6との間の電流供給ラインに設けられていてもよい。電流検出手段7は、給電体41、42に供給する電解電流を検出し、その値に相当する信号を制御手段6に出力する。制御手段6は、電流検出手段7から入力される信号に基づいて、陽極給電体41と陰極給電体42との間に印加する電圧をフィードバック制御する。例えば、電解電流が過大である場合、制御手段6は、上記電圧を減少させ、電解電流が過小である場合、制御手段6は、上記電圧を増加させる。これにより、給電体41、42に供給する電解電流が適切に制御されうる。   A current detection means 7 is provided on the current supply line between the anode power supply 41 and the control means 6. The current detection means 7 may be provided in a current supply line between the cathode power supply 42 and the control means 6. The current detection means 7 detects the electrolysis current supplied to the power feeding bodies 41 and 42 and outputs a signal corresponding to the value to the control means 6. The control means 6 feedback-controls the voltage applied between the anode power supply 41 and the cathode power supply 42 based on the signal input from the current detection means 7. For example, when the electrolysis current is excessive, the control unit 6 decreases the voltage, and when the electrolysis current is excessive, the control unit 6 increases the voltage. Thereby, the electrolysis current supplied to the power feeding bodies 41 and 42 can be appropriately controlled.

図2は、電解水生成装置1で、給電体41、42に供給する電解電流を制御する動作の一例を示すフローチャートである。電解水生成装置1への通水が開始されると、流量センサー5は、電解室40に供給される水の流量の検出を開始する(S1)。これにより、流量値に相当する信号が制御手段6に定期的に入力される。電解室40に供給される水の流量とは、電解室40に供給される水の単位時間あたりの流量である。   FIG. 2 is a flowchart illustrating an example of an operation of controlling the electrolytic current supplied to the power feeding bodies 41 and 42 in the electrolyzed water generating apparatus 1. When water flow to the electrolyzed water generator 1 is started, the flow sensor 5 starts detecting the flow rate of water supplied to the electrolysis chamber 40 (S1). As a result, a signal corresponding to the flow rate value is periodically input to the control means 6. The flow rate of water supplied to the electrolysis chamber 40 is a flow rate per unit time of water supplied to the electrolysis chamber 40.

制御手段6は、流量センサー5から入力された上記信号に基づいて給電体41、42に供給する電解電流を決定し(S2)、電解電圧を制御する(S3)。そして、止水されたとき、すなわち電解水生成装置1への通水が停止されたとき(S4においてY)、処理を終了する。一方、通水の継続中は(S4においてN)、S2に戻って電解電流を決定する。   The control means 6 determines the electrolysis current supplied to the power feeders 41 and 42 based on the signal input from the flow sensor 5 (S2), and controls the electrolysis voltage (S3). Then, when the water is stopped, that is, when the water flow to the electrolyzed water generating device 1 is stopped (Y in S4), the processing is ended. On the other hand, while water is continuing (N in S4), the process returns to S2 to determine the electrolysis current.

図3では、電解室40に供給される水の流量と、制御手段6によって制御される電解電流との関係が実線Iにて示されている。また、図3では、上記関係に基づいて電解電流Iが制御された場合での、電解室40に供給される水の流量と陰極室40bで生成される電解水素水の溶存水素濃度との関係が破線Dにて示されている。   In FIG. 3, the solid line I shows the relationship between the flow rate of water supplied to the electrolysis chamber 40 and the electrolysis current controlled by the control means 6. In FIG. 3, the relationship between the flow rate of water supplied to the electrolysis chamber 40 and the dissolved hydrogen concentration of electrolyzed hydrogen water generated in the cathode chamber 40 b when the electrolysis current I is controlled based on the above relationship. Is indicated by a broken line D.

図3では、横軸として電解室40に供給される水の流量を毎分あたりとして換算した値(リットル/分)が、左側の縦軸として電解電流(A)が、右側の縦軸には、溶存水素濃度(ppb)がそれぞれ規定されている(以下、図5においても同様とする)。   In FIG. 3, the horizontal axis represents the value (liters / minute) obtained by converting the flow rate of water supplied to the electrolysis chamber 40 per minute, the left vertical axis represents the electrolysis current (A), and the right vertical axis represents The dissolved hydrogen concentration (ppb) is defined respectively (hereinafter the same applies to FIG. 5).

本実施形態では、制御手段6は、流量センサー5によって検出された流量の一次関数である式(1)を用いて、電解槽4の電解電流を決定する。
I =a×F+b (1)
ただし、
I:電解電流
F:単位時間あたりの流量
a:定数
b:定数
とする。制御手段6のメモリには、電解槽4の電解電流を決定するための情報として、上記式(1)に相当する情報が格納されている。制御手段6は、式(1)に、流量センサー5によって検出された流量を適用して、電解電流Iを計算する。
In the present embodiment, the control means 6 determines the electrolytic current of the electrolytic cell 4 using the equation (1) that is a linear function of the flow rate detected by the flow rate sensor 5.
I = a × F + b (1)
However,
I: Electrolytic current F: Flow rate per unit time a: Constant b: Constant. Information corresponding to the above equation (1) is stored in the memory of the control means 6 as information for determining the electrolytic current of the electrolytic cell 4. The control means 6 calculates the electrolysis current I by applying the flow rate detected by the flow rate sensor 5 to the equation (1).

上記式(1)を用いて電解電流Iが決定される場合、図3において実線で示されるように、電解電流Iは、流量Fに対して線形に変化する。すなわち、電解室40に供給される水の単位時間あたりの流量の変動に応じて電解電流Iが線形(リニア)に増減する。   When the electrolysis current I is determined using the above formula (1), the electrolysis current I changes linearly with respect to the flow rate F as shown by the solid line in FIG. That is, the electrolysis current I increases or decreases linearly according to the fluctuation of the flow rate per unit time of the water supplied to the electrolysis chamber 40.

これにより、図3中破線で示されるように、電解室40に供給される水の流量Fに関わらず、一定の溶存水素濃度Dの電解水を生成できる。   As a result, as indicated by the broken line in FIG. 3, electrolyzed water having a constant dissolved hydrogen concentration D can be generated regardless of the flow rate F of water supplied to the electrolysis chamber 40.

図1に示されるように、電解水生成装置1は、各種の情報を表示する表示手段8をさらに備える。本実施形態では、表示手段8として、例えば、文字情報等の画像を表示するLCD(Liquid Crystal Display)等が適用されている。複数のLED(Light Emitting Diode)等によって表示手段8が構成されていてもよい。   As shown in FIG. 1, the electrolyzed water generating apparatus 1 further includes display means 8 that displays various types of information. In the present embodiment, for example, an LCD (Liquid Crystal Display) that displays an image such as character information is applied as the display unit 8. The display means 8 may be configured by a plurality of LEDs (Light Emitting Diodes) or the like.

表示手段8によって表示される情報には、電解水生成装置1の運転状態が含まれる。例えば、表示手段8は、陰極室40bで生成される電解水素水の溶存水素濃度を表示する。ユーザーは、表示手段8に表示される情報を確認することにより、吐水中の溶存水素濃度を知得でき、電解水生成装置1の使い勝手が高められる。   The information displayed by the display means 8 includes the operating state of the electrolyzed water generating device 1. For example, the display unit 8 displays the dissolved hydrogen concentration of the electrolytic hydrogen water generated in the cathode chamber 40b. The user can know the concentration of dissolved hydrogen in the discharged water by confirming the information displayed on the display means 8, and the usability of the electrolyzed water generating apparatus 1 can be improved.

電解水素水の溶存水素濃度は、流量センサー5によって検出された流量及び電流検出手段7によって検出された電解電流に基づいて、制御手段6によって計算される。   The dissolved hydrogen concentration of the electrolytic hydrogen water is calculated by the control means 6 based on the flow rate detected by the flow sensor 5 and the electrolysis current detected by the current detection means 7.

本発明では、図3に示されるように、流量に関わらず陰極室40bで生成される電解水素水の溶存水素濃度が一定である。しかして、表示手段8に表示される溶存水素濃度が流量に関わらず一定となるので、ユーザーは、溶存水素濃度に関する情報に混乱することなく、電解水生成装置1を使用できるようになる。   In the present invention, as shown in FIG. 3, the dissolved hydrogen concentration of the electrolytic hydrogen water generated in the cathode chamber 40b is constant regardless of the flow rate. Therefore, since the dissolved hydrogen concentration displayed on the display unit 8 is constant regardless of the flow rate, the user can use the electrolyzed water generating apparatus 1 without being confused by the information regarding the dissolved hydrogen concentration.

図1に示されるように、電解水生成装置1は、ユーザーによって操作される操作手段9をさらに備える。ユーザーは、操作手段9を操作することにより、制御手段6に各種の指令及び設定を入力できる。   As shown in FIG. 1, the electrolyzed water generating apparatus 1 further includes operation means 9 operated by a user. The user can input various commands and settings to the control means 6 by operating the operation means 9.

上記設定には、例えば、電解水生成装置1の運転モードの選択が含まれる。電解水生成装置1には、予め複数の運転モードが設けられており、それぞれの運転モードでは、各モード毎に電解水の溶存水素濃度が予め割り当てられている。ユーザーは、操作手段9を操作して、いずれかの運転モードを適宜選択することにより、溶存水素濃度等を設定できる。このような構成では、ユーザーは、所望の溶存水素濃度の電解水を吐水させることが可能となり、電解水生成装置1の使い勝手が向上する。   The setting includes, for example, selection of an operation mode of the electrolyzed water generating device 1. The electrolyzed water generator 1 is provided with a plurality of operation modes in advance, and in each operation mode, the dissolved hydrogen concentration of the electrolyzed water is assigned in advance for each mode. The user can set the dissolved hydrogen concentration and the like by operating the operation means 9 and appropriately selecting one of the operation modes. With such a configuration, the user can discharge electrolyzed water having a desired dissolved hydrogen concentration, and the usability of the electrolyzed water generating apparatus 1 is improved.

図4は、操作手段9によって運転モードを切り替える機能を有する電解水生成装置1で、給電体41、42に供給する電解電流を制御する動作の一例を示すフローチャートである。   FIG. 4 is a flowchart showing an example of an operation for controlling the electrolysis current supplied to the power feeding bodies 41 and 42 in the electrolyzed water generating apparatus 1 having a function of switching the operation mode by the operation means 9.

本実施形態では、上記運転モードとして、例えば、「第1飲用水モード」、「第2飲用水モード」、「第3飲用水モード」及び「調理用水モード」が設けられている。「第1飲用水モード」は、溶存水素濃度が100ppbの飲用水を生成するモードである。同様に、「第2飲用水モード」は、溶存水素濃度が200ppbの飲用水を生成するモードであり、「第3飲用水モード」は、溶存水素濃度が300ppbの飲用水を生成するモードである。「調理用水モード」は、最大の電解電流で調理用水を生成するモードである。そして、電解水生成装置1への通水前にいずれかの運転モードが選択されている。選択された運転モードは、制御手段6のメモリに格納される。   In the present embodiment, for example, “first drinking water mode”, “second drinking water mode”, “third drinking water mode”, and “cooking water mode” are provided as the operation modes. The “first drinking water mode” is a mode for generating drinking water having a dissolved hydrogen concentration of 100 ppb. Similarly, the “second potable water mode” is a mode that generates potable water having a dissolved hydrogen concentration of 200 ppb, and the “third potable water mode” is a mode that generates potable water having a dissolved hydrogen concentration of 300 ppb. . The “cooking water mode” is a mode in which cooking water is generated with the maximum electrolysis current. One of the operation modes is selected before water is passed through the electrolyzed water generating device 1. The selected operation mode is stored in the memory of the control means 6.

電解水生成装置1への通水が開始されると、制御手段6は運転モードを確認し(S11)、流量センサー5は、電解室40に供給される水の単位時間あたりの流量の検出を開始する(S12)。これにより、流量値に相当する信号が制御手段6に定期的に入力される。   When water flow to the electrolyzed water generator 1 is started, the control means 6 confirms the operation mode (S11), and the flow rate sensor 5 detects the flow rate per unit time of the water supplied to the electrolysis chamber 40. Start (S12). As a result, a signal corresponding to the flow rate value is periodically input to the control means 6.

制御手段6は、流量センサー5から入力された上記信号に基づいて給電体41、42に供給する電解電流を決定し(S13)、電解電圧を制御する(S14)。ここで、上記電解電流は、選択されている運転モードによって異なる。   The control means 6 determines the electrolysis current supplied to the power feeders 41 and 42 based on the signal input from the flow sensor 5 (S13), and controls the electrolysis voltage (S14). Here, the electrolytic current varies depending on the selected operation mode.

図5は、各運転モードにおける電解室40に供給される水の流量と制御手段6によって制御される電解電流との関係、及び、上記流量と溶存水素濃度との関係を示している。   FIG. 5 shows the relationship between the flow rate of water supplied to the electrolysis chamber 40 and the electrolysis current controlled by the control means 6 in each operation mode, and the relationship between the flow rate and the dissolved hydrogen concentration.

すなわち、「第1飲用水モード」での水の流量と電解電流との関係が一点鎖線I1で示され、水の流量と溶存水素濃度との関係が一点鎖線D1で示される。「第2飲用水モード」での水の流量と電解電流との関係が二点鎖線Iで示され、水の流量と溶存水素濃度との関係が二点鎖線Dで示される。同様に、「第3飲用水モード」での水の流量と電解電流との関係が三点鎖線Iで示され、水の流量と溶存水素濃度との関係が三点鎖線Dで示される。さらに、「調理用水モード」での水の流量と電解電流との関係が破線Iで示され、水の流量と溶存水素濃度との関係が破線Dで示される。 That is, the relationship between the water flow rate and the electrolysis current in the “first potable water mode” is indicated by a one-dot chain line I 1 , and the relationship between the water flow rate and the dissolved hydrogen concentration is indicated by a one-dot chain line D 1 . The relationship between the water flow rate and the electrolysis current in the “second potable water mode” is indicated by a two-dot chain line I 2 , and the relationship between the water flow rate and the dissolved hydrogen concentration is indicated by a two-dot chain line D 2 . Similarly, the relationship between the water flow rate and the electrolysis current in the “third potable water mode” is indicated by a three-dot chain line I 3 , and the relationship between the water flow rate and the dissolved hydrogen concentration is indicated by a three-dot chain line D 3. . Further, the relationship between the water flow rate and the electrolysis current in the “cooking water mode” is indicated by a broken line I 4 , and the relationship between the water flow rate and the dissolved hydrogen concentration is indicated by a broken line D 4 .

本実施形態では、制御手段6のメモリには、電解室40に供給される水の流量及び給電体41、42に供給する電解電流と、陰極室40bで生成される電解水の溶存水素濃度との相関を示すデーターとして、図5に示されるデーターが格納されている。制御手段6は、各運転モードに応じて、流量センサー5から入力された上記信号に基づいて、上記メモリに格納されたデーターを参照し、給電体41、42に供給する電解電流を制御する。   In the present embodiment, the memory of the control means 6 includes the flow rate of water supplied to the electrolysis chamber 40, the electrolysis current supplied to the power feeders 41 and 42, and the dissolved hydrogen concentration of electrolyzed water generated in the cathode chamber 40b. The data shown in FIG. 5 is stored as data indicating the correlation. The control means 6 controls the electrolytic current supplied to the power feeders 41 and 42 by referring to the data stored in the memory based on the signal input from the flow sensor 5 according to each operation mode.

すなわち、「第1飲用水モード」、「第2飲用水モード」及び「第3飲用水モード」では、制御手段6は、流量センサー5によって検出された流量の一次関数を用いて、電解電流を決定する。   That is, in the “first drinking water mode”, the “second drinking water mode”, and the “third drinking water mode”, the control means 6 uses the linear function of the flow rate detected by the flow sensor 5 to change the electrolysis current. decide.

図5に示されるように、二点鎖線Iの傾きは、一点鎖線I1の傾きよりも大きく、三点鎖線Iの傾きは、二点鎖線Iの傾きよりも大きい。すなわち、式(1)に示される一次関数の定数aは、各飲用水モードでの溶存水素濃度に応じて異なる値に設定されている。より具体的には、溶存水素濃度が2倍に設定された場合、定数aも2倍に設定される。 As shown in Figure 5, the slope two-dot chain line I 2, greater than the slope of the dashed line I 1, the slope of the three-dot chain line I 3 is greater than the slope of the two-dot chain line I 2. That is, the constant a of the linear function shown in the equation (1) is set to a different value depending on the dissolved hydrogen concentration in each drinking water mode. More specifically, when the dissolved hydrogen concentration is set to double, the constant a is also set to double.

そして、制御手段6は、操作手段9によって運転モードが選択されることにより設定された溶存水素濃度に応じて、式(1)に示される一次関数の定数aを決定する。これにより、いずれの飲用水モードにおいても、電解室40に供給される水の流量に関わらず、一定の溶存水素濃度の電解水を生成できるようになる。   And the control means 6 determines the constant a of the linear function shown by Formula (1) according to the dissolved hydrogen concentration set by the operation mode being selected by the operation means 9. As a result, regardless of the flow rate of water supplied to the electrolysis chamber 40 in any potable water mode, electrolyzed water having a constant dissolved hydrogen concentration can be generated.

そして、いずれの運転モードが選択されている場合にあっても、図2に示される動作と同様に、止水されたときすなわち電解水生成装置1への通水が停止されたとき(S15においてY)、処理を終了する。一方、通水の継続中は(S15においてN)、S13に戻って電解電流を決定する。   Even when any of the operation modes is selected, when the water is stopped, that is, when the water flow to the electrolyzed water generating device 1 is stopped (in S15), similarly to the operation shown in FIG. Y), the process ends. On the other hand, while water is continuing (N in S15), the process returns to S13 to determine the electrolysis current.

本実施形態では、いずれの飲用水モードがユーザーによって選択された場合であっても、電解室40に供給される水の流量に関わらず、一定の溶存水素濃度の電解水を生成できる。   In this embodiment, even if any drinking water mode is selected by the user, electrolyzed water having a constant dissolved hydrogen concentration can be generated regardless of the flow rate of water supplied to the electrolysis chamber 40.

(第2実施形態)
図6は、本発明の別の実施形態である電解水生成装置1Aを示している。電解水生成装置1Aは、水の流路が直列に接続された第1電解槽3及び第2電解槽4を備えた点で、図1に示される電解水生成装置1とは異なる。
(Second Embodiment)
FIG. 6 shows an electrolyzed water generating apparatus 1A that is another embodiment of the present invention. The electrolyzed water generating apparatus 1A is different from the electrolyzed water generating apparatus 1 shown in FIG. 1 in that the electrolyzed water generating apparatus 1A includes a first electrolyzer 3 and a second electrolyzer 4 in which water flow paths are connected in series.

第1電解槽3は、浄水カートリッジ2によって浄化された水が供給される電解室30を有している。電解室30の内部には、陽極給電体31及び陰極給電体32が互いに対向して配置されている。陽極給電体31と陰極給電体32との間には隔膜33が配設されている。隔膜33は、電解室30を陽極給電体31側の陽極室30aと陰極給電体32側の陰極室30bとに区分する。   The first electrolytic cell 3 has an electrolysis chamber 30 to which water purified by the water purification cartridge 2 is supplied. Inside the electrolysis chamber 30, an anode power supply 31 and a cathode power supply 32 are arranged to face each other. A diaphragm 33 is disposed between the anode power supply 31 and the cathode power supply 32. The diaphragm 33 divides the electrolysis chamber 30 into an anode chamber 30a on the anode feeder 31 side and a cathode chamber 30b on the cathode feeder 32 side.

隔膜33には、例えば、スルホン酸基を有するフッ素系の樹脂材料からなる固体高分子材料が用いられている。固体高分子材料を用いた隔膜33を有する電解槽3では、中性の電解水が生成される。   For the diaphragm 33, for example, a solid polymer material made of a fluorine-based resin material having a sulfonic acid group is used. In the electrolytic cell 3 having the diaphragm 33 using the solid polymer material, neutral electrolyzed water is generated.

陰極室30bでは、水の電気分解によって水素ガスが発生し、陰極室30b内の水に溶け込む。一方、陽極室30aでは、水の電気分解によって酸素ガスが発生し、陽極室30a内の水に溶け込む。これにより、陰極室30bでは、電解水素水が生成され、陽極室30aでは、電解酸素水が生成される。   In the cathode chamber 30b, hydrogen gas is generated by electrolysis of water and is dissolved in the water in the cathode chamber 30b. On the other hand, in the anode chamber 30a, oxygen gas is generated by water electrolysis and dissolves in the water in the anode chamber 30a. Thereby, electrolytic hydrogen water is generated in the cathode chamber 30b, and electrolytic oxygen water is generated in the anode chamber 30a.

第2電解槽4は、第1電解槽3の下流側に設けられている。第2電解槽4の構成は、第1実施形態の電解槽4と同等である。   The second electrolytic cell 4 is provided on the downstream side of the first electrolytic cell 3. The configuration of the second electrolytic cell 4 is the same as the electrolytic cell 4 of the first embodiment.

第1電解槽3の陽極室30aは、第2電解槽4の陽極室40aと接続され、第1電解槽3の陰極室30bは、第2電解槽4の陰極室40bと接続されている。このため、陽極室30aにて生成された電解酸素水は陽極室40aに供給され、陰極室30bにて生成された電解水素水は陰極室40bに供給される。   The anode chamber 30 a of the first electrolytic cell 3 is connected to the anode chamber 40 a of the second electrolytic cell 4, and the cathode chamber 30 b of the first electrolytic cell 3 is connected to the cathode chamber 40 b of the second electrolytic cell 4. For this reason, the electrolytic oxygen water produced | generated in the anode chamber 30a is supplied to the anode chamber 40a, and the electrolytic hydrogen water produced | generated in the cathode chamber 30b is supplied to the cathode chamber 40b.

第1電解槽3に単位時間に供給される水の流量は、浄水カートリッジ2と第1電解槽3との間に設けられた流量センサー5によって検出される。   The flow rate of water supplied to the first electrolytic cell 3 per unit time is detected by a flow rate sensor 5 provided between the water purification cartridge 2 and the first electrolytic cell 3.

第2電解槽4は、第1電解槽3にて生成された電解水の溶存ガス濃度を高める。このとき、陽極室40aで生成される電解水は酸性となり、陰極室40bで生成される電解水はアルカリ性となる。   The second electrolytic cell 4 increases the dissolved gas concentration of the electrolytic water generated in the first electrolytic cell 3. At this time, the electrolyzed water generated in the anode chamber 40a becomes acidic, and the electrolyzed water generated in the cathode chamber 40b becomes alkaline.

陽極給電体31と制御手段6との間の電流供給ラインには、電流検出手段71が設けられている。同様に、陽極給電体41と制御手段6との間の電流供給ラインには、電流検出手段72が設けられている。電流検出手段71、72は、陰極給電体32、42と制御手段6との間の電流供給ラインに設けられていてもよい。   A current detection means 71 is provided on the current supply line between the anode feeder 31 and the control means 6. Similarly, a current detection means 72 is provided on the current supply line between the anode power supply 41 and the control means 6. The current detection means 71 and 72 may be provided in a current supply line between the cathode power feeders 32 and 42 and the control means 6.

制御手段6は、電流検出手段71から入力される信号に基づいて、陽極給電体31と陰極給電体32との間に印加する電圧をフィードバック制御する。また、制御手段6は、電流検出手段72から入力される信号に基づいて、陽極給電体41と陰極給電体42との間に印加する電圧をフィードバック制御する。このように、第1電解槽3の陽極給電体31及び陰極給電体32に印加される直流電圧と、第2電解槽4の陽極給電体41及び陰極給電体42に印加される直流電圧とは、制御手段6によって別々に制御される。従って、給電体31及び32に供給される電解電流と給電体41及び42に供給される電解電流とは、制御手段6によって別々に制御されることになる。   The control means 6 feedback-controls the voltage applied between the anode power supply 31 and the cathode power supply 32 based on the signal input from the current detection means 71. Further, the control means 6 performs feedback control of the voltage applied between the anode power supply 41 and the cathode power supply 42 based on the signal input from the current detection means 72. Thus, the DC voltage applied to the anode feeder 31 and the cathode feeder 32 of the first electrolytic cell 3 and the DC voltage applied to the anode feeder 41 and the cathode feeder 42 of the second electrolytic cell 4 are as follows. These are controlled separately by the control means 6. Therefore, the electrolysis current supplied to the power feeding bodies 31 and 32 and the electrolysis current supplied to the power feeding bodies 41 and 42 are separately controlled by the control means 6.

電解水生成装置1Aで、給電体31、32及び給電体41、42に供給する電解電流を制御する動作については、図2又は図4に示される動作と同等である。そして、各電解槽3、4に供給される水の流量と制御手段6によって制御される電解電流との関係、及び、上記流量と溶存水素濃度との関係は、図3及び5と同等である。   About operation | movement which controls the electrolysis current supplied to the electric power feeders 31 and 32 and the electric power feeders 41 and 42 in the electrolyzed water generating apparatus 1A, it is equivalent to the operation | movement shown by FIG. 2 or FIG. The relationship between the flow rate of water supplied to each electrolytic cell 3 and 4 and the electrolysis current controlled by the control means 6 and the relationship between the flow rate and the dissolved hydrogen concentration are the same as in FIGS. .

制御手段6は、流量センサー5によって検出された流量の一次関数である式(2)を用いて、第1電解槽3の電解電流を決定する。
I =a×F+b (2)
ただし、
:定数
:定数
とする。
The control means 6 determines the electrolytic current of the first electrolytic cell 3 using the equation (2) that is a linear function of the flow rate detected by the flow rate sensor 5.
I = a 1 × F + b 1 (2)
However,
a 1 : Constant b 1 : Constant.

同様に、制御手段6は、流量センサー5によって検出された流量の一次関数である式(3)を用いて、第2電解槽4の電解電流を決定する。
I =a×F+b (3)
ただし、
:定数
:定数
とする。
Similarly, the control means 6 determines the electrolytic current of the second electrolytic cell 4 using the equation (3) that is a linear function of the flow rate detected by the flow rate sensor 5.
I = a 2 × F + b 2 (3)
However,
a 2 : Constant b 2 : Constant.

このように、制御手段6は、第1電解槽3の電解電流と第2電解槽4の電解電流とを、傾きの定数aが異なる一次関数を用いて別々に決定する。これにより、各電解室30、40に供給される水の流量に関わらず、一定の溶存水素濃度の電解水素水が生成されうる。さらに、第1電解槽3と第2電解槽4とが異なる電解電流で制御可能となるので、各定数a、aを適宜設定することにより、様々な溶存水素濃度の電解水素水を生成できる。例えば、溶存水素濃度が非常に高く弱アルカリ性の電解水素水等を生成することが可能となる。 Thus, the control means 6 determines separately the electrolysis current of the 1st electrolysis tank 3 and the electrolysis current of the 2nd electrolysis tank 4 using the linear function from which the constant a of inclination differs. Thereby, regardless of the flow rate of the water supplied to the electrolysis chambers 30 and 40, electrolysis hydrogen water having a constant dissolved hydrogen concentration can be generated. Furthermore, since the first electrolytic cell 3 and the second electrolytic cell 4 can be controlled with different electrolysis currents, electrolytic hydrogen water having various dissolved hydrogen concentrations can be generated by appropriately setting the constants a 1 and a 2. it can. For example, it is possible to generate weakly alkaline electrolytic hydrogen water having a very high dissolved hydrogen concentration.

本第2実施形態の表示手段8は、図1に示される第1実施形態の表示手段8と同等である。表示手段8は、第1電解槽3単体で生成される電解水素水の溶存水素濃度を表示してもよく、第1電解槽3及び第2電解槽4で生成される電解水素水の溶存水素濃度を表示してもよい。いずれの場合であっても表示手段8が表示する溶存水素濃度は、制御手段6によって計算されうる。   The display means 8 of the second embodiment is equivalent to the display means 8 of the first embodiment shown in FIG. The display means 8 may display the dissolved hydrogen concentration of the electrolytic hydrogen water generated in the first electrolytic tank 3 alone, and the dissolved hydrogen water of the electrolytic hydrogen water generated in the first electrolytic tank 3 and the second electrolytic tank 4. The concentration may be displayed. In any case, the dissolved hydrogen concentration displayed by the display means 8 can be calculated by the control means 6.

本第2実施形態の操作手段9は、図1に示される第1実施形態の操作手段9と同等である。操作手段9は、第1電解槽3及び第2電解槽4の運転モードを個別に選択できるように構成されていてもよい。このような構成によれば、様々な溶存水素濃度の電解水素水が生成可能となる。   The operation means 9 of the second embodiment is equivalent to the operation means 9 of the first embodiment shown in FIG. The operation means 9 may be configured so that the operation modes of the first electrolytic cell 3 and the second electrolytic cell 4 can be individually selected. According to such a configuration, electrolytic hydrogen water having various dissolved hydrogen concentrations can be generated.

以上、本発明の電解水生成装置1、1Aが詳細に説明されたが、本発明は上記の具体的な実施形態に限定されることなく種々の態様に変更して実施される。すなわち、電解水生成装置1は、少なくとも、電解室40が形成された電解槽4と、電解室40内で、互いに対向して配置された陽極給電体41及び陰極給電体42と、陽極給電体41と陰極給電体42との間に配され、かつ、電解室40を陽極室40aと陰極室40bとに区分する隔膜43とを備え、電解室40に供給される水の単位時間あたりの流量を検出する流量センサー5と、給電体41、42に供給される電解電流を制御する制御手段6とをさらに備え、制御手段6は、流量センサー5によって検出された流量に基づいて電解電流を制御することにより、電解室40で生成される電解水の溶存ガス濃度を一定となるように調整するように構成されていればよい。   As mentioned above, although the electrolyzed water generating apparatus 1 and 1A of this invention were demonstrated in detail, this invention is changed and implemented in various aspects, without being limited to said specific embodiment. That is, the electrolyzed water generating apparatus 1 includes at least the electrolytic cell 4 in which the electrolysis chamber 40 is formed, the anode power feeding body 41 and the cathode power feeding body 42 that are disposed to face each other in the electrolysis chamber 40, and the anode power feeding body. 41 and a cathode feeder 42, and a diaphragm 43 that divides the electrolysis chamber 40 into an anode chamber 40a and a cathode chamber 40b, and a flow rate of water supplied to the electrolysis chamber 40 per unit time. And a control means 6 for controlling the electrolysis current supplied to the power feeders 41 and 42, and the control means 6 controls the electrolysis current based on the flow rate detected by the flow sensor 5. Thus, the dissolved gas concentration of the electrolyzed water generated in the electrolysis chamber 40 may be adjusted so as to be constant.

図1に示される電解水生成装置1及び図6に示される電解水生成装置1Aにおいて、隔膜43には、スルホン酸基を有するフッ素系の樹脂材料からなる固体高分子材料が用いられていてもよい。この場合、電解室40によって中性の電解水素水が生成される。   In the electrolyzed water generating device 1 shown in FIG. 1 and the electrolyzed water generating device 1A shown in FIG. 6, the diaphragm 43 may be made of a solid polymer material made of a fluorine-based resin material having a sulfonic acid group. Good. In this case, neutral electrolytic hydrogen water is generated by the electrolysis chamber 40.

また、制御手段6が電解電流を決定するための情報として、上記式(1)に関する情報に替えて、流量及び電解電流と溶存水素濃度との相関を示すテーブルが、制御手段6のメモリに格納されていてもよい。上記相関は、電解槽4の仕様毎に、予め実験等によって定めることができる。テーブルは、例えば、表による形式に限られることなく,図3、5等に示されるグラフによる形式であってもよい。   Further, as information for the control means 6 to determine the electrolysis current, a table showing the correlation between the flow rate, the electrolysis current and the dissolved hydrogen concentration is stored in the memory of the control means 6 instead of the information related to the above formula (1). May be. The correlation can be determined in advance by experiments or the like for each specification of the electrolytic cell 4. The table is not limited to a table format, but may be a graph format shown in FIGS.

1 電解水生成装置
3 電解室
4 電解槽
5 流量センサー
6 制御部
7 電流検知手段
8 表示手段
9 操作手段
40 電解室
40a 陽極室
40b 陰極室
41 陽極給電体
42 陰極給電体
43 隔膜
DESCRIPTION OF SYMBOLS 1 Electrolyzed water production | generation apparatus 3 Electrolytic chamber 4 Electrolytic tank 5 Flow rate sensor 6 Control part 7 Current detection means 8 Display means 9 Operation means 40 Electrolytic chamber 40a Anode chamber 40b Cathode chamber 41 Anode feeder 42 Cathode feeder 43 Diaphragm

Claims (9)

電気分解される水が供給される電解室が形成された電解槽と、
前記電解室内で、互いに対向して配置された陽極給電体及び陰極給電体と、
前記陽極給電体と前記陰極給電体との間に配され、かつ、前記電解室を前記陽極給電体側の陽極室と、前記陰極給電体側の陰極室とに区分する隔膜とを備えた電解水生成装置であって、
前記電解室に供給される水の単位時間あたりの流量を検出する流量センサーと、
前記給電体に供給される電解電流を制御する制御手段とをさらに備え、
前記制御手段は、前記流量センサーによって検出された前記流量に基づいて前記電解電流を制御することにより、前記電解室で生成される電解水の溶存ガス濃度を一定となるように調整することを特徴とする電解水生成装置。
An electrolytic cell in which an electrolytic chamber to which water to be electrolyzed is supplied is formed;
An anode feeder and a cathode feeder disposed opposite to each other in the electrolytic chamber;
Electrolyzed water generation comprising a diaphragm disposed between the anode feeder and the cathode feeder and dividing the electrolysis chamber into an anode chamber on the anode feeder side and a cathode chamber on the cathode feeder side A device,
A flow sensor for detecting a flow rate per unit time of water supplied to the electrolysis chamber;
Control means for controlling the electrolysis current supplied to the power feeder, and
The control means adjusts the dissolved gas concentration of the electrolyzed water generated in the electrolysis chamber to be constant by controlling the electrolysis current based on the flow rate detected by the flow sensor. An electrolyzed water generator.
前記制御手段は、予め定められている前記流量及び前記電解電流と前記溶存ガス濃度との相関に基づいて前記給電体に供給する電解電流を決定する請求項1記載の電解水生成装置。   The electrolyzed water generating apparatus according to claim 1, wherein the control means determines an electrolysis current to be supplied to the power feeding body based on a predetermined flow rate and a correlation between the electrolysis current and the dissolved gas concentration. 前記制御手段は、前記流量センサーによって検出された前記流量の一次関数
I =a×F+b
を用いて、前記電解電流を決定する請求項1又は2に記載の電解水生成装置。
ただし、
I:電解電流
F:単位時間あたりの流量
a:定数
b:定数
とする。
The control means is a linear function of the flow rate detected by the flow sensor I = a × F + b
The electrolyzed water generating apparatus according to claim 1, wherein the electrolysis current is determined using a power source.
However,
I: Electrolytic current F: Flow rate per unit time a: Constant b: Constant.
前記電解電流を検出する電流検出手段をさらに備え、
前記制御手段は、前記電流検出手段によって検出された電解電流が前記決定した電解電流と一致するように、前記給電体間に印加する電圧を制御する請求項1乃至3のいずれかに記載の電解水生成装置。
A current detecting means for detecting the electrolytic current;
The electrolysis according to any one of claims 1 to 3, wherein the control unit controls a voltage applied between the power feeding bodies so that an electrolysis current detected by the current detection unit coincides with the determined electrolysis current. Water generator.
ユーザーが、前記電気分解によって前記電解室で生成される電解水の溶存ガス濃度を設定するための操作手段をさらに備え、
前記制御手段は、前記操作手段によって設定された溶存ガス濃度に応じて、前記一次関数の前記定数aを決定する請求項3記載の電解水生成装置。
The user further comprises operating means for setting a dissolved gas concentration of electrolyzed water generated in the electrolysis chamber by the electrolysis,
The electrolyzed water generating apparatus according to claim 3, wherein the control unit determines the constant a of the linear function according to a dissolved gas concentration set by the operation unit.
前記電解槽は、前記隔膜が固体高分子膜を含む第1電解槽と、前記第1電解槽の下流側に設けられた第2電解槽とを有し、
前記制御手段は、前記第1電解槽の電解電流と前記第2電解槽の電解電流とを別々に制御する請求項1乃至5のいずれかに記載の電解水生成装置。
The electrolytic cell has a first electrolytic cell in which the diaphragm includes a solid polymer membrane, and a second electrolytic cell provided on the downstream side of the first electrolytic cell,
The electrolyzed water generating apparatus according to any one of claims 1 to 5, wherein the control unit separately controls the electrolysis current of the first electrolysis tank and the electrolysis current of the second electrolysis tank.
前記電解槽は、前記隔膜が固体高分子膜を含む第1電解槽と、前記第1電解槽の下流側に設けられた第2電解槽とを有し、
前記制御手段は、前記第1電解槽の電解電流と前記第2電解槽の電解電流とを、定数aが異なる前記一次関数を用いて別々に決定する請求項3又は5に記載の電解水生成装置。
The electrolytic cell has a first electrolytic cell in which the diaphragm includes a solid polymer membrane, and a second electrolytic cell provided on the downstream side of the first electrolytic cell,
The electrolyzed water generation according to claim 3 or 5, wherein the control means separately determines the electrolysis current of the first electrolysis tank and the electrolysis current of the second electrolysis tank using the linear function having different constants a. apparatus.
前記制御手段は、前記流量センサーによって検出された前記流量及び前記陽極給電体に供給される電解電流に基づいて前記陰極室で生成される電解水の溶存ガス濃度を計算する請求項1乃至7のいずれかに記載の電解水生成装置。   The said control means calculates the dissolved gas concentration of the electrolyzed water produced | generated in the said cathode chamber based on the said flow volume detected by the said flow sensor, and the electrolysis electric current supplied to the said anode electric power feeding body. The electrolyzed water production | generation apparatus in any one. 前記制御手段によって計算された前記溶存ガス濃度を表示する表示部をさらに備えた請求項8記載の電解水生成装置。   The electrolyzed water generating apparatus according to claim 8, further comprising a display unit that displays the dissolved gas concentration calculated by the control unit.
JP2015045627A 2015-03-09 2015-03-09 Electrolyzed water generator Active JP6412447B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015045627A JP6412447B2 (en) 2015-03-09 2015-03-09 Electrolyzed water generator
CN201610086827.8A CN105948176B (en) 2015-03-09 2016-02-16 Electrolyzed water generation device
KR1020160027116A KR20160110149A (en) 2015-03-09 2016-03-07 Electrolyzed water generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015045627A JP6412447B2 (en) 2015-03-09 2015-03-09 Electrolyzed water generator

Publications (3)

Publication Number Publication Date
JP2016165667A true JP2016165667A (en) 2016-09-15
JP2016165667A5 JP2016165667A5 (en) 2016-12-08
JP6412447B2 JP6412447B2 (en) 2018-10-24

Family

ID=56897966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015045627A Active JP6412447B2 (en) 2015-03-09 2015-03-09 Electrolyzed water generator

Country Status (3)

Country Link
JP (1) JP6412447B2 (en)
KR (1) KR20160110149A (en)
CN (1) CN105948176B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018070230A1 (en) * 2016-10-12 2018-04-19 株式会社日本トリム Electrolyzed water generating device
JP2018090506A (en) * 2016-11-30 2018-06-14 株式会社日本トリム Electrolytic hydrogen water
WO2018207452A1 (en) * 2017-05-09 2018-11-15 パナソニックIpマネジメント株式会社 Electrolyzed water generating apparatus
JPWO2017138048A1 (en) * 2016-02-10 2018-12-06 パナソニックIpマネジメント株式会社 Electrolyzed water generator
JP2019013873A (en) * 2017-07-05 2019-01-31 株式会社日本トリム Electrolytic water generator
WO2019198711A1 (en) 2018-04-11 2019-10-17 株式会社日本トリム Water prescribing system and water prescribing program
JP7348988B1 (en) 2022-05-11 2023-09-21 株式会社日本トリム Electrolyzed water generation equipment and water treatment equipment

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106249437A (en) * 2016-09-30 2016-12-21 福州品行科技发展有限公司 A kind of 3D glasses
JP2018065106A (en) * 2016-10-20 2018-04-26 モレックス エルエルシー Three-tank type electrolyzed water production equipment
CN106587283A (en) * 2016-12-15 2017-04-26 中建水务(深圳)有限公司 Filter and control method
JP6853049B2 (en) * 2017-01-18 2021-03-31 株式会社日本トリム Electrolyzed water generator
JP6836914B2 (en) * 2017-01-18 2021-03-03 株式会社日本トリム Water treatment equipment, dialysate preparation water production equipment and hydrogen water server
CN109136071A (en) * 2017-06-28 2019-01-04 高节义 It is electrolysed the method and system setting that methane is produced in three Room
TWI635055B (en) * 2017-12-20 2018-09-11 周瑞勇 Method and apparatus for producing functional water containing oxygen and hydrogen
CN108996620A (en) * 2018-08-25 2018-12-14 湖南三五二环保科技有限公司 A kind of electrolyzed water machine and its electrolytic method
US20210114898A1 (en) * 2019-10-22 2021-04-22 Kyungdong Navien Co., Ltd. Apparatus and method for controlling water softener
KR20220140314A (en) * 2021-04-09 2022-10-18 삼성전자주식회사 Sterilizing water generator, water purifier and method for controlling the same
CN114705251B (en) * 2022-04-27 2022-11-25 北京雷动智创科技有限公司 Hydrogen production electrolytic tank state monitoring device and method

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0679279A (en) * 1992-09-03 1994-03-22 Sanyo Electric Co Ltd Alkaline ionized water generator
JPH06170367A (en) * 1992-12-01 1994-06-21 Matsushita Electric Works Ltd Ion water producer
JPH07124562A (en) * 1993-11-01 1995-05-16 Brother Ind Ltd Electrolytic water making machine
JPH09192667A (en) * 1996-01-24 1997-07-29 Mizu:Kk Electrolyzed water generating device
JPH11192484A (en) * 1997-12-27 1999-07-21 River Suton:Kk Electrolytic device
JP2002153874A (en) * 2000-09-06 2002-05-28 Oki Jushi Kogyo Kk Water sterilization method and water sterilizer
JP2002248471A (en) * 2001-02-23 2002-09-03 Hoshizaki Electric Co Ltd Electrolyzed water making apparatus
JP2003340451A (en) * 2002-05-29 2003-12-02 Amano Corp Electrolytic alkali cleaning water, method for generating electrolytic alkali cleaning water and device therefor
JP2005052787A (en) * 2003-08-07 2005-03-03 Amano Corp Electrolytic water for cleaning, and preparation method and preparation apparatus therefor
JP2007098351A (en) * 2005-10-07 2007-04-19 Hoshizaki Electric Co Ltd Electrolytic water making apparatus equipped with diaphragm electrolytic cell and method for applying polarity to diaphragm which constitutes diaphragm electrolytic cell
JP2008086885A (en) * 2006-09-29 2008-04-17 Matsushita Electric Works Ltd Electrolytic water generator
JP2015003313A (en) * 2013-06-24 2015-01-08 株式会社日本トリム Manufacturing apparatus of water for preparing dialysate
JP2015087221A (en) * 2013-10-30 2015-05-07 株式会社日本トリム Dissolved hydrogen concentration measuring method and electrolytic solution generation device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4378803B2 (en) 1999-09-02 2009-12-09 パナソニック電工株式会社 Alkaline ion water conditioner
KR100433856B1 (en) * 2000-07-07 2004-06-04 마츠시타 덴끼 산교 가부시키가이샤 Electrolytic liquid and apparatus for producing same
US9056272B2 (en) * 2006-02-28 2015-06-16 Tarek A. Z. Farag Isotopes separation and purification in an electrolytic medium
KR100928685B1 (en) * 2009-04-24 2009-11-27 (주)한우물 A electrolysis water purifier
JP2011255354A (en) * 2010-06-11 2011-12-22 Panasonic Electric Works Co Ltd Electrolytic water generator

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0679279A (en) * 1992-09-03 1994-03-22 Sanyo Electric Co Ltd Alkaline ionized water generator
JPH06170367A (en) * 1992-12-01 1994-06-21 Matsushita Electric Works Ltd Ion water producer
JPH07124562A (en) * 1993-11-01 1995-05-16 Brother Ind Ltd Electrolytic water making machine
JPH09192667A (en) * 1996-01-24 1997-07-29 Mizu:Kk Electrolyzed water generating device
JPH11192484A (en) * 1997-12-27 1999-07-21 River Suton:Kk Electrolytic device
JP2002153874A (en) * 2000-09-06 2002-05-28 Oki Jushi Kogyo Kk Water sterilization method and water sterilizer
JP2002248471A (en) * 2001-02-23 2002-09-03 Hoshizaki Electric Co Ltd Electrolyzed water making apparatus
JP2003340451A (en) * 2002-05-29 2003-12-02 Amano Corp Electrolytic alkali cleaning water, method for generating electrolytic alkali cleaning water and device therefor
JP2005052787A (en) * 2003-08-07 2005-03-03 Amano Corp Electrolytic water for cleaning, and preparation method and preparation apparatus therefor
JP2007098351A (en) * 2005-10-07 2007-04-19 Hoshizaki Electric Co Ltd Electrolytic water making apparatus equipped with diaphragm electrolytic cell and method for applying polarity to diaphragm which constitutes diaphragm electrolytic cell
JP2008086885A (en) * 2006-09-29 2008-04-17 Matsushita Electric Works Ltd Electrolytic water generator
JP2015003313A (en) * 2013-06-24 2015-01-08 株式会社日本トリム Manufacturing apparatus of water for preparing dialysate
JP2015087221A (en) * 2013-10-30 2015-05-07 株式会社日本トリム Dissolved hydrogen concentration measuring method and electrolytic solution generation device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017138048A1 (en) * 2016-02-10 2018-12-06 パナソニックIpマネジメント株式会社 Electrolyzed water generator
WO2018070230A1 (en) * 2016-10-12 2018-04-19 株式会社日本トリム Electrolyzed water generating device
JP2018061929A (en) * 2016-10-12 2018-04-19 株式会社日本トリム Electrolytic water generator
KR20190058464A (en) * 2016-10-12 2019-05-29 가부시키가이샤니혼트림 Electrolytic water generating device
KR102475480B1 (en) 2016-10-12 2022-12-07 가부시키가이샤니혼트림 electrolyzed water generator
JP2018090506A (en) * 2016-11-30 2018-06-14 株式会社日本トリム Electrolytic hydrogen water
WO2018207452A1 (en) * 2017-05-09 2018-11-15 パナソニックIpマネジメント株式会社 Electrolyzed water generating apparatus
JP2018187576A (en) * 2017-05-09 2018-11-29 パナソニックIpマネジメント株式会社 Electrolyzed water generator
JP2019013873A (en) * 2017-07-05 2019-01-31 株式会社日本トリム Electrolytic water generator
WO2019198711A1 (en) 2018-04-11 2019-10-17 株式会社日本トリム Water prescribing system and water prescribing program
US11545244B2 (en) 2018-04-11 2023-01-03 Nihon Trim Co., Ltd. Water prescribing system and water prescribing program
JP7348988B1 (en) 2022-05-11 2023-09-21 株式会社日本トリム Electrolyzed water generation equipment and water treatment equipment

Also Published As

Publication number Publication date
CN105948176B (en) 2021-10-22
CN105948176A (en) 2016-09-21
KR20160110149A (en) 2016-09-21
JP6412447B2 (en) 2018-10-24

Similar Documents

Publication Publication Date Title
JP6412447B2 (en) Electrolyzed water generator
WO2020179340A1 (en) Hydrogen adding device and method for determining degree of wear in hydrogen-permeable membrane
WO2018135080A1 (en) Electrolyzed-water generation device, water treatment device, device for producing water for dialysate preparation, and hydrogen water server
JP6126635B2 (en) Electrolyzed water generator
JP2020142209A (en) Hydrogen addition method and hydrogen addition device
JP6577973B2 (en) Electrolyzed water generator
JP2018012077A (en) Electrolytic water generator
JP5236663B2 (en) Electrolyzed water generator
JP6484296B2 (en) Electrolyzed water generator
CN109071277B (en) Functional water generating device
US20200361795A1 (en) Electrolytic Water Production Device and a Method of Producing Electrolytic Water
WO2020179339A1 (en) Hydrogen addition device, and method for assessing degree consumption of hydrogen permeable film
JP6810112B2 (en) Electrolyzed water generator and electrolyzed water generation method
JP7348988B1 (en) Electrolyzed water generation equipment and water treatment equipment
WO2017135207A1 (en) Electrolyzed water generation device and production device for water for dialysate preparation and method for electrolyzed water generation that use same
JP6885776B2 (en) Electrolyzed water generator
JP2005169202A (en) Electrolytic water producing apparatus
KR20160056354A (en) A sterilized water creation device, bidet comprising the same and method for controlling the same
JP2012223686A (en) Electrolyzed water generation device
JP2018161633A (en) Electrolyzed water generator
JPH11244857A (en) Electrolyzed ionic water producing implement

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161021

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180928

R150 Certificate of patent or registration of utility model

Ref document number: 6412447

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250