JP2003340451A - Electrolytic alkali cleaning water, method for generating electrolytic alkali cleaning water and device therefor - Google Patents

Electrolytic alkali cleaning water, method for generating electrolytic alkali cleaning water and device therefor

Info

Publication number
JP2003340451A
JP2003340451A JP2002155006A JP2002155006A JP2003340451A JP 2003340451 A JP2003340451 A JP 2003340451A JP 2002155006 A JP2002155006 A JP 2002155006A JP 2002155006 A JP2002155006 A JP 2002155006A JP 2003340451 A JP2003340451 A JP 2003340451A
Authority
JP
Japan
Prior art keywords
water
cleaning
electrolytic
cleaning water
residence time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002155006A
Other languages
Japanese (ja)
Other versions
JP2003340451A5 (en
JP3816421B2 (en
Inventor
Rui Furuguchi
塁 古口
Ayako Morishita
あや子 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amano Corp
Original Assignee
Amano Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amano Corp filed Critical Amano Corp
Priority to JP2002155006A priority Critical patent/JP3816421B2/en
Publication of JP2003340451A publication Critical patent/JP2003340451A/en
Publication of JP2003340451A5 publication Critical patent/JP2003340451A5/ja
Application granted granted Critical
Publication of JP3816421B2 publication Critical patent/JP3816421B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an electrolytic alkali cleaning water which is safe and has high cleaning power by controlling the production conditions to be proper for cleaning water based on various kinds of production conditions and results of cleaning tests and by controlling the pH to a specified alkali value. <P>SOLUTION: The electrolytic alkali produced water to be used as cleaning water is produced so as to have 10 to 12.5 pH and 0.3 to 1.85 mg/l concentration of dissolved hydrogen. The product of the current density flowing between both electrodes of an electrolytic cell during electrolysis and the residential time of raw water in a tank is controlled to 1.3 to 40 secA/dm<SP>2</SP>. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、機械・金属・エレ
クトロニクスをはじめとする洗浄分野全般、特に工業部
品洗浄及び食品加工工業に用いて好適な電解アルカリ洗
浄水と、この電解アルカリ洗浄水を製造する方法と装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a general cleaning field including machines, metals and electronics, and in particular, electrolytic alkaline cleaning water suitable for industrial part cleaning and food processing industry, and the production of this electrolytic alkaline cleaning water. Method and apparatus.

【0002】[0002]

【従来の技術】機械・金属・エレクトロニクス分野で
は、それぞれの生産過程で様々な洗浄工程があるが、例
えば、フロンやエタンなどの有機塩素化合物(揮発性有
機化合物)は法規制により使用が禁止あるいは制限され
ており、短時間に高い清浄度が得られ、しかも生物や環
境に安全である代替洗浄剤の開発が求められてきた。
2. Description of the Related Art In the fields of machines, metals, and electronics, there are various cleaning processes in each production process. For example, the use of organic chlorine compounds (volatile organic compounds) such as CFCs and ethane is prohibited by law. There has been a demand for the development of an alternative cleaning agent that is limited and that can obtain high cleanliness in a short time and that is safe for living things and the environment.

【0003】上記の有機塩素化合物に代って登場した炭
化水素洗浄剤も代替洗浄剤のひとつだが、引火性や作業
環境の面で問題をかかえている。また、近年、界面活性
剤を用いた水系洗浄も注目を集め、用途に合せた工業用
洗剤が市販され実用化が進んでいる。しかし、水系洗浄
は洗浄効果を上げる為に界面活性剤等の薬品を使用する
ため、この界面活性剤を洗い流すリンス工程が必要とな
り、大量のリンス水が必要となる。又、界面活性剤は有
機物であるため排水基準であるBOD.CODに該当
し、排水基準を満たす為には大規模な排水処理設備を必
要とする問題がある。
Hydrocarbon detergents that have appeared in place of the above-mentioned organic chlorine compounds are one of the alternative detergents, but they have problems in terms of flammability and working environment. Further, in recent years, water-based cleaning using a surfactant has also attracted attention, and industrial detergents suitable for the intended use are commercially available and are being put into practical use. However, since water-based cleaning uses a chemical such as a surfactant in order to improve the cleaning effect, a rinse step of washing out the surfactant is required, and a large amount of rinse water is required. In addition, since the surfactant is an organic substance, BOD. There is a problem that it corresponds to COD and requires a large-scale wastewater treatment facility to meet the wastewater standards.

【0004】これに対し、水を電気分解することによっ
て生成したアルカリ生成水を洗浄水として用いることが
考えられ、既に、特開平7−73409号公報、特開平
7−166197号公報、特開平9−137287号、
及び、特開平10−192860号公報等に見られるよ
うに幾つかの出願も成されているが、しかし、これ等の
出願に記載の発明では、洗浄力の基準をpHやORP、
表面張力といった数値のみで洗浄力を判断しており、洗
浄力と電気分解における相関も曖昧であった。
On the other hand, it is conceivable to use alkali-generated water produced by electrolyzing water as washing water, and it has already been disclosed in JP-A-7-73409, JP-A-7-166197, and JP-A-9-166197. -137287,
Also, some applications have been filed as seen in Japanese Patent Application Laid-Open No. 10-192860, but in the inventions described in these applications, the criteria of the detergency are pH, ORP,
The detergency was judged only by the numerical value such as surface tension, and the correlation between the detergency and electrolysis was ambiguous.

【0005】そこで本出願人は、先に出願した特願20
01−168956に於いて、洗浄の主因子をアルカリ
濃度(水酸化ナトリウム濃度)であると想定し、その発
生原理から考えた場合の効率良い電解条件を規定した。
また、同時に行ったアルカリ比の測定により、対極にて
発生する酸性物質(酸性電解水)の混入による洗浄効果
の低下を防止するために、電解槽の構造や運用における
条件も合せて規定した。
Therefore, the applicant of the present invention has filed a patent application 20 previously filed.
In 01-168956, it was assumed that the main factor of cleaning was the alkali concentration (sodium hydroxide concentration), and the efficient electrolysis conditions were defined in consideration of the generation principle.
In addition, in order to prevent the deterioration of the cleaning effect due to the mixing of the acidic substance (acidic electrolyzed water) generated at the counter electrode by the simultaneous measurement of the alkali ratio, the conditions of the structure and operation of the electrolytic cell were also specified.

【0006】[0006]

【発明が解決しようとする課題】しかし、後に行った各
種の洗浄評価試験において、例えば図2に示す(データ
1)の洗浄率試験1に見られるように、アルカリ性の電
解水は同濃度の水酸化ナトリウムと比べ、明らかに優位
な洗浄結果を得られることが判明した。
However, in various cleaning evaluation tests carried out later, for example, as shown in the cleaning rate test 1 of (Data 1) shown in FIG. 2, alkaline electrolyzed water has the same concentration. It was found that, compared with sodium oxide, a clearly superior cleaning result was obtained.

【0007】工業電解における水酸化ナトリウムの製法
と、電解水の製法が酷似していることは明らかであり、
また、図7、図8、図9及び図10に示した保存性試験
の各データ(2−1,2−2,2−3,2−4)に見ら
れるように、アルカリ性電解水と水酸化ナトリウムとの
差異が見出せない現状等を考えた場合、アルカリ性電解
水中には水酸化ナトリウムが生成されていると考えるの
が自然である。
It is clear that the method for producing sodium hydroxide in industrial electrolysis and the method for producing electrolyzed water are very similar,
Further, as shown in each data (2-1, 2-2, 2-3, 2-4) of the storage stability test shown in FIGS. 7, 8, 9 and 10, the alkaline electrolyzed water and the water were used. Considering the present situation where the difference with sodium oxide cannot be found, it is natural to think that sodium hydroxide is generated in the alkaline electrolyzed water.

【0008】前述の洗浄試験からも、アルカリ性電解水
と水酸化ナトリウム溶液との洗浄効果差は明らかであ
り、アルカリ濃度(水酸化ナトリウム濃度)だけでは説
明のつかない、他の洗浄因子も同じに存在すると可能性
は極めて高い。このような状況を踏まえ、未見の洗浄因
子を効率良く発生させ、且つ、適正な値で制御すること
によって、洗浄効果の高いアルカリ性電解水を生成する
ことが望ましいと考えるに至った。
From the above-mentioned cleaning test, the difference in the cleaning effect between the alkaline electrolyzed water and the sodium hydroxide solution is clear, and other cleaning factors which cannot be explained only by the alkali concentration (sodium hydroxide concentration) are the same. If it exists, the possibility is extremely high. Under such circumstances, it has been considered desirable to generate alkaline electrolyzed water having a high cleaning effect by efficiently generating an unseen cleaning factor and controlling it at an appropriate value.

【0009】一方、水素と洗浄の関係については、一部
の学会等で発表がある通り関係が示唆され初めている。
例えば、特開平11−77023号公報には、超純水を
脱気することにより水素ガスを効率良く熔解させること
が可能と記載されており、0.7mg/l以上の溶存水
素量が洗浄には適当であるとされている。また、上記発
明では超純水に水素を溶存させた水溶液を、半導体用シ
リコン基板等の電子材料ウエット洗浄に用いるとされて
いる。
On the other hand, regarding the relationship between hydrogen and cleaning, the relationship is beginning to be suggested as announced by some academic societies.
For example, Japanese Patent Application Laid-Open No. 11-77023 describes that it is possible to efficiently dissolve hydrogen gas by degassing ultrapure water, and a dissolved hydrogen amount of 0.7 mg / l or more is used for cleaning. Is said to be appropriate. Further, in the above invention, it is said that an aqueous solution in which hydrogen is dissolved in ultrapure water is used for wet cleaning of electronic materials such as silicon substrates for semiconductors.

【0010】一般に電子材料のウエット洗浄では、被洗
浄物の清浄度を極めて厳密に管理する必要があるため、
超純水を使用する例が多い。しかし、純水は電気伝導度
が殆ど0に近い為、電気分解を行うことが困難である。
従って半導体関係の洗浄においては、前述の特許内容の
様に必要とするガスを予め用意した溶液に気体透過膜等
の装置によって溶解させる方法を採用している例が多
い。しかし、特開平11−77023号公報内の記述に
もある通り、別途水素ガスを発生させる装置、若しく
は、水素ガスのボンベ等を用意しなければならず、ま
た、溶解させるには脱気させる工程を必要とする。脱気
させないで溶解させた場合、0.6mg/lの水素溶存
が限界との記述もある。
Generally, in the wet cleaning of electronic materials, it is necessary to control the cleanliness of an object to be cleaned extremely strictly,
In many cases, ultrapure water is used. However, since the electric conductivity of pure water is almost 0, it is difficult to perform electrolysis.
Therefore, in semiconductor-related cleaning, there are many cases in which a method of dissolving a required gas into a solution prepared in advance by an apparatus such as a gas permeable membrane is adopted as in the above patent contents. However, as described in JP-A No. 11-77023, a device for generating hydrogen gas, a cylinder of hydrogen gas, or the like must be prepared separately, and a degassing step is required for melting. Need. There is also a description that when dissolved without being degassed, the hydrogen solubility of 0.6 mg / l is the limit.

【0011】電磁部品に限定しない工業洗浄における部
品洗浄は、広範囲なジャンルにわたっており、例えば、
金属加工部品の洗浄等では溶接・切削等の工程が洗浄工
程に隣接しており、容易に水素ボンベなどを併設するの
は大変危険である。また、各種洗浄試験の結果では汚染
物によっては水素のみを溶存させても期待通りの結果が
得られず、pHをアルカリにする必要があることが判っ
ている。これは、電子材料に比べ、一般の工業部品洗浄
においては汚染物質が多岐に渡っており、例えば油脂や
鉱物油等は、アルカリ性物質(水酸化ナトリウム等)に
よるアルカリ鹸化作用や分散能力を同時に必要とするこ
とが理由と考えられる。
Part cleaning in industrial cleaning not limited to electromagnetic parts covers a wide range of genres.
Welding and cutting processes are adjacent to the cleaning process when cleaning metalworked parts, and it is extremely dangerous to easily install a hydrogen cylinder. Further, the results of various cleaning tests have shown that even if only hydrogen is dissolved in some contaminants, the expected results cannot be obtained, and it is necessary to adjust the pH to alkali. This is because pollutants are more diverse in general industrial part cleaning than electronic materials. For example, fats and mineral oils require the alkali saponification action and dispersion ability of alkaline substances (sodium hydroxide, etc.) at the same time. It is thought that the reason is.

【0012】この様な一般工業洗浄分野においては、水
素をボンベ等で溶存させる方法では、別にpHをアルカ
リ性にする為に水酸化ナトリウム等の添加剤を必要と
し、結果として大変煩雑であると同時に、コスト増を招
く結果となる。更に、電解水関係においては、どの様な
電解条件によってどの位の水素を溶存させることが可能
かについて全く判らないのが実状であった。
In such a general industrial cleaning field, the method of dissolving hydrogen in a cylinder or the like requires an additive such as sodium hydroxide in order to make the pH alkaline, and as a result, it is very complicated. As a result, the cost is increased. Further, regarding electrolyzed water, it is the actual situation that it is completely unknown what kind of electrolysis conditions and how much hydrogen can be dissolved.

【0013】上記の各課題を解決すべく調査と研究をお
こなった結果、電気分解によって発生している水素が洗
浄効果に寄与しており、また、同時に水溶液はアルカリ
性であることが望ましいという結論に至った。そこで本
発明の技術目的は、各種の生成条件と洗浄試験結果に基
づいて、洗浄水として適正な生成条件を備えると共に、
pHを所定のアルカリ値にすることによって、安全で高
い洗浄力を備えた電解アルカリ洗浄水を提供することで
ある。
As a result of investigations and studies to solve each of the above problems, it was concluded that hydrogen generated by electrolysis contributes to the cleaning effect, and at the same time, it is desirable that the aqueous solution be alkaline. I arrived. Therefore, the technical object of the present invention is to provide appropriate generation conditions as cleaning water based on various generation conditions and cleaning test results,
An object of the present invention is to provide electrolytic alkaline cleaning water that is safe and has high cleaning power by adjusting the pH to a predetermined alkaline value.

【0014】[0014]

【課題を解決するための手段】上記の技術的課題を解決
するために、本発明において、原水は水道水又は純水を
使用し、ナトリウム化合物又はカリウム化合物を主成分
とする電解質を添加、又は、必要に応じて電解質の添加
を行わずに、陽陰両極間に隔膜が存在する電解槽(有隔
膜電解槽)に原水を流入させ、有隔膜電解槽にて電気分
解を行い陰極側より生成されたアルカリ性の生成水を洗
浄水とする。生成されたアルカリ水の溶存水素濃度が
0.3〜1.85mg/lであり、且つ、pHが10〜
12.5の範囲にあることを特徴とする。また、電気分
解に必要な滞留時間×電流密度の積値は、1.3〜40
secA/dm2とする。
In order to solve the above technical problems, in the present invention, tap water or pure water is used as raw water, and an electrolyte containing a sodium compound or a potassium compound as a main component is added, or , Without adding an electrolyte as necessary, the raw water is made to flow into the electrolytic cell with a diaphragm between the positive and negative electrodes (the diaphragm electrolytic cell) and electrolyzed in the diaphragm electrolytic cell to generate from the cathode side. The generated alkaline water is used as washing water. The dissolved hydrogen concentration of the generated alkaline water is 0.3 to 1.85 mg / l, and the pH is 10 to 10.
It is characterized by being in the range of 12.5. Further, the product value of residence time × current density required for electrolysis is 1.3 to 40
secA / dm2.

【0015】上述した手段によれば、水道水若しくは純
水に少量の電解質を添加することにより、脱気すること
無く飽和に近い溶存水素濃度達成することができ、且
つ、pHを所定のアルカリにすることにより、安全で洗
浄力の高い洗浄水を生成することが可能となる。
According to the above-mentioned means, by adding a small amount of electrolyte to tap water or pure water, it is possible to achieve a concentration of dissolved hydrogen close to saturation without degassing, and to adjust the pH to a predetermined alkali. By doing so, it becomes possible to generate safe and highly effective cleaning water.

【0016】[0016]

【発明の実施の形態】<溶存水素と洗浄力の関係につい
て>汚染物質は動物性油脂・粒子汚れ・鉱物油の3種と
し、図2の(データ1)に示すように、各汚染物質に適
正な洗浄方法を選択した。また、図11に示した(デー
タ3)では、水酸化ナトリウムに水素を溶解させた水溶
液と電解水の洗浄比較を行った。この結果から判る通
り、溶存する水素の有無により洗浄結果に違いがあり、
水素が洗浄に寄与していることが判断出来る。洗浄力の
試験方法については以下の通りである。 (1) 動物性油脂の洗浄試験方法 JISK3362(1998)に記載と同様の方法にて
モデル汚こうを作成し、洗浄前のモデル汚れ片に付着し
ている汚こうの量αと洗浄後のモデル汚れ片に付着して
いる汚こうの量βとの差から、各洗浄力判定用水溶液の
洗浄率Xを求めた。 (2) 粒子汚れの洗浄評価方法 披検汚れであるカオリンをスライドグラスに付着させ、
乾燥させたものをモデル汚れ片とし超音波洗浄装置にて
洗浄した後、独自の方法で製作した光学式センサーにて
測定した。 (3) 鉱物油の洗浄評価方法 金属部品に鉱物油を付着させ超音波洗浄を行った後、n
−ヘキサンにより超音波抽出しエバポレーターで減溶、
加熱乾固して重量を計った。また、溶存水素の測定に使
用した機器は、隔膜型ポーラログラフ式の溶存水素計を
用いた。
BEST MODE FOR CARRYING OUT THE INVENTION <Relationship between Dissolved Hydrogen and Detergency> Three kinds of pollutants are animal oil / fat, particle dirt, and mineral oil. As shown in (Data 1) of FIG. The proper cleaning method was selected. Further, in (Data 3) shown in FIG. 11, cleaning comparison of an aqueous solution in which hydrogen is dissolved in sodium hydroxide and electrolyzed water was performed. As you can see from this result, there is a difference in the cleaning result depending on the presence or absence of dissolved hydrogen,
It can be determined that hydrogen contributes to cleaning. The test method of detergency is as follows. (1) Cleaning test method for animal fats and oils A model soil was prepared by the same method as described in JIS K3362 (1998), and the amount α of soil adhered to the model soil pieces before washing and the model after washing. The cleaning rate X of each cleaning power determination aqueous solution was determined from the difference from the amount β of dirt attached to the dirt pieces. (2) Particle dirt cleaning evaluation method Kaolin, which is a dirt stain, was attached to a slide glass,
The dried product was used as a model stain piece, washed with an ultrasonic cleaning device, and then measured with an optical sensor manufactured by an original method. (3) Mineral oil cleaning evaluation method After applying mineral oil to the metal parts and performing ultrasonic cleaning, n
-Ultrasonic extraction with hexane and reduced solubility with an evaporator,
It was heated to dryness and weighed. As a device used for measuring dissolved hydrogen, a diaphragm-type polarographic dissolved hydrogen meter was used.

【0017】<水素量とpH・汚染物質との関係につい
て>動植物性油脂及び鉱物油を水系洗浄剤で洗浄するた
めには、油を水に可溶化させ被洗浄物から剥がす効果を
必要とする。一般には界面活性剤やアルカリビルダーが
用いられることが多く、アルカリ性水溶液は油に対し鹸
化・乳化・分散作用があり油脂の洗浄には効果的であ
る。また、多くの粒子汚れはアルカリ性の水溶液中でマ
イナスのゼータ電位を持ち、同じくマイナス電位を持つ
被洗浄物との反発作用によって洗浄効果を得るとされて
いる。従って水素が多く溶存している場合でもpHが中
性であれば洗浄効果は少く、アルカリになるにつれて洗
浄効果が高くなることが考えられる。そこで、図12に
示すように粒子汚れの代表的なゼータ電位(データ4)
を測定したところ、pHがアルカリになるにつれて粒子
のゼータ電位のマイナス数値が大きくなり、被洗浄物と
の反発作用により剥離し易くなることが判った。
<Relationship between the amount of hydrogen, pH and contaminants> In order to wash animal and vegetable oils and fats and mineral oils with an aqueous detergent, it is necessary to solubilize the oil in water and remove it from the article to be washed. . Generally, a surfactant and an alkali builder are often used, and an alkaline aqueous solution has an effect of saponifying, emulsifying and dispersing oil, and is effective for washing oils and fats. It is said that many particle stains have a negative zeta potential in an alkaline aqueous solution, and a cleaning effect is obtained by a repulsive action with an object to be cleaned which also has a negative potential. Therefore, even if a large amount of hydrogen is dissolved, it is considered that the cleaning effect is small if the pH is neutral, and the cleaning effect becomes higher as the alkali becomes. Therefore, as shown in FIG. 12, a typical zeta potential of particle contamination (data 4)
It was found that the negative value of the zeta potential of the particles increased as the pH became alkaline, and the particles easily peeled off due to the repulsive action with the object to be cleaned.

【0018】ゼータ電位の測定にはレーザー・回転プリ
ズム方式のゼータ電位測定器を用いた。このメカニズム
を洗浄に利用するためには、水溶液をアルカリにする必
要がある。図3に示した(データ1−1)はpHと洗浄
率の関係を示した表図、図4に示した(データ1−2)
はpHと洗浄率の関係を示したグラフ、図5に示した
(データ1−3)は[OH−]濃度と洗浄率の関係を示
したグラフ、図6に示した(データ1−4)はpHと
[OH−]濃度の関係を示したグラフである。pH10
未満では洗浄率が悪くなっている。この理由は上記(デ
ータ1−4)のpHと[OH−]濃度のグラフに示され
ているように、洗浄に寄与している[OH−]濃度がp
H10未満では極端に少いためであると考えられる。こ
れ等の結果から総合判断して、pH10以上が望ましい
という結果に至った。また、pHの上限値となるpH1
2.5は、図18に示した(データ8)の溶存水素とp
Hの関係を根拠として、飽和となる値を上限値とした。
A laser / rotary prism type zeta potential measuring instrument was used for measuring the zeta potential. In order to utilize this mechanism for cleaning, it is necessary to make the aqueous solution alkaline. The data (data 1-1) shown in FIG. 3 is a table showing the relationship between the pH and the cleaning rate, and the data (data 1-2) shown in FIG.
Is a graph showing the relationship between pH and cleaning rate, FIG. 5 (Data 1-3) is a graph showing the relationship between [OH-] concentration and cleaning rate, and FIG. 6 is shown (Data 1-4). Is a graph showing the relationship between pH and [OH-] concentration. pH 10
If less than, the cleaning rate is poor. The reason for this is that the [OH-] concentration contributing to cleaning is p as shown in the graph of pH and [OH-] concentration in (Data 1-4) above.
It is considered that when it is less than H10, it is extremely small. From these results, a comprehensive judgment was made that a pH of 10 or higher is desirable. In addition, pH1 which is the upper limit of pH
2.5 is the dissolved hydrogen and p of (data 8) shown in FIG.
On the basis of the relationship of H, the saturated value was set as the upper limit value.

【0019】<溶存水素量と電流密度・電解槽内の滞留
時間について>電気分解においては、電流密度によって
水の性状規定することが多く行われている。図13に示
した(データ5−1)からも判るとおり、電流密度の上
昇により溶存水素が増加することが判る。グラフ内の●
■▲◆はそれぞれ使用した電解槽内の滞留時間を変えた
ものである。この結果から、溶存水素量を多くするには
電流密度を上げることは重要であるが、それだけでは必
要とされる水素量を制御出来ないことが判った。
<Dissolved Hydrogen Amount, Current Density and Residence Time in Electrolyzer> In electrolysis, the property of water is often regulated by the current density. As can be seen from (Data 5-1) shown in FIG. 13, it can be seen that the dissolved hydrogen increases as the current density increases. ● in the graph
■ ▲ ◆ shows different residence times in the electrolyzer used. From this result, it was found that increasing the current density is important for increasing the amount of dissolved hydrogen, but the required amount of hydrogen cannot be controlled by itself.

【0020】そこで滞留時間×電流密度という考えかた
でグラフを作り直したのが図14に示した(データ5−
2)である。このグラフからも判る通り、各滞留時間別
のデータが収束することが判った。この結果から、溶存
水素量を適正に制御するためには電解槽内の滞留時間と
電流密度が大事であると言うことが出来る。尚、溶存水
素量の測定及びその他の測定誤差を考え、データを整理
したものが図15に示した(データ5−3)である。洗
浄力と溶存水素の関係は図16に示した(データ6)か
ら判るとおり、0.3mg/l付近にて洗浄率が急激に
変化することが判明し、その結果、溶存水素量の下限は
0.3mg/lとすることが望ましいことが判った。
0.3mg/lの溶存水素濃度を得るには図15に示し
た(データ5−3)によれば、滞留時間×電流密度を
1.3secA/dm2に設定する必要がある。
Therefore, the graph is recreated based on the concept of residence time × current density as shown in FIG. 14 (data 5-
2). As can be seen from this graph, it was found that the data for each residence time converged. From this result, it can be said that the residence time and the current density in the electrolytic cell are important for properly controlling the amount of dissolved hydrogen. The data is summarized in FIG. 15 (data 5-3) in consideration of the measurement of the amount of dissolved hydrogen and other measurement errors. The relationship between the detergency and the dissolved hydrogen was as shown in (Data 6) shown in FIG. 16, and it was found that the cleaning rate drastically changed around 0.3 mg / l. As a result, the lower limit of the dissolved hydrogen amount was It was found that 0.3 mg / l is desirable.
In order to obtain a dissolved hydrogen concentration of 0.3 mg / l, according to (Data 5-3) shown in FIG. 15, it is necessary to set the residence time × current density to 1.3 secA / dm 2.

【0021】また、溶存水素量は化学便覧等により飽和
点があることが、図17に示した(データ7)のグラフ
に示すように良く知られており、際限無く増加すること
は無い。従って飽和点に達した時点を滞留時間×電流密
度の上限値と設定する必要がある。同じく図15に示し
た(データ5−3)から水素量の飽和点を考えると、4
0secA/dm2付近であると考えることが出来る。
尚、測定時期が夏季であり、当時の水温から1.5mg
/l付近を飽和点と判断した。
Further, it is well known that the amount of dissolved hydrogen has a saturation point from a chemical manual or the like, as shown in the graph of (Data 7) shown in FIG. 17, and does not increase infinitely. Therefore, it is necessary to set the time point at which the saturation point is reached as (residence time) × (current density upper limit). Similarly, considering the saturation point of the hydrogen amount from (Data 5-3) shown in FIG.
It can be considered to be around 0 secA / dm2.
The measurement time is summer, and the water temperature at that time is 1.5 mg.
The saturation point was determined to be around / l.

【0022】<装置の構成について>次に、本発明に係
るアルカリ洗浄水の製造装置を図面と共に説明すると、
図1は本発明の装置の全体を説明した構成図であって、
図中、1は有隔膜電解槽(以下単に電解槽と言う)で、
1Tはその電解槽1の内部を陽極室1Aと陰極室1Bの
2室に仕切る隔膜で、この隔膜1Tは電気抵抗が例えば
0.01〜0.0001Ωcm2、平均孔径が0.2〜
3.5μmに構成されている。
<Regarding the Configuration of the Apparatus> Next, the alkaline cleaning water producing apparatus according to the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram illustrating the entire apparatus of the present invention,
In the figure, 1 is a diaphragm electrolyzer (hereinafter simply referred to as electrolyzer),
1T is a diaphragm that partitions the interior of the electrolytic cell 1 into two chambers, an anode chamber 1A and a cathode chamber 1B. The diaphragm 1T has an electrical resistance of, for example, 0.01 to 0.0001 Ωcm 2, and an average pore diameter of 0.2 to
It is configured to be 3.5 μm.

【0023】3は水道水又は純水に対して、ナトリウム
化合物やカリウム化合物等から成る段階質を添加した原
水を、上記の電解槽1に供給する給水パイプで、3Aと
3Bはこの給水パイプ3に通じる各陽極室1Aと陰極室
1Bの入水口(入水パイプ)を示す。
Reference numeral 3 is a water supply pipe for supplying raw water obtained by adding a graded material such as a sodium compound or a potassium compound to tap water or pure water to the above-mentioned electrolytic cell 1 and 3A and 3B are the water supply pipes 3 The water inlets (water inlet pipes) of the anode chamber 1A and the cathode chamber 1B that communicate with each other are shown.

【0024】5は上記の電解質を収容した電解質タン
ク、6は電解質供給用のポンプで、このポンプ6は制御
プログラムを格納した制御基板10からの指令に従っ
て、必要量の電解質を逆止弁(図示省略)を備えた添加
パイプ6Pを通して上記の水道水、又は、純水に添加す
ることにより、電気伝導度が例えば20〜500mS/
mになるように調整した原水を作って、上記電解槽1に
給水する仕組に成っている。
5 is an electrolyte tank containing the above-mentioned electrolyte, 6 is a pump for supplying the electrolyte, and this pump 6 is operated by a check valve (shown in the figure) for a necessary amount of electrolyte according to a command from a control board 10 storing a control program. By adding to the tap water or pure water through an addition pipe 6P provided with (omitted), the electric conductivity is, for example, 20 to 500 mS /
The raw water is adjusted to have a volume of m and is supplied to the electrolytic cell 1.

【0025】また、4Aと4Bは上述した各陽極室1A
と陰極室1Bの取出し側に接続した出水口(出水パイ
プ)で、これ等各出水口4A,4Bの経路途中には、前
記の制御基板10によって制御可能に構成した流量セン
サと水量調節バルブ(いずれも図示省略)が夫々設けら
れている。12と13は上記給水パイプ3に設けた流量
検知センサと水量調節弁で、これ等のセンサ12と調節
弁13も上記の制御基板10に接続されていて、水道水
又は純水の給水量を調節可能に構成している。
Further, 4A and 4B are the above-mentioned respective anode chambers 1A.
And a water outlet (water outlet pipe) connected to the extraction side of the cathode chamber 1B, and in the middle of the path of each of these water outlets 4A and 4B, a flow rate sensor and a water amount adjusting valve (controllable by the control board 10). Both are not shown). Reference numerals 12 and 13 denote a flow rate detecting sensor and a water amount adjusting valve provided in the water supply pipe 3, and these sensors 12 and the adjusting valve 13 are also connected to the control board 10 to control the supply amount of tap water or pure water. It is configured to be adjustable.

【0026】9は上記陽極室1Aと陰極室1Bの内部に
設けた各電極2A,2B用の電源基板、7と8は各電極
2A,2Bと電源基板9の間に接続した電流センサと電
流可変回路であって、この電源基板9は上述した制御基
板10に接続されて、各電極2A,2Bに供給する電流
を調節可能に構成している。
Reference numeral 9 is a power supply substrate for the electrodes 2A and 2B provided inside the anode chamber 1A and the cathode chamber 1B, and 7 and 8 are current sensors and currents connected between the electrodes 2A and 2B and the power supply substrate 9. The power supply board 9 is a variable circuit and is connected to the control board 10 described above so that the current supplied to the electrodes 2A and 2B can be adjusted.

【0027】11は水素濃度調整スイッチを備えた上記
制御基板10の操作基板であって、制御基板10には前
記請求項6で述べた各手段を実行するためのプログラム
が格納されている。
Reference numeral 11 denotes an operation board of the control board 10 having a hydrogen concentration adjusting switch, and the control board 10 stores programs for executing the respective means described in claim 6.

【0028】即ち、制御基板10には、上記流量検知セ
ンサ12が検出した単位時間当りの原水の流量、及び、
電解槽1の体積とから算出された電解槽内滞留時間と、
上記電流センサ7の検出による両電極2A,2Bの間を
流れる電流値及び電極面積とから算出された電流密度と
の積値を演算する積値算出手段と、これ等滞留時間と電
流密度の積値が1.3〜40secA/dm2となると
共に、陰極室1B内で生成される電解アルカリ水のpH
が10〜12.5の範囲内となるように、上記電流可変
回路8及び水量調節弁13を制御して、両電極2A,2
Bの間の電流値、又は、原水流量のいずれか一方、又
は、両方を制御する制御手段を実行するためのプログラ
ムが格納されている。
That is, on the control board 10, the flow rate of raw water detected by the flow rate detection sensor 12 per unit time, and
Residence time in the electrolytic cell calculated from the volume of the electrolytic cell 1,
A product value calculating means for calculating a product value of the current value flowing between the electrodes 2A and 2B detected by the current sensor 7 and the current density calculated from the electrode area, and a product of the residence time and the current density. The value is 1.3 to 40 secA / dm2 and the pH of the electrolyzed alkaline water generated in the cathode chamber 1B is
So as to fall within the range of 10 to 12.5 by controlling the current variable circuit 8 and the water amount control valve 13 so that both electrodes 2A, 2
A program for executing a control means for controlling either or both of the current value between B and the raw water flow rate is stored.

【0029】また、上記滞留時間と電流密度の積値は、
上述した1.3〜40secA/dm2の範囲内に於い
て、上記操作基板11によって任意に調節可能に構成さ
れている。
The product value of the residence time and the current density is
Within the range of 1.3 to 40 secA / dm @ 2 described above, the operation board 11 can be arbitrarily adjusted.

【0030】<装置への運用に関して>通常、電解槽1
の体積と電極2A,2Bの面積は実運用装置においては
普遍である場合が多いので、実際は電解電流と生成水量
をコントトロールし、電解槽1の体積と電極2A,2B
の面積は計算式に予め入力しておく。また、装置の運用
によっては電解槽1の仕様を変更する場合もあり、その
際は計算式を自動若しくは手動で変更する事も必要であ
る。
<Regarding operation of the apparatus> Normally, the electrolytic cell 1
In many cases, the volume of the electrolysis tank and the area of the electrodes 2A and 2B are universal in the actual operation device.
The area of is input in the calculation formula in advance. In addition, the specifications of the electrolytic cell 1 may be changed depending on the operation of the apparatus, and in that case, it is necessary to change the calculation formula automatically or manually.

【0031】最初に電流を固定した状態での制御方法に
ついて記述する。電流値を固定した状態(定電流電源
等)で溶存水素濃度をコントロールするためには、電流
センサ7から得られた電流値と、予め入力されている電
極板2A,2Bの面積から電流密度を計算し、流量検知
センサ12によって得られた単位時間当りの水量と、同
じく予め入力されている電解槽1の体積から電解槽内滞
留時間を計算した上で、必要となる溶存水素濃度と計算
により得られた電流密度から適正な滞留時間を割り出
し、水量調節弁13を開閉させて電解槽1の滞留時間の
コントロールを行う。水量調節弁13によるコントロー
ルは、コスト等により限られた電源容量の中で、幅広い
溶存水素濃度を得るのに有効である。
First, the control method with the current fixed will be described. In order to control the dissolved hydrogen concentration in a state where the current value is fixed (constant current power source, etc.), the current density obtained from the current value obtained from the current sensor 7 and the areas of the electrode plates 2A and 2B that are input in advance are calculated. After calculating the amount of water per unit time obtained by the flow rate detection sensor 12 and the residence time in the electrolytic cell from the volume of the electrolytic cell 1 which is also input in advance, the calculated dissolved hydrogen concentration and the required dissolved hydrogen concentration are calculated. An appropriate residence time is determined from the obtained current density, and the water amount control valve 13 is opened / closed to control the residence time in the electrolytic cell 1. The control by the water amount control valve 13 is effective in obtaining a wide range of dissolved hydrogen concentration within a power source capacity limited due to cost and the like.

【0032】次に生成水量を固定した状態での制御方法
について記述する。水量を固定した状態で溶存水素濃度
をコントロールするためには、流量検知センサ12から
得られた水量と、予め入力されている電解槽1の体積か
ら電解槽滞留時間を計算し、同じく予め入力されている
電極2A,2Bの面積から電流密度を計算した上で、必
要となる溶存水素濃度と計算により得られた電解槽滞留
時間から適正な電流密度を割り出し、電流可変回路8に
より電解電流のコントロールを行う。電流可変回路8に
よるコントロールは、電流容量に余裕がある場合に行う
のが望ましい。また、上記水量調節弁13によるコント
ロールでは、低い溶存水素濃度時と高い溶存水素濃度時
において生成水量に差が発生するが、電流可変式におい
てはこの現象が無いため、生成水量を一定にする方法と
しては有効である。
Next, a control method when the amount of water produced is fixed will be described. In order to control the dissolved hydrogen concentration in a state where the amount of water is fixed, the electrolytic cell residence time is calculated from the amount of water obtained from the flow rate detection sensor 12 and the volume of the electrolytic cell 1 that has been input in advance, and is also input in advance. After calculating the current density from the area of the electrodes 2A and 2B, the appropriate current density is determined from the required dissolved hydrogen concentration and the electrolytic cell residence time obtained by the calculation, and the current variable circuit 8 controls the electrolytic current. I do. The control by the current variable circuit 8 is preferably performed when the current capacity has a margin. Further, in the control by the water amount control valve 13, there is a difference in the amount of produced water between a low dissolved hydrogen concentration and a high dissolved hydrogen concentration, but since this phenomenon does not exist in the variable current formula, a method for making the produced water amount constant Is effective as

【0033】尚、上記2点の方法を組み合わせ、電流と
水量双方をコントロールして制御を行う方式も可能であ
る。この場合2方法の中間の特性を示す。
It is also possible to combine the above two methods to control both the current and the water amount. In this case, an intermediate property between the two methods is exhibited.

【0034】また、上記電解質添加に使用するポンプ6
の吐出量は、それぞれの条件において必要とされる電流
値を得るために適量添加する必要がある。添加量は電流
センサ7から得られた電解電流値を元に、規定の電流に
達していなければ増加させる制御を行うことが望まし
い。従って原水の電気伝導に度により電解質を添加しな
くても規定電流値に達している場合等は、特に添加の必
要は無い。
Further, the pump 6 used for adding the above electrolyte
It is necessary to add an appropriate amount of the discharge amount in order to obtain the current value required under each condition. It is desirable to control the amount of addition to be increased based on the electrolytic current value obtained from the current sensor 7 if it does not reach the specified current. Therefore, if the specified current value is reached without adding an electrolyte depending on the electric conductivity of the raw water, it is not necessary to add it.

【0035】[0035]

【発明の効果】以上述べた次第で、本発明に係る電解ア
ルカリ洗浄水と電解アルカリ洗浄水の生成方法及びその
装置によれば、洗浄水として用いる電解アルカリ生成水
のpHを10〜12.5とし、且つ、溶存水素濃度が
0.3〜1.85mg/lとなるように生成すると共
に、電気分解に必要な両電極間の電流密度と電気分解に
要する原水の槽内滞留時間との積値が1.3〜40se
cA/dm2となるように設定して電解水の生成を行う
ため、pH値の高い電解アルカリ生成水を生成でき、こ
れと同時に陰極側には溶存水素が生成されて、アルカリ
水(OH−が洗浄に寄与する)と溶存水素との作成によ
り、優れた洗浄効果を発揮できる洗浄水を提供すること
ができる。
As described above, according to the electrolytic alkaline cleaning water, the method for producing electrolytic alkaline cleaning water, and the apparatus therefor according to the present invention, the pH of electrolytic alkaline generating water used as cleaning water is 10 to 12.5. And the generated hydrogen concentration is 0.3 to 1.85 mg / l, and the product of the current density between both electrodes required for electrolysis and the residence time of raw water in the tank required for electrolysis. Value is 1.3-40se
Since it is set to be cA / dm2 to generate electrolyzed water, it is possible to generate electrolyzed alkali-generated water having a high pH value, and at the same time, dissolved hydrogen is generated on the cathode side, and alkali water (OH- It contributes to cleaning) and dissolved hydrogen to provide cleaning water that can exhibit an excellent cleaning effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る電解アルカリ洗浄水の生成装置の
構成を説明した全体構成図である。
FIG. 1 is an overall configuration diagram illustrating a configuration of a device for generating electrolytic alkaline cleaning water according to the present invention.

【図2】各汚染物質に対して適正な洗浄方法を選択した
場合に於ける洗浄率を表にした(データ1)の表図であ
る。
FIG. 2 is a table of data (data 1) showing a cleaning rate when a proper cleaning method is selected for each contaminant.

【図3】pHの違いによる洗浄率を表にした(データ1
−1)の表図である。
FIG. 3 is a table showing the cleaning rate according to the difference in pH (Data 1
It is a table figure of -1).

【図4】図3に示めされている表図を線で表わした(デ
ータ1−2)のグラフである。
FIG. 4 is a graph of (data 1-2) in which the table shown in FIG. 3 is represented by a line.

【図5】各汚染物質に対する〔OH−〕濃度と洗浄率の
関係を示した(データ1−3)のグラフである。
FIG. 5 is a graph of (Data 1-3) showing the relationship between the [OH −] concentration and the cleaning rate for each contaminant.

【図6】pHと〔OH−〕濃度の関係を表にした(デー
タ1−4)のグラフである。
FIG. 6 is a graph showing the relationship between pH and [OH-] concentration (Data 1-4).

【図7】保存性試験の結果を示した(データ2−1)の
グラフである。
FIG. 7 is a graph of (Data 2-1) showing the results of the storage stability test.

【図8】他の保存性試験の結果を示した(データ2−
2)のグラフである。
FIG. 8 shows the results of another storage stability test (Data 2-
It is a graph of 2).

【図9】他の保存性試験の結果を示した(データ2−
3)のグラフである。
FIG. 9 shows the results of another storage stability test (Data 2-
It is a graph of 3).

【図10】他の保存性試験の結果を示した(データ2−
4)のグラフである。
FIG. 10 shows the results of another storage stability test (Data 2-
It is a graph of 4).

【図11】溶存水素と洗浄率の関係を示した(データ
3)の表図である。
FIG. 11 is a table of (Data 3) showing the relationship between dissolved hydrogen and the cleaning rate.

【図12】ゼータ電位の測定値を示した(データ4)の
グラフである。
FIG. 12 is a graph of (Data 4) showing measured values of zeta potential.

【図13】電流密度と溶存水素の関係を示した(データ
5−1)のグラフである。
FIG. 13 is a graph of (Data 5-1) showing the relationship between current density and dissolved hydrogen.

【図14】データ処理前の滞留時間×電流密度と溶存水
素の関係を説明した(データ5−2)のグラフである。
FIG. 14 is a graph (Data 5-2) illustrating the relationship between residence time before data processing × current density and dissolved hydrogen.

【図15】データ処理後の滞留時間×電流密度と溶存水
素の関係を説明した(データ5−3)のグラフである。
FIG. 15 is a graph (Data 5-3) illustrating the relationship between residence time after data processing × current density and dissolved hydrogen.

【図16】溶存水素量と洗浄率の関係を示した(データ
6)のグラフである。
FIG. 16 is a graph of (Data 6) showing the relationship between the amount of dissolved hydrogen and the cleaning rate.

【図17】水素の水に対する飽和溶解度の関係を示した
(データ7)のグラフである。
FIG. 17 is a graph of (Data 7) showing the relationship between the saturated solubility of hydrogen in water.

【図18】溶存水素とpHの関係を示した(データ8)
のグラフである。
FIG. 18 shows the relationship between dissolved hydrogen and pH (Data 8).
Is a graph of.

【符号の説明】[Explanation of symbols]

1 有隔膜電解槽 1T 隔膜 1A 陽極室 1B 陰極室 2A,2B 電極 3 給水パイプ 5 電解質タンク 6 電解質供給用ポンプ 7 電流センサ 8 電流可変回路 9 電源基板 10 制御基板 11 操作基板 12 流量検知センサ 13 水量調節弁 1 diaphragm electrolyzer 1T diaphragm 1A Anode chamber 1B cathode chamber 2A, 2B electrodes 3 water supply pipe 5 Electrolyte tank 6 Electrolyte supply pump 7 Current sensor 8 current variable circuit 9 Power board 10 Control board 11 Operation board 12 Flow rate sensor 13 Water flow control valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森下 あや子 静岡県浜松市新都田1−6−2 アマノ・ エコ・テクノロジー株式会社都田エンジニ アリング部内 Fターム(参考) 4D061 DA03 DB08 EA02 EB01 EB04 EB12 EB37 EB39 ED12 GA02 GA12 GA20 GC02 GC12 GC18   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Ayako Morishita             1-6-2 Shintoda, Hamamatsu City, Shizuoka Prefecture Amano             Eco Technology Co., Ltd. Miyakoda Engineering             Inside the ring F-term (reference) 4D061 DA03 DB08 EA02 EB01 EB04                       EB12 EB37 EB39 ED12 GA02                       GA12 GA20 GC02 GC12 GC18

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 陽陰両極間に隔壁が存在する電解槽に原
水を流入させて電気分解を行うことにより、陰極側で生
成されるアルカリ生成水を洗浄水とする電解アルカリ洗
浄水であって、 上記アルカリ生成水のpHが10〜12.5であり、且
つ、溶存水素濃度が0.3〜1.85mg/lであるこ
とを特徴とする電解アルカリ洗浄水。
1. An electrolytic alkaline cleaning water in which raw water is introduced into an electrolytic cell having a partition wall between positive and negative electrodes and electrolyzed so that alkaline generated water generated on the cathode side is used as cleaning water. The electrolyzed alkaline cleaning water having a pH of 10 to 12.5 and a dissolved hydrogen concentration of 0.3 to 1.85 mg / l.
【請求項2】 水道水又は純水を原水とし、この原水を
陽陰両極間に隔壁が存在する有隔膜電解槽に流入させて
電気分解を行い、陰極側で生成されたアルカリ生成水を
洗浄水として用いる電解アルカリ洗浄水の生成方法であ
って、 上記有隔膜電解槽による生成の条件を、アルカリ生成水
のpHが10〜12.5であり、且つ、溶存水素濃度が
0.3〜1.85mg/lとなるように設定することを
特徴とする電解アルカリ洗浄水の生成方法。
2. Tap water or pure water is used as raw water, and this raw water is caused to flow into a diaphragm electrolytic cell having a partition between positive and negative electrodes for electrolysis to wash alkali-generated water produced on the cathode side. A method for producing electrolyzed alkaline washing water used as water, wherein the conditions for production by the diaphragm electrolyzer are as follows: pH of alkali produced water is 10 to 12.5, and dissolved hydrogen concentration is 0.3 to 1 A method for producing electrolytic alkaline cleaning water, wherein the method is set to 0.85 mg / l.
【請求項3】 上記有隔膜電解槽の両極間に流れる電流
の電流密度と、上記原水の電気分解時における槽内滞留
時間とを乗じた積が、1.3〜40secA/dm2と
なるように設定することを特徴とする請求項2に記載の
電解アルカリ洗浄水の生成方法。
3. The product obtained by multiplying the current density of the current flowing between both electrodes of the diaphragm electrolysis cell by the residence time in the cell during electrolysis of the raw water is 1.3 to 40 secA / dm2. The method for producing electrolytic alkaline cleaning water according to claim 2, wherein the method is set.
【請求項4】 有隔膜電解槽に流入させる原水に対し
て、ナトリウム化合物又はカリウム化合物を主成分とす
る電解質を必要に応じて添加することを特徴とする請求
項2又は3に記載の電解アルカリ洗浄水の生成方法。
4. The electrolytic alkali according to claim 2 or 3, wherein an electrolyte containing a sodium compound or a potassium compound as a main component is added to the raw water that flows into the diaphragm electrolyzer as necessary. How to generate wash water.
【請求項5】 陽陰両極間に隔壁が存在する有隔膜電解
槽に原水を流入させて電気分解を行い、陰極間で生成さ
れたアルカリ生成水を洗浄水として利用するようにした
電解アルカリ洗浄水の生成装置であって、 両極間を流れる電流を検知する電流検知手段と、 原水の単位時間当り流量を検知する流量検知手段と、 原水の水量を調節する自動水量調節弁と、 上記単位時間当り流量と電解槽体積とから算出された電
解槽内滞留時間と、両極間を流れる電流値と電極面積と
から算出された電流密度とを乗じた積を演算する滞留時
間と電流値の積値算出手段とを備え、 上記滞留時間と電流密度の積値が所定の値となるよう
に、上記両電極間の電流値、又は、上記原水流量のいず
れか一方又は両方を制御するように構成したことを特徴
とする電解アルカリ洗浄水の生成装置。
5. Electrolytic alkali cleaning in which raw water is introduced into a membrane electrolyzer having a partition wall between positive and negative electrodes for electrolysis, and the alkali-generated water generated between the cathodes is used as cleaning water. A device for producing water, which is a current detection unit that detects a current flowing between both electrodes, a flow rate detection unit that detects a flow rate of raw water per unit time, an automatic water amount control valve that adjusts the amount of raw water, and the unit time described above. The product value of the residence time and the current value, which is calculated by multiplying the residence time in the electrolytic cell calculated from the contact flow rate and the electrolytic cell volume, and the product of the current value flowing between both electrodes and the current density calculated from the electrode area. A calculating means is provided, and the current value between the electrodes or one or both of the raw water flow rate is controlled so that the product value of the residence time and the current density becomes a predetermined value. Electrolytic Al characterized by Generating device of re-washing water.
【請求項6】 上記滞留時間と電流値を乗じた積が1.
3〜40secA/dm2となり、生成されたアルカリ
生成水のpHが10〜12.5で、且つ、溶存水素濃度
が0.3〜1.85mg/lとなるように、上記両電極
間の電流値、又は、上記原水流量のいずれか一方又は両
方を制御するように構成したことを特徴とする請求項5
に記載の電解アルカリ洗浄水の生成装置。
6. The product obtained by multiplying the residence time by the current value is 1.
3 to 40 secA / dm2, the pH value of the generated alkaline water is 10 to 12.5, and the dissolved hydrogen concentration is 0.3 to 1.85 mg / l. Or, it is configured to control either or both of the raw water flow rates.
The apparatus for producing electrolytic alkaline cleaning water according to 1.
【請求項7】 上記滞留時間と電流値を乗じた積を、任
意の積値に選択可能にする選択手段を備えて成ることを
特徴とする請求項5又は6に記載の電解アルカリ洗浄水
の生成装置。
7. The electrolytic alkaline cleaning water according to claim 5 or 6, further comprising selection means for selecting an arbitrary product value obtained by multiplying the residence time by the current value. Generator.
JP2002155006A 2002-05-29 2002-05-29 Electrolytic alkaline cleaning water generator Expired - Fee Related JP3816421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002155006A JP3816421B2 (en) 2002-05-29 2002-05-29 Electrolytic alkaline cleaning water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002155006A JP3816421B2 (en) 2002-05-29 2002-05-29 Electrolytic alkaline cleaning water generator

Publications (3)

Publication Number Publication Date
JP2003340451A true JP2003340451A (en) 2003-12-02
JP2003340451A5 JP2003340451A5 (en) 2005-06-09
JP3816421B2 JP3816421B2 (en) 2006-08-30

Family

ID=29771626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002155006A Expired - Fee Related JP3816421B2 (en) 2002-05-29 2002-05-29 Electrolytic alkaline cleaning water generator

Country Status (1)

Country Link
JP (1) JP3816421B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005040781A (en) * 2003-07-08 2005-02-17 Kyushu Hitachi Maxell Ltd Water conditioner
WO2006008877A1 (en) * 2004-07-15 2006-01-26 Miura-Denshi Kabushiki-Kaisha Electrolytic water generating, diluting, and supplying apparatus and electrolytic water generating, diluting, and supplying method
JP2007063998A (en) * 2005-08-29 2007-03-15 Mt System Kiki Kk Cleaning method and cleaning device for engine
JP2009079279A (en) * 2007-09-27 2009-04-16 Jfe Pipe Fitting Mfg Co Ltd Method and apparatus for washing anticorrosive fittings
JP2009160503A (en) * 2007-12-28 2009-07-23 Kyushu Hitachi Maxell Ltd Alkali ion water conditioner and method for producing alkaline water
JP2010082493A (en) * 2008-09-29 2010-04-15 Amano Corp Method and apparatus for producing alkaline washing water for aluminum and aluminum alloy
WO2016136161A1 (en) * 2015-02-24 2016-09-01 株式会社日本トリム Electrolyzed water-generating apparatus and electrolyzed water
JP2016165667A (en) * 2015-03-09 2016-09-15 株式会社日本トリム Electrolytic water generator
JP2020131089A (en) * 2019-02-15 2020-08-31 株式会社日本キャンパック CIP cleaning method
CN112218706A (en) * 2018-07-25 2021-01-12 日本多宁股份有限公司 Hydrogen dissolving device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005040781A (en) * 2003-07-08 2005-02-17 Kyushu Hitachi Maxell Ltd Water conditioner
WO2006008877A1 (en) * 2004-07-15 2006-01-26 Miura-Denshi Kabushiki-Kaisha Electrolytic water generating, diluting, and supplying apparatus and electrolytic water generating, diluting, and supplying method
JP4874104B2 (en) * 2004-07-15 2012-02-15 三浦電子株式会社 Electrolyzed water generation / dilution supply equipment
JP2007063998A (en) * 2005-08-29 2007-03-15 Mt System Kiki Kk Cleaning method and cleaning device for engine
JP2009079279A (en) * 2007-09-27 2009-04-16 Jfe Pipe Fitting Mfg Co Ltd Method and apparatus for washing anticorrosive fittings
JP2009160503A (en) * 2007-12-28 2009-07-23 Kyushu Hitachi Maxell Ltd Alkali ion water conditioner and method for producing alkaline water
JP2010082493A (en) * 2008-09-29 2010-04-15 Amano Corp Method and apparatus for producing alkaline washing water for aluminum and aluminum alloy
EP3243800A4 (en) * 2015-02-24 2017-12-27 Nihon Trim Co., Ltd. Electrolyzed water-generating apparatus and electrolyzed water
CN107250053A (en) * 2015-02-24 2017-10-13 日本多宁股份有限公司 Electrolytic water generating device and electrolysis water
KR20170120620A (en) * 2015-02-24 2017-10-31 가부시키가이샤니혼트림 Electrolytic water generating device and electrolytic water
JPWO2016136161A1 (en) * 2015-02-24 2017-11-02 株式会社日本トリム Electrolyzed water generator and electrolyzed water
WO2016136161A1 (en) * 2015-02-24 2016-09-01 株式会社日本トリム Electrolyzed water-generating apparatus and electrolyzed water
US10486986B2 (en) 2015-02-24 2019-11-26 Nihon Trim Co., Ltd. Electrolyzed water-generating apparatus and electrolyzed water
KR102430310B1 (en) * 2015-02-24 2022-08-05 가부시키가이샤니혼트림 Electrolyzed water generator and electrolyzed water
JP2016165667A (en) * 2015-03-09 2016-09-15 株式会社日本トリム Electrolytic water generator
CN112218706A (en) * 2018-07-25 2021-01-12 日本多宁股份有限公司 Hydrogen dissolving device
US11746028B2 (en) 2018-07-25 2023-09-05 Nihon Trim Co., Ltd. Hydrogen gas dissolving apparatus
CN112218706B (en) * 2018-07-25 2023-12-26 日本多宁股份有限公司 Hydrogen dissolving device
JP2020131089A (en) * 2019-02-15 2020-08-31 株式会社日本キャンパック CIP cleaning method

Also Published As

Publication number Publication date
JP3816421B2 (en) 2006-08-30

Similar Documents

Publication Publication Date Title
CN103938414B (en) Wash power assisting device
JP3816421B2 (en) Electrolytic alkaline cleaning water generator
JP6291627B2 (en) Cleaning water production equipment
CN111286921A (en) Cleaning device applying electrolyzed water, use method and application thereof
CN110983722A (en) Novel environment-friendly washing device without detergent and using method thereof
EP2857572A1 (en) Softening apparatus and washing machine including the same
JP4194903B2 (en) ELECTROLYTIC WATER FOR CLEANING, METHOD FOR GENERATING THE SAME, AND GENERATING DEVICE
JPWO2016016954A1 (en) Electrolytic ionic water generation method and electrolytic ionic water generation device
AlJaberi Investigation of electrocoagulation reactor design effect on the value of total dissolved solids via the treatment of simulated wastewater
KR101466883B1 (en) A system for generating and processing alkaline water used in car washing center
US20100000021A1 (en) Apparatus and Method for Laundering
WO2008032947A1 (en) Apparatus for replenishing water in salt water tank included in apparatus for producing sodium hypochlorite
JP4533731B2 (en) Electrolyzed water for alkaline cleaning, its production method and production device
JP4115886B2 (en) Electrolyzed water for cleaning, method for generating electrolyzed water for cleaning, and apparatus therefor
JP4339095B2 (en) Cleaning method and apparatus for glass, rubber, resin, etc.
JP3984436B2 (en) Method and apparatus for producing alkaline cleaning water
Song et al. Statistical optimization of Rhodamine B removal by factorial design using reaction rate constant in electrochemical reaction
JP3786863B2 (en) Washing water production equipment
KR101120214B1 (en) A washing method which has no need of adding detergent by the user and the washing machine thereof
JP2005319427A (en) Alkaline water generator
US20240133104A1 (en) System for washing laundry
US20240229323A9 (en) System for washing laundry
KR20020023633A (en) A method and a contrivance of producing a wash, and a wash itself
JP2001219169A (en) Electrolytic apparatus
JP2010156034A (en) Apparatus and method for producing persulfuric acid

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040830

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3816421

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees