WO2018070230A1 - Electrolyzed water generating device - Google Patents

Electrolyzed water generating device Download PDF

Info

Publication number
WO2018070230A1
WO2018070230A1 PCT/JP2017/034541 JP2017034541W WO2018070230A1 WO 2018070230 A1 WO2018070230 A1 WO 2018070230A1 JP 2017034541 W JP2017034541 W JP 2017034541W WO 2018070230 A1 WO2018070230 A1 WO 2018070230A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
chamber
electrolysis
water channel
electrolyzed water
Prior art date
Application number
PCT/JP2017/034541
Other languages
French (fr)
Japanese (ja)
Inventor
孝士 橘
Original Assignee
株式会社日本トリム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本トリム filed Critical 株式会社日本トリム
Priority to KR1020197006090A priority Critical patent/KR102475480B1/en
Priority to CN201780054015.8A priority patent/CN109661375A/en
Publication of WO2018070230A1 publication Critical patent/WO2018070230A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to an electrolyzed water generating apparatus that electrolyzes water to generate electrolyzed water.
  • Patent Document 1 discloses an electrolyzed water generating device including two electrolyzers connected in series in order to increase the dissolved hydrogen concentration.
  • the electrolyzed water generating apparatus includes a first electrolyzing unit in which a cathode and an anode are arranged to face each other, and a second electrolyzing unit that increases the concentration of dissolved hydrogen in alkaline water generated on the cathode side of the first electrolyzing unit. For this reason, electrolyzed water with a high dissolved hydrogen concentration at a pH value suitable for drinking is easily generated.
  • the present invention has been devised in view of the actual situation as described above, and generates electrolyzed water that can generate electrolyzed water having a high dissolved hydrogen concentration at a pH value suitable for drinking while suppressing the adhesion of scales.
  • the main purpose is to provide a device.
  • the present invention is an electrolyzed water generating apparatus including a plurality of electrolysis chambers for electrolyzing water, and each electrolysis chamber includes a first power supply body and a second power supply body disposed to face each other, and A diaphragm that divides the electrolysis chamber into a first electrode chamber on the first power feeder side and a second electrode chamber on the second power feeder side is arranged, and each electrolysis chamber has each first electrode chamber in series or in parallel
  • each second electrode chamber it is desirable that the direction of water flow in each second electrode chamber is the same.
  • the electrolysis chambers are arranged in a direction perpendicular to the direction of the water flow.
  • the electrolysis chamber on the upstream side of the second water channel is partitioned by the first side wall of the first electrolysis tank, and at least a part of the second water channel is formed by the first side wall. It is desirable that it is formed inside.
  • the first water channel communicates each first electrode chamber in series, and at least a part of the first water channel is formed inside the first side wall. Is desirable.
  • the electrolysis chamber on the downstream side of the second water channel is partitioned by the second side wall of the second electrolysis tank, and at least a part of the second water channel is formed by the second side wall. It is desirable that it is formed inside.
  • the first water channel communicates each first electrode chamber in series, and at least a part of the first water channel is formed inside the second side wall. Is desirable.
  • the diaphragm disposed in the electrolysis chamber on the upstream side of the second water channel is a solid polymer film.
  • the electrolyzed water generating apparatus of the present invention includes a plurality of electrolyzing chambers for electrolyzing water, and neutral electrolyzed water is generated in the second electrode chamber on the upstream side of the second water channel.
  • the upstream second pole chamber no scale deposition occurs, and therefore, the scale adhesion is suppressed in the upstream second pole chamber and the second water channel.
  • neutral electrolyzed water in which hydrogen gas generated by water electrolysis is dissolved is generated.
  • the dissolved hydrogen concentration is increased by electrolysis of water, and reduced alkaline electrolyzed water is generated.
  • the scale is deposited in the second polar chamber on the downstream side, the area where the scale adheres is limited to the water channel further downstream than the second polar chamber on the downstream side, and the countermeasures are easy. Become. Thereby, it is possible to generate electrolyzed water having a high dissolved hydrogen concentration at a pH value suitable for drinking while suppressing adhesion of scale.
  • FIG. 1 shows schematic structure of the flow path of the electrolyzed water generating apparatus which is one Embodiment of this invention. It is a figure which shows the cross section containing the 1st pole chamber and 1st water channel of an electrolytic vessel. It is a figure which shows the cross section containing the 2nd electrode chamber and 2nd water channel of an electrolytic vessel. It is sectional drawing which shows the modification of an electrolytic vessel and a 1st water channel. It is sectional drawing which shows the modification of an electrolytic vessel and a 2nd water channel. It is a figure which shows schematic structure of the flow path of the modification of an electrolyzed water generating apparatus.
  • FIG. 1 shows a schematic configuration of a flow path of an electrolyzed water generating apparatus 1 according to an embodiment of the present invention.
  • the electrolyzed water generating apparatus 1 is used, for example, for generating domestic drinking water.
  • the electrolyzed water generating apparatus 1 includes a plurality of electrolytic cells 3, 4,.
  • an electrolyzed water generating apparatus 1 including a pair of electrolytic cells 3 and 4 is shown.
  • the electrolyzed water generating apparatus 1 may include three or more electrolytic cells 3, 4,.
  • the electrolytic cells 3 and 4 are connected in series.
  • the electrolytic cell 3 is provided on the upstream side with respect to the electrolytic cell 4.
  • the electrolytic cell 3 includes an electrolysis chamber 30 for electrolyzing water, a first power feeding body 31 and a second power feeding body 32 arranged to face each other in the electrolysis chamber 30, and the electrolysis chamber 30 as a first power feeding body.
  • the diaphragm 33 is divided into a first pole chamber 30A on the 31 side and a second pole chamber 30B on the second power feeder 32 side.
  • One of the first power supply 31 and the second power supply 32 is applied as an anode power supply, and the other is applied as a cathode power supply.
  • Water is supplied to both the first electrode chamber 30 ⁇ / b> A and the second electrode chamber 30 ⁇ / b> B of the electrolysis chamber 30, and a direct-current voltage is applied to the first power supply body 31 and the second power supply body 32, thereby causing water in the electrolysis chamber 30. Electrolysis occurs.
  • a solid polymer film made of a fluorine-based resin having a sulfonic acid group is used for the diaphragm 33 of the upstream electrolysis chamber 30.
  • a plating layer made of platinum is formed on both surfaces of the diaphragm 33.
  • a material in which a platinum plating layer is formed on the surface of a net-like metal such as an expanded metal made of titanium or the like is applied to the first power supply 31 and the second power supply 32.
  • a net-like first power supply body 31 and second power supply body 32 can distribute water to the surface of the diaphragm 33 while sandwiching the diaphragm 33, and promote electrolysis in the electrolytic chamber 30.
  • the plating layer of the diaphragm 33 is in contact with and electrically connected to the first power feeder 31 and the second power feeder 32.
  • the diaphragm 33 allows ions generated by electrolysis to pass through.
  • the first power feeder 31 and the second power feeder 32 are electrically connected through the diaphragm 33.
  • electrolysis proceeds without increasing the pH value of the electrolyzed hydrogen water, that is, while the water in the electrolysis chamber 30 is maintained neutral.
  • Electrolysis of water in the electrolysis chamber 30 generates hydrogen gas and oxygen gas.
  • the 1st electric power feeder 31 is applied as an anode electric power feeder
  • oxygen gas will generate
  • dissolved will be produced
  • the second electrode chamber 30B hydrogen gas is generated, and neutral electrolytic hydrogen water in which the hydrogen gas is dissolved is generated.
  • the first power supply 31 is applied as a cathode power supply
  • hydrogen gas is generated in the first electrode chamber 30A, and neutral electrolytic hydrogen water in which the hydrogen gas is dissolved is generated.
  • the second electrode chamber 30B oxygen gas is generated, and neutral electrolytic oxygen water in which the oxygen gas is dissolved is generated.
  • the electrolytic cell 4 includes a first power feeding body 41 and a second power feeding body 42 that are disposed to face each other in an electrolysis chamber 40 for electrolyzing water, and the electrolysis chamber 40 on the first power feeding body 41 side.
  • the diaphragm 43 is divided into a first pole chamber 40A and a second pole chamber 40B on the second power feeding body 42 side.
  • One of the first power supply 41 and the second power supply 42 is applied as an anode power supply, and the other is applied as a cathode power supply. Water is supplied to both the first electrode chamber 40 ⁇ / b> A and the second electrode chamber 40 ⁇ / b> B of the electrolysis chamber 40, and a direct current voltage is applied to the first power supply body 41 and the second power supply body 42. Electrolysis occurs.
  • the diaphragm 43 is made of, for example, a polytetrafluoroethylene (PTFE) hydrophilic film.
  • PTFE polytetrafluoroethylene
  • a metal plate such as titanium is applied to the first power feeding body 41 and the second power feeding body 42 that are arranged to face each other with the diaphragm 43 interposed therebetween.
  • the first power feeding body 41 and the second power feeding body 42 are arranged at positions separated from the diaphragm 43.
  • electrolysis signals while the pH value of the electrolytic hydrogen water increases, that is, the alkaline strength of the water in the cathode chamber increases.
  • the first power supply body 41 When the first power supply body 41 is applied as an anode power supply body, oxygen gas is generated in the first electrode chamber 40A, and acidic electrolytic oxygen water in which the oxygen gas is dissolved is generated. On the other hand, in the second electrode chamber 40B, hydrogen gas is generated, and alkaline electrolytic hydrogen water in which the hydrogen gas is dissolved is generated.
  • the first power supply body 41 is applied as a cathode power supply body, in the first electrode chamber 40A, hydrogen gas is generated, and alkaline electrolytic hydrogen water in which the hydrogen gas is dissolved is generated.
  • the second electrode chamber 40B oxygen gas is generated, and acidic electrolytic oxygen water in which the oxygen gas is dissolved is generated.
  • the electrolyzed water generating apparatus 1 has a water supply channel 20 for supplying water to be electrolyzed to the electrolysis chambers 30 and 40, and water discharge channels 61 and 62 for discharging electrolyzed water from the electrolysis chambers 30 and 40. ing.
  • Raw water is supplied from the water supply channel 20 to the electrolyzed water generator 1.
  • the raw water tap water is generally used, but well water, ground water, and the like can be used.
  • a water purification cartridge or the like for purifying raw water is appropriately provided in the water supply channel 20.
  • the water supply channel 20 branches into a water supply channel 21 and a water supply channel 22.
  • the water supply path 21 is connected to the lower part of the first pole chamber 30A.
  • the water supply path 22 is connected to the lower end of the second electrode chamber 30B. The water flowing into the water supply channel 20 passes through the water supply channels 21 and 22 and flows into the first electrode chamber 30A and the second electrode chamber 30B.
  • the water discharge path 61 is connected to the upper end of the first pole chamber 40A.
  • the water discharge channel 61 is connected to the first electrode chamber 40 ⁇ / b> A via the water channel 53 formed in the second side wall 4 ⁇ / b> W of the electrolytic cell 4. Thereby, the water that has flowed out of the first pole chamber 40 ⁇ / b> A flows into the water discharge path 61.
  • the water discharge channel 62 is connected to the upper end of the second electrode chamber 40B.
  • the water discharge channel 62 is connected to the second electrode chamber 40 ⁇ / b> B through the water channel 54 formed in the second side wall 4 ⁇ / b> W of the electrolytic cell 4. Thereby, the water that has flowed out of the second electrode chamber 40 ⁇ / b> B flows into the water discharge channel 62.
  • the electrolytic current supplied to the power feeding bodies 31 and 32 and the power feeding bodies 41 and 42 is controlled by a control unit (not shown).
  • the control unit controls each unit such as the power feeding bodies 31 and 32 and the power feeding bodies 41 and 42.
  • the control unit includes, for example, a CPU (Central Processing Unit) that executes various arithmetic processes and information processing, a program that controls the operation of the CPU, a memory that stores various information, and the like.
  • a CPU Central Processing Unit
  • a control part controls the polarity of the 1st electric power feeders 31 and 41 and the 2nd electric power feeders 32 and 42, for example.
  • first power feeding bodies 31 and 41 and the second power feeding bodies 32 and 42 By changing the polarities of the first power feeding bodies 31 and 41 and the second power feeding bodies 32 and 42 to each other, desired electrolyzed water out of the electrolyzed hydrogen water or the electrolyzed oxygen water is discharged from the water discharge path 61, and unnecessary electrolyzed water Can be discharged from the water discharge channel 62.
  • the time during which the first power feeding bodies 31 and 41 and the second power feeding bodies 32 and 42 function as an anode power feeding body or a cathode power feeding body can be made uniform, and scale adhesion in the electrolysis chamber 30 and the electrolysis chamber 40 can be suppressed.
  • first power feeders 31 and 41 are applied as anode power feeders will be described unless otherwise specified, but the same applies to the case where the first power feeders 31 and 41 are applied as cathode power feeders. .
  • the control unit performs feedback control of the DC voltage applied to the power feeding bodies 31 and 32 and the power feeding bodies 41 and 42 so that the electrolysis current becomes a desired value according to, for example, a preset dissolved hydrogen concentration. For example, when the electrolysis current is excessive, the control unit decreases the voltage, and when the electrolysis current is excessive, the control unit increases the voltage. Thereby, the electrolysis current supplied to the power feeding bodies 31 and 32 and the power feeding bodies 41 and 42 is appropriately controlled.
  • the first electrode chamber 30 ⁇ / b> A of the electrolysis chamber 30 and the first electrode chamber 40 ⁇ / b> A of the electrolysis chamber 40 are connected in series by a first water channel 51.
  • the second electrode chamber 30 ⁇ / b> B of the electrolysis chamber 30 and the second electrode chamber 40 ⁇ / b> B of the electrolysis chamber 40 are connected in series by the second water channel 52.
  • dissolved hydrogen concentration is set. Even when the electrolysis current is increased to increase the pH value, the pH value of the electrolyzed water is prevented from excessively rising. Thereby, it is possible to generate electrolyzed water having a high dissolved hydrogen concentration at a pH value suitable for drinking.
  • 1st electric power feeding bodies 31 and 41 are applied as an anode electric power feeding body, ie, when 1st pole chamber 30A and 40A are applied as an anode chamber, 1st pole chamber 30A and 1st pole chamber 40A become.
  • the first water channel 51 may be connected in parallel. In this case, oxygen gas generated in the first electrode chamber 30A does not flow into the first electrode chamber 40A, so that water is sufficiently supplied also to the surface of the first power feeder 41. Therefore, electrolysis is efficiently performed in the electrolysis chamber 40, and the dissolved hydrogen concentration can be increased.
  • the electrolysis chamber 30 is disposed on the upstream side of the second water channel 52, and the electrolysis chamber 40 is disposed on the downstream side of the second water channel 52. That is, the second polar chamber 30B that generates neutral electrolyzed water is arranged on the upstream side of the second water channel 52, and the second polar chamber 40B that generates alkaline electrolyzed water is on the downstream side of the second water channel 52. It is arranged. Thereby, since deposition of scale does not occur in the second polar chamber 30B on the upstream side, scale adhesion is suppressed in the second polar chamber 30B and the second water channel 52. In the second electrode chamber on the upstream side, neutral electrolyzed water in which hydrogen gas generated by water electrolysis is dissolved is generated.
  • the dissolved hydrogen concentration is increased by electrolysis of water, and reduced alkaline electrolyzed water is generated.
  • the scale is deposited as a result of electrolysis, but the area where the scale adheres is limited to the water channel further downstream than the second polar chamber 40B. It becomes easy.
  • scale measures can be easily taken by setting the cross-sectional area of the water channel further downstream from the second pole chamber 40B. Therefore, it is possible to generate “electrolytic hydrogen water” having a high dissolved hydrogen concentration at a pH value suitable for drinking while suppressing adhesion of scale.
  • the direction of water flow in the first electrode chambers 30A and 40A is the same as indicated by arrows 30X and 40X.
  • the water flow directions 30X and 40X in the first polar chambers 30A and 40A are vertical directions from the lower end portions to the upper end portions of the first polar chambers 30A and 40A.
  • the directions 30X and 40X of the water flow in the first electrode chambers 30A and 40A coincide with the moving direction of the oxygen gas generated in the first electrode chambers 30A and 40A, so that the oxygen gas is efficiently contained in the first electrode chamber 30A and 40A. It is discharged from 30A and 40A.
  • the oxygen gas generated in the first electrode chambers 30 ⁇ / b> A and 40 ⁇ / b> A stays on the surfaces of the first power feeding bodies 31 and 41. Accordingly, water is sufficiently supplied also to the surfaces of the first power feeding bodies 31 and 41, and electrolysis is efficiently performed in the electrolysis chambers 30 and 40, so that the dissolved hydrogen concentration can be increased.
  • the direction of the water flow in the second electrode chambers 30B and 40B is the same as indicated by arrows 30Y and 40Y.
  • the directions 30Y and 40Y of the water flow in the second polar chambers 30B and 40B are vertical directions from the lower end portions to the upper end portions of the second polar chambers 30B and 40B. For this reason, since the directions 30Y and 40Y of the water flow in the second polar chambers 30B and 40B coincide with the moving direction of the hydrogen gas generated in the second polar chambers 30B and 40B, the hydrogen gas efficiently flows into the second polar chamber. It is discharged from 30B and 40B.
  • the hydrogen gas generated in the second electrode chambers 30B and 40B is suppressed from staying on the surfaces of the second power feeding bodies 32 and 42. Therefore, water is sufficiently supplied also to the surfaces of the second power feeders 32 and 42, and electrolysis is efficiently performed in the electrolysis chambers 30 and 40, so that the dissolved hydrogen concentration can be increased.
  • the electrolysis chambers 30 and 40 are juxtaposed in a direction perpendicular to the water flow directions 30X, 40X, 30Y and 40Y. In such a form, it becomes easy to reduce the height by suppressing the height of the electrolyzed water generating apparatus 1.
  • FIG. 2 shows a cross section of an electrolytic cell (first electrolytic cell) 3 and an electrolytic cell (second electrolytic cell) 4 that partition the electrolytic chambers 30 and 40.
  • a cross section including the first pole chambers 30 ⁇ / b> A and 40 ⁇ / b> A and the first water channel 51 is shown.
  • the electrolytic cells 3 and 4 are formed by resin molding, for example.
  • the electrolysis chamber 30 on the upstream side of the first water channel 51 is partitioned by the first side wall 3 ⁇ / b> W of the electrolytic cell 3.
  • the first water channel 51 includes water channels 51a and 51b.
  • the water channel 51a is formed inside the first side wall 3W so as to communicate with the first pole chamber 30A.
  • the water channel 51b connects the water channel 51a and the first pole chamber 40A.
  • the water channel 51b is configured by, for example, a rubber tube or the like, and is disposed outside the electrolytic cells 3 and 4.
  • FIG. 3 shows a cross section of the electrolytic cell 3 and the electrolytic cell 4 including the second electrode chambers 30B and 40B and the second water channel 52.
  • the electrolysis chamber 30 on the upstream side of the second water channel 52 is partitioned by the first side wall 3 ⁇ / b> W of the electrolytic cell 3.
  • the second water channel 52 includes water channels 52a and 52b.
  • the water channel 52a is formed inside the first side wall 3W so as to communicate with the second electrode chamber 30B. That is, at least a part of the second water channel 52 is formed inside the first side wall 3W.
  • the water channel 52b connects the water channel 52a and the second electrode chamber 40B.
  • the water channel 52b is configured by, for example, a rubber tube or the like, and is disposed outside the electrolytic cells 3 and 4.
  • FIGS. 4 and 5 show modifications of the electrolytic cells 3 and 4 shown in FIGS.
  • the electrolytic cells 3 and 4 shown in FIGS. 4 and 5 are shown in FIGS. 2 and 3 in that at least a part of the first water channel 51 and the second water channel 52 is formed inside the second side wall 4W. Different from electrolytic cells 3 and 4.
  • FIG. 4 shows a cross section including the first polar chambers 30 ⁇ / b> A and 40 ⁇ / b> A and the first water channel 51 of the electrolytic cell 3 and the electrolytic cell 4.
  • the electrolysis chamber 40 on the downstream side of the first water channel 51 is partitioned by the second side wall 4 ⁇ / b> W of the electrolytic cell 4.
  • the first water channel 51 includes water channels 51c and 51d.
  • the water channel 51c connects the first electrode chamber 30A and the water channel 51d.
  • the water channel 51 c is configured by, for example, a rubber tube or the like, and is disposed outside the electrolytic cells 3 and 4.
  • the water channel 51d is formed inside the second side wall 4W so as to communicate with the first pole chamber 40A. That is, at least a part of the first water channel 51 is formed inside the second side wall 4W.
  • FIG. 5 shows a cross section including the second polar chambers 30 ⁇ / b> B and 40 ⁇ / b> B and the second water channel 52 of the electrolytic cell 3 and the electrolytic cell 4.
  • the electrolysis chamber 30 on the upstream side of the second water channel 52 is partitioned by the first side wall 3 ⁇ / b> W of the electrolytic cell 3.
  • the second water channel 52 includes water channels 52c and 52d.
  • the water channel 52c connects the second electrode chamber 30B and the water channel 52d.
  • the water channel 52 c is configured by, for example, a rubber tube or the like, and is disposed outside the electrolytic cells 3 and 4.
  • the water channel 52d is formed inside the second side wall 4W so as to communicate with the second electrode chamber 40B. That is, at least a part of the second water channel 52 is formed inside the second side wall 4W.
  • a flow rate adjusting valve 23 is provided in the water supply passages 21 and 22.
  • the flow rate adjusting valve 23 adjusts the amount of water flowing through the water supply channels 21 and 22.
  • the amount of water flowing into the first electrode chamber 30A and the second electrode chamber 30B is adjusted by the flow rate adjusting valve 23.
  • a flow path switching valve 63 is provided between the first and second electrode chambers 40A and 40B and the water discharge channels 61 and 62.
  • the flow path switching valve 63 selectively switches the connection between the first polar chamber 40A and the second polar chamber 40B and the water discharge paths 61 and 62.
  • the electrolyzed water selected by the user can always be discharged from one discharge channel (for example, the discharge channel 62).
  • the control unit operates the flow rate adjusting valve 23 and the flow path switching valve 63 in conjunction with each other.
  • the amount of water supplied to the polar chamber connected to the water discharge passage 61 is sufficiently suppressed while the amount of water supplied to the polar chamber connected to the water discharge passage 62 is sufficiently secured.
  • the flow rate adjusting valve 23 and the flow path switching valve 63 are preferably integrally formed and driven in conjunction with a single motor.
  • the flow rate adjusting valve 23 and the flow path switching valve 63 are configured by a cylindrical outer cylinder, an inner cylinder, and the like.
  • the flow path constituting the flow rate adjustment valve 23 and the flow path switching valve 63 is formed inside and outside the inner cylinder, and each flow path is in accordance with the operating state of the flow rate adjustment valve 23 and the flow path switching valve 63. It is configured to cross appropriately.
  • Such a valve device is referred to as a “double auto change cross line valve”, contributes to the simplification of the configuration and control of the electrolyzed water generating device 1, and further increases the commercial value of the electrolyzed water generating device 1.
  • the water channels 53 and 54 are provided in the first side wall 3 ⁇ / b> W of the electrolyzer 3 and the second side wall 4 ⁇ / b> W of the electrolyzer 4.
  • the adjustment valve 23 and the flow path switching valve 63 can be disposed adjacent to the lower part of the electrolytic cell 3 and the electrolytic cell 4, and the configuration of the electrolyzed water generating device 1 can be further simplified.
  • FIG. 6 shows an electrolyzed water generating apparatus 1 ⁇ / b> A that is a modification of the electrolyzed water generating apparatus 1.
  • the electrolyzed water generating apparatus 1A is different from the electrolyzed water generating apparatus 1 in that the electrolysis chambers 30 and 40 are arranged side by side in the water flow directions 30X, 40X, 30Y, and 40Y, that is, in the vertical direction.
  • configurations not described below are the same as those of the electrolyzed water generating apparatus 1.
  • the electrolysis chambers 30 and 40 are arranged in the vertical direction, the ground contact area of the electrolyzed water generating apparatus 1A can be suppressed, and the degree of freedom of installation in a small kitchen or the like is increased. Enhanced.
  • the electrolyzed water generating apparatus 1 includes at least a plurality of electrolysis chambers 30, 40,... For electrolyzing water, and each electrolysis chamber 30, 40,. ... and the second power feeding bodies 32, 42, ..., and the electrolysis chambers 30, 40, ..., the first electrode chambers 30A, 40A, ... on the side of the first power feeding bodies 31, 41, ..., and the second , Which are divided into second electrode chambers 30B, 40B, ... on the side of the power feeding bodies 32, 42, ..., are arranged, and each electrolysis chamber 30, 40, ...
  • each first electrode chamber 30A, 40A,... are connected by a first water channel 51 that communicates serially or in parallel with each other, and a second water channel 52 that communicates each of the second electrode chambers 30B and 40B in series, and is located on the upstream side of the second water channel 52.
  • first water channel 51 that communicates serially or in parallel with each other
  • second water channel 52 that communicates each of the second electrode chambers 30B and 40B in series, and is located on the upstream side of the second water channel 52.
  • neutral electrolyzed water is generated, and in the second electrode chamber 40B on the downstream side of the second water channel 52, It may be composed as alkaline resistance of the electrolytic water is generated.
  • the electrolysis chamber 30 is applied to the most upstream electrolysis chamber, and the electrolysis chamber 40 is applied to the most downstream electrolysis chamber.
  • a structure equivalent to the electrolysis chamber 30 or the electrolysis chamber 40 can be applied to the electrolysis chamber disposed between the most upstream electrolysis chamber and the most downstream electrolysis chamber. In this case, it is desirable to arrange each electrolysis chamber so that the electrolysis chamber 30 in which neutral electrolyzed water is generated is not located downstream of the electrolysis chamber 40 in which alkaline electrolyzed water is generated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

An electrolyzed water generating device 1 is provided with a plurality of electrolytic chambers 30, 40, … for electrolysis of water. In the electrolytic chambers 30, 40, … are disposed first electric feeders 31, 41, … and second electric feeders 32, 42, … facing each other, and diaphragms 33, 43, … dividing the electrolytic chambers 30, 40, … into first electrode chambers 30A, 40A, … and second electrode chambers 30B, 40B, .... A solid polymer membrane is used for the diaphragm 33. The electrolytic chambers 30, 40, … are connected by a first water path 51 that connects the first electrode chambers 30A, 40A, … in series or in parallel and a second water path 52 that connects the second electrode chambers 30B, 40B in series. Neutral electrolyzed water is generated in the second electrode chamber 30B on the upstream side of the second water path 52, and alkaline electrolyzed water is generated in the second electrode chamber 40B on the downstream side.

Description

電解水生成装置Electrolyzed water generator
 本発明は、水を電気分解して電解水を生成する電解水生成装置に関する。 The present invention relates to an electrolyzed water generating apparatus that electrolyzes water to generate electrolyzed water.
 従来、隔膜で仕切られた電解室を有する電解槽を備え、電解室に供給される水道水等を電気分解して水素が溶け込んだ電解水素水を生成する電解水生成装置が知られている。例えば、特許文献1には、溶存水素濃度を高めるために、直列に接続された2つの電解槽を備えた電解水生成装置が開示されている。 2. Description of the Related Art Conventionally, an electrolyzed water generating apparatus that includes an electrolyzer having an electrolysis chamber partitioned by a diaphragm and generates electrolyzed hydrogen water in which hydrogen is dissolved by electrolyzing tap water supplied to the electrolysis chamber is known. For example, Patent Document 1 discloses an electrolyzed water generating device including two electrolyzers connected in series in order to increase the dissolved hydrogen concentration.
 上記電解水生成装置は、陰極と陽極とを対向配置した第1の電解部と、第1の電解部の陰極側で生成したアルカリ性水の溶存水素濃度を高める第2の電解部を備える。このため、飲用に適したpH値で溶存水素濃度の高い電解水が容易に生成される。 The electrolyzed water generating apparatus includes a first electrolyzing unit in which a cathode and an anode are arranged to face each other, and a second electrolyzing unit that increases the concentration of dissolved hydrogen in alkaline water generated on the cathode side of the first electrolyzing unit. For this reason, electrolyzed water with a high dissolved hydrogen concentration at a pH value suitable for drinking is easily generated.
特許第4417707号公報Japanese Patent No. 4417707
 しかしながら、特許文献1に記載された電解水生成装置では、第1の電解部の陰極室では、水の電気分解に伴い、カルシウム等のスケールが析出する。そして、第1の電解部の陰極室で析出したスケールは、第1の電解部での陰極室下流側の水路に付着し、円滑な水流を阻害する。すなわち、第2の電解部の陰極室のみならず第1の電解部の陰極室と第2の電解部の陰極とを連通させる水路にもスケールが付着し、上記アルカリ性水の円滑な流れが阻害されるおそれがある。 However, in the electrolyzed water generating device described in Patent Document 1, in the cathode chamber of the first electrolysis unit, scales such as calcium are deposited with the electrolysis of water. Then, the scale deposited in the cathode chamber of the first electrolysis unit adheres to the water channel downstream of the cathode chamber in the first electrolysis unit and inhibits smooth water flow. That is, not only the cathode chamber of the second electrolysis unit but also the water channel connecting the cathode chamber of the first electrolysis unit and the cathode of the second electrolysis unit adheres to the smooth flow of the alkaline water. There is a risk of being.
 本発明は、以上のような実状に鑑み案出されたもので、スケールの付着を抑制しつつ、飲用に適したpH値で溶存水素濃度の高い電解水を生成することが可能な電解水生成装置を提供することを主たる目的としている。 The present invention has been devised in view of the actual situation as described above, and generates electrolyzed water that can generate electrolyzed water having a high dissolved hydrogen concentration at a pH value suitable for drinking while suppressing the adhesion of scales. The main purpose is to provide a device.
 本発明は、水を電気分解するための電解室を複数備えた電解水生成装置であって、各電解室には、互いに対向して配置された第1給電体及び第2給電体と、前記電解室を前記第1給電体側の第1極室と、前記第2給電体側の第2極室とに区分する隔膜とが配され、各電解室は、各第1極室を直列又は並列に連通させる第1水路と、各第2極室を直列に連通させる第2水路とによって接続され、前記第2水路の上流側にある前記第2極室では、中性の電解水が生成され、前記第2水路の下流側にある前記第2極室では、アルカリ性の電解水が生成されることを特徴とすることを特徴とする。 The present invention is an electrolyzed water generating apparatus including a plurality of electrolysis chambers for electrolyzing water, and each electrolysis chamber includes a first power supply body and a second power supply body disposed to face each other, and A diaphragm that divides the electrolysis chamber into a first electrode chamber on the first power feeder side and a second electrode chamber on the second power feeder side is arranged, and each electrolysis chamber has each first electrode chamber in series or in parallel The first water channel to be communicated and the second water channel to communicate each second electrode chamber in series, in the second electrode chamber on the upstream side of the second water channel, neutral electrolyzed water is generated, In the second electrode chamber on the downstream side of the second water channel, alkaline electrolyzed water is generated.
 本発明に係る前記電解水生成装置において、前記各第2極室内での水流の方向は、同一であることが望ましい。 In the electrolyzed water generating apparatus according to the present invention, it is desirable that the direction of water flow in each second electrode chamber is the same.
 本発明に係る前記電解水生成装置において、各電解室は、前記水流の方向に垂直な方向に並設されていることが望ましい。 In the electrolyzed water generating apparatus according to the present invention, it is preferable that the electrolysis chambers are arranged in a direction perpendicular to the direction of the water flow.
 本発明に係る前記電解水生成装置において、前記第2水路の上流側にある電解室は、第1電解槽の第1側壁によって区画され、前記第2水路の少なくとも一部は、前記第1側壁の内部に形成されていることが望ましい。 In the electrolyzed water generating device according to the present invention, the electrolysis chamber on the upstream side of the second water channel is partitioned by the first side wall of the first electrolysis tank, and at least a part of the second water channel is formed by the first side wall. It is desirable that it is formed inside.
 本発明に係る前記電解水生成装置において、前記第1水路は、各第1極室を直列に連通させ、前記第1水路の少なくとも一部は、前記第1側壁の内部に形成されていることが望ましい。 In the electrolyzed water generating apparatus according to the present invention, the first water channel communicates each first electrode chamber in series, and at least a part of the first water channel is formed inside the first side wall. Is desirable.
 本発明に係る前記電解水生成装置において、前記第2水路の下流側にある電解室は、第2電解槽の第2側壁によって区画され、前記第2水路の少なくとも一部は、前記第2側壁の内部に形成されていることが望ましい。 In the electrolyzed water generating device according to the present invention, the electrolysis chamber on the downstream side of the second water channel is partitioned by the second side wall of the second electrolysis tank, and at least a part of the second water channel is formed by the second side wall. It is desirable that it is formed inside.
 本発明に係る前記電解水生成装置において、前記第1水路は、各第1極室を直列に連通させ、前記第1水路の少なくとも一部は、前記第2側壁の内部に形成されていることが望ましい。 In the electrolyzed water generating device according to the present invention, the first water channel communicates each first electrode chamber in series, and at least a part of the first water channel is formed inside the second side wall. Is desirable.
 本発明に係る前記電解水生成装置において、前記第2水路の上流側にある前記電解室に配される前記隔膜は、固体高分子膜であることが望ましい。 In the electrolyzed water generating device according to the present invention, it is preferable that the diaphragm disposed in the electrolysis chamber on the upstream side of the second water channel is a solid polymer film.
 本発明の電解水生成装置は、水を電気分解するための電解室を複数備え、第2水路の上流側にある第2極室では、中性の電解水が生成される。この上流側の第2極室ではスケールの析出が生じないため、上流側の第2極室及び第2水路では、スケールの付着が抑制される。なお、上流側の第2極室では、水の電気分解によって発生した水素ガスが溶け込んだ中性の電解水が生成される。 The electrolyzed water generating apparatus of the present invention includes a plurality of electrolyzing chambers for electrolyzing water, and neutral electrolyzed water is generated in the second electrode chamber on the upstream side of the second water channel. In the upstream second pole chamber, no scale deposition occurs, and therefore, the scale adhesion is suppressed in the upstream second pole chamber and the second water channel. In the second electrode chamber on the upstream side, neutral electrolyzed water in which hydrogen gas generated by water electrolysis is dissolved is generated.
 一方、第2水路の下流側にある第2極室では、水の電気分解によって溶存水素濃度が高められると共に、還元されたアルカリ性の電解水が生成される。これに伴い、下流側の第2極室では、スケールが析出するものの、このスケールが付着する領域は、下流側の第2極室よりもさらに下流側の水路に限定され、その対策も容易となる。これにより、スケールの付着を抑制しつつ、飲用に適したpH値で溶存水素濃度の高い電解水を生成することが可能となる。 On the other hand, in the second electrode chamber on the downstream side of the second water channel, the dissolved hydrogen concentration is increased by electrolysis of water, and reduced alkaline electrolyzed water is generated. Along with this, although the scale is deposited in the second polar chamber on the downstream side, the area where the scale adheres is limited to the water channel further downstream than the second polar chamber on the downstream side, and the countermeasures are easy. Become. Thereby, it is possible to generate electrolyzed water having a high dissolved hydrogen concentration at a pH value suitable for drinking while suppressing adhesion of scale.
本発明の一実施形態である電解水生成装置の流路の概略構成を示す図である。It is a figure which shows schematic structure of the flow path of the electrolyzed water generating apparatus which is one Embodiment of this invention. 電解槽の第1極室及び第1水路を含む断面を示す図である。It is a figure which shows the cross section containing the 1st pole chamber and 1st water channel of an electrolytic vessel. 電解槽の第2極室及び第2水路を含む断面を示す図である。It is a figure which shows the cross section containing the 2nd electrode chamber and 2nd water channel of an electrolytic vessel. 電解槽及び第1水路の変形例を示す断面図である。It is sectional drawing which shows the modification of an electrolytic vessel and a 1st water channel. 電解槽及び第2水路の変形例を示す断面図である。It is sectional drawing which shows the modification of an electrolytic vessel and a 2nd water channel. 電解水生成装置の変形例の流路の概略構成を示す図である。It is a figure which shows schematic structure of the flow path of the modification of an electrolyzed water generating apparatus.
 以下、本発明の実施の一形態が図面に基づき説明される。
 図1は、本発明の実施形態である電解水生成装置1の流路の概略構成を示している。電解水生成装置1は、例えば、家庭の飲用水の生成に用いられる。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a schematic configuration of a flow path of an electrolyzed water generating apparatus 1 according to an embodiment of the present invention. The electrolyzed water generating apparatus 1 is used, for example, for generating domestic drinking water.
 電解水生成装置1は、電解槽3、4、…を複数備える。図1では、一対の電解槽3、4を備えた電解水生成装置1が示されている。電解水生成装置1は、3以上の電解槽3、4、…を備えていてもよい。 The electrolyzed water generating apparatus 1 includes a plurality of electrolytic cells 3, 4,. In FIG. 1, an electrolyzed water generating apparatus 1 including a pair of electrolytic cells 3 and 4 is shown. The electrolyzed water generating apparatus 1 may include three or more electrolytic cells 3, 4,.
 電解槽3及び4は、直列に接続されている。電解槽3は、電解槽4に対して上流側に設けられている。 The electrolytic cells 3 and 4 are connected in series. The electrolytic cell 3 is provided on the upstream side with respect to the electrolytic cell 4.
 電解槽3は、水を電気分解するための電解室30と、電解室30内で互いに対向して配置された第1給電体31及び第2給電体32と、電解室30を第1給電体31側の第1極室30Aと、第2給電体32側の第2極室30Bとに区分する隔膜33とを有する。 The electrolytic cell 3 includes an electrolysis chamber 30 for electrolyzing water, a first power feeding body 31 and a second power feeding body 32 arranged to face each other in the electrolysis chamber 30, and the electrolysis chamber 30 as a first power feeding body. The diaphragm 33 is divided into a first pole chamber 30A on the 31 side and a second pole chamber 30B on the second power feeder 32 side.
 第1給電体31及び第2給電体32の一方は陽極給電体として適用され、他方は陰極給電体として適用される。電解室30の第1極室30A及び第2極室30Bの両方に水が供給され、第1給電体31及び第2給電体32に直流電圧が印加されることにより、電解室30内で水の電気分解が生ずる。 One of the first power supply 31 and the second power supply 32 is applied as an anode power supply, and the other is applied as a cathode power supply. Water is supplied to both the first electrode chamber 30 </ b> A and the second electrode chamber 30 </ b> B of the electrolysis chamber 30, and a direct-current voltage is applied to the first power supply body 31 and the second power supply body 32, thereby causing water in the electrolysis chamber 30. Electrolysis occurs.
 上流側の電解室30の隔膜33には、例えば、スルホン酸基を有するフッ素系樹脂からなる固体高分子膜が用いられている。隔膜33の両面には、白金からなるめっき層が形成されている。一方、第1給電体31及び第2給電体32には、例えば、チタニウム等からなるエクスパンドメタル等の網状金属の表面に白金のめっき層が形成されたものが適用されている。このような網状の第1給電体31及び第2給電体32は、隔膜33を挟持しながら、隔膜33の表面に水を行き渡らせることができ、電解室30内での電気分解を促進する。 For example, a solid polymer film made of a fluorine-based resin having a sulfonic acid group is used for the diaphragm 33 of the upstream electrolysis chamber 30. A plating layer made of platinum is formed on both surfaces of the diaphragm 33. On the other hand, for example, a material in which a platinum plating layer is formed on the surface of a net-like metal such as an expanded metal made of titanium or the like is applied to the first power supply 31 and the second power supply 32. Such a net-like first power supply body 31 and second power supply body 32 can distribute water to the surface of the diaphragm 33 while sandwiching the diaphragm 33, and promote electrolysis in the electrolytic chamber 30.
 隔膜33のめっき層と第1給電体31及び第2給電体32とは、当接し、電気的に接続される。隔膜33は、電気分解で生じたイオンを通過させる。隔膜33を介して第1給電体31と第2給電体32とが電気的に接続される。固体高分子材料からなる隔膜33が適用される電解室30では、電解水素水のpH値が上昇することなく、すなわち電解室30内の水が中性に維持されつつ、電気分解が進行する。 The plating layer of the diaphragm 33 is in contact with and electrically connected to the first power feeder 31 and the second power feeder 32. The diaphragm 33 allows ions generated by electrolysis to pass through. The first power feeder 31 and the second power feeder 32 are electrically connected through the diaphragm 33. In the electrolysis chamber 30 to which the diaphragm 33 made of a solid polymer material is applied, electrolysis proceeds without increasing the pH value of the electrolyzed hydrogen water, that is, while the water in the electrolysis chamber 30 is maintained neutral.
 電解室30内で水が電気分解されることにより、水素ガス及び酸素ガスが発生する。例えば、第1給電体31が陽極給電体として適用される場合、第1極室30Aでは、酸素ガスが発生し、酸素ガスが溶け込んだ中性の電解酸素水が生成される。一方、第2極室30Bでは、水素ガスが発生し、水素ガスが溶け込んだ中性の電解水素水が生成される。第1給電体31が陰極給電体として適用される場合、第1極室30Aでは、水素ガスが発生し、水素ガスが溶け込んだ中性の電解水素水が生成される。一方、第2極室30Bでは、酸素ガスが発生し、酸素ガスが溶け込んだ中性の電解酸素水が生成される。 Electrolysis of water in the electrolysis chamber 30 generates hydrogen gas and oxygen gas. For example, when the 1st electric power feeder 31 is applied as an anode electric power feeder, in the 1st pole chamber 30A, oxygen gas will generate | occur | produce and the neutral electrolyzed oxygen water which oxygen gas melt | dissolved will be produced | generated. On the other hand, in the second electrode chamber 30B, hydrogen gas is generated, and neutral electrolytic hydrogen water in which the hydrogen gas is dissolved is generated. When the first power supply 31 is applied as a cathode power supply, hydrogen gas is generated in the first electrode chamber 30A, and neutral electrolytic hydrogen water in which the hydrogen gas is dissolved is generated. On the other hand, in the second electrode chamber 30B, oxygen gas is generated, and neutral electrolytic oxygen water in which the oxygen gas is dissolved is generated.
 電解槽4は、水を電気分解するための電解室40内に、互いに対向して配置された第1給電体41及び第2給電体42と、電解室40を第1給電体41側の第1極室40Aと、第2給電体42側の第2極室40Bとに区分する隔膜43とを有する。 The electrolytic cell 4 includes a first power feeding body 41 and a second power feeding body 42 that are disposed to face each other in an electrolysis chamber 40 for electrolyzing water, and the electrolysis chamber 40 on the first power feeding body 41 side. The diaphragm 43 is divided into a first pole chamber 40A and a second pole chamber 40B on the second power feeding body 42 side.
 第1給電体41及び第2給電体42の一方は陽極給電体として適用され、他方は陰極給電体として適用される。電解室40の第1極室40A及び第2極室40Bの両方に水が供給され、第1給電体41及び第2給電体42に直流電圧が印加されることにより、電解室40内で水の電気分解が生ずる。 One of the first power supply 41 and the second power supply 42 is applied as an anode power supply, and the other is applied as a cathode power supply. Water is supplied to both the first electrode chamber 40 </ b> A and the second electrode chamber 40 </ b> B of the electrolysis chamber 40, and a direct current voltage is applied to the first power supply body 41 and the second power supply body 42. Electrolysis occurs.
 隔膜43は、例えば、ポリテトラフルオロエチレン(PTFE)親水膜によって構成されている。隔膜43を挟んで対向配置される第1給電体41及び第2給電体42には、例えば、チタニウム等の金属板が適用される。第1給電体41及び第2給電体42は、隔膜43から離隔する位置に配されている。 The diaphragm 43 is made of, for example, a polytetrafluoroethylene (PTFE) hydrophilic film. For example, a metal plate such as titanium is applied to the first power feeding body 41 and the second power feeding body 42 that are arranged to face each other with the diaphragm 43 interposed therebetween. The first power feeding body 41 and the second power feeding body 42 are arranged at positions separated from the diaphragm 43.
 上記構成の電解槽4では、電解水素水のpH値が上昇しながら、すなわち陰極室内の水のアルカリ強度が高まりつつ、電気分解が信号する。 In the electrolytic cell 4 having the above configuration, electrolysis signals while the pH value of the electrolytic hydrogen water increases, that is, the alkaline strength of the water in the cathode chamber increases.
 第1給電体41が陽極給電体として適用される場合、第1極室40Aでは、酸素ガスが発生し、酸素ガスが溶け込んだ酸性の電解酸素水が生成される。一方、第2極室40Bでは、水素ガスが発生し、水素ガスが溶け込んだアルカリ性の電解水素水が生成される。第1給電体41が陰極給電体として適用される場合、第1極室40Aでは、水素ガスが発生し、水素ガスが溶け込んだアルカリ性の電解水素水が生成される。一方、第2極室40Bでは、酸素ガスが発生し、酸素ガスが溶け込んだ酸性の電解酸素水が生成される。 When the first power supply body 41 is applied as an anode power supply body, oxygen gas is generated in the first electrode chamber 40A, and acidic electrolytic oxygen water in which the oxygen gas is dissolved is generated. On the other hand, in the second electrode chamber 40B, hydrogen gas is generated, and alkaline electrolytic hydrogen water in which the hydrogen gas is dissolved is generated. When the first power supply body 41 is applied as a cathode power supply body, in the first electrode chamber 40A, hydrogen gas is generated, and alkaline electrolytic hydrogen water in which the hydrogen gas is dissolved is generated. On the other hand, in the second electrode chamber 40B, oxygen gas is generated, and acidic electrolytic oxygen water in which the oxygen gas is dissolved is generated.
 電解水生成装置1は、電解室30及び40に電気分解される水を供給するための給水路20と、電解室30及び40から電解水を吐出するための吐水路61及び62とを有している。 The electrolyzed water generating apparatus 1 has a water supply channel 20 for supplying water to be electrolyzed to the electrolysis chambers 30 and 40, and water discharge channels 61 and 62 for discharging electrolyzed water from the electrolysis chambers 30 and 40. ing.
 電解水生成装置1には、給水路20から原水が供給される。原水には、一般的には水道水が利用されるが、その他、例えば、井戸水、地下水等を用いることができる。電解水生成装置1が飲用の電解水素水の生成に用いられる場合等では、原水を浄化する浄水カートリッジ等が給水路20に適宜設けられる。 Raw water is supplied from the water supply channel 20 to the electrolyzed water generator 1. As the raw water, tap water is generally used, but well water, ground water, and the like can be used. In the case where the electrolyzed water generating device 1 is used for generating potable electrolytic hydrogen water, a water purification cartridge or the like for purifying raw water is appropriately provided in the water supply channel 20.
 給水路20は、給水路21及び給水路22に分岐する。給水路21は、第1極室30Aの下段部に接続されている。給水路22は、第2極室30Bの下端部に接続されている。給水路20に流入した水は、給水路21及び22を通過して、第1極室30A、第2極室30Bに流れ込む。 The water supply channel 20 branches into a water supply channel 21 and a water supply channel 22. The water supply path 21 is connected to the lower part of the first pole chamber 30A. The water supply path 22 is connected to the lower end of the second electrode chamber 30B. The water flowing into the water supply channel 20 passes through the water supply channels 21 and 22 and flows into the first electrode chamber 30A and the second electrode chamber 30B.
 吐水路61は、第1極室40Aの上端部に接続されている。図2及び4に示される電解槽4では、吐水路61は、電解槽4の第2側壁4Wに形成されている水路53を介して第1極室40Aと接続されている。これにより、第1極室40Aから流出した水は、吐水路61に流れ込む。 The water discharge path 61 is connected to the upper end of the first pole chamber 40A. In the electrolytic cell 4 shown in FIGS. 2 and 4, the water discharge channel 61 is connected to the first electrode chamber 40 </ b> A via the water channel 53 formed in the second side wall 4 </ b> W of the electrolytic cell 4. Thereby, the water that has flowed out of the first pole chamber 40 </ b> A flows into the water discharge path 61.
 吐水路62は、第2極室40Bの上端部に接続されている。図3及び5に示される電解槽4では、吐水路62は、電解槽4の第2側壁4Wに形成されている水路54を介して第2極室40Bと接続されている。これにより、第2極室40Bから流出した水は、吐水路62に流れ込む。 The water discharge channel 62 is connected to the upper end of the second electrode chamber 40B. In the electrolytic cell 4 shown in FIGS. 3 and 5, the water discharge channel 62 is connected to the second electrode chamber 40 </ b> B through the water channel 54 formed in the second side wall 4 </ b> W of the electrolytic cell 4. Thereby, the water that has flowed out of the second electrode chamber 40 </ b> B flows into the water discharge channel 62.
 給電体31、32及び給電体41、42に供給される電解電流は、制御部(図示せず)によって制御される。制御部は、給電体31、32及び給電体41、42等の各部の制御を司る。制御部は、例えば、各種の演算処理、情報処理等を実行するCPU(Central Processing Unit)及びCPUの動作を司るプログラム及び各種の情報を記憶するメモリ等を有している。 The electrolytic current supplied to the power feeding bodies 31 and 32 and the power feeding bodies 41 and 42 is controlled by a control unit (not shown). The control unit controls each unit such as the power feeding bodies 31 and 32 and the power feeding bodies 41 and 42. The control unit includes, for example, a CPU (Central Processing Unit) that executes various arithmetic processes and information processing, a program that controls the operation of the CPU, a memory that stores various information, and the like.
 制御部は、例えば、第1給電体31、41及び第2給電体32、42の極性を制御する。 A control part controls the polarity of the 1st electric power feeders 31 and 41 and the 2nd electric power feeders 32 and 42, for example.
 第1給電体31、41及び第2給電体32、42の極性を相互に変更することにより、電解水素水又は電解酸素水のうち所望の電解水が吐水路61から吐水され、不要な電解水が吐水路62から排出されうる。また、第1給電体31、41及び第2給電体32、42が陽極給電体又は陰極給電体として機能する時間を均一化して、電解室30及び電解室40でのスケールの付着を抑制できる。 By changing the polarities of the first power feeding bodies 31 and 41 and the second power feeding bodies 32 and 42 to each other, desired electrolyzed water out of the electrolyzed hydrogen water or the electrolyzed oxygen water is discharged from the water discharge path 61, and unnecessary electrolyzed water Can be discharged from the water discharge channel 62. In addition, the time during which the first power feeding bodies 31 and 41 and the second power feeding bodies 32 and 42 function as an anode power feeding body or a cathode power feeding body can be made uniform, and scale adhesion in the electrolysis chamber 30 and the electrolysis chamber 40 can be suppressed.
 以下、特に断りのない限り、第1給電体31、41が陽極給電体として適用される場合について説明するが、第1給電体31、41が陰極給電体として適用される場合についても同様である。 Hereinafter, the case where the first power feeders 31 and 41 are applied as anode power feeders will be described unless otherwise specified, but the same applies to the case where the first power feeders 31 and 41 are applied as cathode power feeders. .
 制御部は、例えば、予め設定された溶存水素濃度に応じて、電解電流が所望の値となるように、給電体31、32及び給電体41、42に印加する直流電圧をフィードバック制御する。例えば、電解電流が過大である場合、制御部は、上記電圧を減少させ、電解電流が過小である場合、制御部は、上記電圧を増加させる。これにより、給電体31、32及び給電体41、42に供給する電解電流が適切に制御される。 The control unit performs feedback control of the DC voltage applied to the power feeding bodies 31 and 32 and the power feeding bodies 41 and 42 so that the electrolysis current becomes a desired value according to, for example, a preset dissolved hydrogen concentration. For example, when the electrolysis current is excessive, the control unit decreases the voltage, and when the electrolysis current is excessive, the control unit increases the voltage. Thereby, the electrolysis current supplied to the power feeding bodies 31 and 32 and the power feeding bodies 41 and 42 is appropriately controlled.
 電解室30の第1極室30Aと電解室40の第1極室40Aとは、第1水路51によって直列に連通されている。また、電解室30の第2極室30Bと電解室40の第2極室40Bとは、第2水路52によって直列に連通されている。このように、中性の電解水を生成する第2極室30Bとアルカリ性の電解水を生成する第2極室40Bとが、第2水路52によって直列に連通されているので、溶存水素濃度を高めるために電解電流を増加させる場合であっても、電解水のpH値が過度に上昇することが抑制される。これにより、飲用に適したpH値で溶存水素濃度の高い電解水を生成することが可能となる。 The first electrode chamber 30 </ b> A of the electrolysis chamber 30 and the first electrode chamber 40 </ b> A of the electrolysis chamber 40 are connected in series by a first water channel 51. The second electrode chamber 30 </ b> B of the electrolysis chamber 30 and the second electrode chamber 40 </ b> B of the electrolysis chamber 40 are connected in series by the second water channel 52. Thus, since the 2nd polar chamber 30B which produces | generates neutral electrolyzed water, and the 2nd polar chamber 40B which produces | generates alkaline electrolyzed water are connected in series by the 2nd water channel 52, dissolved hydrogen concentration is set. Even when the electrolysis current is increased to increase the pH value, the pH value of the electrolyzed water is prevented from excessively rising. Thereby, it is possible to generate electrolyzed water having a high dissolved hydrogen concentration at a pH value suitable for drinking.
 なお、第1給電体31及び41が陽極給電体として適用される場合、すなわち、第1極室30A及び40Aが陽極室として適用される場合、第1極室30Aと第1極室40Aとが、第1水路51によって並列に連通されるように構成されていてもよい。この場合、第1極室30Aで生成された酸素ガスが第1極室40Aに流入することがないので、第1給電体41の表面にも水が十分に供給される。従って、電解室40で効率よく電気分解が行なわれ、溶存水素濃度を高めることが可能となる。 In addition, when the 1st electric power feeding bodies 31 and 41 are applied as an anode electric power feeding body, ie, when 1st pole chamber 30A and 40A are applied as an anode chamber, 1st pole chamber 30A and 1st pole chamber 40A become. The first water channel 51 may be connected in parallel. In this case, oxygen gas generated in the first electrode chamber 30A does not flow into the first electrode chamber 40A, so that water is sufficiently supplied also to the surface of the first power feeder 41. Therefore, electrolysis is efficiently performed in the electrolysis chamber 40, and the dissolved hydrogen concentration can be increased.
 電解室30は、第2水路52の上流側に配され、電解室40は、第2水路52の下流側に配されている。すなわち、中性の電解水を生成する第2極室30Bは、第2水路52の上流側に配され、アルカリ性の電解水を生成する第2極室40Bは、第2水路52の下流側に配されている。これにより、上流側にある第2極室30Bではスケールの析出が生じないため、第2極室30B及び第2水路52では、スケールの付着が抑制される。なお、上流側の第2極室では、水の電気分解によって発生した水素ガスが溶け込んだ中性の電解水が生成される。 The electrolysis chamber 30 is disposed on the upstream side of the second water channel 52, and the electrolysis chamber 40 is disposed on the downstream side of the second water channel 52. That is, the second polar chamber 30B that generates neutral electrolyzed water is arranged on the upstream side of the second water channel 52, and the second polar chamber 40B that generates alkaline electrolyzed water is on the downstream side of the second water channel 52. It is arranged. Thereby, since deposition of scale does not occur in the second polar chamber 30B on the upstream side, scale adhesion is suppressed in the second polar chamber 30B and the second water channel 52. In the second electrode chamber on the upstream side, neutral electrolyzed water in which hydrogen gas generated by water electrolysis is dissolved is generated.
 一方、第2水路52の下流側にある第2極室40Bでは、水の電気分解によって溶存水素濃度が高められると共に、還元されたアルカリ性の電解水が生成される。これに伴い、下流側の第2極室では、電気分解に伴いスケールが析出するものの、このスケールが付着する領域は、第2極室40Bよりもさらに下流側の水路に限定され、その対策も容易となる。例えば、第2極室40Bよりもさらに下流側の水路の断面積を大きく設定する等により、スケール対策が容易に行える。従って、スケールの付着を抑制しつつ、飲用に適したpH値で溶存水素濃度の高い「電解水素水」を生成することが可能となる。 On the other hand, in the second polar chamber 40B on the downstream side of the second water channel 52, the dissolved hydrogen concentration is increased by electrolysis of water, and reduced alkaline electrolyzed water is generated. Along with this, in the second polar chamber on the downstream side, the scale is deposited as a result of electrolysis, but the area where the scale adheres is limited to the water channel further downstream than the second polar chamber 40B. It becomes easy. For example, scale measures can be easily taken by setting the cross-sectional area of the water channel further downstream from the second pole chamber 40B. Therefore, it is possible to generate “electrolytic hydrogen water” having a high dissolved hydrogen concentration at a pH value suitable for drinking while suppressing adhesion of scale.
 各第1極室30A、40A内での水流の方向は、矢印30X、40Xで示されるように、同一である。本実施形態では、第1極室30A、40A内での水流の方向30X、40Xは、第1極室30A、40Aの下端部から上端部に向く鉛直方向である。このため、第1極室30A、40Aでの水流の方向30X、40Xと第1極室30A、40Aで生成される酸素ガスの移動する方向が一致するため、酸素ガスが効率よく第1極室30A、40Aから排出される。これにより、第1極室30A、40Aで発生する酸素ガスが第1給電体31及び41の表面に滞留することが抑制される。従って、第1給電体31及び41の表面にも水が十分に供給され、電解室30及び40で効率よく電気分解が行なわれ、溶存水素濃度を高めることが可能となる。 The direction of water flow in the first electrode chambers 30A and 40A is the same as indicated by arrows 30X and 40X. In the present embodiment, the water flow directions 30X and 40X in the first polar chambers 30A and 40A are vertical directions from the lower end portions to the upper end portions of the first polar chambers 30A and 40A. For this reason, the directions 30X and 40X of the water flow in the first electrode chambers 30A and 40A coincide with the moving direction of the oxygen gas generated in the first electrode chambers 30A and 40A, so that the oxygen gas is efficiently contained in the first electrode chamber 30A and 40A. It is discharged from 30A and 40A. Thereby, it is suppressed that the oxygen gas generated in the first electrode chambers 30 </ b> A and 40 </ b> A stays on the surfaces of the first power feeding bodies 31 and 41. Accordingly, water is sufficiently supplied also to the surfaces of the first power feeding bodies 31 and 41, and electrolysis is efficiently performed in the electrolysis chambers 30 and 40, so that the dissolved hydrogen concentration can be increased.
 各第2極室30B、40B内での水流の方向は、矢印30Y、40Yで示されるように、同一である。本実施形態では、第2極室30B、40B内での水流の方向30Y、40Yは、第2極室30B、40Bの下端部から上端部に向く鉛直方向である。このため、第2極室30B及び40Bでの水流の方向30Y、40Yと第2極室30B及び40Bで生成される水素ガスの移動する方向が一致するため、水素ガスが効率よく第2極室30B及び40Bから排出される。これにより、第2極室30B及び40Bで発生する水素ガスが第2給電体32及び42の表面に滞留することが抑制される。従って、第2給電体32及び42の表面にも水が十分に供給され、電解室30及び40で効率よく電気分解が行なわれ、溶存水素濃度を高めることが可能となる。 The direction of the water flow in the second electrode chambers 30B and 40B is the same as indicated by arrows 30Y and 40Y. In the present embodiment, the directions 30Y and 40Y of the water flow in the second polar chambers 30B and 40B are vertical directions from the lower end portions to the upper end portions of the second polar chambers 30B and 40B. For this reason, since the directions 30Y and 40Y of the water flow in the second polar chambers 30B and 40B coincide with the moving direction of the hydrogen gas generated in the second polar chambers 30B and 40B, the hydrogen gas efficiently flows into the second polar chamber. It is discharged from 30B and 40B. Thereby, the hydrogen gas generated in the second electrode chambers 30B and 40B is suppressed from staying on the surfaces of the second power feeding bodies 32 and 42. Therefore, water is sufficiently supplied also to the surfaces of the second power feeders 32 and 42, and electrolysis is efficiently performed in the electrolysis chambers 30 and 40, so that the dissolved hydrogen concentration can be increased.
 電解室30、40は、水流の方向30X、40X、30Y、40Yに垂直な方向に並設されているのが望ましい。このような形態では、電解水生成装置1の高さを抑制し低背化を図ることが容易となる。 It is desirable that the electrolysis chambers 30 and 40 are juxtaposed in a direction perpendicular to the water flow directions 30X, 40X, 30Y and 40Y. In such a form, it becomes easy to reduce the height by suppressing the height of the electrolyzed water generating apparatus 1.
 図2は、電解室30及び40を区画する電解槽(第1電解槽)3及び電解槽(第2電解槽)4の断面を示している。図2では、第1極室30A、40A及び第1水路51を含む断面が示されている。電解槽3及び4は、例えば、樹脂成形によって形成されている。第1水路51の上流側にある電解室30は、電解槽3の第1側壁3Wによって区画されている。第1水路51は、水路51a及び51bを含んでいる。水路51aは、第1極室30Aと連通するように、第1側壁3Wの内部に形成されている。すなわち、第1水路51の少なくとも一部は、第1側壁3Wの内部に形成されている。これにより、電解水生成装置1の構成が簡素化され、コストダウンを図ることが可能となる。水路51bは、水路51aと第1極室40Aとを接続する。水路51bは、例えば、ゴム製のチューブ等によって構成され、電解槽3及び4の外側に配される。 FIG. 2 shows a cross section of an electrolytic cell (first electrolytic cell) 3 and an electrolytic cell (second electrolytic cell) 4 that partition the electrolytic chambers 30 and 40. In FIG. 2, a cross section including the first pole chambers 30 </ b> A and 40 </ b> A and the first water channel 51 is shown. The electrolytic cells 3 and 4 are formed by resin molding, for example. The electrolysis chamber 30 on the upstream side of the first water channel 51 is partitioned by the first side wall 3 </ b> W of the electrolytic cell 3. The first water channel 51 includes water channels 51a and 51b. The water channel 51a is formed inside the first side wall 3W so as to communicate with the first pole chamber 30A. That is, at least a part of the first water channel 51 is formed inside the first side wall 3W. Thereby, the structure of the electrolyzed water production | generation apparatus 1 is simplified, and it becomes possible to aim at a cost reduction. The water channel 51b connects the water channel 51a and the first pole chamber 40A. The water channel 51b is configured by, for example, a rubber tube or the like, and is disposed outside the electrolytic cells 3 and 4.
 図3では、電解槽3及び電解槽4の第2極室30B、40B及び第2水路52を含む断面が示されている。第2水路52の上流側にある電解室30は、電解槽3の第1側壁3Wによって区画されている。第2水路52は、水路52a及び52bを含んでいる。水路52aは、第2極室30Bと連通するように、第1側壁3Wの内部に形成されている。すなわち、第2水路52の少なくとも一部は、第1側壁3Wの内部に形成されている。これにより、電解水生成装置1の構成が簡素化され、コストダウンを図ることが可能となる。水路52bは、水路52aと第2極室40Bとを接続する。水路52bは、例えば、ゴム製のチューブ等によって構成され、電解槽3及び4の外側に配される。 FIG. 3 shows a cross section of the electrolytic cell 3 and the electrolytic cell 4 including the second electrode chambers 30B and 40B and the second water channel 52. The electrolysis chamber 30 on the upstream side of the second water channel 52 is partitioned by the first side wall 3 </ b> W of the electrolytic cell 3. The second water channel 52 includes water channels 52a and 52b. The water channel 52a is formed inside the first side wall 3W so as to communicate with the second electrode chamber 30B. That is, at least a part of the second water channel 52 is formed inside the first side wall 3W. Thereby, the structure of the electrolyzed water production | generation apparatus 1 is simplified, and it becomes possible to aim at a cost reduction. The water channel 52b connects the water channel 52a and the second electrode chamber 40B. The water channel 52b is configured by, for example, a rubber tube or the like, and is disposed outside the electrolytic cells 3 and 4.
 図4及び5は、図2及び3に示される電解槽3、4の変形例を示している。図4及び5に示される電解槽3、4は、第1水路51及び第2水路52の少なくとも一部が、第2側壁4Wの内部に形成されている点で、図2及び3に示される電解槽3、4と異なる。 4 and 5 show modifications of the electrolytic cells 3 and 4 shown in FIGS. The electrolytic cells 3 and 4 shown in FIGS. 4 and 5 are shown in FIGS. 2 and 3 in that at least a part of the first water channel 51 and the second water channel 52 is formed inside the second side wall 4W. Different from electrolytic cells 3 and 4.
 図4では、電解槽3及び電解槽4の第1極室30A、40A及び第1水路51を含む断面が示されている。第1水路51の下流側にある電解室40は、電解槽4の第2側壁4Wによって区画されている。第1水路51は、水路51c及び51dを含んでいる。水路51cは、第1極室30Aと水路51dとを接続する。水路51cは、例えば、ゴム製のチューブ等によって構成され、電解槽3及び4の外側に配される。水路51dは、第1極室40Aと連通するように、第2側壁4Wの内部に形成されている。すなわち、第1水路51の少なくとも一部は、第2側壁4Wの内部に形成されている。これにより、電解水生成装置1の構成が簡素化され、コストダウンを図ることが可能となる。 FIG. 4 shows a cross section including the first polar chambers 30 </ b> A and 40 </ b> A and the first water channel 51 of the electrolytic cell 3 and the electrolytic cell 4. The electrolysis chamber 40 on the downstream side of the first water channel 51 is partitioned by the second side wall 4 </ b> W of the electrolytic cell 4. The first water channel 51 includes water channels 51c and 51d. The water channel 51c connects the first electrode chamber 30A and the water channel 51d. The water channel 51 c is configured by, for example, a rubber tube or the like, and is disposed outside the electrolytic cells 3 and 4. The water channel 51d is formed inside the second side wall 4W so as to communicate with the first pole chamber 40A. That is, at least a part of the first water channel 51 is formed inside the second side wall 4W. Thereby, the structure of the electrolyzed water production | generation apparatus 1 is simplified, and it becomes possible to aim at a cost reduction.
 図5では、電解槽3及び電解槽4の第2極室30B、40B及び第2水路52を含む断面が示されている。第2水路52の上流側にある電解室30は、電解槽3の第1側壁3Wによって区画されている。第2水路52は、水路52c及び52dを含んでいる。水路52cは、第2極室30Bと水路52dとを接続する。水路52cは、例えば、ゴム製のチューブ等によって構成され、電解槽3及び4の外側に配される。水路52dは、第2極室40Bと連通するように、第2側壁4Wの内部に形成されている。すなわち、第2水路52の少なくとも一部は、第2側壁4Wの内部に形成されている。これにより、電解水生成装置1の構成が簡素化され、コストダウンを図ることが可能となる。 FIG. 5 shows a cross section including the second polar chambers 30 </ b> B and 40 </ b> B and the second water channel 52 of the electrolytic cell 3 and the electrolytic cell 4. The electrolysis chamber 30 on the upstream side of the second water channel 52 is partitioned by the first side wall 3 </ b> W of the electrolytic cell 3. The second water channel 52 includes water channels 52c and 52d. The water channel 52c connects the second electrode chamber 30B and the water channel 52d. The water channel 52 c is configured by, for example, a rubber tube or the like, and is disposed outside the electrolytic cells 3 and 4. The water channel 52d is formed inside the second side wall 4W so as to communicate with the second electrode chamber 40B. That is, at least a part of the second water channel 52 is formed inside the second side wall 4W. Thereby, the structure of the electrolyzed water production | generation apparatus 1 is simplified, and it becomes possible to aim at a cost reduction.
 図1に示されるように、本実施形態では、給水路21及び22の経路中には、流量調整弁23が設けられているのが望ましい。流量調整弁23は、給水路21及び22を流れる水の量を調整する。流量調整弁23によって第1極室30A及び第2極室30Bに流れ込む水の量が調整される。 As shown in FIG. 1, in this embodiment, it is desirable that a flow rate adjusting valve 23 is provided in the water supply passages 21 and 22. The flow rate adjusting valve 23 adjusts the amount of water flowing through the water supply channels 21 and 22. The amount of water flowing into the first electrode chamber 30A and the second electrode chamber 30B is adjusted by the flow rate adjusting valve 23.
 本実施形態では、第1極室40A及び第2極室40Bと吐水路61及び62との間には、流路切替弁63が設けられているのが望ましい。流路切替弁63は、第1極室40A及び第2極室40Bと吐水路61及び62との接続を選択的に切り替える。 In this embodiment, it is desirable that a flow path switching valve 63 is provided between the first and second electrode chambers 40A and 40B and the water discharge channels 61 and 62. The flow path switching valve 63 selectively switches the connection between the first polar chamber 40A and the second polar chamber 40B and the water discharge paths 61 and 62.
 第1給電体31、41及び第2給電体32、42の極性の切り替えと流路切替弁63による流路の切り替えとを同期させることにより、ユーザーによって選択された電解水(図1では電解水素水)が常に一方の吐水路(例えば、吐水路62)から吐出されうる。 By synchronizing the polarity switching of the first power feeding bodies 31 and 41 and the second power feeding bodies 32 and 42 and the switching of the flow path by the flow path switching valve 63, the electrolyzed water selected by the user (in FIG. Water) can always be discharged from one discharge channel (for example, the discharge channel 62).
 第1給電体31、41及び第2給電体32、42の極性の切り替えにあたっては、制御部が、流量調整弁23と流路切替弁63とを、連動して動作させる形態が望ましい。これにより、極性の切り替え前後において、吐水路62に接続されている極室への水の供給量を十分に確保しつつ、吐水路61に接続されている極室への水の供給量を抑制して、水の有効利用を図ることが可能となる。流量調整弁23と流路切替弁63とは、例えば、特許第5809208号公報に記載されているように、一体に形成され、単一のモーターによって連動して駆動される形態が望ましい。すなわち、流量調整弁23及び流路切替弁63は、円筒形状の外筒体と内筒体等によって構成される。内筒体の内側及び外側には、流量調整弁23及び流路切替弁63を構成する流路が形成され、各流路は、流量調整弁23及び流路切替弁63の動作状態に応じて適宜交差するように構成されている。このような弁装置は、「ダブルオートチェンジクロスライン弁」と称され、電解水生成装置1の構成及び制御の簡素化に寄与し、電解水生成装置1の商品価値をより一層高める。本電解水生成装置1にあっては、図2乃至5に示されるように、電解槽3の第1側壁3W及び電解槽4の第2側壁4Wに水路53及び54が設けられることにより、流量調整弁23と流路切替弁63とを電解槽3及び電解槽4の下方に隣接して配置することができ、電解水生成装置1の構成がより一層簡素化されうる。 In the switching of the polarities of the first power supply bodies 31 and 41 and the second power supply bodies 32 and 42, it is desirable that the control unit operates the flow rate adjusting valve 23 and the flow path switching valve 63 in conjunction with each other. Thereby, before and after switching the polarity, the amount of water supplied to the polar chamber connected to the water discharge passage 61 is sufficiently suppressed while the amount of water supplied to the polar chamber connected to the water discharge passage 62 is sufficiently secured. Thus, it is possible to make effective use of water. For example, as described in Japanese Patent No. 5809208, the flow rate adjusting valve 23 and the flow path switching valve 63 are preferably integrally formed and driven in conjunction with a single motor. That is, the flow rate adjusting valve 23 and the flow path switching valve 63 are configured by a cylindrical outer cylinder, an inner cylinder, and the like. The flow path constituting the flow rate adjustment valve 23 and the flow path switching valve 63 is formed inside and outside the inner cylinder, and each flow path is in accordance with the operating state of the flow rate adjustment valve 23 and the flow path switching valve 63. It is configured to cross appropriately. Such a valve device is referred to as a “double auto change cross line valve”, contributes to the simplification of the configuration and control of the electrolyzed water generating device 1, and further increases the commercial value of the electrolyzed water generating device 1. In the present electrolyzed water generating apparatus 1, as shown in FIGS. 2 to 5, the water channels 53 and 54 are provided in the first side wall 3 </ b> W of the electrolyzer 3 and the second side wall 4 </ b> W of the electrolyzer 4. The adjustment valve 23 and the flow path switching valve 63 can be disposed adjacent to the lower part of the electrolytic cell 3 and the electrolytic cell 4, and the configuration of the electrolyzed water generating device 1 can be further simplified.
 図6は、電解水生成装置1の変形例である電解水生成装置1Aを示している。電解水生成装置1Aでは、電解室30及び40が水流の方向30X、40X、30Y、40Yすなわち鉛直方向に並べて配されている点で、電解水生成装置1とは異なる。電解水生成装置1Aのうち、以下で説明されていない構成に関しては、電解水生成装置1と同様である。 FIG. 6 shows an electrolyzed water generating apparatus 1 </ b> A that is a modification of the electrolyzed water generating apparatus 1. The electrolyzed water generating apparatus 1A is different from the electrolyzed water generating apparatus 1 in that the electrolysis chambers 30 and 40 are arranged side by side in the water flow directions 30X, 40X, 30Y, and 40Y, that is, in the vertical direction. In the electrolyzed water generating apparatus 1A, configurations not described below are the same as those of the electrolyzed water generating apparatus 1.
 電解水生成装置1Aでは、電解室30及び40が鉛直方向に並べて配されているので、電解水生成装置1Aの接地面積を抑制することが可能となり、狭小なキッチン等での設置の自由度が高められる。 In the electrolyzed water generating apparatus 1A, since the electrolysis chambers 30 and 40 are arranged in the vertical direction, the ground contact area of the electrolyzed water generating apparatus 1A can be suppressed, and the degree of freedom of installation in a small kitchen or the like is increased. Enhanced.
 以上、本発明の実施形態が詳細に説明されたが、本発明は上記の具体的な実施形態に限定されることなく種々の態様に変更して実施される。すなわち、電解水生成装置1は、少なくとも、水を電気分解するための電解室30、40、…を複数備え、各電解室30、40、…には、互いに対向して配置された第1給電体31、41、…及び第2給電体32、42、…と、電解室30、40、…を第1給電体31、41、…側の第1極室30A、40A、…と、第2給電体32、42、…側の第2極室30B、40B、…とに区分する隔膜33、43、…とが配され、各電解室30、40、…は、各第1極室30A、40A、…を直列又は並列に連通させる第1水路51と、各第2極室30B、40Bを直列に連通させる第2水路52とによって接続され、第2水路52の上流側にある第2極室30Bでは、中性の電解水が生成され、第2水路52の下流側にある第2極室40Bでは、アルカリ性の電解水が生成されるように構成されていればよい。 As mentioned above, although the embodiment of the present invention has been described in detail, the present invention is not limited to the above-described specific embodiment, and can be implemented in various forms. That is, the electrolyzed water generating apparatus 1 includes at least a plurality of electrolysis chambers 30, 40,... For electrolyzing water, and each electrolysis chamber 30, 40,. ... and the second power feeding bodies 32, 42, ..., and the electrolysis chambers 30, 40, ..., the first electrode chambers 30A, 40A, ... on the side of the first power feeding bodies 31, 41, ..., and the second , Which are divided into second electrode chambers 30B, 40B, ... on the side of the power feeding bodies 32, 42, ..., are arranged, and each electrolysis chamber 30, 40, ... is provided with each first electrode chamber 30A, 40A,... Are connected by a first water channel 51 that communicates serially or in parallel with each other, and a second water channel 52 that communicates each of the second electrode chambers 30B and 40B in series, and is located on the upstream side of the second water channel 52. In the chamber 30B, neutral electrolyzed water is generated, and in the second electrode chamber 40B on the downstream side of the second water channel 52, It may be composed as alkaline resistance of the electrolytic water is generated.
 また、電解水生成装置1が3以上の電解室を含む場合、最も上流側の電解室には電解室30が適用され、最も下流側の電解室には電解室40が適用される。最も上流側の電解室と最も下流側の電解室との間に配される電解室には、電解室30又は電解室40と同等の構成が適用されうる。この場合、アルカリ性の電解水が生成される電解室40の下流側に、中性の電解水が生成される電解室30が位置されないように、各電解室が配置されるのが望ましい。 Also, when the electrolyzed water generating apparatus 1 includes three or more electrolysis chambers, the electrolysis chamber 30 is applied to the most upstream electrolysis chamber, and the electrolysis chamber 40 is applied to the most downstream electrolysis chamber. A structure equivalent to the electrolysis chamber 30 or the electrolysis chamber 40 can be applied to the electrolysis chamber disposed between the most upstream electrolysis chamber and the most downstream electrolysis chamber. In this case, it is desirable to arrange each electrolysis chamber so that the electrolysis chamber 30 in which neutral electrolyzed water is generated is not located downstream of the electrolysis chamber 40 in which alkaline electrolyzed water is generated.
 1  電解水生成装置
 3  電解槽
 3W 第1側壁
 4  電解槽
 4W 第2側壁
30  電解室
30A 第1極室
30B 第2極室
31  第1給電体
32  第2給電体
33  隔膜
40  電解室
40A 第1極室
40B 第2極室
41  第1給電体
42  第2給電体
43  隔膜
51  第1水路
52  第2水路
DESCRIPTION OF SYMBOLS 1 Electrolyzed water production | generation apparatus 3 Electrolytic tank 3W 1st side wall 4 Electrolytic tank 4W 2nd side wall 30 Electrolytic chamber 30A 1st electrode chamber 30B 2nd electrode chamber 31 1st electric power feeding body 32 2nd electric power feeding body 33 Diaphragm 40 Electrolytic chamber 40A 1st Polar chamber 40B Second electrode chamber 41 First power supply 42 Second power supply 43 Diaphragm 51 First water channel 52 Second water channel

Claims (8)

  1.  水を電気分解するための電解室を複数備えた電解水生成装置であって、
     各電解室には、互いに対向して配置された第1給電体及び第2給電体と、前記電解室を前記第1給電体側の第1極室と、前記第2給電体側の第2極室とに区分する隔膜とが配され、
     各電解室は、各第1極室を直列又は並列に連通させる第1水路と、各第2極室を直列に連通させる第2水路とによって接続され、
     前記第2水路の上流側にある前記第2極室では、中性の電解水が生成され、前記第2水路の下流側にある前記第2極室では、アルカリ性の電解水が生成されることを特徴とする電解水生成装置。
    An electrolyzed water generating device comprising a plurality of electrolysis chambers for electrolyzing water,
    Each electrolytic chamber includes a first power feeding body and a second power feeding body arranged to face each other, a first electrode chamber on the first power feeding body side, and a second electrode chamber on the second power feeding body side. And a diaphragm that is divided into
    Each electrolysis chamber is connected by a first water channel that communicates each first electrode chamber in series or in parallel, and a second water channel that communicates each second electrode chamber in series,
    Neutral electrolyzed water is generated in the second electrode chamber on the upstream side of the second water channel, and alkaline electrolyzed water is generated in the second electrode chamber on the downstream side of the second water channel. An electrolyzed water generator characterized by the above.
  2.  前記各第2極室内での水流の方向は、同一である請求項1記載の電解水生成装置。 The electrolyzed water generating device according to claim 1, wherein the direction of water flow in each second electrode chamber is the same.
  3.  各電解室は、前記水流の方向に垂直な方向に並設されている請求項2記載の電解水生成装置。 3. The electrolyzed water generating device according to claim 2, wherein the electrolysis chambers are arranged side by side in a direction perpendicular to the direction of the water flow.
  4.  前記第2水路の上流側にある電解室は、第1電解槽の第1側壁によって区画され、前記第2水路の少なくとも一部は、前記第1側壁の内部に形成されている請求項3記載の電解水生成装置。 The electrolysis chamber on the upstream side of the second water channel is defined by a first side wall of a first electrolytic cell, and at least a part of the second water channel is formed inside the first side wall. Electrolyzed water generator.
  5.  前記第1水路は、各第1極室を直列に連通させ、前記第1水路の少なくとも一部は、前記第1側壁の内部に形成されている請求項4記載の電解水生成装置。 The electrolyzed water generating device according to claim 4, wherein the first water channel connects each first electrode chamber in series, and at least a part of the first water channel is formed inside the first side wall.
  6.  前記第2水路の下流側にある電解室は、第2電解槽の第2側壁によって区画され、前記第2水路の少なくとも一部は、前記第2側壁の内部に形成されている請求項3記載の電解水生成装置。 The electrolysis chamber on the downstream side of the second water channel is defined by a second side wall of a second electrolytic cell, and at least a part of the second water channel is formed inside the second side wall. Electrolyzed water generator.
  7.  前記第1水路は、各第1極室を直列に連通させ、前記第1水路の少なくとも一部は、前記第2側壁の内部に形成されている請求項6記載の電解水生成装置。 The electrolyzed water generating device according to claim 6, wherein the first water channel connects each first electrode chamber in series, and at least a part of the first water channel is formed inside the second side wall.
  8.  前記第2水路の上流側にある前記電解室に配される前記隔膜は、固体高分子膜である請求項1乃至7のいずれかに記載の電解水生成装置。
     
    The electrolyzed water generating device according to any one of claims 1 to 7, wherein the diaphragm disposed in the electrolysis chamber on the upstream side of the second water channel is a solid polymer membrane.
PCT/JP2017/034541 2016-10-12 2017-09-25 Electrolyzed water generating device WO2018070230A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197006090A KR102475480B1 (en) 2016-10-12 2017-09-25 electrolyzed water generator
CN201780054015.8A CN109661375A (en) 2016-10-12 2017-09-25 Electrolytic water generating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016200973A JP6825871B2 (en) 2016-10-12 2016-10-12 Electrolyzed water generator
JP2016-200973 2016-10-12

Publications (1)

Publication Number Publication Date
WO2018070230A1 true WO2018070230A1 (en) 2018-04-19

Family

ID=61905565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034541 WO2018070230A1 (en) 2016-10-12 2017-09-25 Electrolyzed water generating device

Country Status (5)

Country Link
JP (1) JP6825871B2 (en)
KR (1) KR102475480B1 (en)
CN (1) CN109661375A (en)
TW (1) TWI732958B (en)
WO (1) WO2018070230A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018199099A1 (en) * 2017-04-26 2018-11-01 株式会社日本トリム Electrolyzed-water generation device and electrolyzed-water generation method
JP7407369B2 (en) 2020-06-26 2024-01-04 パナソニックIpマネジメント株式会社 Electrolyzed water generator and cleaning method for electrolyzed water generator

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7261260B2 (en) * 2021-04-01 2023-04-19 株式会社日本トリム electrolytic cell
JP6984061B1 (en) * 2021-05-27 2021-12-17 株式会社日本トリム Electrolyzed water generator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016165667A (en) * 2015-03-09 2016-09-15 株式会社日本トリム Electrolytic water generator
JP6169762B1 (en) * 2016-08-02 2017-07-26 MiZ株式会社 Hydrogen water generation method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4417707B2 (en) 2003-07-08 2010-02-17 九州日立マクセル株式会社 Water conditioner
CN101624227B (en) * 2009-06-16 2011-06-08 杨国锋 Running water type electrolytic water manufacturing device
KR101662874B1 (en) * 2011-04-27 2016-10-05 가부시키가이샤니혼트림 Electrolyzed water generator
CN104418409A (en) * 2013-08-27 2015-03-18 天津日望环境技术有限公司 Strongly-alkaline (acidic) electrolytic water generation device
JP5639724B1 (en) * 2014-03-17 2014-12-10 株式会社日本トリム ELECTROLYTIC WATER GENERATING DEVICE AND MANUFACTURING METHOD THEREOF
JP6212505B2 (en) * 2015-01-07 2017-10-11 株式会社日本トリム Electrolyzed water generator
JP5756579B1 (en) * 2015-03-06 2015-07-29 株式会社日本トリム Electrolyzed water generator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016165667A (en) * 2015-03-09 2016-09-15 株式会社日本トリム Electrolytic water generator
JP6169762B1 (en) * 2016-08-02 2017-07-26 MiZ株式会社 Hydrogen water generation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018199099A1 (en) * 2017-04-26 2018-11-01 株式会社日本トリム Electrolyzed-water generation device and electrolyzed-water generation method
JP2018183740A (en) * 2017-04-26 2018-11-22 株式会社日本トリム Electrolytic water generator
JP7407369B2 (en) 2020-06-26 2024-01-04 パナソニックIpマネジメント株式会社 Electrolyzed water generator and cleaning method for electrolyzed water generator

Also Published As

Publication number Publication date
KR20190058464A (en) 2019-05-29
TW201813931A (en) 2018-04-16
JP6825871B2 (en) 2021-02-03
CN109661375A (en) 2019-04-19
TWI732958B (en) 2021-07-11
JP2018061929A (en) 2018-04-19
KR102475480B1 (en) 2022-12-07

Similar Documents

Publication Publication Date Title
WO2018070230A1 (en) Electrolyzed water generating device
JP6412447B2 (en) Electrolyzed water generator
WO2018135080A1 (en) Electrolyzed-water generation device, water treatment device, device for producing water for dialysate preparation, and hydrogen water server
JP4751994B1 (en) Electrolyzed water production apparatus having a diaphragm electrolytic cell and a non-diaphragm electrolytic cell
WO2018199099A1 (en) Electrolyzed-water generation device and electrolyzed-water generation method
JP2021169084A (en) Electrolytic water generator and electrolytic water generating method
JPWO2013183141A1 (en) Electrolyzed water generator
JP2018030045A (en) Electrolytic water generator and electrolytic water generation method
WO2018174034A1 (en) Electrolyzed water generating device and electrolyzed water generating method
JP2006346672A (en) Batch-type apparatus for producing acidic electrolytic water and method using the same
JP6276790B2 (en) Electrolyzed water generating device, dialysate preparation water manufacturing apparatus using the same, and electrolyzed water generating method
JP2008055400A (en) Method for producing bactericidal water through dual electrolysis
JP2019013873A (en) Electrolytic water generator
JP6885776B2 (en) Electrolyzed water generator
CN214457047U (en) Electrolyzed water generating device
KR101130795B1 (en) electrolytic cell having a multi-step electrode
JP3575712B2 (en) Electrolyzed water generator
JP5886894B2 (en) Electrolyzed water generator
JP2017529231A (en) Acid water electrolyzer
JPH11221566A (en) Production of electrolytic water
JP2018030044A (en) Electrolytic water generator and electrolytic water generation method
CN112759039A (en) Electrolyzed water generation device and method for controlling proportion of alkaline water and acid water generated by electrolyzed water generation device
WO2017135209A1 (en) Electrolyzed water generation device
JP2018183738A (en) Electrolytic water generator
JP2005254101A (en) Electrolytic method and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17860697

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197006090

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17860697

Country of ref document: EP

Kind code of ref document: A1