JP2016162501A - Clad-type lead acid battery, clad-type positive electrode plate, and collector for clad-type positive electrode plate - Google Patents

Clad-type lead acid battery, clad-type positive electrode plate, and collector for clad-type positive electrode plate Download PDF

Info

Publication number
JP2016162501A
JP2016162501A JP2015037314A JP2015037314A JP2016162501A JP 2016162501 A JP2016162501 A JP 2016162501A JP 2015037314 A JP2015037314 A JP 2015037314A JP 2015037314 A JP2015037314 A JP 2015037314A JP 2016162501 A JP2016162501 A JP 2016162501A
Authority
JP
Japan
Prior art keywords
clad
positive electrode
lead
current collector
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015037314A
Other languages
Japanese (ja)
Other versions
JP5909815B1 (en
Inventor
智紀 武部
Tomonori Takebe
智紀 武部
正治 稲守
Masaharu Inamori
正治 稲守
和哉 松岡
Kazuya Matsuoka
和哉 松岡
一郎 向谷
Ichiro Mukaitani
一郎 向谷
北森 茂孝
Shigetaka Kitamori
茂孝 北森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55808212&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2016162501(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2015037314A priority Critical patent/JP5909815B1/en
Priority to TW109109712A priority patent/TWI718036B/en
Priority to TW105106100A priority patent/TWI699036B/en
Priority to PCT/JP2016/055805 priority patent/WO2016136941A1/en
Priority to TW109145379A priority patent/TWI733637B/en
Application granted granted Critical
Publication of JP5909815B1 publication Critical patent/JP5909815B1/en
Publication of JP2016162501A publication Critical patent/JP2016162501A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/02Hot chamber machines, i.e. with heated press chamber in which metal is melted
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/02Pressure casting making use of mechanical pressure devices, e.g. cast-forging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D25/00Special casting characterised by the nature of the product
    • B22D25/02Special casting characterised by the nature of the product by its peculiarity of shape; of works of art
    • B22D25/04Casting metal electric battery plates or the like
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C11/00Alloys based on lead
    • C22C11/08Alloys based on lead with antimony or bismuth as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/75Wires, rods or strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/76Containers for holding the active material, e.g. tubes, capsules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a clad-type lead acid battery capable of maintaining the castability and durability of a core metal at the same time.SOLUTION: A core metal constituting a collector for a clad-type lead acid battery is prepared by casting a lead alloy containing 3.0 mass% or more and 7.0 mass% or less of antimony by a pressure casting method.SELECTED DRAWING: None

Description

本発明は、鉛合金を鋳造して構成された芯金を備えるクラッド式鉛蓄電池、並びに、クラッド式鉛蓄電池用の集電体および正極板に関するものである。   The present invention relates to a clad lead storage battery including a cored bar formed by casting a lead alloy, and a current collector and a positive electrode plate for the clad lead storage battery.

フォークリフト等の電動車両用蓄電池には、耐久性や耐衝撃性が要求されるため、長寿命で振動に強いクラッド式鉛蓄電池が一般に使用される。クラッド式鉛蓄電池では、正極板にクラッド式正極板が使用される。このクラッド式正極板は、円筒形のチューブ(クラッドチューブ)を複数本並べ、各クラッドチューブに集電体となる芯金を挿入し、各クラッドチューブと芯金の隙間に正極活物質となる鉛粉を充填して未化成極板を作製し、この極板を化成して得られる。従来のクラッド式鉛蓄電池では、クラッド式正極板を構成する芯金が、重力鋳造により形成されている。また、芯金の鋳造性を高めるため、芯金を構成する鉛合金にアンチモン(Sb)が含有されている(非特許文献1)。   Since a storage battery for an electric vehicle such as a forklift is required to have durability and impact resistance, a clad lead storage battery that has a long life and is resistant to vibration is generally used. In the clad lead storage battery, a clad positive plate is used as the positive plate. This clad type positive electrode plate has a plurality of cylindrical tubes (clad tubes) arranged, a metal core serving as a current collector is inserted into each clad tube, and lead serving as a positive electrode active material in a gap between each clad tube and the metal core An unformed electrode plate is prepared by filling powder, and this electrode plate is obtained by chemical conversion. In the conventional clad lead-acid battery, the cored bar constituting the clad positive plate is formed by gravity casting. Moreover, in order to improve the casting property of a core metal, antimony (Sb) is contained in the lead alloy which comprises a core metal (nonpatent literature 1).

Detchko Pavlov/Lead-Acid Batteries/Science and Technology/A hand book of lead-acid battery technology and its influence on the product/Elsevier Science LtdDetchko Pavlov / Lead-Acid Batteries / Science and Technology / A hand book of lead-acid battery technology and its influence on the product / Elsevier Science Ltd

しかしながら、クラッド式正極板の集電体を構成する芯金の成分中にアンチモンが存在すると、負極の水素過電圧が低下して過充電傾向となり、正極板の集電体(芯金)が腐食し易くなるため、鉛蓄電池の耐久性に影響を及ぼすおそれがある(非特許文献1)。   However, if antimony is present in the core metal component that constitutes the current collector of the clad positive plate, the hydrogen overvoltage of the negative electrode tends to decrease and overcharge tends to occur, and the current collector (core metal) of the positive plate corrodes. Since it becomes easy, there exists a possibility of affecting the durability of lead acid battery (nonpatent literature 1).

一方、クラッド式正極板を薄くする場合は、限られたスペースに細いチューブをできるだけ多く並べる必要があるため、芯金の断面寸法(例えば、断面の面積や断面の径寸法)をできるだけ小さくする必要がある。このような断面寸法が小さい芯金を作製するためには、芯金の鋳造性を維持するためにアンチモンの含有量を増やさなければならない。しかしながら、アンチモンの含有量を増やすと、上述のように芯金が腐食し易くなり、予め腐食分を考慮して芯金の断面寸法を大きくせざるを得ない。そのため、従来のクラッド式鉛蓄電池では、芯金の断面寸法を小さくすることに限界があった。   On the other hand, when thinning the clad positive plate, it is necessary to arrange as many thin tubes as possible in a limited space, so the cross-sectional dimensions of the cored bar (for example, cross-sectional area and cross-sectional diameter) must be as small as possible. There is. In order to produce a cored bar having such a small cross-sectional dimension, the content of antimony must be increased in order to maintain the castability of the cored bar. However, if the content of antimony is increased, the core metal is likely to corrode as described above, and the cross-sectional dimension of the core metal must be increased in consideration of the corrosion component in advance. Therefore, the conventional clad lead-acid battery has a limit in reducing the cross-sectional dimension of the cored bar.

本発明の目的は、芯金の鋳造性と耐久性を同時に維持することができる、クラッド式鉛蓄電池を提供することにある。   An object of the present invention is to provide a clad lead-acid battery capable of simultaneously maintaining the castability and durability of a metal core.

本発明の他の目的は、芯金の断面寸法を小さくすることができるクラッド式鉛蓄電池を提供することにある。   Another object of the present invention is to provide a clad lead-acid battery capable of reducing the cross-sectional dimension of the cored bar.

本発明のさらに他の目的は、放電特性に優れ、電池寿命が長いクラッド式鉛蓄電池を提供することにある。   Still another object of the present invention is to provide a clad lead-acid battery having excellent discharge characteristics and a long battery life.

本発明が改良の対象とするクラッド式鉛蓄電池用集電体は、鉛合金を鋳造して構成された芯金を備えている。該鉛合金には、鉛合金の全質量に対してアンチモン(Sb)が3.0質量%以上7.0質量%以下含まれている。鉛合金の鋳造には、加圧鋳造法が用いられる。加圧鋳造法は、溶解釜内に設置された油圧式鉛ポンプを用いて、溶解釜内で溶融した鉛合金を所定の注入速度で鋳型内に押し込んで、鋳物を作製する鋳造方法である。   A current collector for a clad lead storage battery to be improved by the present invention includes a metal core formed by casting a lead alloy. The lead alloy contains 3.0% by mass or more and 7.0% by mass or less of antimony (Sb) with respect to the total mass of the lead alloy. A pressure casting method is used for casting the lead alloy. The pressure casting method is a casting method in which a lead alloy melted in a melting pot is pushed into a mold at a predetermined injection rate using a hydraulic lead pump installed in the melting pot to produce a casting.

このように所定量のアンチモンを含有する鉛合金を加圧鋳造法により鋳造して得られた芯金は、鋳造性と耐久性(耐腐食性、抗張力)を維持することができる。従来の重力鋳造法を用いた芯金の製造では、アンチモンの含有量が5質量%を超える条件に設定しなければ芯金を製造することが困難であった。これに対して、本願発明では、アンチモンの含有量を5質量%以下にしても、鋳造性を維持することができるため、耐久性を維持したまま芯金の製造が可能である。特に、アンチモンの含有量が4.0質量%以上5.0質量%以下の条件を満たす場合は、鋳造性を維持、向上させることができるため、確実に芯金を製造することができる。なお、鉛合金中のアンチモンの含有量が3.0質量%に満たない場合は鋳造性が維持できず、アンチモンの含有量が7.0質量%を超える場合は耐久性が低下する傾向がある。   Thus, the core metal obtained by casting the lead alloy containing a predetermined amount of antimony by the pressure casting method can maintain castability and durability (corrosion resistance, tensile strength). In the manufacture of a metal core using a conventional gravity casting method, it is difficult to manufacture the metal core unless the antimony content exceeds 5% by mass. On the other hand, in this invention, even if content of antimony is 5 mass% or less, since castability can be maintained, manufacture of a core metal is possible, maintaining durability. In particular, when the content of antimony satisfies the condition of 4.0% by mass or more and 5.0% by mass or less, the castability can be maintained and improved, so that the cored bar can be manufactured reliably. In addition, when the content of antimony in the lead alloy is less than 3.0% by mass, castability cannot be maintained, and when the content of antimony exceeds 7.0% by mass, the durability tends to decrease. .

鉛合金には、鉛合金の全質量に対して0.01質量%以上0.45質量%以下のヒ素(As)が含まれていてもよい。このような含有量のヒ素が含まれている鉛合金を用いて芯金を鋳造することにより、寿命を長くすることができる。ヒ素の含有量は、好ましくは鉛合金の全質量に対して0.01質量%以上0.40質量%以下である。このような含有量の範囲では、放電特性を向上させながら(例えば放電容量を高く維持しながら)電池寿命を長くする(例えば寿命比率を高くする)ことができる。   The lead alloy may contain 0.01% by mass or more and 0.45% by mass or less of arsenic (As) with respect to the total mass of the lead alloy. By casting the cored bar using a lead alloy containing such an arsenic content, the life can be extended. The content of arsenic is preferably 0.01% by mass to 0.40% by mass with respect to the total mass of the lead alloy. In such a content range, the battery life can be extended (for example, the life ratio can be increased) while improving the discharge characteristics (for example, while maintaining a high discharge capacity).

また、上述の条件で芯金を鋳造すると、芯金の断面寸法(断面の面積、断面の径寸法等)を小さくすることができる。具体的には、クラッドチューブの空間体積を一定にした場合芯金の平均断面積が4.9mm2以上7.1mm2以下となるように設定することができる。ここで、平均断面積は、芯金の長手方向と直交する方向に切断した断面の断面積を芯金の長手方向に亘って平均化したときの平均断面積と定義する。 In addition, when the cored bar is cast under the above-described conditions, the cross-sectional dimensions of the cored bar (cross-sectional area, cross-sectional diameter dimension, etc.) can be reduced. Specifically, it is possible to average cross-sectional area when the core metal in which the void volume of the cladding tube constant is set to be 4.9 mm 2 or more 7.1 mm 2 or less. Here, the average cross-sectional area is defined as the average cross-sectional area when the cross-sectional area of the cross section cut in the direction orthogonal to the longitudinal direction of the core metal is averaged over the longitudinal direction of the core metal.

従来のクラッド式鉛蓄電池では、上述のとおり、鋳造性、耐久性の観点から、アンチモンの含有量が比較的多い鉛合金を用いる場合は、芯金の断面寸法をある程度大きくせざるを得なかった。これに対して、本発明ではアンチモンの含有量が比較的少ない鉛合金を用いた場合でも、鋳造性および耐久性を同時に維持することができるため、芯金の断面寸法を従来よりも小さくすることができる。また、芯金の断面寸法が小さくなると、クラッドチューブ内の集電体(芯金)の表面とクラッドチューブの内壁との間の空間体積が大きくなる。その結果、クラッドチューブ単位で正極活物質の充填量を増加させることができるため、鋳造性と耐久性を維持しながら、鉛蓄電池の放電特性を維持または向上させることができる。特に芯金の平均断面積が5.7mm2付近では、鋳造性、耐久性、放電特性のいずれも向上する。 In the conventional clad lead-acid battery, as described above, from the viewpoint of castability and durability, when using a lead alloy having a relatively high antimony content, the cross-sectional dimension of the core metal has to be increased to some extent. . On the other hand, in the present invention, even when a lead alloy having a relatively low antimony content is used, castability and durability can be maintained at the same time. Can do. Further, when the cross-sectional dimension of the core metal is reduced, the space volume between the surface of the current collector (core metal) in the cladding tube and the inner wall of the cladding tube is increased. As a result, since the filling amount of the positive electrode active material can be increased on a clad tube basis, the discharge characteristics of the lead storage battery can be maintained or improved while maintaining the castability and durability. In particular, when the average cross-sectional area of the metal core is around 5.7 mm 2 , all of castability, durability, and discharge characteristics are improved.

なお、芯金の平均断面積が4.9mm2に満たない場合は十分な集電機能が得られない可能性がある。また、芯金の平均断面積が7.1mm2を超える場合はクラッドチューブ内の正極活物質の充填スペースが小さくなる傾向がある。そのため、芯金の平均断面積は、上述のように4.9mm2以上7.1mm2以下の数値範囲内に定まる。ただし、芯金の平均断面積と放電特性との関係は、クラッドチューブ内の空間体積に規制され、クラッドチューブ内の正極活物質の充填量によって相対的に定まるものである。 In addition, when the average cross-sectional area of the metal core is less than 4.9 mm 2 , there is a possibility that a sufficient current collecting function cannot be obtained. Further, when the average cross-sectional area of the core bar exceeds 7.1 mm 2 , the space for filling the positive electrode active material in the clad tube tends to be small. Therefore, the average cross-sectional area of the core is determined in the 7.1 mm 2 or less in the numerical range 4.9 mm 2 or more as described above. However, the relationship between the average cross-sectional area of the cored bar and the discharge characteristics is regulated by the space volume in the clad tube and is relatively determined by the filling amount of the positive electrode active material in the clad tube.

芯金の断面形状は、任意であるが、断面の輪郭形状が円形となるように定めると、加圧鋳造による加圧力が芯金の径方向に均等にかかるため、鋳造が容易で強度のばらつきが少ない芯金を得ることができる。また、クラッドチューブが円筒形である場合に、チューブ内の中心に芯金を挿入すれば、芯金の表面と円筒形状クラッドチューブの内壁との間の距離をほぼ均一にすることができる。言い換えると、集電体(芯金)とクラッドチューブの内壁との間に正極活物質をほぼ均一に配置することができるため、鉛蓄電池の長寿命化、放電特性の向上が期待できる。   The cross-sectional shape of the core metal is arbitrary, but if the cross-sectional contour shape is set to be circular, the pressure applied by pressure casting is applied evenly in the radial direction of the core metal, so casting is easy and the strength varies Can be obtained. Further, when the clad tube is cylindrical, if the cored bar is inserted into the center of the tube, the distance between the surface of the cored bar and the inner wall of the cylindrical clad tube can be made substantially uniform. In other words, since the positive electrode active material can be disposed almost uniformly between the current collector (core metal) and the inner wall of the clad tube, it can be expected that the lead-acid battery has a longer life and improved discharge characteristics.

なお、芯金の平均断面積(4.9mm2以上7.1mm2以下)を、断面の輪郭形状が円形になるように芯金の断面形状を定める場合の芯金の平均直径(定義:断面の直径を芯金の長手方向に亘って平均化した平均直径)に換算すると、芯金の平均直径は約2.5mm以上で3.0mm以下の数値範囲となる。また、芯金の平均断面積が5.7mm2の場合は、平均直径は約2.7mmとなる。 The average cross-sectional area of the core metal (4.9 mm 2 or more 7.1 mm 2 or below), the average diameter of the core when the contour shape of the cross section defines the cross-sectional shape of the core metal so as to circle (Define section The average diameter of the cored bar is a numerical range of about 2.5 mm or more and 3.0 mm or less. Further, when the average cross-sectional area of the core metal is 5.7 mm 2 , the average diameter is about 2.7 mm.

本発明のクラッド式鉛蓄電池用の正極板は、上記の条件で得られる集電体(芯金)を備えている。具体的には、フェノ−ル樹脂を含浸した筒状のガラス繊維を焼結して構成されたチューブと、該チューブ内に集電体(芯金)を挿入した状態で、チューブと集電体(芯金)との間に正極活物質が充填されて構成されている。このような構成を備えるクラッド式鉛蓄電池用正極板を用いることにより、放電特性に優れ、寿命が長いクラッド式鉛蓄電池を得ることができる。   The positive electrode plate for a clad lead storage battery of the present invention includes a current collector (core metal) obtained under the above conditions. Specifically, a tube and a current collector in a state in which a cylindrical glass fiber impregnated with phenol resin is sintered and a current collector (core metal) is inserted into the tube. The positive electrode active material is filled between the (core metal). By using a positive electrode plate for a clad lead-acid battery having such a configuration, a clad lead-acid battery having excellent discharge characteristics and a long life can be obtained.

また、本発明のクラッド式鉛蓄電池用正極板では、上述のように集電体(芯金)の断面寸法を小さくすることができる。すなわち、クラッドチューブ内の正極活物質の充填スペースを大きくすることができるため、1本のクラッドチューブあたりの正極活物質の充填量を増やすことができる。ここで、既化密度とは、化成した後の活物質の密度を意味する。活物質の既化密度が小さいことは、活物質が多孔質性であること示している。したがって、本発明では、多孔質性の正極活物質の充填量を多くすることができるため、放電特性に優れたクラッド式鉛蓄電池を得ることができる。   Moreover, in the positive electrode plate for a clad lead-acid battery of the present invention, the cross-sectional dimension of the current collector (core metal) can be reduced as described above. That is, since the filling space of the positive electrode active material in the clad tube can be increased, the filling amount of the positive electrode active material per one clad tube can be increased. Here, the established density means the density of the active material after chemical conversion. The low density of the active material indicates that the active material is porous. Therefore, in this invention, since the filling amount of the porous positive electrode active material can be increased, a clad lead storage battery having excellent discharge characteristics can be obtained.

なお、既化密度の範囲は、任意であるが、放電特性および電池寿命を両立させるためには、3.30g/cm3以上3.75g/cm3以下の数値範囲に定めるのが好ましい。また、放電特定を向上させ且つ電池寿命を長くするためには、既化密度の範囲は、3.40g/cm3以上3.65g/cm3以下の数値範囲に定めるのが好ましい。ただし、既化密度と電池特性との関係は、クラッドチューブ内の空間体積に規制され、クラッドチューブ内の正極活物質の充填量によって相対的に定まるものである。 The range of the established density is arbitrary, but is preferably set to a numerical range of 3.30 g / cm 3 or more and 3.75 g / cm 3 or less in order to achieve both discharge characteristics and battery life. Further, in order to improve the discharge specific and a longer battery life, range of Sundeka density is preferably determined to 3.40 g / cm 3 or more 3.65 g / cm 3 or less of numerical ranges. However, the relationship between the established density and the battery characteristics is regulated by the space volume in the cladding tube and is relatively determined by the filling amount of the positive electrode active material in the cladding tube.

(A)は従来技術を用いて鋳造したクラッド式正極板の集電体(芯金)の組織を示す金属顕微鏡写真であり、(B)は本発明の実施例で用いたクラッド式正極板の集電体(芯金)の組織を示す金属顕微鏡写真である。(A) is a metallographic micrograph showing the structure of a current collector (core metal) of a clad positive plate cast using a conventional technique, and (B) is a diagram of the clad positive plate used in the examples of the present invention. It is a metal micrograph which shows the structure | tissue of a collector (core metal).

以下、本発明の実施の形態について詳細に説明する。本例では、クラッド式鉛蓄電池として、ベント型(液式タイプ)のクラッド式鉛蓄電池を用いる。このクラッド式鉛蓄電池では、硫酸の電解液が注入された電槽内に、クラッド式正極板とペースト式負極板とが収納されている。さらに、電槽の蓋部分には、補水用液栓が設けられている。   Hereinafter, embodiments of the present invention will be described in detail. In this example, a vent type (liquid type) clad type lead acid battery is used as the clad type lead acid battery. In this clad lead-acid battery, a clad positive electrode plate and a paste negative electrode plate are accommodated in a battery case into which sulfuric acid electrolyte is injected. Furthermore, the lid portion of the battery case is provided with a refill water stopper.

クラッド式正極板は、樹脂を含浸した筒状のガラス繊維を焼結した複数本のチューブ(クラッドチューブ)に、正極集電体の主要部を構成する芯金を挿入し、さらにクラッドチューブと芯金の間に鉛粉を充填して構成されている。   In the clad positive plate, a cored bar constituting the main part of the positive electrode current collector is inserted into a plurality of tubes (clad tubes) obtained by sintering cylindrical glass fibers impregnated with resin. It is configured by filling lead powder between gold.

本例では、1つの正極板につき15本のクラッドチューブが用いられている。芯金は、これらのクラッドチューブを平行に並べた状態で、それぞれクラッドチューブの中心に位置するように挿入されている。クラッドチューブの両端部には、クラッドチューブと芯金を保持するための連座(上部連座、下部連座)が取り付けられている。上部連座は、クラッドチューブの一方の端部(芯金を挿入し、かつ鉛粉を充填するための開口部)側に取り付けられ、下部連座は、クラッドチューブの他方の端部(クラッドチューブの底部)側に取り付けられる。なお、本例では、円筒形のクラッドチューブの寸法は、長さ:294mm、外形(直径):9.6mm、内径(直径):9.0mmに定められている。   In this example, 15 clad tubes are used for one positive electrode plate. The cored bar is inserted so as to be positioned at the center of the clad tube in a state where these clad tubes are arranged in parallel. At both ends of the clad tube, joints (upper joint, lower joint) for holding the clad tube and the cored bar are attached. The upper joint is attached to one end of the clad tube (opening for inserting the cored bar and filling with lead powder), and the lower joint is the other end of the clad tube (the bottom of the clad tube). ) Is attached to the side. In this example, the dimensions of the cylindrical clad tube are defined as length: 294 mm, outer shape (diameter): 9.6 mm, and inner diameter (diameter): 9.0 mm.

各芯金は、クラッドチューブに挿入された状態でクラッドチューブの外部に露出する部分を連結する連結部と一体に形成されている。さらに、連結部の端部には、正極端子に接続する耳部が設けられている。言い換えると、芯金、連結部および耳部によって、正極集電体が構成されている。   Each cored bar is integrally formed with a connecting portion that connects portions exposed to the outside of the cladding tube in a state of being inserted into the cladding tube. Furthermore, the edge part connected to a positive electrode terminal is provided in the edge part of a connection part. In other words, the positive electrode current collector is constituted by the cored bar, the connecting part, and the ear part.

芯金は、鉛(Pb)を主成分として微量のアンチモン(Sb)を含有する鉛合金で構成されている。本例では、鉛合金のSb含有量およびAs含有量が、下記の実施例及び比較例の数値になるように調整した。   The metal core is made of a lead alloy containing lead (Pb) as a main component and a small amount of antimony (Sb). In this example, the Sb content and As content of the lead alloy were adjusted to the numerical values of the following examples and comparative examples.

芯金は、加圧鋳造法により鋳造して得られる。この加圧鋳造法による芯金の鋳造は、主に、溶融釜(内部温度480±20℃)で鉛合金を溶融する工程と、油圧シリンダポンプ(推力:50kN、ストローク150mm、ポンプ速度240mm/s)で加圧状態の鋳型(型締力:2000〜4000kN)に送り出す工程と、冷却して離型する工程とから構成されている。なお、鋳型の型締力の上限は、4000kNを超えても良いが、現実的には型締力に耐え得る鋳型の性能によって定まる。   The core metal is obtained by casting by a pressure casting method. The core casting by the pressure casting method mainly includes a step of melting a lead alloy in a melting pot (internal temperature 480 ± 20 ° C.), a hydraulic cylinder pump (thrust: 50 kN, stroke 150 mm, pump speed 240 mm / s). ) In a pressurized mold (clamping force: 2000 to 4000 kN) and a step of cooling and releasing the mold. Note that the upper limit of the mold clamping force of the mold may exceed 4000 kN, but it is actually determined by the performance of the mold that can withstand the mold clamping force.

なお、1つの正極板につき、15本のクラッドチューブを用いるのに対して、1つの正極集電体は15本の芯金を備えている。各芯金の間隔は、クラッドチューブが並ぶ間隔に合わせて定められている。また1本あたりの芯金の寸法は、長さが各仕様のチューブに対して5mm程長く(下部連座の打ち込み分を考慮)、断面寸法(平均直径)は2.7mmである。   In addition, while 15 clad tubes are used for one positive electrode plate, one positive electrode current collector is provided with 15 metal cores. The interval between the core bars is determined according to the interval in which the clad tubes are arranged. In addition, the length of the core bar per one is about 5 mm longer than the tube of each specification (considering the driving portion of the lower joint), and the cross-sectional dimension (average diameter) is 2.7 mm.

鉛粉は、一酸化鉛と金属鉛を主成分とし、クラッドチューブに充填された状態で化成することにより正極活物質となる。   Lead powder contains lead monoxide and metal lead as main components and becomes a positive electrode active material by chemical conversion in a state of being filled in a clad tube.

一方、ペースト式負極板は、いわゆる袋詰め構造の負極板を用いる。この負極板の製造では、鉛合金製の格子体に、鉛粉(一酸化鉛)、硫酸、水、添加剤(リグニン、硫酸バリウム、カットファイバー等)を混練したペーストを塗布する。その後、熟成・乾燥工程を経て、短絡防止用のPE(ポリエチレン)製のセパレーターを用いて袋詰めして、未化成のペースト式負極板が得られる。   On the other hand, the paste type negative electrode plate uses a negative electrode plate having a so-called bagging structure. In the production of this negative electrode plate, a paste kneaded with lead powder (lead monoxide), sulfuric acid, water, and additives (lignin, barium sulfate, cut fiber, etc.) is applied to a lead alloy lattice. Then, after an aging / drying process, a non-chemicalized paste-type negative electrode plate is obtained by using a PE (polyethylene) separator for preventing a short circuit.

このようにして得られた正極板と負極板を用いて、クラッド式鉛蓄電池を作製する。本例では、上述の正極板と負極板を交互にスタッキングし、ストラップ、極柱を溶接して、極板群を作製する。その後、これら極板群をPP(ポリプロピレン)製の電槽に挿入し、この電槽とPP製の蓋とを熱溶着にて取り付けたものを未化成電池とする。初回充電(化成)については、一例として、40℃の水をはった水槽内に上述の未化成電池を入れ、比重1.240の硫酸を液栓を介して電池内に注液した後、電池容量に対して0.10〜0.20CAの電流にて、課電量が300〜350%の範囲まで初充電を行う。その後、電池内の仕上がり電解液比重が1.280になるよう調整を行う。   Using the positive electrode plate and the negative electrode plate thus obtained, a clad lead storage battery is produced. In this example, the above-described positive electrode plate and negative electrode plate are alternately stacked, and a strap and a pole column are welded to produce an electrode plate group. Thereafter, the electrode plate group is inserted into a PP (polypropylene) battery case, and the battery case and the PP lid are attached by heat welding to form an unformed battery. For the first charge (chemical conversion), as an example, after placing the above-mentioned non-chemical battery in a water tank filled with 40 ° C. water, and pouring sulfuric acid with a specific gravity of 1.240 into the battery through a liquid stopper, Initial charging is performed to a range of 300 to 350% of the amount of power applied at a current of 0.10 to 0.20 CA with respect to the battery capacity. Thereafter, adjustment is made so that the finished electrolyte specific gravity in the battery becomes 1.280.

本例では、化成後の正極活物質の密度(既化密度)を実施例および比較例のとおりに調整した。   In this example, the density (established density) of the positive electrode active material after chemical conversion was adjusted as in Examples and Comparative Examples.

以下、クラッド式鉛蓄電池の実施例と比較例を比較することにより、クラッド式鉛蓄電池における作製条件と諸特性の関係を確認した。   Hereinafter, the relationship between the production conditions and various characteristics of the clad lead-acid battery was confirmed by comparing an example of the clad lead-acid battery and a comparative example.

まず、鋳造形式およびアンチモン(Sb)の含有量と諸特性の関係を確認した。各実施例および比較例の作製条件は、以下のとおりである。
(実施例1)
鋳造形式を加圧鋳造とし、Sb含有量を3.0質量%とし、As含有量を0.005質量%以下とし、芯金の平均直径を2.7mmとし、既化密度を3.65g/cm3とする条件で、クラッド式鉛蓄電池を作製した。
(実施例2)
Sb含有量を3.5質量%とした以外は、実施例1と同じ条件でクラッド式鉛蓄電池を作製した。
(実施例3)
Sb含有量を4.0質量%とした以外は、実施例1と同じ条件でクラッド式鉛蓄電池を作製した。
(実施例4)
Sb含有量を4.5質量%とした以外は、実施例1と同じ条件でクラッド式鉛蓄電池を作製した。
(実施例5)
Sb含有量を5.0質量%とした以外は、実施例1と同じ条件でクラッド式鉛蓄電池を作製した。
(実施例6)
Sb含有量を6.0質量%とした以外は、実施例1と同じ条件でクラッド式鉛蓄電池を作製した。
(実施例7)
Sb含有量を7.0質量%とした以外は、実施例1と同じ条件でクラッド式鉛蓄電池を作製した。
(比較例1)
鋳造形式を重力鋳造とし、Sb含有量を2.0質量%とし、As含有量を0.005質量%以下とし、芯金の平均直径を2.7mmとし、既化密度を3.65g/cm3とする条件で、クラッド式鉛蓄電池を作製した。
(比較例2)
Sb含有量を4.0質量%とした以外は、比較例1と同じ条件でクラッド式鉛蓄電池を作製した。
(比較例3)
Sb含有量を7.0質量%とした以外は、比較例1と同じ条件でクラッド式鉛蓄電池を作製した。
(比較例4)
Sb含有量を10.0質量%とした以外は、比較例1と同じ条件でクラッド式鉛蓄電池を作製した。
(比較例5)
Sb含有量を2.0質量%とした以外は、実施例1と同じ条件でクラッド式鉛蓄電池を作製した。
(比較例6)
Sb含有量を7.5質量%とした以外は、実施例1と同じ条件でクラッド式鉛蓄電池を作製した。
First, the relationship between the casting type and the content of antimony (Sb) and various properties was confirmed. The production conditions of each example and comparative example are as follows.
Example 1
The casting type is pressure casting, the Sb content is 3.0 mass%, the As content is 0.005 mass% or less, the average diameter of the core metal is 2.7 mm, and the established density is 3.65 g / A clad lead-acid battery was produced under the condition of cm 3 .
(Example 2)
A clad lead storage battery was produced under the same conditions as in Example 1 except that the Sb content was 3.5% by mass.
(Example 3)
A clad lead-acid battery was produced under the same conditions as in Example 1 except that the Sb content was 4.0% by mass.
Example 4
A clad lead storage battery was produced under the same conditions as in Example 1 except that the Sb content was 4.5% by mass.
(Example 5)
A clad lead storage battery was produced under the same conditions as in Example 1 except that the Sb content was 5.0% by mass.
(Example 6)
A clad lead storage battery was produced under the same conditions as in Example 1 except that the Sb content was 6.0% by mass.
(Example 7)
A clad lead storage battery was produced under the same conditions as in Example 1 except that the Sb content was 7.0 mass%.
(Comparative Example 1)
The casting type is gravity casting, the Sb content is 2.0 mass%, the As content is 0.005 mass% or less, the average diameter of the core metal is 2.7 mm, and the established density is 3.65 g / cm. A clad lead storage battery was produced under the condition of 3 .
(Comparative Example 2)
A clad lead-acid battery was produced under the same conditions as in Comparative Example 1 except that the Sb content was 4.0% by mass.
(Comparative Example 3)
A clad lead storage battery was produced under the same conditions as in Comparative Example 1 except that the Sb content was 7.0% by mass.
(Comparative Example 4)
A clad lead storage battery was produced under the same conditions as in Comparative Example 1 except that the Sb content was 10.0% by mass.
(Comparative Example 5)
A clad lead-acid battery was produced under the same conditions as in Example 1 except that the Sb content was 2.0% by mass.
(Comparative Example 6)
A clad lead storage battery was produced under the same conditions as in Example 1 except that the Sb content was 7.5% by mass.

上記実施例1〜7及び比較例1〜6について、鋳造性、耐久性(後述の腐食減量及び芯金伸び)を確認した。
(鋳造性)
鋳造時における溶融金属の流動性や、鋳造後における芯金の外観(製品保持性、ボイド等の欠陥)を目視で確認した。
About the said Examples 1-7 and Comparative Examples 1-6, castability and durability (corrosion weight loss mentioned later and core metal elongation) were confirmed.
(Castability)
The fluidity of the molten metal during casting and the appearance of the core metal after casting (product retention, defects such as voids) were visually confirmed.

鋳造性は、以下の評価基準に基づいて評価した。   Castability was evaluated based on the following evaluation criteria.

◎:連続作製状態において、バリ、ヒケが発生しない
○:連続作製状態において、バリ、ヒケがまれに発生する
△:連続作製状態において、バリ、ヒケがある頻度で発生するが、製造上許容できる
×:作製不可
(腐食減量)
クラッド式鉛蓄電池について、JIS D 5303−1(電気車用鉛蓄電池−第1部:一般要件及び試験方法)に規定された寿命試験−試験方法1を実施し、評価した。0.25CAの放電電流で3h、0.18CAの充電電流にて5hを1サイクル(3サイクル/日)とし、各仕様に対して300サイクル毎に電池を解体し、正極板(芯金)の腐食量を測定する。なお、1200サイクルまで実施したところで試験を終了した。この条件で使用する前と使用した後の正極集電体の質量差(芯金の腐食量)を腐食減量とし、この腐食減量の観点からクラッド式鉛蓄電池の耐久性を確認した。
◎: Burrs and sink marks do not occur in the continuous manufacturing state ○: Burrs and sink marks occur rarely in the continuous manufacturing state △: Burrs and sink marks occur frequently in the continuous manufacturing state, but acceptable in manufacturing ×: Cannot be produced (corrosion loss)
About the clad lead acid battery, the life test-test method 1 prescribed | regulated to JISD5303-1 (Lead battery for electric vehicles-1st part: General requirements and test method) was implemented and evaluated. The discharge current of 0.25CA is 3h and the charging current of 0.18CA is 1h (3 cycles / day). The battery is disassembled every 300 cycles for each specification, and the positive electrode plate (core metal) Measure the amount of corrosion. Note that the test was terminated when the test was performed up to 1200 cycles. The difference in mass (corrosion amount of the core metal) between the positive electrode current collector before use and after use under this condition was regarded as corrosion weight loss, and the durability of the clad lead storage battery was confirmed from the viewpoint of this weight loss.

腐食減量は、以下の評価基準に基づいて評価した。   Corrosion weight loss was evaluated based on the following evaluation criteria.

◎:腐食量が極めて少ない
○:腐食量が少ない
△:腐食量がやや多い
×:腐食量が多い
(芯金伸び)
上記腐食減量の確認が済んだ芯金について、芯金の伸び(使用前の芯金の長さと使用後の芯金の長さとの差、以下「芯金伸び」という)を測定し、この芯金伸びの観点からもクラッド式鉛蓄電池の耐久性を確認した。
◎: Corrosion amount is very small ○: Corrosion amount is small △: Corrosion amount is slightly high ×: Corrosion amount is large (core metal elongation)
For the core bar whose corrosion weight has been confirmed, the core bar elongation (difference between the length of the core bar before use and the length of the core bar after use, hereinafter referred to as “core bar elongation”) is measured. The durability of the clad lead-acid battery was also confirmed from the viewpoint of gold elongation.

芯金伸びは、以下の評価基準に基づいて評価した。   The core metal elongation was evaluated based on the following evaluation criteria.

◎:芯金伸びが極めて小さい
○:芯金伸びが小さい
△:芯金伸びがやや大きい
×:芯金伸びが大きい
(総合評価)
鋳造性、腐食減量および芯金伸びの各評価結果から、総合評価を行った。総合評価は、以下の評価基準に基づいて評価した。
◎: Core metal elongation is extremely small ○: Metal core elongation is small △: Metal core elongation is slightly large ×: Metal core elongation is large (overall evaluation)
A comprehensive evaluation was performed from the evaluation results of castability, corrosion weight loss and core metal elongation. Comprehensive evaluation was evaluated based on the following evaluation criteria.

◎:極めて良好
○:良好
×:不良
なお、各項目中に1つでも「不良(×)」の評価がある場合は総合評価を「不良(×)」とし、各項目中に「不良(×)」はないが1つでも「概ね良好(△)」の評価がある場合は総合評価を「良好(○)」とし、各項目中に「不良(×)」、「概ね良好(△)」のいずれの評価もない場合は、総合評価を「極めて良好(◎)」と判断した。
◎: Extremely good ○: Good ×: Defective If there is at least one “defect (x)” evaluation in each item, the overall evaluation is “defect (×)”. ) ”, But if there is at least one“ substantially good (△) ”, the overall evaluation is“ good (○) ”, and“ bad ”(×) or“ substantially good (△) ”in each item. In the absence of any of the evaluations, the overall evaluation was judged as “very good (()”.

実施例1〜7及び比較例1〜6について、鋳造性、耐久性(腐食減量、芯金伸び)を確認した結果を表1に示す。   Table 1 shows the results of confirming castability and durability (corrosion weight loss, core metal elongation) for Examples 1 to 7 and Comparative Examples 1 to 6.

表1より、まず比較例1〜4[鋳造形式:重力鋳造(従来の鋳造方法)、Sb含有量:2.0〜10.0質量%、芯金の平均直径:2.7mm(一定)、既化密度:3.65g/cm3(一定)]では、いずれも総合評価が「不良(×)」であった。 From Table 1, first, Comparative Examples 1 to 4 [Casting type: Gravity casting (conventional casting method), Sb content: 2.0 to 10.0% by mass, average diameter of cored bar: 2.7 mm (constant), In the established density: 3.65 g / cm 3 (constant)], the overall evaluation was “bad” (x).

これに対して、実施例1〜7[鋳造形式:加圧鋳造、Sb含有量:3.0〜7.0質量%、芯金の平均直径:2.7mm(一定)、既化密度:3.65g/cm3(一定)]では、いずれも総合評価が「良好(○)」以上の結果となった。特に、実施例3〜5[Sb含有量:4.0〜5.0質量%]では、総合評価が「極めて良好(◎)」となった。なお、比較例5では、Sb含有量が少ないため鋳造性が悪くなり、比較例6ではSb含有量が多いため腐食減量が増加し、いずれも総合評価が「不良(×)」となった。 On the other hand, Examples 1 to 7 [casting type: pressure casting, Sb content: 3.0 to 7.0% by mass, average diameter of cored bar: 2.7 mm (constant), established density: 3 .65 g / cm 3 (constant)], the overall evaluation was “good (◯)” or higher. In particular, in Examples 3 to 5 [Sb content: 4.0 to 5.0% by mass], the overall evaluation was “very good ())”. In Comparative Example 5, since the Sb content was low, the castability deteriorated. In Comparative Example 6, the Sb content was high, so the corrosion weight loss increased, and the overall evaluation was “bad” (x).

これらの結果から、鋳造形式を加圧鋳造とし、Sb含有量を3.0〜7.0質量%に調整することにより、鋳造性、耐久性の両者を維持することができ、その上芯金の断面寸法を小さくすることができることが判った。   From these results, it is possible to maintain both castability and durability by setting the casting type to pressure casting and adjusting the Sb content to 3.0 to 7.0% by mass. It has been found that the cross-sectional dimension of can be reduced.

なお、比較例2(従来技術)および実施例3(本願発明)について、金属顕微鏡を用いて芯金の表面を拡大撮影した写真により、芯金の組織を比較した。金属顕微鏡には、KEYENCE製のデジタルマイクロスコープVHX−1000を用い、芯金の表面を約150倍に拡大して撮影した。その結果、従来の芯金では、組織が相対的に粗く不均一となっているのに対して、本発明で用いた芯金では、組織が相対的に細かくほぼ均一となっている。このように、本願発明の芯金は、従来技術で用いられている芯金に対して、構造上も明確な相違を示している。   In addition, about the comparative example 2 (prior art) and Example 3 (this invention), the structure | tissue of a core metal was compared with the photograph which expanded and image | photographed the surface of the core metal using the metal microscope. The metal microscope used was a digital microscope VHX-1000 manufactured by KEYENCE, and the surface of the cored bar was magnified about 150 times and photographed. As a result, the conventional cored bar has a relatively coarse and non-uniform structure, whereas the cored bar used in the present invention has a relatively fine and almost uniform structure. Thus, the cored bar of the present invention shows a clear structural difference from the cored bar used in the prior art.

次に、クラッドチューブの内径が小さい条件で、芯金の断面寸法も小さくした場合の諸特性を確認した。各実施例及び比較例の作製条件は以下のとおりである。
(実施例8)
鋳造形式を加圧鋳造とし、Sb含有量を4.0質量%とし、As含有量を0.005質量%以下とし、芯金の平均直径を2.5mmとし、既化密度を3.65g/cm3とする条件で、クラッド式鉛蓄電池を作製した。
(実施例9)
芯金の平均直径を2.7mmとした以外は、実施例8と同じ条件でクラッド式鉛蓄電池を作製した。
(実施例10)
芯金の平均直径を3.0mmとした以外は、実施例8と同じ条件でクラッド式鉛蓄電池を作製した。
(比較例7)
芯金の平均直径を2.0mmとした以外は、実施例8と同じ条件でクラッド式鉛蓄電池を作製した。
(比較例8)
芯金の平均直径を3.5mmとした以外は、実施例8と同じ条件でクラッド式鉛蓄電池を作製した。
Next, various characteristics were confirmed when the cross-sectional dimension of the cored bar was also reduced under the condition that the inner diameter of the clad tube was small. The production conditions of each example and comparative example are as follows.
(Example 8)
The casting type is pressure casting, the Sb content is 4.0 mass%, the As content is 0.005 mass% or less, the average diameter of the core metal is 2.5 mm, and the established density is 3.65 g / A clad lead-acid battery was produced under the condition of cm 3 .
Example 9
A clad lead-acid battery was produced under the same conditions as in Example 8 except that the average diameter of the cored bar was set to 2.7 mm.
(Example 10)
A clad lead storage battery was produced under the same conditions as in Example 8 except that the average diameter of the cored bar was set to 3.0 mm.
(Comparative Example 7)
A clad lead-acid battery was produced under the same conditions as in Example 8 except that the average diameter of the cored bar was 2.0 mm.
(Comparative Example 8)
A clad lead-acid battery was produced under the same conditions as in Example 8 except that the average diameter of the cored bar was 3.5 mm.

上記実施例8〜10及び比較例7、8について、鋳造性、放電特性、耐久性(腐食減量、芯金伸び)を確認した。これらの項目のうち、鋳造性、腐食減量、及び芯金伸びについては、上記と同様の手法により確認した。また、総合評価も、上記と同様に行った。
(放電特性)
放電特性は、放電容量に基づいて確認した。放電容量は、JIS D 5303−1(電気車用鉛蓄電池−第1部:一般要件及び試験方法)に規定された5時間率容量試験に従って実施した。具体的には、放電開始時期は満充電後の1〜24時間以内、電解液温度は30℃±2℃、放電電流は5時間率電流(電池容量に対して0.20CA)、放電終止電圧は1.70V/セルの試験条件にて実施した。
For Examples 8 to 10 and Comparative Examples 7 and 8, the castability, discharge characteristics, and durability (corrosion weight loss, core metal elongation) were confirmed. Among these items, castability, corrosion weight loss, and core metal elongation were confirmed by the same method as described above. Moreover, comprehensive evaluation was performed similarly to the above.
(Discharge characteristics)
The discharge characteristics were confirmed based on the discharge capacity. The discharge capacity was carried out in accordance with a 5-hour rate capacity test specified in JIS D 5303-1 (lead battery for electric vehicles—Part 1: General requirements and test method). Specifically, the discharge start time is within 1 to 24 hours after full charge, the electrolyte temperature is 30 ° C. ± 2 ° C., the discharge current is a 5-hour rate current (0.20 CA with respect to the battery capacity), and the discharge end voltage Was carried out under the test conditions of 1.70 V / cell.

放電容量は、定格容量比(%)から以下の評価基準に基づいて評価した。   The discharge capacity was evaluated based on the following evaluation criteria from the rated capacity ratio (%).

◎:定格容量比が110%以上
○:定格容量比が105%以上110%未満
△:定格容量比が95%以上105%未満
×:定格容量比が95%未満
実施例8〜10及び比較例7、8について、鋳造性、放電特性、耐久性(腐食減量、芯金伸び)を確認した結果を表1に示す。
◎: Rated capacity ratio is 110% or more ○: Rated capacity ratio is 105% or more and less than 110% △: Rated capacity ratio is 95% or more and less than 105% ×: Rated capacity ratio is less than 95% Examples 8 to 10 and Comparative Examples Tables 1 and 8 show the results of confirming castability, discharge characteristics, and durability (corrosion weight loss, core metal elongation).

表2より、実施例8〜10[鋳造形式:加圧鋳造、Sb含有量:4.0質量%(一定)、芯金の平均直径:2.5〜3.0mm、既化密度:3.65g/cm3(一定)]では、いずれも総合評価が「良好(○)」以上の結果となった。特に、実施例9[芯金の平均直径:2.7mm]では総合評価が「極めて良好(◎)」となった。なお、比較例7では、芯金の平均直径が小さすぎて集電性が低下し、比較例8では芯金の平均直径が大きすぎてクラッドチューブ内の空間が狭くなり(正極活物質の充填量が少なくなったことにより)、いずれも総合評価が「不良(×)」となった。 From Table 2, Examples 8 to 10 [Casting type: Pressure casting, Sb content: 4.0% by mass (constant), Average diameter of cored bar: 2.5-3.0 mm, Existing density: 3. 65 g / cm 3 (constant)], the overall evaluation was “good (◯)” or higher. In particular, in Example 9 [average diameter of core metal: 2.7 mm], the overall evaluation was “very good (◎)”. In Comparative Example 7, the average diameter of the cored bar is too small and current collecting performance is reduced. In Comparative Example 8, the average diameter of the cored bar is too large and the space in the cladding tube is narrowed (filling of the positive electrode active material). In all cases, the overall evaluation was “Bad (×)”.

これらの結果から、クラッドチューブの内径が小さいために芯金の断面寸法が小さくなった場合でも、鋳造性と耐久性を維持しながら、鉛蓄電池の放電容量(放電特性)が維持されることが判った。   From these results, the discharge capacity (discharge characteristics) of the lead-acid battery can be maintained while maintaining the castability and durability even when the cross-sectional dimension of the cored bar becomes small due to the small inner diameter of the clad tube. understood.

さらに、クラッドチューブの内径を小さくし、同時に芯金の断面寸法も小さくした場合に、正極活物質の既化密度と電池特性との関係を確認した。さらに、As添加量と電池特性との関係も確認した。各実施例及び比較例の作製条件は以下のとおりである。
(実施例11)
鋳造形式を加圧鋳造とし、Sb含有量を4.0質量%とし、As含有量を0.005質量%以下とし、芯金の平均直径を2.7mmとし、既化密度を3.30g/cm3とする条件で、クラッド式鉛蓄電池を作製した。
(実施例12)
正極活物質の既化密度を3.40g/cm3とした以外は、実施例11と同じ条件でクラッド式鉛蓄電池を作製した。
(実施例13)
正極活物質の既化密度を3.65g/cm3とした以外は、実施例11と同じ条件でクラッド式鉛蓄電池を作製した。
(実施例14)
正極活物質の既化密度を3.70g/cm3とした以外は、実施例11と同じ条件でクラッド式鉛蓄電池を作製した。
(実施例15)
正極活物質の既化密度を3.75g/cm3とした以外は、実施例11と同じ条件でクラッド式鉛蓄電池を作製した。
(比較例9)
正極活物質の既化密度を3.10g/cm3とした以外は、実施例11と同じ条件でクラッド式鉛蓄電池を作製した。
(比較例10)
正極活物質の既化密度を4.15g/cm3とした以外は、実施例11と同じ条件でクラッド式鉛蓄電池を作製した。
(実施例16)
As含有量を0.01質量%とした以外は、実施例11と同じ条件でクラッド式鉛蓄電池を作製した。
(実施例17)
As含有量を0.20質量%とした以外は、実施例11と同じ条件でクラッド式鉛蓄電池を作製した。
(実施例18)
As含有量を0.40質量%とした以外は、実施例11と同じ条件でクラッド式鉛蓄電池を作製した。
(実施例19)
As含有量を0.45質量%とした以外は、実施例11と同じ条件でクラッド式鉛蓄電池を作製した。
Furthermore, when the inner diameter of the cladding tube was reduced and the cross-sectional dimension of the cored bar was also reduced, the relationship between the established density of the positive electrode active material and the battery characteristics was confirmed. Furthermore, the relationship between As addition amount and battery characteristics was also confirmed. The production conditions of each example and comparative example are as follows.
(Example 11)
The casting type is pressure casting, the Sb content is 4.0 mass%, the As content is 0.005 mass% or less, the average diameter of the core metal is 2.7 mm, and the established density is 3.30 g / A clad lead-acid battery was produced under the condition of cm 3 .
(Example 12)
A clad lead storage battery was produced under the same conditions as in Example 11 except that the established density of the positive electrode active material was 3.40 g / cm 3 .
(Example 13)
A clad lead storage battery was fabricated under the same conditions as in Example 11 except that the established density of the positive electrode active material was 3.65 g / cm 3 .
(Example 14)
A clad lead storage battery was produced under the same conditions as in Example 11 except that the established density of the positive electrode active material was 3.70 g / cm 3 .
(Example 15)
A clad lead storage battery was produced under the same conditions as in Example 11 except that the established density of the positive electrode active material was 3.75 g / cm 3 .
(Comparative Example 9)
A clad lead storage battery was produced under the same conditions as in Example 11 except that the established density of the positive electrode active material was 3.10 g / cm 3 .
(Comparative Example 10)
A clad lead storage battery was fabricated under the same conditions as in Example 11 except that the established density of the positive electrode active material was 4.15 g / cm 3 .
(Example 16)
A clad lead storage battery was produced under the same conditions as in Example 11 except that the As content was 0.01% by mass.
(Example 17)
A clad lead storage battery was produced under the same conditions as in Example 11 except that the As content was 0.20% by mass.
(Example 18)
A clad lead storage battery was produced under the same conditions as in Example 11 except that the As content was 0.40% by mass.
(Example 19)
A clad lead storage battery was produced under the same conditions as in Example 11 except that the As content was 0.45% by mass.

上記実施例11〜19及び比較例9、10について、放電容量、電池寿命を確認した。
(放電特性)
放電特性は、上述の放電容量(JIS D 5303−1に規定された5時間率容量試験により測定し、定格容量比(%)から評価した放電容量)に基づいて確認した。
(電池寿命)
電池寿命は、寿命比率(%)から評価した。寿命比率(%)は、JIS D 5303−1(電気車用鉛蓄電池−第1部:一般要件及び試験方法)の寿命試験−試験方法1を実施し、評価した。0.25CAの放電電流で3h、0.18CAの充電電流にて5hを1サイクル(3サイクル/日)とし、各仕様に対して100サイクル毎に5時間率容量試験を行い、定格容量の80%を下回ったときに電池が寿命に至ったものと判定する。なお、寿命比率は、実施例13を基準にしている。
(総合評価)
電池特性の総合評価は、以下の評価基準に基づいて評価した。
For Examples 11 to 19 and Comparative Examples 9 and 10, the discharge capacity and battery life were confirmed.
(Discharge characteristics)
The discharge characteristics were confirmed based on the above-described discharge capacity (discharge capacity measured by the 5-hour rate capacity test specified in JIS D 5303-1 and evaluated from the rated capacity ratio (%)).
(Battery life)
The battery life was evaluated from the life ratio (%). The life ratio (%) was evaluated by carrying out the life test-test method 1 of JIS D 5303-1 (lead storage battery for electric vehicles-Part 1: General requirements and test methods). One cycle (3 cycles / day) with 3 hours at a discharge current of 0.25 CA and 5 h at a charge current of 0.18 CA, a 5-hour rate capacity test was performed every 100 cycles for each specification, and a rated capacity of 80 It is determined that the battery has reached the end of its life when it falls below%. The life ratio is based on Example 13.
(Comprehensive evaluation)
The overall evaluation of the battery characteristics was evaluated based on the following evaluation criteria.

◎:極めて良好(放電容量が95%以上かつ寿命比率が90%以上の場合)
○:良好(放電容量が90%以上95%未満かつ寿命比率が90%以上の場合、または、放電容量が95%以上かつ寿命比率が80%以上90%未満の場合)
×:不良(放電容量が90%未満の場合、または、寿命比率が80%未満の場合)
実施例11〜19及び比較例9、10について、放電容量(%)及び寿命比率(%)を確認した結果を表3に示す。
A: Very good (when the discharge capacity is 95% or more and the life ratio is 90% or more)
○: Good (when the discharge capacity is 90% or more and less than 95% and the life ratio is 90% or more, or when the discharge capacity is 95% or more and the life ratio is 80% or more and less than 90%)
X: Defect (when discharge capacity is less than 90% or life ratio is less than 80%)
Table 3 shows the results of confirming the discharge capacity (%) and the life ratio (%) for Examples 11 to 19 and Comparative Examples 9 and 10.

表3より、まず実施例11〜15[鋳造形式:加圧鋳造、Sb含有量:4.0質量%(一定)、As含有量:0.005質量%以下、芯金の平均直径:2.7mm(一定)、既化密度:3.30〜3.75g/cm3]では、いずれも総合評価が「良好(○)」以上となった。特に、実施例12〜14[既化密度:3.40〜3.70g/cm3]では総合評価が「極めて良好(◎)」となった。なお、比較例9では、既化密度が小さすぎて正極活物質の実質の充填量が少なくなったため寿命比率が低下し、比較例10では、既化密度が大きすぎて正極活物質の多孔質性が低くなったため放電容量が低下し、いずれも総合評価が「不良(×)」となった。 From Table 3, Example 11-15 [Casting type: Pressure casting, Sb content: 4.0 mass% (constant), As content: 0.005 mass% or less, Average diameter of core metal: 2. 7 mm (constant) and established density: 3.30 to 3.75 g / cm 3 ], the overall evaluation was “good (◯)” or more. In particular, in Examples 12 to 14 [already formed density: 3.40 to 3.70 g / cm 3 ], the overall evaluation was “very good (◎)”. In Comparative Example 9, since the actual density was too small and the substantial filling amount of the positive electrode active material was reduced, the life ratio was lowered. In Comparative Example 10, the established density was too large and the positive electrode active material was porous. The discharge capacity decreased due to the lowering of the property, and the overall evaluation was “bad (×)”.

これらの結果から、クラッドチューブの内径が小さい場合でも、芯金の断面寸法を小さくすることができるため、正極活物質の充填量を確保することができ、放電容量(放電特性)と寿命比率(電池長寿)が維持され、または放電容量および寿命比率がいずれも高くなる(放電特性および電池寿命のいずれも向上する)ことが判った。   From these results, even when the inner diameter of the clad tube is small, the cross-sectional dimension of the metal core can be reduced, so that the filling amount of the positive electrode active material can be secured, and the discharge capacity (discharge characteristics) and the life ratio ( Battery longevity) is maintained, or the discharge capacity and life ratio are both increased (both discharge characteristics and battery life are improved).

また、実施例16〜18[鋳造形式:加圧鋳造、Sb含有量:4.0質量%、As含有量:0.01〜0.40質量%、芯金の平均直径:2.7mm(一定)、既化密度:3.30g/cm3(一定)]では、いずれも総合評価が「極めて良好(◎)」となった。なお、実施例19(As含有量:0.45質量%)では「良好(○)」に止まった。実施例11(As含有量:0.005質量%以下)の場合に「良好(○)」に止まったことも考慮すると、Asを0.01〜0.40質量%含有する鉛合金を用いて鋳造することにより、放電容量(放電特性)を維持しながら寿命比率が高くなる(電池寿命が長くなる)ことが判った。 Examples 16 to 18 [Casting type: pressure casting, Sb content: 4.0 mass%, As content: 0.01 to 0.40 mass%, average diameter of core metal: 2.7 mm (constant ), An established density: 3.30 g / cm 3 (constant)], the overall evaluation was “very good (◎)”. In addition, in Example 19 (As content: 0.45 mass%), it was only “good (◯)”. In consideration of the fact that in Example 11 (As content: 0.005 mass% or less), it stopped at "Good (O)", a lead alloy containing 0.01 to 0.40 mass% As was used. It was found that by casting, the life ratio is increased (battery life is increased) while maintaining the discharge capacity (discharge characteristics).

以上、本発明の実施の形態及び実施例について具体的に説明したが、本発明はこれらの実施の形態及び実験例に限定されるものではない。例えば、クラッドの本数、寸法等は任意に定めることができる。すなわち、上述の実施の形態および実験例に記載されている態様は、特に記載がない限り、本発明の技術的思想に基づく変更が可能であることは勿論ある。   Although the embodiments and examples of the present invention have been specifically described above, the present invention is not limited to these embodiments and experimental examples. For example, the number of clads, dimensions, etc. can be determined arbitrarily. That is, it is needless to say that the aspects described in the above embodiments and experimental examples can be changed based on the technical idea of the present invention unless otherwise specified.

本発明によれば、クラッド式鉛蓄電池の集電体を所定量のアンチモンを含有する鉛合金を加圧鋳造することにより、芯金の鋳造性および耐久性を同時に維持することができる。また、鋳造性および耐久性を同時に維持しながら、芯金の断面寸法を小さくすることができるので、クラッド式鉛蓄電池用正極板の厚みが薄いクラッド式鉛蓄電池を提供することができる。   According to the present invention, by casting a lead alloy containing a predetermined amount of antimony on a current collector of a clad lead-acid battery, the castability and durability of the core metal can be maintained at the same time. Moreover, since the cross-sectional dimension of the cored bar can be reduced while simultaneously maintaining castability and durability, a clad lead acid battery having a thin clad lead acid battery positive electrode plate can be provided.

Claims (10)

鉛合金を鋳造して構成された芯金を備えるクラッド式鉛蓄電池用集電体であって、
前記鉛合金には、前記鉛合金の全質量に対して3.0質量%以上7.0質量%以下のアンチモンが含有されており、
前記芯金は、前記鉛合金を加圧鋳造法により鋳造されて構成されていることを特徴とするクラッド式鉛蓄電池用集電体。
A current collector for a clad lead storage battery comprising a cored bar formed by casting a lead alloy,
The lead alloy contains 3.0% by mass or more and 7.0% by mass or less of antimony with respect to the total mass of the lead alloy,
The current collector for a clad lead storage battery, wherein the core metal is formed by casting the lead alloy by a pressure casting method.
前記アンチモンの含有量が、前記鉛合金の全質量に対して4.0質量%以上5.0質量%以下である請求項1に記載のクラッド式鉛蓄電池用集電体。   The collector for a clad lead-acid battery according to claim 1, wherein the content of the antimony is 4.0% by mass or more and 5.0% by mass or less with respect to the total mass of the lead alloy. 前記鉛合金には、前記鉛合金の全質量に対して0.01質量%以上0.40質量%以下のヒ素が含まれている請求項1または2に記載のクラッド式鉛蓄電池用集電体。   The current collector for a clad lead storage battery according to claim 1 or 2, wherein the lead alloy contains 0.01 mass% or more and 0.40 mass% or less of arsenic with respect to the total mass of the lead alloy. . 前記芯金は、前記芯金の長手方向と直交する方向に切断した断面の断面積を前記芯金の長手方向に亘って平均化した平均断面積が4.9mm2以上7.1mm2以下である請求項1に記載のクラッド式鉛蓄電池用集電体。 The metal core has an average cross-sectional area of the cross-sectional area of the cross section cut in a direction perpendicular to the longitudinal direction were averaged in the longitudinal direction of the core metal of the metal core is 4.9 mm 2 or more 7.1 mm 2 or less The current collector for a clad lead-acid battery according to claim 1. 前記芯金は、前記断面の輪郭形状が円形である請求項4に記載のクラッド式鉛蓄電池用集電体。   The current collector for a clad lead-acid battery according to claim 4, wherein the core has a circular outline in the cross section. 前記断面の直径を前記芯金の長手方向に亘って平均化した平均直径が2.5mm以上3.0mm以下である請求項5に記載のクラッド式鉛蓄電池用集電体。   The current collector for a clad lead-acid battery according to claim 5, wherein an average diameter obtained by averaging the diameters of the cross-sections in the longitudinal direction of the cored bar is 2.5 mm or more and 3.0 mm or less. 請求項1〜6のいずれか1項に記載の集電体を備えるクラッド式鉛蓄電池用正極板であって、
フェノ−ル樹脂を含浸した筒状のガラス繊維を焼結して構成されたチューブと、
前記チューブ内に前記集電体の芯金を挿入した状態で、前記チューブと前記芯金との間に充填された正極活物質とをさらに備えるクラッド式鉛蓄電池用正極板。
A positive electrode plate for a clad lead storage battery comprising the current collector according to any one of claims 1 to 6,
A tube constructed by sintering cylindrical glass fibers impregnated with phenolic resin;
A positive electrode plate for a clad lead-acid battery, further comprising a positive electrode active material filled between the tube and the core metal in a state where the core metal of the current collector is inserted into the tube.
請求項1〜6のいずれか1項に記載の集電体を備えるクラッド式鉛蓄電池用正極板であって、
フェノ−ル樹脂を含浸した筒状のガラス繊維を焼結して構成されたチューブと、
前記チューブ内に前記集電体の芯金を挿入した状態で、前記チューブと前記芯金との間に充填された正極活物質とをさらに備え、
前記正極活物質の密度が3.30g/cm3以上3.75g/cm3以下であるクラッド式鉛蓄電池用正極板。
A positive electrode plate for a clad lead storage battery comprising the current collector according to any one of claims 1 to 6,
A tube constructed by sintering cylindrical glass fibers impregnated with phenolic resin;
In the state where the core of the current collector is inserted into the tube, further comprising a positive electrode active material filled between the tube and the core.
A positive electrode plate for a clad lead storage battery, wherein the positive electrode active material has a density of 3.30 g / cm 3 or more and 3.75 g / cm 3 or less.
請求項1〜6のいずれか1項に記載の集電体を備える正極板を用いたクラッド式鉛蓄電池であって、
前記正極板が、さらに
フェノ−ル樹脂を含浸した筒状のガラス繊維を焼結させて構成されたチューブと、
前記チューブ内に前記集電体の芯金を挿入した状態で、前記チューブと前記芯金との間に充填された正極活物質とを備えているクラッド式鉛蓄電池。
A clad lead-acid battery using a positive electrode plate comprising the current collector according to any one of claims 1 to 6,
A tube in which the positive electrode plate is further formed by sintering cylindrical glass fibers impregnated with phenol resin;
A clad lead-acid battery comprising a positive electrode active material filled between the tube and the core metal in a state where the core metal of the current collector is inserted into the tube.
請求項1〜6のいずれか1項に記載の集電体を備える正極板を用いたクラッド式鉛蓄電池であって、
前記正極板が、さらに
フェノ−ル樹脂を含浸した筒状のガラス繊維を焼結させて構成されたチューブと、
前記チューブ内に前記集電体の芯金を挿入した状態で、前記チューブと前記芯金との間に充填された正極活物質とを備え、
前記正極活物質の密度が3.30g/cm3以上3.75g/cm3以下であるクラッド式鉛蓄電池。
A clad lead-acid battery using a positive electrode plate comprising the current collector according to any one of claims 1 to 6,
A tube in which the positive electrode plate is further formed by sintering cylindrical glass fibers impregnated with phenol resin;
In a state in which the core of the current collector is inserted into the tube, a positive electrode active material filled between the tube and the core is provided,
A clad lead-acid battery in which the positive electrode active material has a density of 3.30 g / cm 3 or more and 3.75 g / cm 3 or less.
JP2015037314A 2015-02-26 2015-02-26 Clad lead acid battery, clad positive plate, and current collector for clad positive plate Active JP5909815B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015037314A JP5909815B1 (en) 2015-02-26 2015-02-26 Clad lead acid battery, clad positive plate, and current collector for clad positive plate
TW109109712A TWI718036B (en) 2015-02-26 2016-02-26 Current collector for coated lead storage battery, positive plate for coated lead storage battery, and coated lead storage battery
TW105106100A TWI699036B (en) 2015-02-26 2016-02-26 Collector for coated lead-acid battery, positive plate for coated lead-acid battery, and coated lead-acid battery
PCT/JP2016/055805 WO2016136941A1 (en) 2015-02-26 2016-02-26 Charge collector for clad-type lead-acid battery, positive electrode plate for clad-type lead-acid battery, and clad-type lead-acid battery
TW109145379A TWI733637B (en) 2015-02-26 2016-02-26 Current collector for coated lead storage battery, positive plate for coated lead storage battery, and coated lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015037314A JP5909815B1 (en) 2015-02-26 2015-02-26 Clad lead acid battery, clad positive plate, and current collector for clad positive plate

Publications (2)

Publication Number Publication Date
JP5909815B1 JP5909815B1 (en) 2016-04-27
JP2016162501A true JP2016162501A (en) 2016-09-05

Family

ID=55808212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015037314A Active JP5909815B1 (en) 2015-02-26 2015-02-26 Clad lead acid battery, clad positive plate, and current collector for clad positive plate

Country Status (3)

Country Link
JP (1) JP5909815B1 (en)
TW (3) TWI718036B (en)
WO (1) WO2016136941A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3525269A4 (en) * 2016-10-07 2020-04-29 Hitachi Chemical Company, Ltd. Cladding tube, clad electrode, lead storage battery, production method for these, and electric car

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021053771A1 (en) * 2019-09-18 2021-03-25 昭和電工マテリアルズ株式会社 Electrode, lead storage battery, current collector, and method for manufacturing current collector
JP7523452B2 (en) * 2019-09-18 2024-07-26 エナジーウィズ株式会社 Electrode, lead-acid battery, current collector, and method for manufacturing current collector
CN117397069A (en) * 2021-03-16 2024-01-12 株式会社杰士汤浅国际 Lead storage battery

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910420B2 (en) * 1977-04-04 1984-03-08 古河電池株式会社 Lead-based alloy for storage battery electrode plates
JPS57142759A (en) * 1981-02-26 1982-09-03 Shin Kobe Electric Mach Co Ltd Pressure casting device
JPS58145359A (en) * 1982-02-24 1983-08-30 Shin Kobe Electric Mach Co Ltd Pressure casting device for grid for lead storage battery
JP2720029B2 (en) * 1986-09-04 1998-02-25 日本電池株式会社 Lead alloy for storage battery
JPS63212062A (en) * 1987-02-27 1988-09-05 Furukawa Battery Co Ltd:The Production of plate base board for lead storage battery
JPH03105861A (en) * 1989-09-19 1991-05-02 Japan Storage Battery Co Ltd Clad type lead-acid battery
JPH04358035A (en) * 1991-01-25 1992-12-11 Furukawa Battery Co Ltd:The Lead-base alloy for storage battery
JPH051341A (en) * 1991-02-19 1993-01-08 Furukawa Battery Co Ltd:The Lead-based alloy for storage battery
JPH11126614A (en) * 1997-10-23 1999-05-11 Shin Kobe Electric Mach Co Ltd Lead-acid battery
CN1428881A (en) * 2001-12-24 2003-07-09 赛尔动力电池(沈阳)有限公司 Method for making plate-grid of lead-acid accumulator
US20050238952A1 (en) * 2004-04-22 2005-10-27 Prengaman R D High tin containing alloy for battery components
JP5348131B2 (en) * 2008-03-24 2013-11-20 日本ゼオン株式会社 Lead-acid battery electrode and use thereof
CN103107310B (en) * 2012-11-11 2015-07-22 广西天鹅蓄电池有限责任公司 Manufacturing method of storage battery green plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3525269A4 (en) * 2016-10-07 2020-04-29 Hitachi Chemical Company, Ltd. Cladding tube, clad electrode, lead storage battery, production method for these, and electric car

Also Published As

Publication number Publication date
TW202125884A (en) 2021-07-01
TWI733637B (en) 2021-07-11
TW202030915A (en) 2020-08-16
WO2016136941A1 (en) 2016-09-01
TW201703325A (en) 2017-01-16
JP5909815B1 (en) 2016-04-27
TWI699036B (en) 2020-07-11
TWI718036B (en) 2021-02-01

Similar Documents

Publication Publication Date Title
JP5909815B1 (en) Clad lead acid battery, clad positive plate, and current collector for clad positive plate
JP5387666B2 (en) Lattice plate for lead-acid battery, electrode plate and lead-acid battery provided with this electrode plate
JP6665465B2 (en) Lead storage battery
JP7245168B2 (en) Lead-acid battery separator and lead-acid battery
JP6525167B2 (en) Lead storage battery
JP2008218258A (en) Lead acid battery
JP2017092001A (en) Lead storage battery and method for manufacturing the same
JP6572711B2 (en) Lead acid battery
CN109845001B (en) Cladding pipe, cladding electrode, lead-acid battery, method for manufacturing cladding pipe, method for manufacturing lead-acid battery, and electric vehicle
JP2005228685A (en) Lead-acid storage battery
JP6455105B2 (en) Lead acid battery
JP5673194B2 (en) Positive electrode lattice substrate, electrode plate using the positive electrode lattice substrate, and lead-acid battery using the electrode plate
CN109065891B (en) Storage battery polar plate for forklift and manufacturing method
JP6915752B2 (en) Active material holding member and its manufacturing method, electrodes, lead-acid battery, and electric vehicle
JP2001185206A (en) Lead-acid battery and manufacturing method therefor
JP2022131788A (en) Clad type positive electrode plate for lead acid battery, and lead acid battery
JP2009252625A (en) Lead-acid battery
CN207074678U (en) A kind of manual bridge parts peculiar
JPH0523017B2 (en)
JP2008103180A (en) Control valve type lead-acid battery
JP2022131790A (en) Clad type positive electrode plate for lead acid battery, and lead acid battery
Hasuo et al. Research on trial production of lithium-ion battery with positive electrode by doping of Al fibers
JP2001229958A (en) Sealed lead-acid storage battery
CN116706262A (en) Preparation process of bipolar horizontal battery
JP2021163615A (en) Lead-acid battery

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160309

R151 Written notification of patent or utility model registration

Ref document number: 5909815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250