JP2016160497A - Heat treatment method for amorphous soft magnetic alloy and heat treatment device for amorphous soft magnetic alloy - Google Patents

Heat treatment method for amorphous soft magnetic alloy and heat treatment device for amorphous soft magnetic alloy Download PDF

Info

Publication number
JP2016160497A
JP2016160497A JP2015041130A JP2015041130A JP2016160497A JP 2016160497 A JP2016160497 A JP 2016160497A JP 2015041130 A JP2015041130 A JP 2015041130A JP 2015041130 A JP2015041130 A JP 2015041130A JP 2016160497 A JP2016160497 A JP 2016160497A
Authority
JP
Japan
Prior art keywords
soft magnetic
magnetic alloy
amorphous soft
fluid
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015041130A
Other languages
Japanese (ja)
Other versions
JP6537848B2 (en
Inventor
幸一 岡本
Koichi Okamoto
幸一 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2015041130A priority Critical patent/JP6537848B2/en
Publication of JP2016160497A publication Critical patent/JP2016160497A/en
Application granted granted Critical
Publication of JP6537848B2 publication Critical patent/JP6537848B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat treatment method for an amorphous soft magnetic alloy capable of subjecting an amorphous soft magnetic material to heat treatment at a stable heat treatment temperature without breaking the same.SOLUTION: Provided is a heat treatment method for an amorphous soft magnetic alloy comprising: a step (a) where a guide part of guiding the belt-like object to be heat-treated into a fluid for heat treatment is contacted with the fluid held to a prescribed temperature, and the fluid is held to a temperature at which the object to be heat-treated is subjected to heat treatment; a step (b) where a belt-like amorphous soft magnetic alloy and a belt-like reinforcing part are connected in the length direction of the belt to form the above object to be heat-treated; a step (c) where, in the object to be heat-treated, only the reinforcing part is immersed into the fluid, and the upper face of the reinforcing part is contacted with the part in the fluid in the guide part; and a step (d) where, with the part in the fluid in the guide part as a guide, while pulling up the reinforcing part from the fluid, the amorphous soft magnetic alloy is immersed into the fluid, and at least a part of the amorphous soft magnetic alloy is crystallized by heat conduction from the fluid.SELECTED DRAWING: Figure 2

Description

本発明は、非晶質軟磁性合金の熱処理方法および非晶質軟磁性合金の熱処理装置に関する。   The present invention relates to an amorphous soft magnetic alloy heat treatment method and an amorphous soft magnetic alloy heat treatment apparatus.

圧粉磁芯に用いられる軟磁性粉末としては、単ロール法等を用いて溶融した合金を帯状の非晶質軟磁性材料とし、当該非晶質軟磁性材料を粉砕して粉末状にしたものがある。   The soft magnetic powder used for the dust core is a band-shaped amorphous soft magnetic material made of an alloy melted using a single roll method or the like, and the amorphous soft magnetic material is pulverized into a powder form. There is.

一方で、非晶質軟磁性材料をそのまま非晶質の状態で用いて圧粉磁芯を製造した場合、圧粉磁芯の形状に成型した状態で加熱すると、相変態に伴う発熱により合金温度が急上昇して結晶粒の粗大化や不純物の生成が引き起こされ、磁気特性が劣化する恐れがある。   On the other hand, when a powder magnetic core is manufactured using an amorphous soft magnetic material as it is in an amorphous state, if the powder is heated in the shape of a powder magnetic core, the alloy temperature is increased due to heat generated by the phase transformation. As a result, the crystal characteristics become coarser and impurities are generated, which may deteriorate the magnetic properties.

そこで、特許文献1では非晶質軟磁性材料の少なくとも一部を結晶化した構造が提案されている。   Therefore, Patent Document 1 proposes a structure in which at least a part of an amorphous soft magnetic material is crystallized.

特開2008−294411号公報JP 2008-294411 A

ここで、非晶質軟磁性材料を結晶化するためには非晶質軟磁性材料を熱処理する必要がある。   Here, in order to crystallize the amorphous soft magnetic material, it is necessary to heat treat the amorphous soft magnetic material.

しかしながら、帯状の非晶質軟磁性材料は、特に結晶化した後は非常に脆いため、熱処理の際に破断しやすいという問題があった。この点は加熱した液体中で帯状の非晶質軟磁性材料の加熱を行う際に特に顕著であった。   However, the band-shaped amorphous soft magnetic material is very brittle especially after crystallization, and thus has a problem that it is easily broken during heat treatment. This point was particularly remarkable when heating the band-shaped amorphous soft magnetic material in the heated liquid.

また、破断を防ぐためには帯状の非晶質軟磁性材料を引き出しロールと巻き取りロールに巻き付けた状態で、予め熱処理温度に保持した液体中に搬送経路を決めるガイドローラを介して浸漬する方法もある。しかしながらこの方法では非晶質軟磁性材料を浸漬する際に浸漬する前のガイドローラの温度と浸漬させた後のガイドローラの温度との間の温度差に起因して液体の温度が変化するため、熱処理温度が安定しないという問題があった。   In order to prevent breakage, there is also a method in which a strip-like amorphous soft magnetic material is wound around a draw roll and a take-up roll and immersed in a liquid previously held at a heat treatment temperature via a guide roller that determines a conveyance path. is there. However, in this method, when the amorphous soft magnetic material is immersed, the temperature of the liquid changes due to the temperature difference between the temperature of the guide roller before immersion and the temperature of the guide roller after immersion. There was a problem that the heat treatment temperature was not stable.

本発明は上記課題を解決するためのものである。即ち、本発明の目的は非晶質軟磁性材料を破断させずに安定した熱処理温度で熱処理が可能な非晶質軟磁性合金の熱処理方法を提供することにある。   The present invention is for solving the above-mentioned problems. That is, an object of the present invention is to provide a heat treatment method for an amorphous soft magnetic alloy capable of performing heat treatment at a stable heat treatment temperature without breaking the amorphous soft magnetic material.

上記の課題を解決するため、本発明の第1の態様は、(a)帯状の被熱処理物を熱処理用の流体中にガイドするガイド部を、所定の温度に保持された前記流体に接触させ、前記被熱処理物を熱処理する温度に前記流体を保持し、(b)帯状の非晶質軟磁性合金と、帯状の補強部を帯の長さ方向に連結して前記被熱処理物を形成し、(c)前記被熱処理物のうち、前記補強部のみを前記流体に浸漬し、前記ガイド部のうち前記流体中にある部分に前記補強部の上面を接触させ、(d)前記ガイド部のうち前記流体中にある部分をガイドにして前記補強部を前記流体から引き揚げつつ前記非晶質軟磁性合金を前記流体に浸漬し、前記流体からの伝熱により少なくとも前記非晶質軟磁性合金の一部を結晶化させる、を有する非晶質軟磁性合金の熱処理方法である。   In order to solve the above-described problems, the first aspect of the present invention is as follows: (a) a guide portion that guides a strip-shaped object to be heat-treated into a fluid for heat treatment is brought into contact with the fluid held at a predetermined temperature. The fluid is held at a temperature at which the object to be heat treated is heat treated, and (b) a band-shaped amorphous soft magnetic alloy and a band-shaped reinforcing portion are connected in the length direction of the band to form the object to be heat-treated. (C) Of the material to be heat treated, only the reinforcing part is immersed in the fluid, the upper part of the reinforcing part is brought into contact with a part of the guide part that is in the fluid, and (d) of the guide part. The amorphous soft magnetic alloy is immersed in the fluid while lifting the reinforcing portion from the fluid using a portion in the fluid as a guide, and at least the amorphous soft magnetic alloy is heated by heat transfer from the fluid. Heat treatment of an amorphous soft magnetic alloy having a portion to crystallize It is a method.

本発明の第2の態様は、帯状の非晶質軟磁性合金を熱処理する流体を保持する容器と、前記容器中に、前記流体が前記容器中に保持された状態で前記流体と少なくとも一部が接触する位置に設けられ、前記非晶質軟磁性合金を熱処理用の流体中にガイドするガイド部と、を有する非晶質軟磁性合金の熱処理装置である。   According to a second aspect of the present invention, there is provided a container for holding a fluid for heat-treating a band-shaped amorphous soft magnetic alloy, and at least a part of the fluid in the state where the fluid is held in the container. Is a heat treatment apparatus for an amorphous soft magnetic alloy having a guide portion that is provided at a position where the amorphous soft magnetic alloy is in contact and guides the amorphous soft magnetic alloy into a heat treatment fluid.

本発明によれば、非晶質軟磁性材料を破断させずに安定した熱処理温度で熱処理が可能な非晶質軟磁性合金の熱処理方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the heat processing method of the amorphous soft magnetic alloy which can heat-process at the stable heat processing temperature, without breaking an amorphous soft magnetic material can be provided.

本発明の実施形態に係る熱処理装置1を示す図である。It is a figure which shows the heat processing apparatus 1 which concerns on embodiment of this invention. 本発明の実施形態に係る熱処理装置1を用いた非晶質軟磁性合金の熱処理方法を示すフロー図である。It is a flowchart which shows the heat processing method of the amorphous soft magnetic alloy using the heat processing apparatus 1 which concerns on embodiment of this invention. 本発明の実施形態に係る熱処理装置1を用いた非晶質軟磁性合金の熱処理方法を示す図である。It is a figure which shows the heat processing method of the amorphous soft magnetic alloy using the heat processing apparatus 1 which concerns on embodiment of this invention. 本発明の実施形態に係る熱処理装置1を用いた非晶質軟磁性合金の熱処理方法を示す図である。It is a figure which shows the heat processing method of the amorphous soft magnetic alloy using the heat processing apparatus 1 which concerns on embodiment of this invention. 本発明の実施形態に係る熱処理装置1を用いた非晶質軟磁性合金の熱処理方法を示す図である。It is a figure which shows the heat processing method of the amorphous soft magnetic alloy using the heat processing apparatus 1 which concerns on embodiment of this invention. 本発明の実施形態に係る熱処理装置1を用いた非晶質軟磁性合金の熱処理方法を示す図である。It is a figure which shows the heat processing method of the amorphous soft magnetic alloy using the heat processing apparatus 1 which concerns on embodiment of this invention. 本発明の実施形態に係る熱処理装置1を用いた非晶質軟磁性合金の熱処理方法を示す図である。It is a figure which shows the heat processing method of the amorphous soft magnetic alloy using the heat processing apparatus 1 which concerns on embodiment of this invention. 本発明の実施形態に係る熱処理装置1を用いた非晶質軟磁性合金の熱処理方法を示す図である。It is a figure which shows the heat processing method of the amorphous soft magnetic alloy using the heat processing apparatus 1 which concerns on embodiment of this invention. 本発明の実施形態に係る熱処理装置1を用いた非晶質軟磁性合金の熱処理方法を示す図である。It is a figure which shows the heat processing method of the amorphous soft magnetic alloy using the heat processing apparatus 1 which concerns on embodiment of this invention. 比較例に係る熱処理装置51を用いた非晶質軟磁性合金の熱処理方法を示す図である。It is a figure which shows the heat processing method of the amorphous soft magnetic alloy using the heat processing apparatus 51 which concerns on a comparative example. 比較例に係る熱処理装置51を用いた非晶質軟磁性合金の熱処理方法を示す図である。It is a figure which shows the heat processing method of the amorphous soft magnetic alloy using the heat processing apparatus 51 which concerns on a comparative example. 比較例に係る熱処理装置51を用いた非晶質軟磁性合金の熱処理方法を示す図である。It is a figure which shows the heat processing method of the amorphous soft magnetic alloy using the heat processing apparatus 51 which concerns on a comparative example. 実施例および比較例における熱処理中の塩浴中の温度の時間による変動を示すグラフである。It is a graph which shows the fluctuation | variation with the time of the temperature in the salt bath during the heat processing in an Example and a comparative example.

以下、本発明の実施形態について、図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

まず、図1を参照して本実施形態に係る熱処理装置1の構成について説明する。   First, the configuration of the heat treatment apparatus 1 according to the present embodiment will be described with reference to FIG.

ここでは熱処理装置1として、帯状の非晶質軟磁性合金を熱処理により結晶化する装置が例示されている。なお、以下の説明における「結晶化」とはナノ結晶を析出させることをいい、非晶質軟磁性合金がFe基軟磁性合金の場合はα鉄相等のナノ結晶を析出させることをいう。   Here, as the heat treatment apparatus 1, an apparatus for crystallizing a band-like amorphous soft magnetic alloy by heat treatment is illustrated. In the following description, “crystallization” refers to depositing nanocrystals, and when the amorphous soft magnetic alloy is an Fe-based soft magnetic alloy, it refers to depositing nanocrystals such as an α-iron phase.

図1に示すように熱処理装置1は、帯状の非晶質軟磁性合金を熱処理する流体21を保持する容器22と、容器22中において、流体21が容器22中に保持された状態で流体21と少なくとも一部が接触する位置に設けられ、前記非晶質軟磁性合金を流体21中にガイドするガイド部としてのガイドローラ13を有する。   As shown in FIG. 1, the heat treatment apparatus 1 includes a container 22 that holds a fluid 21 that heat-treats a band-shaped amorphous soft magnetic alloy, and a fluid 21 in a state where the fluid 21 is held in the container 22. And a guide roller 13 serving as a guide portion for guiding the amorphous soft magnetic alloy into the fluid 21.

なお、熱処理装置1は流体21を加熱するためのヒータ23を容器22の周囲に有している。   The heat treatment apparatus 1 has a heater 23 for heating the fluid 21 around the container 22.

熱処理装置1はまた、熱処理後の非晶質軟磁性合金を巻き取る、巻き取り部としての巻き取りロール16と、巻き取りロール16と協働して前記非晶質軟磁性合金を挟みこむ補助ローラ17を有する。補助ローラ17はここでは巻き取りロール16の上方に設けられている。なお、ここでいう「上方に設けられている」とは一方の部材が鉛直方向においてより高い位置に設けられていることを意味し、以下の説明でも同様とする。例えば図1では矢印Aで表される向きが鉛直上向きを意味するため、Aの向きに対して高い方が「上方」になる。逆にAの向きに対して低い方が「下方」になる。   The heat treatment apparatus 1 also winds the amorphous soft magnetic alloy after the heat treatment, a winding roll 16 as a winding portion, and an auxiliary for interposing the amorphous soft magnetic alloy in cooperation with the winding roll 16 It has a roller 17. Here, the auxiliary roller 17 is provided above the winding roll 16. Here, “provided above” means that one member is provided at a higher position in the vertical direction, and the same applies to the following description. For example, in FIG. 1, the direction represented by the arrow A means a vertically upward direction, and therefore, the direction higher than the direction A is “upward”. Conversely, the lower one in the direction of A is “downward”.

さらに、以下の定義ではAの向きを「上向き」とし、Aと並行で逆の向きであるBの向きを「下向き」とする。   Further, in the following definition, the direction of A is “upward”, and the direction of B, which is the opposite direction in parallel with A, is “downward”.

熱処理装置1はさらに、容器22よりも上方、より正確には流体21の液面41よりも上方で、ガイドローラ13と巻き取りロール16の間に設けられた下流側ローラ14と、下流側ローラ14と巻き取りロール16の間に設けられ、前記下流側ローラ14と巻き取りロール16の上端を結ぶ面である搬送経路31をまたぐように上下動可能な昇降ローラ15を有する。ここで、上下動とは、図1のAおよびBの向きに移動することを示す。昇降ローラ15は下限位置15aおよび上限位置15bの間を図示しない駆動装置を用いて移動可能である。   The heat treatment apparatus 1 further includes a downstream roller 14 provided between the guide roller 13 and the take-up roll 16 above the container 22, more precisely above the liquid level 41 of the fluid 21, and a downstream roller. 14 and an up-and-down roller 15 provided between the take-up roll 16 and movable up and down so as to straddle a conveying path 31 that is a surface connecting the downstream roller 14 and the upper end of the take-up roll 16. Here, the vertical movement indicates movement in the directions of A and B in FIG. The elevating roller 15 is movable between a lower limit position 15a and an upper limit position 15b by using a driving device (not shown).

また、熱処理装置1は非晶質軟磁性合金を引き出す引き出し部としての引き出しロール11と、容器22よりも上方、より正確には流体21の液面41よりも上方で、かつ引き出しロール11とガイドローラ13の間に設けられた上流側ローラ12を有する。   Further, the heat treatment apparatus 1 includes a drawing roll 11 as a drawing portion for drawing out the amorphous soft magnetic alloy, and a position above the container 22, more precisely above the liquid level 41 of the fluid 21, and the drawing roll 11 and the guide. An upstream roller 12 is provided between the rollers 13.

なお図1には、熱処理の際の帯状の非晶質軟磁性合金の搬送経路31を点線で示している。即ち、詳細は後述するが、非晶質軟磁性合金は引き出しロール11から引き出された後で上流側ローラ12と非晶質軟磁性合金の下面、即ち鉛直方向下側の面とが接触し、ガイドローラ13と非晶質軟磁性合金の上面、即ち鉛直方向上側の面とが接触し、下流側ローラ14と非晶質軟磁性合金の下面とが接触しながら搬送経路31を搬送され、巻き取りロール16と補助ローラ17との間に挟み込まれながら巻き取りロール16に巻き取られる。また、この過程で非晶質軟磁性合金の表面の少なくとも一部が流体21と接触することにより、流体21からの伝熱で非晶質軟磁性合金が熱処理され、非晶質軟磁性合金の少なくとも一部が結晶化される。
以上が熱処理装置1の構成の説明である。
In FIG. 1, the transport path 31 of the band-shaped amorphous soft magnetic alloy during the heat treatment is indicated by a dotted line. That is, although details will be described later, after the amorphous soft magnetic alloy is drawn from the pulling roll 11, the upstream roller 12 and the lower surface of the amorphous soft magnetic alloy, that is, the lower surface in the vertical direction are in contact with each other. The guide roller 13 and the upper surface of the amorphous soft magnetic alloy, that is, the upper surface in the vertical direction are in contact with each other, and the downstream roller 14 and the lower surface of the amorphous soft magnetic alloy are in contact with each other. The paper is wound around the take-up roll 16 while being sandwiched between the take-up roll 16 and the auxiliary roller 17. In this process, at least a part of the surface of the amorphous soft magnetic alloy comes into contact with the fluid 21, so that the amorphous soft magnetic alloy is heat-treated by heat transfer from the fluid 21, and the amorphous soft magnetic alloy At least a portion is crystallized.
The above is the description of the configuration of the heat treatment apparatus 1.

次に、熱処理装置1を用いた熱処理方法について、図2〜図9を参照して説明する。   Next, a heat treatment method using the heat treatment apparatus 1 will be described with reference to FIGS.

なお、以下に示す熱処理方法は、各手順を作業者が行ってもよいし、制御部を有するロボット等を用いて自動で行ってもよい。   In the heat treatment method described below, each procedure may be performed by an operator, or may be performed automatically using a robot or the like having a control unit.

また、熱処理前の状態では、昇降ローラ15は下限位置15aにあるものとする。   In the state before the heat treatment, the elevating roller 15 is assumed to be at the lower limit position 15a.

まず、作業者またはロボットの制御部は、容器22内の流体21がガイドローラ13と接触した状態にして、ヒータ23を用いて流体21を加熱し、保持する(図2のS1)。この際の保持温度は、図3に示す非晶質軟磁性合金32を熱処理する温度である。   First, the control unit of the operator or the robot heats and holds the fluid 21 using the heater 23 with the fluid 21 in the container 22 in contact with the guide roller 13 (S1 in FIG. 2). The holding temperature at this time is a temperature at which the amorphous soft magnetic alloy 32 shown in FIG.

流体21としては非晶質軟磁性合金32と反応せずに熱処理が可能であり、かつ熱処理温度で流体である材料であれば特に限定されるものではない。例えば流体21としてはSn等の溶融金属や硝酸系の溶融塩を例示できる。   The fluid 21 is not particularly limited as long as it can be heat treated without reacting with the amorphous soft magnetic alloy 32 and is a fluid at the heat treatment temperature. For example, the fluid 21 may be a molten metal such as Sn or a nitrate-based molten salt.

次に、作業者またはロボットは、引き出しロール11に帯状の非晶質軟磁性合金32を巻き付ける等して取り付ける(図2のS2)。   Next, the worker or the robot attaches the strip-shaped amorphous soft magnetic alloy 32 around the pulling roll 11 (S2 in FIG. 2).

なお、非晶質軟磁性合金32はここでは例えばFe基の材料が挙げられるが、これに限定されるものではない。   Here, the amorphous soft magnetic alloy 32 includes, for example, an Fe-based material, but is not limited thereto.

次に、作業者またはロボットは図3に示すような帯状の補強部33を用意し、補強部33の長さ方向の端部と、非晶質軟磁性合金32の長さ方向の端部とを、帯の長さ方向に接合する(図2のS3)。ここでは図3に示す接合された部分を接合部34と称する。   Next, an operator or a robot prepares a belt-shaped reinforcing portion 33 as shown in FIG. 3, and includes an end portion in the length direction of the reinforcing portion 33 and an end portion in the length direction of the amorphous soft magnetic alloy 32. Are joined in the length direction of the band (S3 in FIG. 2). Here, the joined portion shown in FIG.

補強部33を構成する材料は、比熱がある程度大きく、非晶質軟磁性合金32の端部を保護し、流体21に浸漬した時、化学的に安定で、かつ、流体21に浸漬した状態で巻き取りによって発生する張力で破断しない程度の機械的強度を有する材質であれば、特に限定されない。   The material constituting the reinforcing portion 33 has a certain amount of specific heat, protects the end of the amorphous soft magnetic alloy 32, is chemically stable when immersed in the fluid 21, and is immersed in the fluid 21. The material is not particularly limited as long as the material has a mechanical strength that does not break due to the tension generated by winding.

さらに、補強部33の材料としては、非晶質軟磁性合金32の比熱、熱伝導率および線膨張係数と近い数値の材料が好ましい。   Further, as the material of the reinforcing portion 33, a material having a numerical value close to the specific heat, thermal conductivity, and linear expansion coefficient of the amorphous soft magnetic alloy 32 is preferable.

以上の条件を満たす材料としては、例えば非晶質軟磁性合金32がFe基軟磁性合金の場合、ニッケルが挙げられる。   An example of a material that satisfies the above conditions is nickel when the amorphous soft magnetic alloy 32 is an Fe-based soft magnetic alloy.

また、補強部33の形状・寸法は、非晶質軟磁性合金32の幅および厚さと近い寸法を有する帯状の形状が好ましい。   The shape and dimensions of the reinforcing portion 33 are preferably a band-like shape having dimensions close to the width and thickness of the amorphous soft magnetic alloy 32.

さらに、非晶質軟磁性合金32と補強部33の接合方法としては例えば溶接が挙げられるが、後述する巻き取りによって発生する張力で接合部34が破断しない方法であれば、溶接には限定されない。   Furthermore, the joining method of the amorphous soft magnetic alloy 32 and the reinforcing portion 33 includes, for example, welding. However, the joining method is not limited to welding as long as the joining portion 34 is not broken by a tension generated by winding described later. .

なお、非晶質軟磁性合金32と補強部33を接合したものをここでは被熱処理物35(図3参照)と称す。   In addition, what joined the amorphous soft magnetic alloy 32 and the reinforcement part 33 is called the to-be-processed object 35 (refer FIG. 3) here.

次に、作業者またはロボットは図3に示すように搬送経路31に沿って被熱処理物35を配置し、補強部33のみを流体21に浸漬する(図2のS4)。   Next, as shown in FIG. 3, the worker or the robot arranges the object to be heat treated 35 along the transport path 31, and immerses only the reinforcing portion 33 in the fluid 21 (S4 in FIG. 2).

即ち、被熱処理物35のうち、補強部33のみを流体21に浸漬し、ガイドローラ13のうち流体21にある部分に補強部33の上面を接触させる。さらに補強部33の長さ方向の開放端を下流側ローラ14を介して巻き取りロール16に巻き付ける。   That is, only the reinforcing portion 33 of the material to be heat treated 35 is immersed in the fluid 21, and the upper surface of the reinforcing portion 33 is brought into contact with the portion of the guide roller 13 that is in the fluid 21. Further, the open end of the reinforcing portion 33 in the length direction is wound around the winding roll 16 via the downstream roller 14.

次に、作業者またはロボットは図4に示すように非晶質軟磁性合金32の熱処理を開始する(図2のS5)。   Next, the worker or robot starts heat treatment of the amorphous soft magnetic alloy 32 as shown in FIG. 4 (S5 in FIG. 2).

具体的には、作業者またはロボットは巻き取りロール16を駆動して被熱処理物35を搬送経路31に沿って図4のCの向きに搬送し、ガイドローラ13のうち流体21中にある部分をガイドにして補強部33を流体21から引き揚げる。   Specifically, the operator or the robot drives the take-up roll 16 to convey the object to be heat-treated 35 along the conveyance path 31 in the direction C in FIG. 4, and the portion of the guide roller 13 in the fluid 21. The reinforcing part 33 is lifted from the fluid 21 using the above as a guide.

この際、非晶質軟磁性合金32は補強部33と連結されているため、引き出しロール11から引き出され、上流側ローラ12と非晶質軟磁性合金32の下面が接触しつつ図4に示すように流体21に浸漬され、ガイドローラ13のうち流体21にある部分と接触する。   At this time, since the amorphous soft magnetic alloy 32 is connected to the reinforcing portion 33, the amorphous soft magnetic alloy 32 is drawn from the pulling roll 11, and the upstream roller 12 and the lower surface of the amorphous soft magnetic alloy 32 are in contact with each other as shown in FIG. So as to be in contact with a portion of the guide roller 13 in the fluid 21.

この状態では、非晶質軟磁性合金32は流体21からの伝熱により少なくともその一部が結晶化する。   In this state, at least a part of the amorphous soft magnetic alloy 32 is crystallized by heat transfer from the fluid 21.

非晶質軟磁性合金32は巻き取りロール16の回転速度に対応した時間だけ熱処理され、図5に示すように流体21から引き揚げられることにより熱処理が終了する。   The amorphous soft magnetic alloy 32 is heat-treated for a time corresponding to the rotational speed of the take-up roll 16, and the heat treatment is completed by being lifted from the fluid 21 as shown in FIG.

ここで、作業者または制御部は搬送経路31における接合部34の位置を確認し、下流側ローラ14と接触しているか、あるいは接触する直前か否かを判断し、接触している場合か、あるいは接触する直前の場合はS7に進み、それ以外は熱処理を続ける(図2のS6)。   Here, the operator or the control unit confirms the position of the joining portion 34 in the conveyance path 31 and determines whether or not it is in contact with the downstream roller 14 or just before contact. Alternatively, the process proceeds to S7 immediately before contact, and the heat treatment is continued otherwise (S6 in FIG. 2).

接合部34が下流側ローラ14と接触している場合か、あるいは接触する直前の場合は図6に示すように昇降ローラ15を上向き、即ちAの向きに駆動して補強部33を持ち上げて、持ち上げない場合と比べて、接合部34と下流側ローラ14との接触時間および接触面積を小さくする(図2のS7)。ここでは昇降ローラ15を上限位置15bまで持ち上げる。   When the joining portion 34 is in contact with the downstream roller 14 or immediately before contact, the lifting roller 15 is driven upward as shown in FIG. The contact time and the contact area between the joint 34 and the downstream roller 14 are reduced as compared with the case where the lift is not lifted (S7 in FIG. 2). Here, the lifting roller 15 is lifted to the upper limit position 15b.

次に、作業者またはロボットは搬送経路31における接合部34の位置を確認し、接合部34が下流側ローラ14を通過したか、あるいは下流側ローラ14と接触しなくなったか否かを判断し、通過した場合はS9に進む(図2のS8)、なお、接合部34が下流側ローラ14を通過していない場合は、通過するまでS8の判断を続行する。   Next, the operator or the robot checks the position of the joining portion 34 in the transport path 31 and determines whether the joining portion 34 has passed through the downstream roller 14 or no longer in contact with the downstream roller 14. When it passes, it progresses to S9 (S8 of FIG. 2), and when the junction part 34 has not passed the downstream roller 14, the determination of S8 is continued until it passes.

接合部34が下流側ローラ14を通過した場合は、昇降ローラ15を図7のBの向きに下降させて被熱処理物35よりも下方で被熱処理物35と接触しない位置、ここでは下限位置15aに戻す(図2のS9)。   When the joining portion 34 passes the downstream roller 14, the elevating roller 15 is lowered in the direction of B in FIG. 7 so that the lower portion 15a is not in contact with the workpiece 35 below the workpiece 35. (S9 in FIG. 2).

このように、昇降ローラ15を用いて接合部34と下流側ローラ14との接触時間および接触面積を小さくすること、理想としては接合部34と下流側ローラ14を非接触あるいは点接触とすることにより、接合部34に曲げ応力が加わるのを防ぐことができ、熱処理による結晶化で脆化した非晶質軟磁性合金32が、接合部34を起点に破断するのを防ぐことができる。   As described above, the contact time and the contact area between the joining portion 34 and the downstream roller 14 are reduced by using the lifting roller 15, and ideally, the joining portion 34 and the downstream roller 14 are not contacted or point-contacted. As a result, it is possible to prevent bending stress from being applied to the joint portion 34 and to prevent the amorphous soft magnetic alloy 32 embrittled by crystallization by heat treatment from breaking at the joint portion 34 as a starting point.

この後は非晶質軟磁性合金を流体21から引き揚げ、図8に示すように巻き取りロール16と補助ローラ17で非晶質軟磁性合金32を挟みながら巻き取りロール16に補強部33を巻き取り、引き続いて図9に示すように非晶質軟磁性合金32を巻き取る。このように、巻き取りロール16と補助ローラ17で被熱処理物35を挟みながら巻き取ることにより、巻き取りロール16のみを用いて巻き取る場合と比べて接合部34に発生する曲げ応力を小さくすることができ、巻き取りの際に非晶質軟磁性合金32が接合部34を起点に破断するのを防ぐことができる。
以上が熱処理装置1を用いた熱処理方法の説明である。
Thereafter, the amorphous soft magnetic alloy is pulled up from the fluid 21, and the reinforcing portion 33 is wound around the take-up roll 16 while sandwiching the amorphous soft magnetic alloy 32 between the take-up roll 16 and the auxiliary roller 17, as shown in FIG. Then, the amorphous soft magnetic alloy 32 is wound up as shown in FIG. In this way, by winding the object to be heat-treated 35 between the winding roll 16 and the auxiliary roller 17, the bending stress generated at the joint portion 34 is reduced as compared with the case of winding using only the winding roll 16. It is possible to prevent the amorphous soft magnetic alloy 32 from breaking at the joint 34 during winding.
The above is the description of the heat treatment method using the heat treatment apparatus 1.

このように、本実施形態によれば、非晶質軟磁性合金32を熱処理する際に非晶質軟磁性合金32を補強部33と連結し、ガイドローラ13をガイドに補強部33を流体21に浸漬してから補強部33を巻き取ることにより非晶質軟磁性合金32を流体21中に浸漬して熱処理を行う。   Thus, according to the present embodiment, when the amorphous soft magnetic alloy 32 is heat-treated, the amorphous soft magnetic alloy 32 is connected to the reinforcing portion 33, and the reinforcing portion 33 is connected to the fluid 21 using the guide roller 13 as a guide. Then, the amorphous soft magnetic alloy 32 is immersed in the fluid 21 by performing the heat treatment.

そのため、非晶質軟磁性合金32を破断させずに安定した熱処理温度で熱処理が可能である。   Therefore, heat treatment can be performed at a stable heat treatment temperature without breaking the amorphous soft magnetic alloy 32.

以下、実施例に基づき、本発明を具体的に説明する。   Hereinafter, based on an Example, this invention is demonstrated concretely.

(実施例)
熱処理装置1を用いて非晶質軟磁性合金32の熱処理による結晶化を試みた。具体的な手順は以下の通りである。
(Example)
Attempts were made to crystallize the amorphous soft magnetic alloy 32 by heat treatment using the heat treatment apparatus 1. The specific procedure is as follows.

まず、非晶質軟磁性合金32の原料として工業鉄、Fe−B、Fe−P、電気銅を秤量し、この原料を高周波溶解で溶解して合金化した。次に、溶解した合金を単ロール急冷法を用いて急冷し、帯状の非晶質軟磁性合金32として幅40mm、厚さ25μm、組成式Fe84.3Cu0.7at%のFe基軟磁性合金薄帯を製造した。製造したFe基軟磁性合金帯をX線回折法で測定した所、非晶質単相であることが確認された。なお以下の説明ではX線回折法をXRDと略す。 First, industrial iron, Fe-B, Fe-P, and electrolytic copper were weighed as raw materials for the amorphous soft magnetic alloy 32, and the raw materials were melted by high frequency melting and alloyed. Next, the melted alloy is rapidly cooled using a single roll quenching method to form a band-shaped amorphous soft magnetic alloy 32 having a width of 40 mm, a thickness of 25 μm, and a composition formula of Fe 84.3 B 6 P 9 Cu 0.7 at%. A Fe-based soft magnetic alloy ribbon was produced. When the manufactured Fe-based soft magnetic alloy band was measured by X-ray diffraction, it was confirmed to be an amorphous single phase. In the following description, the X-ray diffraction method is abbreviated as XRD.

次に、Fe基軟磁性合金薄帯を裁断機により幅30mmで長さ方向に切断し、熱処理前Fe基軟磁性合金薄帯とした。   Next, the Fe-based soft magnetic alloy ribbon was cut in the length direction with a width of 30 mm by a cutter to obtain a Fe-based soft magnetic alloy ribbon before heat treatment.

次に熱処理装置1として、図1に示す装置を用意した。   Next, as the heat treatment apparatus 1, an apparatus shown in FIG.

次に、熱処理装置1の容器22に硝酸系溶融塩の原料を投入し、ヒータ23で当該原料を加熱・溶融して溶融塩とし、これを流体21として用いた。溶融塩の温度は440℃に保持した。   Next, a raw material of nitric acid-based molten salt was put into the container 22 of the heat treatment apparatus 1, and the raw material was heated and melted with a heater 23 to form a molten salt, which was used as the fluid 21. The temperature of the molten salt was kept at 440 ° C.

次に幅30mmに切断した熱処理前のFe基軟磁性合金薄帯を同じ幅の紙管に巻き、紙管ごと引き出しロール11の回転軸に取りつけた。   Next, the Fe-based soft magnetic alloy ribbon that had been cut to a width of 30 mm and before heat treatment was wound around a paper tube having the same width, and the paper tube was attached to the rotating shaft of the drawing roll 11.

次に、補強部33として幅30mm、厚さ20μmのニッケル帯を用意し、ニッケル帯の一端と熱処理前Fe基軟磁性合金薄帯の最外周の一端を溶接にて接合した。   Next, a nickel band having a width of 30 mm and a thickness of 20 μm was prepared as the reinforcing portion 33, and one end of the nickel band and one end of the outermost periphery of the Fe-based soft magnetic alloy ribbon before heat treatment were joined by welding.

次にニッケル帯の他端を巻き取りロール16にテープで固定すると共に、図1で図示した搬送経路31上に配置した。搬送経路31の一部には溶融塩中も含まれているが、そこにはニッケル帯のみを配置し、接合部34は上流側ローラ12と溶融塩の液面41の間に位置するように配置した。この状態から巻き取りロール16の回転軸に取り付けられている図示しないモータを回転させて、ニッケル帯を巻き取ると共に熱処理前Fe基軟磁性合金薄帯を引き込んで、溶融塩に浸漬させて熱処理を開始した。   Next, the other end of the nickel band was fixed to the take-up roll 16 with a tape and placed on the transport path 31 shown in FIG. Although a part of the conveyance path 31 also contains molten salt, only the nickel band is disposed there, so that the joining portion 34 is located between the upstream roller 12 and the liquid surface 41 of the molten salt. Arranged. From this state, a motor (not shown) attached to the rotating shaft of the take-up roll 16 is rotated to take up the nickel band and draw in the Fe-based soft magnetic alloy ribbon before heat treatment and immerse it in the molten salt for heat treatment. Started.

この時、Fe基軟磁性合金薄帯が溶融塩に浸漬している時間、即ち熱処理時間が4秒になるようにモータの回転数を調整した。熱処理開始後、接合部34が溶融塩から出てきて下流側ローラ14の手前の位置まで移動した時点で、昇降ローラ15を上昇させて、接合部34が下流側ローラ14と接触しないようにした。接合部34が下流側ローラ14を通過した後は昇降ローラ15を下降させて接合部34が昇降ローラ15と接触しないように通過させた。その後、接合部34が巻き取りロール16まで移動し、補助ローラ17に挟まれながら、巻き取りロール16で巻き取った。この熱処理方法により、接合部34での熱処理後Fe基軟磁性合金薄帯の破断が発生することはなかった。これは、接合部34にて発生する曲げ応力が0もしくは小さく抑制できたためと考えられる。接合部34以降、熱処理後Fe基軟磁性合金薄帯は下流側ローラ14を経由し、同様に巻き取りロール16にて順次巻き取っていったが、熱処理後Fe基軟磁性合金薄帯の破断は発生せず、連続熱処理することができた。このようにして熱処理した薄帯をXRDによるX線回折パターンを調べたところ、α−Fe結晶に由来するピークが確認でき、所望の熱処理と、それに伴う結晶化ができたことが確認できた。   At this time, the rotation speed of the motor was adjusted so that the time during which the Fe-based soft magnetic alloy ribbon was immersed in the molten salt, that is, the heat treatment time was 4 seconds. After the start of the heat treatment, when the joining portion 34 comes out of the molten salt and moves to a position before the downstream roller 14, the lifting roller 15 is raised so that the joining portion 34 does not come into contact with the downstream roller 14. . After the joining portion 34 passed the downstream roller 14, the lifting roller 15 was lowered so that the joining portion 34 did not come into contact with the lifting roller 15. Thereafter, the joining portion 34 moved to the take-up roll 16 and was taken up by the take-up roll 16 while being sandwiched between the auxiliary rollers 17. By this heat treatment method, the Fe-based soft magnetic alloy ribbon was not broken after the heat treatment at the joint 34. This is presumably because the bending stress generated at the joint 34 can be suppressed to 0 or small. After the joint 34, the heat-treated Fe-based soft magnetic alloy ribbon was sequentially wound by the take-up roll 16 through the downstream roller 14, but after the heat treatment, the Fe-based soft magnetic alloy ribbon was broken. No continuous heat treatment was possible. When the XRD pattern by XRD was examined for the ribbon thus heat-treated, a peak derived from the α-Fe crystal was confirmed, and it was confirmed that the desired heat treatment and accompanying crystallization were achieved.

(比較例)
次に、比較例として図10〜図12に示す熱処理装置51を用いて実施例と同じFe基軟磁性合金薄帯を同じ溶融塩を用いて同じ熱処理温度・熱処理時間で熱処理を行った。
(Comparative example)
Next, using the heat treatment apparatus 51 shown in FIGS. 10 to 12 as a comparative example, the same Fe-based soft magnetic alloy ribbon as in the example was heat treated at the same heat treatment temperature and heat treatment time using the same molten salt.

図10に示すように、比較例の熱処理装置51は実施例の熱処理装置1と比べると、補助ローラ17および昇降ローラ15がないこと、ガイドローラ13が熱処理前は流体21中にないことのみが異なる。なお、図10において、図1と同様の機能を果たす要素については同一の番号を付している。   As shown in FIG. 10, the heat treatment apparatus 51 of the comparative example has no auxiliary roller 17 and lift roller 15 and the guide roller 13 is not in the fluid 21 before the heat treatment, compared to the heat treatment apparatus 1 of the embodiment. Different. In FIG. 10, the elements having the same functions as those in FIG.

この熱処理装置51を用いて、以下の手順でFe基軟磁性合金薄帯の熱処理を行った。   Using this heat treatment apparatus 51, heat treatment was performed on the Fe-based soft magnetic alloy ribbon in the following procedure.

まず、図10に示すように、帯状の非晶質軟磁性合金32として、Fe基軟磁性合金薄帯を引き出しロール11に取り付け、その後Fe基軟磁性合金薄帯の一端を巻き取りロール16にテープで固定し、さらにFe基軟磁性合金薄帯の下面を上流側ローラ12と下流側ローラ14に接触させた。この状態ではFe基軟磁性合金薄帯のうち、上流側ローラ12と下流側ローラ14の間にある部分は上方にガイドローラ13が、下方に流体21が位置しており、かつガイドローラ13、Fe基軟磁性合金薄帯および流体21はいずれも互いに接触していない。また、この構成から明らかなように、比較例では補強部33を使用しなかった。   First, as shown in FIG. 10, an Fe-based soft magnetic alloy ribbon is attached to the drawing roll 11 as a strip-shaped amorphous soft magnetic alloy 32, and then one end of the Fe-based soft magnetic alloy ribbon is attached to the take-up roll 16. The lower surface of the Fe-based soft magnetic alloy ribbon was brought into contact with the upstream roller 12 and the downstream roller 14. In this state, in the Fe-based soft magnetic alloy ribbon, a portion between the upstream roller 12 and the downstream roller 14 has an upper guide roller 13 and a lower fluid 21, and the guide roller 13, Neither the Fe-based soft magnetic alloy ribbon nor the fluid 21 are in contact with each other. Further, as apparent from this configuration, the reinforcing portion 33 was not used in the comparative example.

次に、図10に示す状態から図11に示すように、ガイドローラ13を図11のBの向きに移動してFe基軟磁性合金薄帯ごと溶融塩に浸漬させ、図12に示すように巻き取りロール16を用いてFe基軟磁性合金薄帯を巻き取りつつ、Fe基軟磁性合金薄帯の熱処理を行った。   Next, as shown in FIG. 11 from the state shown in FIG. 10, the guide roller 13 is moved in the direction of B in FIG. 11 and immersed in the molten salt together with the Fe-based soft magnetic alloy ribbon, as shown in FIG. While winding the Fe-based soft magnetic alloy ribbon using the winding roll 16, the Fe-based soft magnetic alloy ribbon was heat-treated.

その他の条件は実施例と同じとした。   Other conditions were the same as in the example.

実施例および比較例における熱処理中の流体21の温度の時間による変動を図13に示す。なお、流体21の温度は、実施例、比較例のいずれも上流側ローラ12の近傍で測定した。   FIG. 13 shows the variation with time of the temperature of the fluid 21 during the heat treatment in Examples and Comparative Examples. The temperature of the fluid 21 was measured in the vicinity of the upstream roller 12 in both the examples and the comparative examples.

図13から明らかなように、実施例では熱処理開始から熱処理中の流体21の温度変動が1℃以下であった。   As is clear from FIG. 13, in the example, the temperature variation of the fluid 21 during the heat treatment from the start of the heat treatment was 1 ° C. or less.

一方で比較例では熱処理開始直後に大きく流体21の温度が低下し、開始後5分で約12℃まで温度が低下した。その後温度は緩やかに上昇したが、1時間経過しても熱処理直前の温度には戻らなかった。   On the other hand, in the comparative example, the temperature of the fluid 21 greatly decreased immediately after the start of the heat treatment, and the temperature decreased to about 12 ° C. 5 minutes after the start. Thereafter, the temperature gradually increased, but did not return to the temperature just before the heat treatment even after 1 hour.

以上の結果から、実施例では非晶質軟磁性材料を破断させずに安定した熱処理温度で熱処理が可能であることが分かった。   From the above results, it was found that heat treatment was possible at a stable heat treatment temperature without breaking the amorphous soft magnetic material in the examples.

以上、実施形態に基づき本発明を説明したが、これら実施形態は単に例を挙げて発明を説明するためのものである。よって、これら実施形態は本出願人が本発明の範囲をこれらに限定することを意味するものではない。当業者であれば、上記記載に基づき各種変形例および改良例に想到するのは当然である。よって当該変形例および改良例も本発明の範囲である。   As mentioned above, although this invention was demonstrated based on embodiment, these embodiment is for demonstrating invention only with an example. Therefore, these embodiments do not mean that the applicant limits the scope of the present invention to these. It is natural for those skilled in the art to come up with various modifications and improvements based on the above description. Therefore, the modified examples and improved examples are also within the scope of the present invention.

1 :熱処理装置
11 :引き出しロール
12 :上流側ローラ
13 :ガイドローラ
14 :下流側ローラ
15 :昇降ローラ
15a :下限位置
15b :上限位置
16 :巻き取りロール
17 :補助ローラ
21 :流体
22 :容器
23 :ヒータ
31 :搬送経路
32 :非晶質軟磁性合金
33 :補強部
34 :接合部
35 :被熱処理物
41 :液面
51 :熱処理装置
1: Heat treatment device 11: Drawer roll 12: Upstream roller 13: Guide roller 14: Downstream roller 15: Lift roller 15a: Lower limit position 15b: Upper limit position 16: Winding roll 17: Auxiliary roller 21: Fluid 22: Container 23 : Heater 31: Conveyance path 32: Amorphous soft magnetic alloy 33: Reinforcement part 34: Joining part 35: Material to be heat-treated 41: Liquid surface 51: Heat treatment apparatus

Claims (10)

(a)帯状の被熱処理物を熱処理用の流体中にガイドするガイド部を、所定の温度に保持された前記流体に接触させ、前記被熱処理物を熱処理する温度に前記流体を保持し、
(b)帯状の非晶質軟磁性合金と、帯状の補強部を帯の長さ方向に接合して前記被熱処理物を形成し、
(c)前記被熱処理物のうち、前記補強部のみを前記流体に浸漬し、前記ガイド部のうち前記流体中にある部分に前記補強部の上面を接触させ、
(d)前記ガイド部のうち前記流体中にある部分をガイドにして前記補強部を前記流体から引き揚げつつ前記非晶質軟磁性合金を前記流体に浸漬し、前記流体からの伝熱により少なくとも前記非晶質軟磁性合金の一部を結晶化させる、
を有する非晶質軟磁性合金の熱処理方法。
(A) A guide portion that guides a strip-shaped heat-treated material into a heat-treating fluid is brought into contact with the fluid held at a predetermined temperature, and the fluid is held at a temperature at which the heat-treated material is heat-treated,
(B) A band-shaped amorphous soft magnetic alloy and a band-shaped reinforcing portion are joined in the length direction of the band to form the object to be heat-treated,
(C) Of the material to be heat treated, only the reinforcing part is immersed in the fluid, and the upper surface of the reinforcing part is brought into contact with a part of the guide part that is in the fluid,
(D) immersing the amorphous soft magnetic alloy in the fluid while lifting the reinforcing portion from the fluid using a portion of the guide portion in the fluid as a guide, and at least the heat transfer from the fluid Crystallizing a part of the amorphous soft magnetic alloy;
A method for heat treatment of an amorphous soft magnetic alloy having
前記ガイド部はローラである、請求項1に記載の非晶質軟磁性合金の熱処理方法。   The heat treatment method for an amorphous soft magnetic alloy according to claim 1, wherein the guide portion is a roller. (e)熱処理後の前記非晶質軟磁性合金を前記流体から引き揚げ、巻き取り部と補助ローラで前記非晶質軟磁性合金を挟みながら前記巻き取り部に前記非晶質軟磁性合金を巻き取る、
を有する請求項1または2に記載の非晶質軟磁性合金の熱処理方法。
(E) The amorphous soft magnetic alloy after the heat treatment is lifted from the fluid, and the amorphous soft magnetic alloy is wound around the winding portion while the amorphous soft magnetic alloy is sandwiched between the winding portion and an auxiliary roller. take,
The method for heat-treating an amorphous soft magnetic alloy according to claim 1 or 2, wherein:
前記(e)は、前記流体の液面よりも上方で、かつ前記ガイド部と前記巻き取り部の間に設けられた下流側ローラに前記被熱処理物の下面側を接触させながら前記巻き取り部に前記非晶質軟磁性合金を巻き取り、
かつ、前記下流側ローラと前記巻き取り部の間に設けられた昇降ローラを、前記非晶質軟磁性合金と前記補強部との接合部が前記下流側ローラと接触する前は前記被熱処理物よりも下方で前記被熱処理物と接触しない位置に配置し、
前記非晶質軟磁性合金と前記補強部の接合部が前記下流側ローラと接触する際に前記補強部を持ち上げて、持ち上げない場合と比べて前記接合部と前記下流側ローラとの接触時間および接触面積を小さくし、
前記接合部が前記下流側ローラを通過した後に前記昇降ローラを前記被熱処理物よりも下方で前記被熱処理物と接触しない位置に戻す、
を有する請求項3に記載の非晶質軟磁性合金の熱処理方法。
The winding part (e) is above the liquid level of the fluid and while the lower surface side of the object to be heat-treated is brought into contact with a downstream roller provided between the guide part and the winding part. The amorphous soft magnetic alloy is wound on
In addition, the elevating roller provided between the downstream roller and the take-up portion is subjected to the heat treatment before the joining portion of the amorphous soft magnetic alloy and the reinforcing portion comes into contact with the downstream roller. Arranged at a position below and not in contact with the object to be heat-treated,
When the joining part of the amorphous soft magnetic alloy and the reinforcing part comes into contact with the downstream roller, the reinforcing part is lifted, and the contact time between the joining part and the downstream roller as compared with the case where it is not lifted, and Reduce the contact area,
The elevating roller is returned to a position below the object to be heat-treated and not in contact with the object to be heat-treated after the joining portion has passed the downstream roller,
A method for heat-treating an amorphous soft magnetic alloy according to claim 3.
前記(c)は、前記流体の液面よりも上方で、かつ引き出し部と前記ガイド部の間の上流側ローラに接触させながら前記補強部の長さ方向の開放端側から前記被熱処理物を前記流体に浸漬し、前記ガイド部のうち前記流体中にある部分と接触させる、請求項1〜4のいずれか一項に記載の非晶質軟磁性合金の熱処理方法。   In (c), the material to be heat-treated is disposed above the fluid level and from the open end side in the length direction of the reinforcing portion while being in contact with the upstream roller between the drawing portion and the guide portion. The heat treatment method for an amorphous soft magnetic alloy according to claim 1, wherein the amorphous soft magnetic alloy is immersed in the fluid and brought into contact with a portion of the guide portion in the fluid. 帯状の非晶質軟磁性合金を熱処理する流体を保持する容器と、
前記容器中に、前記流体が前記容器中に保持された状態で前記流体と少なくとも一部が接触する位置に設けられ、前記非晶質軟磁性合金を熱処理用の流体中にガイドするガイド部と、
を有する非晶質軟磁性合金の熱処理装置。
A container for holding a fluid for heat-treating the band-shaped amorphous soft magnetic alloy;
A guide portion provided in the container at a position where at least a part of the fluid comes into contact with the fluid in a state where the fluid is held in the container, and guides the amorphous soft magnetic alloy into the fluid for heat treatment; ,
A heat treatment apparatus for an amorphous soft magnetic alloy having:
前記ガイド部はローラである、請求項6に記載の非晶質軟磁性合金の熱処理装置。   The amorphous soft magnetic alloy heat treatment apparatus according to claim 6, wherein the guide portion is a roller. 熱処理後の前記非晶質軟磁性合金を巻き取る巻き取り部と、
前記巻き取り部と前記非晶質軟磁性合金を挟みこむ補助ローラと、
を有する請求項6または7に記載の非晶質軟磁性合金の熱処理装置。
A winding portion for winding the amorphous soft magnetic alloy after the heat treatment;
An auxiliary roller that sandwiches the winding portion and the amorphous soft magnetic alloy;
The heat treatment apparatus for an amorphous soft magnetic alloy according to claim 6 or 7, wherein:
前記容器よりも上方で、かつ前記ガイド部と巻き取り部の間に設けられた下流側ローラと、
前記下流側ローラと前記巻き取り部の間に設けられ、前記下流側ローラと前記巻き取り部の上端を結ぶ面をまたぐように上下動可能な昇降ローラと、
を有する請求項8に記載の非晶質軟磁性合金の熱処理装置。
A downstream roller provided above the container and between the guide part and the winding part;
An elevating roller provided between the downstream roller and the winding unit, and capable of vertically moving so as to straddle a surface connecting the downstream roller and the upper end of the winding unit;
The amorphous soft magnetic alloy heat treatment apparatus according to claim 8.
前記非晶質軟磁性合金を引き出す引き出し部と、
前記容器よりも上方で、かつ前記引き出し部と前記ガイド部の間に設けられた上流側ローラを有する、請求項6〜9のいずれか一項に記載の非晶質軟磁性合金の熱処理装置。
A drawer portion for drawing out the amorphous soft magnetic alloy;
The heat treatment apparatus for an amorphous soft magnetic alloy according to any one of claims 6 to 9, further comprising an upstream roller provided above the container and between the drawer portion and the guide portion.
JP2015041130A 2015-03-03 2015-03-03 Heat treatment method for amorphous soft magnetic alloy and heat treatment apparatus for amorphous soft magnetic alloy Active JP6537848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015041130A JP6537848B2 (en) 2015-03-03 2015-03-03 Heat treatment method for amorphous soft magnetic alloy and heat treatment apparatus for amorphous soft magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015041130A JP6537848B2 (en) 2015-03-03 2015-03-03 Heat treatment method for amorphous soft magnetic alloy and heat treatment apparatus for amorphous soft magnetic alloy

Publications (2)

Publication Number Publication Date
JP2016160497A true JP2016160497A (en) 2016-09-05
JP6537848B2 JP6537848B2 (en) 2019-07-03

Family

ID=56844426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015041130A Active JP6537848B2 (en) 2015-03-03 2015-03-03 Heat treatment method for amorphous soft magnetic alloy and heat treatment apparatus for amorphous soft magnetic alloy

Country Status (1)

Country Link
JP (1) JP6537848B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0339416A (en) * 1989-07-01 1991-02-20 Jionkoo Kantee Kofun Yugenkoshi Method and apparatus for continuous heat treatment of ferromagnetic amorphous metal with joule heat
JPH03277726A (en) * 1990-03-28 1991-12-09 Nippon Stainless Steel Co Ltd Continuous salt bath tank for steel strip
US5225005A (en) * 1991-03-28 1993-07-06 Cooper Power Systems, Inc. Method of annealing/magnetic annealing of amorphous metal in a fluidized bed and apparatus therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0339416A (en) * 1989-07-01 1991-02-20 Jionkoo Kantee Kofun Yugenkoshi Method and apparatus for continuous heat treatment of ferromagnetic amorphous metal with joule heat
JPH03277726A (en) * 1990-03-28 1991-12-09 Nippon Stainless Steel Co Ltd Continuous salt bath tank for steel strip
US5225005A (en) * 1991-03-28 1993-07-06 Cooper Power Systems, Inc. Method of annealing/magnetic annealing of amorphous metal in a fluidized bed and apparatus therefor

Also Published As

Publication number Publication date
JP6537848B2 (en) 2019-07-03

Similar Documents

Publication Publication Date Title
JP6298489B2 (en) System and method for processing amorphous alloy ribbons
KR102587816B1 (en) A wide iron-based amorphous alloy, precursor to nanocrystalline alloy
JP5255668B2 (en) Solder plated wire manufacturing method and manufacturing apparatus
EP2412832B1 (en) Grain-oriented electrical steel sheet and producing method therefor
CN109863253A (en) The manufacturing method of alloy strip annealing device and annealed alloy band
CN108136466B (en) Slitting device and slitting method for metal strip
WO2000066818A1 (en) Method and device for continuously pulling up crystal
CN105593382A (en) Method for producing fe-based nano-crystal alloy, and method for producing fe-based nano-crystal alloy magnetic core
JP2016197646A (en) Manufacturing method for nanocrystal soft magnetic alloy core and heat treatment apparatus
JP6537848B2 (en) Heat treatment method for amorphous soft magnetic alloy and heat treatment apparatus for amorphous soft magnetic alloy
KR101709877B1 (en) Directional electromagnetic steel plate and method for manufacturing directional electromagnetic steel plate
JPS6327407B2 (en)
JP2006316331A (en) Graphite-spheroidizing treatment method
JP7447381B2 (en) Heat treatment method for amorphous alloy ribbon and heat treatment apparatus for amorphous alloy ribbon
CA1184095A (en) Process and apparatus for recrystallization of thin strip material
CN115351085A (en) Processing method
JPS6222414A (en) Manufacture of core
JPH0355719A (en) Manufacture and manufacturing device of oxide superconducting line material
JPH01208428A (en) Production of unidirectionally solidified wire
JPH06182440A (en) Method and device for coiling metallic strip
JP2000096151A (en) Production of wire rod or bar stock made of metal for cold shear cutting
JPH03207561A (en) Apparatus for guiding and conveying (quenched) metal strip
JPH0699252A (en) Cast strip treatment method after casting for twin roll type strip continuous casting
JP2002069536A (en) Method for heat treating metal strip
JPH02148519A (en) Oxide superconducting wire rod and its manufacture and manufacturing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181211

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20181225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190605

R150 Certificate of patent or registration of utility model

Ref document number: 6537848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250