JP2006316331A - Graphite-spheroidizing treatment method - Google Patents

Graphite-spheroidizing treatment method Download PDF

Info

Publication number
JP2006316331A
JP2006316331A JP2005142283A JP2005142283A JP2006316331A JP 2006316331 A JP2006316331 A JP 2006316331A JP 2005142283 A JP2005142283 A JP 2005142283A JP 2005142283 A JP2005142283 A JP 2005142283A JP 2006316331 A JP2006316331 A JP 2006316331A
Authority
JP
Japan
Prior art keywords
cast iron
iron
molten cast
wire
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005142283A
Other languages
Japanese (ja)
Inventor
Takahiro Horii
隆宏 堀井
Masaru Ishikawa
勝 石川
Kunio Kiyono
邦夫 清野
Shunichi Kawanami
俊一 川波
Hideichiro Nagai
秀一郎 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chutetsukan KK
Original Assignee
Nippon Chutetsukan KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chutetsukan KK filed Critical Nippon Chutetsukan KK
Priority to JP2005142283A priority Critical patent/JP2006316331A/en
Publication of JP2006316331A publication Critical patent/JP2006316331A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To add Mg into molten cast iron in high yield when the molten cast iron for ductile casting is smelted by adding an iron-coated Mg wire into the molten cast iron by a wire-feeder method and subjecting graphite to spheroidizing treatment. <P>SOLUTION: When the graphite in the molten cast iron is subjected to the spheroidizing treatment by supplying the iron-coated Mg wire 14 coated with a coating material composed of a steel sheet or a steel pipe into the molten cast iron from the upper part, the supplying speed of the iron-coated Mg wire into the molten cast iron is adjusted according to the bath depth of the molten cast iron and the thickness of the coated material so that the melting position in the molten cast iron of the coated material becomes the depth of ≥1/2 of the bath depth (L) of the molten cast iron. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、溶解炉などで溶解された溶融鋳鉄に、金属MgやMg合金を、鋼板或いは鋼管などで被覆して成形した鉄被覆Mgワイヤーを添加して、溶融鋳鉄中の黒鉛を球状化する黒鉛球状化処理方法に関するものである。   The present invention adds an iron-coated Mg wire formed by coating a molten Mg or Mg alloy with a steel plate or steel pipe to a molten cast iron melted in a melting furnace or the like, thereby spheroidizing the graphite in the molten cast iron. The present invention relates to a graphite spheroidizing method.

ダクタイル鋳鉄管などのダクタイル鋳物は、鋼材と同等の引張強度を有し、その伸び及び靱性などの機械試験値は普通鋳鉄の十数倍に達し、更に、普通鋳鉄と同等の優れた耐食性を有しており、そのため、これらの特性が要求される地中埋設管などの、より厳しい環境下での各種配管材などに広く採用されている。   Ductile casts such as ductile cast iron pipes have the same tensile strength as steel materials, and their mechanical test values such as elongation and toughness are more than ten times that of ordinary cast irons. Therefore, it is widely used in various piping materials under more severe environments such as underground pipes that require these characteristics.

このダクタイル鋳物は、鉄スクラップを主たる鉄源原料としてキュポラ或いは電気炉などの溶解炉によって溶解された溶融鋳鉄に、黒鉛球状化剤として金属MgやFe−Si−Mg合金などのMg合金を添加し、C:3〜4質量%(以下「%」と記す)、Si:2〜3%、Mn:0.2〜0.5%、Mg:0.01〜0.06%を含有するダクタイル鋳物用溶融鋳鉄を溶製し、これを遠心鋳造機などの鋳造設備によって鋳造することで製造されている(例えば、特許文献1参照)。   This ductile casting is made by adding an Mg alloy such as metal Mg or Fe-Si-Mg alloy as a graphite spheronizing agent to molten cast iron melted by a melting furnace such as a cupola or an electric furnace using iron scrap as a main iron source material. , C: 3-4% by mass (hereinafter referred to as “%”), Si: 2-3%, Mn: 0.2-0.5%, Mg: 0.01-0.06% It is manufactured by melting molten cast iron for casting and casting it with a casting facility such as a centrifugal casting machine (see, for example, Patent Document 1).

Mgは、沸点(1103℃)が低く、溶融鋳鉄の温度域では蒸気圧が高いため、溶融鋳鉄には本来溶解しにくい。このような性質の金属MgやMg合金を、高い添加歩留まりで溶融鋳鉄に添加する方法として、置注ぎ法、蓋付取鍋添加法、プランジャ法、圧力添加法、ワイヤーフィーダー法などの種々の添加方法が実施されている(例えば、非特許文献1参照)。これらは何れも、金属MgやMg合金の溶解する雰囲気の圧力を高め、Mgガスとなってロスする分を少なくした添加方法である。   Since Mg has a low boiling point (1103 ° C.) and a high vapor pressure in the temperature range of molten cast iron, it is inherently difficult to dissolve in molten cast iron. Various additions such as the pouring method, the ladle addition method with a lid, the plunger method, the pressure addition method, the wire feeder method, etc. as a method for adding metal Mg or Mg alloy having such properties to molten cast iron with a high addition yield The method is implemented (for example, refer nonpatent literature 1). All of these are addition methods that increase the pressure of the atmosphere in which the metal Mg or Mg alloy dissolves and reduce the loss of Mg gas.

このなかで、ワイヤーフィーダー法では、金属MgやMg合金を芯材とし、この芯材を鋼板或いは鋼管などの被覆材で被覆・成形した鉄被覆Mgワイヤーを、溶融鋳鉄中に供給し、被覆材が溶解した後に芯材と溶融鋳鉄とが接触することによって、金属MgやMg合金が溶融鋳鉄中に添加される。そのために、ワイヤーフィーダー法では、供給した鉄被覆Mgワイヤーの長さを管理することで、金属MgやMg合金の添加量を制御することができ、しかも、供給した鉄被覆Mgワイヤーの長さは、鉄被覆Mgワイヤーを供給するピンチロール或いはメジャーロールなどによって自動的に計測されるため、前述した他の添加法に比べて大幅に作業付加が削減されるというメリットがある。換言すれば、ワイヤーフィーダー法を適用することにより、黒鉛球状化処理作業を極めて簡単に無人化することが可能となる。   Among these, in the wire feeder method, metal-coated Mg or Mg alloy is used as a core material, and iron-coated Mg wire obtained by coating and molding the core material with a coating material such as a steel plate or a steel pipe is supplied into the molten cast iron. After the core melts, the core material and the molten cast iron come into contact with each other, so that metal Mg or an Mg alloy is added to the molten cast iron. Therefore, in the wire feeder method, by controlling the length of the supplied iron-coated Mg wire, the amount of added metal Mg or Mg alloy can be controlled, and the length of the supplied iron-coated Mg wire is Since it is automatically measured by a pinch roll or a measure roll that supplies iron-coated Mg wire, there is a merit that work addition is greatly reduced as compared with the other addition methods described above. In other words, by applying the wire feeder method, it becomes possible to unmanned the graphite spheroidization process very easily.

しかしながら、従来、ダクタイル鋳物用溶融鋳鉄を溶製する際に、ワイヤーフィーダー法を用いた事例(例えば特許文献2参照)はあるものの、鉄被覆Mgワイヤーを高い添加歩留まりで添加することのできる具体的な添加方法を提案した事例はない。   However, in the past, when melting molten iron for ductile castings, there is an example using the wire feeder method (see, for example, Patent Document 2), but it is possible to add iron-coated Mg wire with a high addition yield. There is no example that proposed a new addition method.

特開平6−246415号公報JP-A-6-246415 特開2004−238674号公報JP 2004-238664 A 改訂4版鋳物便覧,日本鋳物協会編,昭和61年1月20日発行、p.560−565Revised 4th edition casting manual, Japan Foundry Association, published on January 20, 1986, p. 560-565

本発明は上記事情に鑑みてなされたもので、その目的とするところは、金属MgやMg合金を鋼板或いは鋼管などで被覆して成形した鉄被覆Mgワイヤーを、ワイヤーフィーダー法によって溶融鋳鉄に添加し、黒鉛を球状化処理してダクタイル鋳物用溶融鋳鉄を溶製するに当たり、Mgを高い歩留まりで溶融鋳鉄中に添加することのできる黒鉛球状化処理方法を提供することである。   The present invention has been made in view of the above circumstances, and its object is to add an iron-coated Mg wire formed by coating a metal Mg or Mg alloy with a steel plate or steel pipe to a molten cast iron by a wire feeder method. Then, it is intended to provide a graphite spheronization method that can add Mg into molten cast iron at a high yield when spheroidizing graphite to melt molten cast iron for ductile castings.

本発明者等は、上記課題を解決するために鋭意研究・検討を行った。その結果、溶融鋳鉄中に供給した鉄被覆Mgワイヤーの被覆材が溶解する時点を、溶融鋳鉄の浴深さの1/2以上の深さ位置とし、鉄被覆Mgワイヤーの芯材と溶融鋳鉄との接触がそれ以降に起こるようにすることで、溶融鋳鉄の静圧が寄与してMgガスの発生が抑制され、高い歩留まりでMgを添加できるとの知見が得られた。   The present inventors have conducted intensive research and examinations in order to solve the above problems. As a result, the time when the coating material of the iron-coated Mg wire supplied into the molten cast iron is melted is set to a depth position of 1/2 or more of the bath depth of the molten cast iron, and the core material of the iron-coated Mg wire and the molten cast iron As a result of this contact, the static pressure of the molten cast iron contributed to suppress the generation of Mg gas, and it was found that Mg can be added with a high yield.

また、被覆材の溶解時間は、被覆材の厚みから一義的に求めることができ、溶融鋳鉄の浴深さ及び被覆材の厚みに応じて決まる所定の供給速度以上とすることで、常に、被覆材の溶解位置を浴深さの1/2以上の深さ位置にすることができるとの知見が得られた。   Further, the dissolution time of the coating material can be uniquely determined from the thickness of the coating material, and it is always possible to cover the coating material by setting it to a predetermined supply rate or more determined according to the bath depth of the molten cast iron and the thickness of the coating material. The knowledge that the melt | dissolution position of a material can be made into the depth position more than 1/2 of bath depth was acquired.

本発明は上記知見に基づいてなされたものであり、第1の発明に係る黒鉛球状化処理方法は、鋼板または鋼管からなる被覆材で被覆された鉄被覆Mgワイヤーを上方から溶融鋳鉄中に供給して溶融鋳鉄中の黒鉛を球状化処理するに際し、前記被覆材の溶融鋳鉄中における溶解位置が溶融鋳鉄の浴深さの1/2以上の深さの位置になるように、溶融鋳鉄の浴深さ及び被覆材の厚みに応じて鉄被覆Mgワイヤーの溶融鋳鉄中への供給速度を調整することを特徴とするものである。   The present invention has been made on the basis of the above knowledge, and the graphite spheroidizing method according to the first invention supplies an iron-coated Mg wire coated with a coating material comprising a steel plate or a steel pipe into molten cast iron from above. Then, when spheroidizing the graphite in the molten cast iron, the molten cast iron bath is such that the melting position of the coating material in the molten cast iron is at a depth of 1/2 or more of the molten cast iron bath depth. The supply speed of the iron-coated Mg wire into the molten cast iron is adjusted according to the depth and the thickness of the coating material.

第2の発明に係る黒鉛球状化処理方法は、第1の発明において、溶融鋳鉄の浴深さをL、被覆材の厚みをtとしたときに、前記鉄被覆Mgワイヤーを、下記の(1)式によって算出される供給速度以上の供給速度で供給することを特徴とするものである。但し、(1)式において、Vl は供給速度(mm/秒)、Lは浴深さ(mm)、tは被覆材の厚み(mm)である。 In the graphite spheroidizing treatment method according to the second invention, in the first invention, when the bath depth of the molten cast iron is L and the thickness of the coating material is t, the iron-coated Mg wire is converted into the following (1 ) Is supplied at a supply rate that is equal to or higher than the supply rate calculated by the equation (1). However, it is (1) In the equation, V l is the feed rate (mm / sec), L is Yokufuka of (mm), t is the thickness of the coating material (mm).

Figure 2006316331
Figure 2006316331

本発明によれば、少なくとも溶融鋳鉄の浴深さの1/2深さの位置までは、鉄被覆Mgワイヤーの被覆材を溶解させずに残留させるので、芯材である金属MgやMg合金は浴深さの1/2より深い位置で溶融鋳鉄と接触し、溶融鋳鉄の静圧が作用するためにMgガスの発生が抑制され、高い添加歩留まりでMgを溶融鋳鉄に添加することができる。その結果、極めて高価である金属MgやMg合金の使用量が削減され、ダクタイル鋳物用溶融鋳鉄の製造コストを大幅に削減することができ、工業上有益な効果がもたらされる。   According to the present invention, the coating material of the iron-coated Mg wire is left undissolved at least up to a position that is 1/2 the depth of the molten cast iron bath. The molten cast iron is brought into contact with the molten cast iron at a position deeper than half the bath depth, and the static pressure of the molten cast iron acts, so that the generation of Mg gas is suppressed, and Mg can be added to the molten cast iron with a high addition yield. As a result, the amount of metal Mg and Mg alloy, which are extremely expensive, is reduced, the production cost of molten cast iron for ductile castings can be greatly reduced, and industrially beneficial effects are brought about.

以下、添付図面を参照して本発明を具体的に説明する。図1は、本発明に係る黒鉛球状化処理方法を実施する際に用いた黒鉛球状化処理設備の側面概略図である。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic side view of a graphite spheronization treatment facility used in carrying out the graphite spheroidization treatment method according to the present invention.

図1に示すように、黒鉛球状化処理設備1は鋼製の架台2で骨組みが構成され、処理容器である取鍋15を、架台2で四隅を囲まれた中に搬入・搬出するための搬送手段として、ローラーテーブル3が設置されている。このローラーテーブル3には、ローラーテーブル3に取り付けられたローラー駆動電動機(図示せず)によって回転可能な複数個のローラー4が設置されている。ローラー4の表面には、凹状の溝(図示せず)が設けられており、また、取鍋15の底面には、一対のレール16が設置されており、取鍋15は、レール16をローラー4の凹状の溝に乗せた状態でローラーテーブル3によって支持され、ローラー4が回転することでローラー4の上を移動するようになっている。   As shown in FIG. 1, the graphite spheroidizing treatment equipment 1 is constructed by a steel pedestal 2, and a ladle 15, which is a processing container, is carried in and out of the four corners surrounded by the pedestal 2. A roller table 3 is installed as a conveying means. The roller table 3 is provided with a plurality of rollers 4 which can be rotated by a roller drive motor (not shown) attached to the roller table 3. A concave groove (not shown) is provided on the surface of the roller 4, and a pair of rails 16 are installed on the bottom surface of the ladle 15. 4 is supported by the roller table 3 in a state of being placed in the concave groove 4, and moves on the roller 4 as the roller 4 rotates.

ローラーテーブル3によって黒鉛球状化処理設備1の所定位置まで搬入された取鍋15の直上には、取鍋15の上部開口部を覆うための蓋5が配置されている。蓋5はチェーン7と接続し、チェーン7の他方の端部は蓋昇降装置6と接続しており、蓋昇降装置6によって巻き上げ或いは巻き下げられるチェーン7を介して蓋5は昇降し、取鍋15の上部開口部を覆うようになっている。チェーン7は複数配置されており、それぞれのチェーン7がそれぞれ独立して蓋昇降装置6に接続されている。蓋昇降装置6は、電動機(図示せず)によって駆動される。   A lid 5 for covering the upper opening of the ladle 15 is disposed immediately above the ladle 15 that has been carried to the predetermined position of the graphite spheroidizing treatment facility 1 by the roller table 3. The lid 5 is connected to the chain 7, the other end of the chain 7 is connected to the lid lifting device 6, and the lid 5 moves up and down via the chain 7 that is wound up or down by the lid lifting device 6. 15 upper openings are covered. A plurality of chains 7 are arranged, and each chain 7 is independently connected to the lid lifting device 6. The lid lifting device 6 is driven by an electric motor (not shown).

また、取鍋15の上方所定位置の架台2には、取鍋15に収容された溶融鋳鉄17の浴面に対して鉛直方向に向いた直線状のガイドパイプ8が取り付けられている。ガイドパイプ8は蓋5を貫通しており、蓋5とガイドパイプ8との間には、蓋5が十分に昇降可能なように、間隙が設けられている。このガイドパイプ8の斜め上方には、対向するロールとの間で鉄被覆Mgワイヤー14を挟み、電動機(図示せず)によって回転して鉄被覆Mgワイヤー14を供給する機能を備えた一対のピンチロール9が設置されている。また、複数個(図1では4個)のガイドロール11が取付冶具12によって架台2に取り付けられている。この場合、ピンチロール9と複数個のガイドロール11とは、或る一点(図1ではP)を中心とする所定の半径の円周に沿って並んで配置されており、ガイドパイプ8の上端とピンチロール9と複数個のガイドロール11とによって、円弧状(この場合、実質半円状)のワイヤー供給経路10が形成されている。ガイドパイプ8の軸心方向は、この円弧状のワイヤー供給経路10の接線方向と合致するように配置されている。また、取鍋15から離れた位置には、コイル状に巻かれた鉄被覆Mgワイヤー14aを置くためのワイヤー保持台13が設けられている。   Further, a linear guide pipe 8 is attached to the gantry 2 at a predetermined position above the ladle 15 so as to face in a vertical direction with respect to the bath surface of the molten cast iron 17 accommodated in the ladle 15. The guide pipe 8 passes through the lid 5, and a gap is provided between the lid 5 and the guide pipe 8 so that the lid 5 can sufficiently move up and down. A pair of pinches provided with a function of sandwiching the iron-coated Mg wire 14 between the opposing rolls and supplying the iron-coated Mg wire 14 by being rotated by an electric motor (not shown) on the upper side of the guide pipe 8. A roll 9 is installed. A plurality (four in FIG. 1) of guide rolls 11 are attached to the gantry 2 by the attachment jig 12. In this case, the pinch roll 9 and the plurality of guide rolls 11 are arranged along a circumference of a predetermined radius centered on a certain point (P in FIG. 1), and the upper end of the guide pipe 8 The pinch roll 9 and the plurality of guide rolls 11 form an arc-like (substantially semicircular in this case) wire supply path 10. The axial direction of the guide pipe 8 is arranged so as to coincide with the tangential direction of the arcuate wire supply path 10. Further, at a position away from the ladle 15, a wire holding base 13 for placing an iron-coated Mg wire 14a wound in a coil shape is provided.

即ち、ワイヤー保持台13に置かれたコイル状の鉄被覆Mgワイヤー14aは、対向するピンチロール9の間に挟まれて巻き戻され、線状の鉄被覆Mgワイヤー14となって、円弧状のワイヤー供給経路10及びガイドパイプ8を経由して、取鍋15に収容された溶融鋳鉄17に供給されるようになっている。この黒鉛球状化処理設備1では、2本の鉄被覆Mgワイヤー14を同時に供給することが可能であり、従って、ガイドパイプ8、一対のピンチロール9、円弧状のワイヤー供給経路10、及びワイヤー保持台13がそれぞれ独立して一基ずつ配置されているが、図1では、片方のみを図示している。鉄被覆Mgワイヤー14の供給量は、ピンチロール9によって自動的に計測され、その計測結果が制御盤(図示せず)に出力されるようになっている。   That is, the coiled iron-coated Mg wire 14a placed on the wire holding base 13 is sandwiched between the opposing pinch rolls 9 and rewound to form a linear iron-coated Mg wire 14, which has an arc shape. It is supplied to the molten cast iron 17 accommodated in the ladle 15 through the wire supply path 10 and the guide pipe 8. In this graphite spheroidizing treatment equipment 1, it is possible to supply two iron-coated Mg wires 14 at the same time. Therefore, the guide pipe 8, the pair of pinch rolls 9, the arc-shaped wire supply path 10, and the wire holding Although the bases 13 are independently arranged one by one, FIG. 1 shows only one of them. The supply amount of the iron-coated Mg wire 14 is automatically measured by the pinch roll 9, and the measurement result is output to a control panel (not shown).

鉄被覆Mgワイヤー14は、図2にその概略断面図を示すように、金属Mg、或いはFe−Si−Mg合金、Fe−Si−Mg−R.E (稀土類元素)合金、Fe−Si−Mg−R.E −Ca合金、Ni−Mg合金などのMg合金を芯材18とし、この芯材18を、薄鋼鈑或いは薄鋼管を被覆材19として被覆・成形したクラッド線材である。コイル状の鉄被覆Mgワイヤー14aは、ドラムなどに巻く必要はなく、図1に示すように、ワイヤー保持台13の上に置くだけで構わない。   As shown in the schematic cross-sectional view of FIG. 2, the iron-coated Mg wire 14 is made of metal Mg, Fe—Si—Mg alloy, Fe—Si—Mg—RE (rare earth element) alloy, Fe—Si—Mg—. This is a clad wire material in which an Mg alloy such as a RE—Ca alloy or Ni—Mg alloy is used as a core material 18, and this core material 18 is coated and molded with a thin steel plate or a thin steel tube as a coating material 19. The coiled iron-coated Mg wire 14a does not need to be wound around a drum or the like, and may be simply placed on the wire holding base 13 as shown in FIG.

このような構成の黒鉛球状化処理設備1を用いたダクタイル鋳物用溶融鋳鉄の黒鉛球状化処理方法を以下に説明する。   A graphite spheroidizing method for molten cast iron for ductile casting using the graphite spheroidizing treatment facility 1 having such a configuration will be described below.

鉄スクラップや銑鉄などの鉄源とコークスなどの炭材とを原料として、キュポラ或いは電気炉などの溶解炉で溶解し、更に必要に応じて脱硫処理を施して溶融鋳鉄17を溶製し、溶製した溶融鋳鉄17を取鍋15に注湯する。そして、溶融鋳鉄17を収容した取鍋15をクレーン、搬送台車などの適宜の搬送手段によって黒鉛球状化処理設備1に搬送し、取鍋15をローラーテーブル3の上に載せる。図1に示す形態例では、搬送台車を用いて取鍋15を黒鉛球状化処理設備1に搬送した例であるが、図1ではローラーテーブル3に対面する搬送台車を省略している。   Using an iron source such as iron scrap or pig iron and a carbonaceous material such as coke as raw materials, it is melted in a melting furnace such as a cupola or an electric furnace, and further desulfurized to melt molten cast iron 17 as necessary. The produced molten cast iron 17 is poured into the ladle 15. And the ladle 15 which accommodated the molten cast iron 17 is conveyed to the graphite spheroidization processing equipment 1 by suitable conveyance means, such as a crane and a conveyance cart, and the ladle 15 is mounted on the roller table 3. The embodiment shown in FIG. 1 is an example in which the ladle 15 is transported to the graphite spheroidizing treatment facility 1 using a transport cart, but the transport cart facing the roller table 3 is omitted in FIG.

ローラーテーブル3を作動させ、取鍋15がローラーテーブル3の上を所定位置まで搬入されたなら、取鍋15をストッパー(図示せず)によってローラーテーブル3の上で固定し、蓋昇降装置6を駆動して蓋5を下降させ、蓋5によって取鍋15の上部開口部を覆う。次いで、ピンチロール9を所定の回転速度で駆動させ、鉄被覆Mgワイヤー14を取鍋15に供給する。鉄被覆Mgワイヤー14の供給量は、ピンチロール9の回転数から自動的に計測される。   When the roller table 3 is operated and the ladle 15 is carried over the roller table 3 to a predetermined position, the ladle 15 is fixed on the roller table 3 by a stopper (not shown), and the lid lifting device 6 is moved. The lid 5 is lowered by driving, and the upper opening of the ladle 15 is covered with the lid 5. Next, the pinch roll 9 is driven at a predetermined rotational speed, and the iron-coated Mg wire 14 is supplied to the pan 15. The supply amount of the iron-coated Mg wire 14 is automatically measured from the rotational speed of the pinch roll 9.

この場合、鉄被覆Mgワイヤー14の被覆材19が、少なくとも溶融鋳鉄17の浴深さ(L)の1/2深さの位置に達するまでは溶解しないようにするために、溶融鋳鉄17の浴深さ(L)と被覆材19の厚みとに応じて、鉄被覆Mgワイヤー14の供給速度、つまりピンチロール9の回転速度を調整する。具体的には次のようにして実施することができる。   In this case, in order to prevent the covering material 19 of the iron-coated Mg wire 14 from melting until it reaches at least a half depth position of the bath depth (L) of the molten cast iron 17, a bath of the molten cast iron 17 is used. Depending on the depth (L) and the thickness of the covering material 19, the supply speed of the iron-coated Mg wire 14, that is, the rotational speed of the pinch roll 9 is adjusted. Specifically, it can be carried out as follows.

図3は、本発明者等が、被覆材19の厚みを変更して、被覆材19の溶解時間、つまり室温の被覆材19が1445℃の溶融鋳鉄17に浸漬してから溶解するまでに必要とする時間を、伝熱計算によって求めた結果である。図3に示すように、被覆材19の厚みが厚くなるほど溶解時間は長くなり、溶解時間は下記の(2)式によって近似できることが分かった。尚、(2)式において、Tは溶解時間(秒)、tは被覆材19の厚み(mm)である。   FIG. 3 shows that the inventors changed the thickness of the covering material 19 and required the melting time of the covering material 19, that is, until the room temperature covering material 19 is melted after being immersed in the molten cast iron 17 at 1445 ° C. Is a result obtained by heat transfer calculation. As shown in FIG. 3, it was found that the dissolution time becomes longer as the thickness of the covering material 19 increases, and the dissolution time can be approximated by the following equation (2). In the equation (2), T is the dissolution time (second), and t is the thickness (mm) of the covering material 19.

Figure 2006316331
Figure 2006316331

本発明者等は、室温の鉄被覆Mgワイヤー14を瞬時に溶融鋳鉄17に浸漬させ、鉄被覆Mgワイヤー14の芯材であるMgが蒸発して溶融鋳鉄17の表面で発光するまでの時間を高速度カメラで測定した結果と、(2)式により算出される溶解時間とは良く一致することを確認している。また、溶融鋳鉄17の温度が1445℃から±50℃程度乖離したとしても、被覆材19の溶解時間は(2)式で表されることを確認している。   The inventors of the present invention instantaneously immerse the iron-coated Mg wire 14 at room temperature in the molten cast iron 17, and evaporate Mg as a core material of the iron-coated Mg wire 14 to emit light on the surface of the molten cast iron 17. It has been confirmed that the result measured by the high-speed camera and the dissolution time calculated by the equation (2) are in good agreement. Moreover, even if the temperature of the molten cast iron 17 deviates from about 1445 ° C. by about ± 50 ° C., it is confirmed that the melting time of the covering material 19 is expressed by the equation (2).

従って、使用する鉄被覆Mgワイヤー14の被覆材19の厚みと、使用する取鍋15における溶融鋳鉄17の浴深さ(L)とに応じて、被覆材19の溶解位置が浴深さの1/2以上の深さ位置になるように、鉄被覆Mgワイヤー14の供給速度を設定すればよい。具体的には、被覆材19の厚みによって定まる溶解時間Tが経過するまでに鉄被覆Mgワイヤー14を、浴深さ(L)の1/2以上の深さ位置まで供給することのできる供給速度で供給すればよい、換言すれば、供給速度と溶解時間Tとの積が浴深さ(L)の1/2以上となるようにすればよい。即ち、前述した(1)式によって算出される供給速度Vl よりも速い供給速度で供給すればよい。例えば、被覆材19の厚みが0.4mmで、浴深さ(L)が590mmのときには、供給速度を325mm/秒(=19.5m/分)以上とすればよいことが分かる。 Therefore, depending on the thickness of the coating material 19 of the iron coating Mg wire 14 to be used and the bath depth (L) of the molten cast iron 17 in the ladle 15 to be used, the melting position of the coating material 19 is 1 bath depth. What is necessary is just to set the supply speed | rate of the iron covering Mg wire 14 so that it may become a depth position more than / 2. Specifically, the supply speed at which the iron-coated Mg wire 14 can be supplied to a depth position of 1/2 or more of the bath depth (L) before the melting time T determined by the thickness of the coating material 19 elapses. In other words, the product of the supply rate and the dissolution time T may be ½ or more of the bath depth (L). That may be supplied at a higher feed rate than the feed rate V l calculated by the aforementioned equation (1). For example, when the thickness of the covering material 19 is 0.4 mm and the bath depth (L) is 590 mm, it can be seen that the supply speed may be 325 mm / sec (= 19.5 m / min) or more.

尚、鉄被覆Mgワイヤー14の供給速度を過剰に速くすると、鉄被覆Mgワイヤー14の被覆材19が溶解しないまま取鍋15などの処理容器の底面に衝突することになり、処理容器の底部の耐火物を損傷する恐れもあるので、処理容器の底面に到達するまでには被覆材19が溶解するように、供給速度の上限を定めることが好ましい。つまり、下記の(3)式から算出される供給速度Vu を上限とし、この供給速度以下の供給速度で供給することが好ましい。但し、(3)式において、Vuは供給速度(mm/秒)、Lは浴深さ(mm)、tは被覆材の厚み(mm)である。 If the supply speed of the iron-coated Mg wire 14 is excessively increased, the coating material 19 of the iron-coated Mg wire 14 collides with the bottom surface of the processing container such as the ladle 15 without being dissolved, and the bottom of the processing container Since there is a possibility of damaging the refractory, it is preferable to set an upper limit of the supply rate so that the covering material 19 is dissolved before reaching the bottom surface of the processing container. That is, it is preferable to supply at a supply speed that is equal to or lower than the supply speed V u calculated from the following equation (3). However, in the formula (3), V u is the supply rate (mm / second), L is the bath depth (mm), and t is the thickness (mm) of the coating material.

Figure 2006316331
Figure 2006316331

このようにして鉄被覆Mgワイヤー14を溶融鋳鉄17に供給する。取鍋15に収容された溶融鋳鉄17は、添加されるMgによって黒鉛球状化処理が施され、溶融鋳鉄17は、例えば、C:3〜4%、Si:2〜3%、Mn:0.2〜0.5%、Mg:0.01〜0.06%を含有するダクタイル鋳物用溶融鋳鉄に溶製される。   In this way, the iron-coated Mg wire 14 is supplied to the molten cast iron 17. The molten cast iron 17 accommodated in the ladle 15 is subjected to graphite spheroidization treatment with added Mg, and the molten cast iron 17 is, for example, C: 3-4%, Si: 2-3%, Mn: 0.00. It is melted in molten cast iron for ductile casting containing 2 to 0.5% and Mg: 0.01 to 0.06%.

所定量の鉄被覆Mgワイヤー14が取鍋15の内部に供給され、Mgによる黒鉛球状化処理が終了したならば、ピンチロール9を停止し、次いで、蓋昇降装置6を駆動させて蓋5を所定位置まで上昇させる。また、蓋5と取鍋15とが分離されたならば、ローラーテーブル3のローラー4を駆動させ、取鍋15を黒鉛球状化処理設備1から搬出する。その後、ダクタイル鋳物用溶融鋳鉄を収容した取鍋15を次工程の除滓設備や遠心鋳造機などの鋳造設備に、クレーンや搬送台車などの適宜の搬送手段を用いて搬送する。   When a predetermined amount of iron-coated Mg wire 14 is supplied to the inside of the ladle 15 and the graphite spheroidization treatment with Mg is completed, the pinch roll 9 is stopped, and then the lid lifting device 6 is driven to remove the lid 5. Raise to a predetermined position. Moreover, if the lid | cover 5 and the ladle 15 are isolate | separated, the roller 4 of the roller table 3 will be driven and the ladle 15 will be carried out from the graphite spheroidization processing equipment 1. FIG. Thereafter, the ladle 15 containing the molten cast iron for ductile casting is transported to casting equipment such as a next-stage dehulling equipment and a centrifugal casting machine using appropriate transporting means such as a crane and a transport carriage.

このようにして溶融鋳鉄17に黒鉛球状化処理を施すことにより、少なくとも溶融鋳鉄17の浴深さ(L)の1/2深さの位置までは、鉄被覆Mgワイヤー14の被覆材19は溶解せずに残留するので、芯材18である金属MgやMg合金は浴深さの1/2より深い位置で溶融鋳鉄17と接触し、溶融鋳鉄17の静圧が作用するためにMgガスの発生が抑制され、高い添加歩留まりでMgを溶融鋳鉄17に添加することができる。   By subjecting the molten cast iron 17 to the graphite spheroidization treatment in this way, the coating material 19 of the iron-coated Mg wire 14 is dissolved at least up to a position half the depth of the bath depth (L) of the molten cast iron 17. Therefore, the metal Mg or Mg alloy that is the core material 18 comes into contact with the molten cast iron 17 at a position deeper than ½ of the bath depth, and the static pressure of the molten cast iron 17 acts on the Mg gas. Generation | occurrence | production is suppressed and Mg can be added to the molten cast iron 17 with a high addition yield.

図1に示す黒鉛球状化処理設備を用い、深さが1000mmの取鍋に収容された溶融鋳鉄に鉄被覆Mgワイヤーを添加して黒鉛球状化処理を実施する際に、鉄被覆Mgワイヤーの供給速度を変化させて、供給速度とMgの歩留まりとの関係について調査した。取鍋内の溶融鋳鉄の浴深さは590mmであった。また、使用した鉄被覆Mgワイヤーは、Fe−Si−Mg−R.E −Ca合金を芯材とし、厚み0.4mmの鋼板を被覆材とする、外径13mmの鉄被覆Mgワイヤーである。溶融鋳鉄中への鉄被覆Mgワイヤーの供給速度を10〜34m/分の範囲に変更して所定量の鉄被覆Mgワイヤーを添加した。   When the iron spheroidizing treatment is performed by adding the iron-coated Mg wire to the molten cast iron accommodated in a ladle having a depth of 1000 mm using the graphite spheroidizing treatment equipment shown in FIG. The relationship between the supply speed and the yield of Mg was investigated by changing the speed. The bath depth of the molten cast iron in the ladle was 590 mm. The iron-coated Mg wire used is an iron-coated Mg wire having an outer diameter of 13 mm, in which an Fe—Si—Mg—R—E—Ca alloy is used as a core material and a steel sheet having a thickness of 0.4 mm is used as a coating material. The supply rate of the iron-coated Mg wire into the molten cast iron was changed to a range of 10 to 34 m / min, and a predetermined amount of iron-coated Mg wire was added.

Mgの歩留まりは、黒鉛球状化処理後のダクタイル鋳物用溶融鋳鉄を遠心鋳造機で鋳造して得た鋳鉄管のMg濃度と、添加したMgの質量とから算出した。図4に、鉄被覆Mgワイヤーの供給速度とMg歩留まりとの関係を示す。Mg添加時の溶融鋳鉄の温度が異なるとMg歩留まりに差が生じ、鉄被覆Mgワイヤーの供給速度とMg歩留まりとの関係が不明瞭になることから、図4に示す結果は、鉄被覆Mgワイヤー添加時の溶融鋳鉄温度が1440〜1449℃の操業の結果のみを表示している。   The yield of Mg was calculated from the Mg concentration of the cast iron pipe obtained by casting the molten cast iron for ductile casting after the graphite spheroidizing treatment with a centrifugal casting machine and the mass of the added Mg. FIG. 4 shows the relationship between the supply rate of the iron-coated Mg wire and the Mg yield. When the temperature of the molten cast iron at the time of Mg addition is different, a difference in Mg yield occurs, and the relationship between the supply rate of the iron-coated Mg wire and the Mg yield becomes unclear, so the results shown in FIG. Only the result of the operation where the molten cast iron temperature at the time of addition is 1440 to 1449 ° C. is displayed.

図4に示すように、鉄被覆Mgワイヤーの供給速度が速くなるほどMgの歩留まりが上昇し、供給速度が20m/分以上の場合には、45%程度の高い歩留まりが安定して得られることが分かった。   As shown in FIG. 4, as the supply rate of the iron-coated Mg wire increases, the yield of Mg increases. When the supply rate is 20 m / min or more, a high yield of about 45% can be stably obtained. I understood.

この操業条件、つまり浴深さが590mmで、被覆材の厚みが0.4mmである条件を、前述した(1)式に代入して供給速度Vl を求めると、供給速度Vl として19.5m/分の供給速度が得られる。即ち、19.5m/分以上の供給速度であれば、被覆材の溶解位置が浴深さの1/2位置よりも深い位置となることが分かる。 The operating conditions, i.e. Yokufuka of the at 590 mm, the condition thickness of the coating material is 0.4 mm, when obtaining the feed rate V l is substituted into the aforementioned equation (1), 19 as feed rate V l. A feed rate of 5 m / min is obtained. That is, it can be seen that when the supply speed is 19.5 m / min or more, the dissolution position of the coating material is deeper than the half position of the bath depth.

伝熱計算による(1)式の結果と図4に示すMg歩留まりの結果とを対比した結果、鉄被覆Mgワイヤーの被覆材の溶解位置を溶融鋳鉄の浴深さの1/2以上の深さ位置とすることにより、Mgの歩留まりを安定して高位に維持させることが可能となることが、確認できた。   As a result of comparing the result of the formula (1) by the heat transfer calculation and the result of the Mg yield shown in FIG. 4, the melting position of the coating material of the iron-coated Mg wire is a depth of 1/2 or more of the bath depth of the molten cast iron. It was confirmed that by setting the position, the yield of Mg can be stably maintained at a high level.

本発明を実施する際に用いた黒鉛球状化処理設備の側面概略図である。It is the side schematic diagram of the graphite spheroidization processing equipment used when implementing the present invention. 本発明で使用する鉄被覆Mgワイヤーの概略断面図である。It is a schematic sectional drawing of the iron covering Mg wire used by this invention. 被覆材の溶解時間を伝熱計算によって求めた結果を示す図である。It is a figure which shows the result of having calculated | required the melt | dissolution time of the coating | covering material by heat transfer calculation. 実施例1における鉄被覆Mgワイヤーの供給速度とMg歩留まりとの関係を示す図である。It is a figure which shows the relationship between the supply rate of the iron covering Mg wire in Example 1, and Mg yield.

符号の説明Explanation of symbols

1 黒鉛球状化処理設備
2 架台
3 ローラーテーブル
4 ローラー
5 蓋
6 蓋昇降装置
7 チェーン
8 ガイドパイプ
9 ピンチロール
10 ワイヤー供給経路
11 ガイドロール
12 取付冶具
13 ワイヤー保持台
14 鉄被覆Mgワイヤー
15 取鍋
16 レール
17 溶融鋳鉄
18 芯材
19 被覆材
DESCRIPTION OF SYMBOLS 1 Graphite spheroidization processing equipment 2 Base 3 Roller table 4 Roller 5 Lid 6 Lid raising / lowering device 7 Chain 8 Guide pipe 9 Pinch roll 10 Wire supply path 11 Guide roll 12 Mounting jig 13 Wire holding stand 14 Iron covering Mg wire 15 Ladle 16 Rail 17 Molten cast iron 18 Core material 19 Coating material

Claims (2)

鋼板または鋼管からなる被覆材で被覆された鉄被覆Mgワイヤーを上方から溶融鋳鉄中に供給して溶融鋳鉄中の黒鉛を球状化処理するに際し、前記被覆材の溶融鋳鉄中における溶解位置が溶融鋳鉄の浴深さの1/2以上の深さの位置になるように、溶融鋳鉄の浴深さ及び被覆材の厚みに応じて鉄被覆Mgワイヤーの溶融鋳鉄中への供給速度を調整することを特徴とする黒鉛球状化処理方法。   When the iron-coated Mg wire coated with a coating material comprising a steel plate or a steel pipe is supplied into the molten cast iron from above and the graphite in the molten cast iron is spheroidized, the melting position of the coating material in the molten cast iron is the molten cast iron. Adjusting the feed rate of the iron-coated Mg wire into the molten cast iron according to the bath depth of the molten cast iron and the thickness of the coating material so that it is at a depth of 1/2 or more of the bath depth of A characteristic graphite spheroidizing method. 溶融鋳鉄の浴深さをL、被覆材の厚みをtとしたときに、前記鉄被覆Mgワイヤーを、下記の(1)式によって算出される供給速度以上の供給速度で供給することを特徴とする、請求項1に記載の黒鉛球状化処理方法。
Vl=(L/2)×[1/(-0.18t2+2.07t+0.11)] …(1)
但し、(1)式において、Vl は供給速度(mm/秒)、Lは浴深さ(mm)、tは被覆材の厚み(mm)である。
When the bath depth of molten cast iron is L and the thickness of the coating material is t, the iron-coated Mg wire is supplied at a supply rate equal to or higher than the supply rate calculated by the following equation (1). The graphite spheroidizing method according to claim 1.
V l = (L / 2) × [1 / (-0.18t 2 + 2.07t + 0.11)]… (1)
However, it is (1) In the equation, V l is the feed rate (mm / sec), L is Yokufuka of (mm), t is the thickness of the coating material (mm).
JP2005142283A 2005-05-16 2005-05-16 Graphite-spheroidizing treatment method Pending JP2006316331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005142283A JP2006316331A (en) 2005-05-16 2005-05-16 Graphite-spheroidizing treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005142283A JP2006316331A (en) 2005-05-16 2005-05-16 Graphite-spheroidizing treatment method

Publications (1)

Publication Number Publication Date
JP2006316331A true JP2006316331A (en) 2006-11-24

Family

ID=37537257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005142283A Pending JP2006316331A (en) 2005-05-16 2005-05-16 Graphite-spheroidizing treatment method

Country Status (1)

Country Link
JP (1) JP2006316331A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014237862A (en) * 2013-06-06 2014-12-18 株式会社Jfs貿易 Method of graphite spheroidization of molten iron
JP2019098344A (en) * 2017-11-29 2019-06-24 東洋電化工業株式会社 Coated magnesium wire feeding method
CN111349843A (en) * 2020-04-14 2020-06-30 常州凯达重工科技有限公司 High-strength alloy nodular cast iron roughing roll and production process thereof
CN111842811A (en) * 2020-03-09 2020-10-30 山东常林铸业有限公司 Method for setting spheroidizing parameters of wire feeding spheroidizing process
CN114309494A (en) * 2021-12-30 2022-04-12 苏州石川制铁有限公司 Casting method for dynamically controlling wire feeding speed of vermiculizer and nodulizer cored wire
JP7063635B2 (en) 2018-01-23 2022-05-09 トピー工業株式会社 Wire loading station in steelmaking methods and systems

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014237862A (en) * 2013-06-06 2014-12-18 株式会社Jfs貿易 Method of graphite spheroidization of molten iron
JP2019098344A (en) * 2017-11-29 2019-06-24 東洋電化工業株式会社 Coated magnesium wire feeding method
JP7023491B2 (en) 2017-11-29 2022-02-22 東洋電化工業株式会社 Coated magnesium wire transmission method
JP7063635B2 (en) 2018-01-23 2022-05-09 トピー工業株式会社 Wire loading station in steelmaking methods and systems
CN111842811A (en) * 2020-03-09 2020-10-30 山东常林铸业有限公司 Method for setting spheroidizing parameters of wire feeding spheroidizing process
CN111349843A (en) * 2020-04-14 2020-06-30 常州凯达重工科技有限公司 High-strength alloy nodular cast iron roughing roll and production process thereof
CN114309494A (en) * 2021-12-30 2022-04-12 苏州石川制铁有限公司 Casting method for dynamically controlling wire feeding speed of vermiculizer and nodulizer cored wire
CN114309494B (en) * 2021-12-30 2024-05-10 苏州石川制铁有限公司 Casting method for dynamically controlling feeding speed of vermiculizer and nodulizer cored wire

Similar Documents

Publication Publication Date Title
JP2006316331A (en) Graphite-spheroidizing treatment method
KR101541790B1 (en) Process and apparatus for producing solder-plated wire
TWI453075B (en) Method for manufacturing copper alloy wire method
JP3939306B2 (en) Graphite spheroidizing equipment
EP0142139A1 (en) Continuous casting furnace and method of continuously manufacturing cast product
JP2001297629A (en) Adhesion-resistant oxygen-free copper rough drawing wire, and method and apparatus for manufacturing the same
JP2003530484A (en) Coating equipment
EP1323837A1 (en) Steel product made from carbon steel particularly for galvanisation and process for manufacturing the same
JP4230479B2 (en) Stop positioning method and apparatus for ladle transport cart
JP3696857B2 (en) Graphite spheroidizing equipment
JP2008223099A (en) Method for preventing base metal from adhering to top cover for use in refining
JP2007284785A (en) Apparatus for threading metal foil
SE433093B (en) HOBBING FOR METAL COATING MEDIUM HEAT DIPPING
KR100221703B1 (en) Method for manufacturing copper covered steel wire
JP4909099B2 (en) Stainless steel foil horizontal continuous bright annealing furnace
KR20130092532A (en) Vertical type continuous casting apparatus for alloy wire
SE452268B (en) SET AND DEVICE FOR MANUFACTURE OF ALLOY COPPER WIRE THROUGH CASTING
US2285949A (en) Apparatus for annealing
JP3666750B2 (en) Graphite spheroidizing equipment
JPH0352747A (en) Method for continuously casting high melting point and active metal
JPH07144265A (en) Production device of copper or copper alloy coated steel wire
JPH0434994Y2 (en)
JP2005504177A (en) Method for molten metal immersion finishing
JPH05220545A (en) Manufacture of metal complex wire rod
JP2010216002A (en) Continuous heat treatment device

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20080318

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080401

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090909

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Effective date: 20100217

Free format text: JAPANESE INTERMEDIATE CODE: A523

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100312