JP2016160125A - Cement hardening body and manufacturing method therefor - Google Patents

Cement hardening body and manufacturing method therefor Download PDF

Info

Publication number
JP2016160125A
JP2016160125A JP2015039171A JP2015039171A JP2016160125A JP 2016160125 A JP2016160125 A JP 2016160125A JP 2015039171 A JP2015039171 A JP 2015039171A JP 2015039171 A JP2015039171 A JP 2015039171A JP 2016160125 A JP2016160125 A JP 2016160125A
Authority
JP
Japan
Prior art keywords
cement
carbon dioxide
cementitious
hardened body
kneaded material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015039171A
Other languages
Japanese (ja)
Other versions
JP6418602B2 (en
Inventor
朋子 安藝
Tomoko Aki
朋子 安藝
修 久保田
Osamu Kubota
修 久保田
宙 平尾
Hiroshi Hirao
宙 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2015039171A priority Critical patent/JP6418602B2/en
Publication of JP2016160125A publication Critical patent/JP2016160125A/en
Application granted granted Critical
Publication of JP6418602B2 publication Critical patent/JP6418602B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cement hardening body capable of largely reducing total amount of discharged carbon dioxide by absorbing a large amount of carbon dioxide during a hardening process even when for example conducting hardening at normal temperature around 20°C, not high temperature such as 60°C, even with containing a powdery material other than Portland cement, which is one with less discharge amount of carbon dioxide during manufacturing a powder than Portland cement, and small in ratio of reduction of compressive strength based on a case that all amount of the powdery material consists of Portland cement.SOLUTION: There is provided a cement hardening body by carbonation of a hardening body of a cement mixture containing (A) a powdery cement composition containing a ground product of clinker ash and/or coal gasification slag and Portland cement, (B) water and (C) an aggregate.SELECTED DRAWING: None

Description

本発明は、セメント質硬化体およびその製造方法に関する。   The present invention relates to a cementitious cured body and a method for producing the same.

現在、地球温暖化の抑制のため、二酸化炭素の排出量の低減が重要な課題になっている。セメント質硬化体の製造における、二酸化炭素の排出量を低減する方法として、セメント質硬化体の養生過程において二酸化炭素を吸収させることにより、セメント質硬化体を得るまでに排出される二酸化炭索の総量を低減する方法が知られている。
例えば、特許文献1には、粉体成分として、γ−CS (記号γ)、製鋼スラグ粉末(記号B)の1種または2種と、ポルトランドセメント(記号C)を含有し、上記γ、B、Cの合計含有量に占めるγ、Bの合計が25〜95質量%であり、水セメント比W/Cが80〜250%である配合のコンクリート混練物を硬化させたプレキャストコンクリートであって、硬化過程で炭酸化養生を経ることにより、表面から深さ20mm以上の部位(ただし肉厚が20mm未満の部分は肉厚全体)に炭酸化領域を形成してなるCO2吸収プレキャストコンクリートが記載されている。
該プレキャストコンクリートは、炭酸化養生による二酸化炭素の吸収を利用することで、コンクリート製品を製造する際に排出される二酸化炭素の総量(ト−タル量)を大幅に低減することができる。
At present, reducing carbon dioxide emissions is an important issue in order to control global warming. In the production of hardened cementitious materials, as a method of reducing the amount of carbon dioxide emitted, by absorbing carbon dioxide during the curing process of hardened cementitious materials, Methods for reducing the total amount are known.
For example, Patent Document 1 contains γ-C 2 S (symbol γ), one or two types of steelmaking slag powder (symbol B), and Portland cement (symbol C) as a powder component. , B and C are precast concrete obtained by curing a concrete kneaded mixture having a total content of γ and B of 25 to 95% by mass and a water-cement ratio W / C of 80 to 250%. In addition, a carbon dioxide-absorbing precast concrete is described in which a carbonation region is formed in a portion having a depth of 20 mm or more from the surface (where the thickness is less than 20 mm) by passing through carbonation curing in the curing process. Has been.
The precast concrete can significantly reduce the total amount of carbon dioxide (total amount) discharged when producing a concrete product by utilizing the absorption of carbon dioxide by carbonation curing.

特開2011−168436号公報JP 2011-168436 A

特許文献1の実施例では、炭酸化養生を60℃の温度条件下で行っている。しかし、本発明者らが実験を行ったところ、炭酸化養生を20℃の温度条件下で行った場合、γ−CSを含むセメント質硬化体では、二酸化炭素の排出量の低減効果は小さいことがわかった。また、特許文献1には、γ−CSは炭酸化により顕著な強度増進効果を発揮することが確認されたと記載されているが、本発明者らが、特許文献1に記載されているγ−CSを含むセメント質硬化体について実験を行ったところ、このような強度増進効果は、室温(20℃程度)での養生を行ったものについては、認められなかった。
また、γ−CSの原料としては、産業廃棄物である副生水酸化カルシウムや、石灰石が挙げられる。しかし、副生水酸化カルシウムは、一般的に入手が困難であるという問題があった。また、石灰石を原料としてγ−CSを製造する場合、その製造過程において、二酸化炭索が排出されることから、二酸化炭素の排出量の低減効果が小さくなるという問題があった。
そこで本発明は、ポルトランドセメント以外の粉末材料であって廃棄物を含むものの、例えば、60℃等の高温ではなく、常温(20℃程度)で養生を行った場合であっても、養生過程において多量の二酸化炭素を吸収することにより、排出される二酸化炭素の総量を大幅に低減することができ、かつ、粉末材料の全量がポルトランドセメントからなる場合を基準としたときに、圧縮強さの低下の割合が小さいセメント質硬化体を提供することを目的とする。
In the Example of patent document 1, carbonation curing is performed on the temperature conditions of 60 degreeC. However, when the present inventors conducted experiments, when carbonation curing is performed at a temperature of 20 ° C., the cementitious hardened body containing γ-C 2 S has an effect of reducing the amount of carbon dioxide emission. I found it small. Further, Patent Document 1 describes that γ-C 2 S has been confirmed to exhibit a remarkable strength enhancement effect by carbonation, but the present inventors have described it in Patent Document 1. When an experiment was conducted on a hardened cementitious material containing γ-C 2 S, such a strength enhancement effect was not observed for those cured at room temperature (about 20 ° C.).
Further, as a material for gamma-C 2 S, which is industrial waste and by-product calcium hydroxide, limestone. However, there is a problem that by-product calcium hydroxide is generally difficult to obtain. Further, when γ-C 2 S is produced using limestone as a raw material, there is a problem in that the effect of reducing the amount of carbon dioxide emission is reduced because the carbon dioxide cord is discharged during the manufacturing process.
Therefore, although the present invention is a powder material other than Portland cement and contains waste, for example, even when curing is performed at room temperature (about 20 ° C) instead of high temperature such as 60 ° C, By absorbing a large amount of carbon dioxide, the total amount of carbon dioxide emitted can be greatly reduced, and the compression strength is reduced when the total amount of powdered material is based on Portland cement. An object of the present invention is to provide a cementitious hardened body having a small ratio.

本発明者は、上記課題を解決するために鋭意検討した結果、特定の粉末状セメント組成物(特定の鉱物成分を含む焼成物の粉砕物と、ポルトランドセメントを含むもの)と水と骨材を含むセメント混練物の硬化体を、炭酸化してなるセメント質硬化体によれば、上記目的を達成できることを見出し、本発明を完成した。
すなわち、本発明は、以下の[1]〜[5]を提供するものである。
[1](A)クリンカアッシュ及び/又は石炭ガス化スラグの粉砕物と、ポルトランドセメントを含む粉末状セメント組成物と、(B)水と、(C)骨材、の各材料を含むセメント混練物の硬化体を、炭酸化してなることを特徴とするセメント質硬化体。
[2]上記(A)粉末状セメント組成物中、上記クリンカアッシュ及び/又は石炭ガス化スラグの粉砕物の割合が10〜60質量%であり、上記ポルトランドセメントの割合が40〜90質量%である請求項1に記載のセメント質硬化体。
[3]前記[1]又は[2]に記載のセメント質硬化体を製造するための方法であって、上記(A)〜(C)の各材料を混練して、上記セメント混練物を調製するセメント混練物調製工程と、上記セメント混練物を型枠内に打設する打設工程と、上記型枠内の上記セメント混練物が硬化した後に、上記セメント混練物の硬化体を上記型枠から脱型する脱型工程と、上記型枠から脱型した上記セメント混練物の硬化体を炭酸化養生して、上記セメント質硬化体を得る炭酸化養生工程、を含むことを特徴とするセメント質硬化体の製造方法。
[4]上記脱型工程と、上記炭酸化養生工程の間に、上記セメント混練物の硬化体の圧縮強さを高めるための高強度化養生工程、を含む前記[3]に記載のセメント質硬化体の製造万法。
[5]上記炭酸化養生工程の開始時における上記セメント混練物の硬化体の圧縮強さが、15N/mm以上である前記[3]又は[4]に記載のセメント質硬化体の製造方法。
As a result of intensive studies to solve the above problems, the present inventor has obtained a specific powdered cement composition (a pulverized product containing a specific mineral component and a Portland cement), water and aggregate. The present invention has been completed by finding that the above object can be achieved by using a cemented hardened body obtained by carbonizing the hardened body of the cement kneaded product.
That is, the present invention provides the following [1] to [5].
[1] Cement kneading containing each material of (A) pulverized clinker ash and / or coal gasified slag, powdered cement composition containing Portland cement, (B) water, and (C) aggregate A hardened cementitious material obtained by carbonizing a hardened material.
[2] In the powdered cement composition (A), the ratio of the pulverized clinker ash and / or coal gasification slag is 10 to 60% by mass, and the ratio of the Portland cement is 40 to 90% by mass. The hardened cementitious material according to claim 1.
[3] A method for producing the hardened cementitious body according to [1] or [2], wherein the materials (A) to (C) are kneaded to prepare the cement kneaded material. A cement kneaded material preparation step, a casting step in which the cement kneaded material is cast into a mold, and after the cement kneaded material in the mold is cured, And a carbonation curing step in which a hardened body of the cement kneaded material released from the mold is carbonized and cured to obtain the cementitious hardened body. A method for producing a cured product.
[4] The cementitious material according to [3], including a high-strength curing step for increasing the compressive strength of the hardened body of the cement kneaded material between the demolding step and the carbonation curing step. Manufacture of cured body.
[5] The method for producing a hardened cementitious material according to [3] or [4], wherein the compressive strength of the hardened material of the cement kneaded product at the start of the carbonation curing step is 15 N / mm 2 or more. .

ここで、クリンカアッシュは、石炭火力発電所等において、石炭を燃焼させた際に発生する石炭灰であり、ボイラの底部に落下した石炭灰の塊を回収して脱水及び粉砕して製造する。このクリンカアッシュは、多孔質で排水性及び通気性に優れた産業副産物である。クリンカアッシュの主成分はフライアッシュとほぼ同様で、シリカ(SiO2)及びアルミナ(Al2O3)を主成分としている。   Here, clinker ash is coal ash generated when coal is burned in a coal-fired power plant or the like, and is produced by collecting a mass of coal ash that has fallen to the bottom of a boiler, dewatering and pulverizing it. This clinker ash is an industrial by-product that is porous and has excellent drainage and breathability. The main component of clinker ash is almost the same as that of fly ash, and is mainly composed of silica (SiO2) and alumina (Al2O3).

ここで、石炭ガス化スラグの粉砕物とは、石炭ガス化複合発電において、石炭ガス化炉から排出される、石炭の灰分の溶融スラグを、水冷固化し、粉砕したものである。石炭ガス化複合発電は、既に、次世代の石炭火力発電方式として検討並びに実証が我が国で進められていて、微粉炭を高温高圧の石炭ガス化炉内で酸素や空気などの石炭ガス化剤と混合して一酸化炭素や水素などにガス化し、その燃焼によってガスタービンを回転させると共にその燃焼熱によって発生した高圧水蒸気により蒸気タービンを回転させる発電方式である。   Here, the pulverized product of coal gasification slag is obtained by water-cooling and solidifying molten slag of coal ash discharged from a coal gasification furnace in coal gasification combined power generation. Coal gasification combined cycle power generation has already been studied and verified as a next-generation coal-fired power generation method in Japan, and pulverized coal is combined with coal gasifiers such as oxygen and air in a high-temperature and high-pressure coal gasification furnace. This is a power generation system that mixes and gasifies into carbon monoxide, hydrogen, etc., rotates the gas turbine by combustion, and rotates the steam turbine by high-pressure steam generated by the combustion heat.

本発明のセメント質硬化体によれば、例えば、60℃等の高温ではなく、20℃程度で養生を行った場合であっても、養生過程において多量の二酸化炭素を吸収することにより、二酸化炭素の排出量を大幅に低減することができる。
また、本発明のセメント質硬化体は、ポルトランドセメント以外の粉末材料(特に、ポルトランドセメントに比べて、粉末の製造時の二酸化炭素の排出量が少ないもの)を含むものの、例えば、60℃等の高温ではなく、20℃程度で養生を行った場合であっても、粉末材料の全量がポルトランドセメントからなる場合を基準としたときに、圧縮強さの低下の割合が小さいものである。
According to the cementitious hardened body of the present invention, for example, even when curing is performed at about 20 ° C. instead of high temperature such as 60 ° C., carbon dioxide is absorbed by absorbing a large amount of carbon dioxide in the curing process. Emissions can be greatly reduced.
Moreover, although the cementitious hardened body of the present invention includes a powder material other than Portland cement (particularly, a material that emits less carbon dioxide during the production of powder compared to Portland cement), for example, 60 ° C. Even when curing is performed at about 20 ° C. instead of high temperature, the rate of decrease in compressive strength is small when the total amount of the powder material is made of Portland cement.

本発明のセメント質硬化体は、(A)クリンカアッシュ及び/又は石炭ガス化スラグの粉砕物と、ポルトランドセメントを含む粉末状セメント組成物と、(B)水と、(C)骨材、の各材料を含むセメント混練物の硬化体を、炭酸化してなるものである。
ここで、「炭酸化」とは、セメント質硬化体中のアルカリ性の成分が、二酸化炭素と反応して、該アルカリ性の成分のpHを低下させることをいう。
以下、本発明を詳しく説明する。
The hardened cementitious material of the present invention comprises (A) a pulverized product of clinker ash and / or coal gasified slag, a powdered cement composition containing Portland cement, (B) water, and (C) an aggregate. The hardened body of cement kneaded material containing each material is obtained by carbonation.
Here, “carbonation” means that the alkaline component in the cementitious cured body reacts with carbon dioxide to lower the pH of the alkaline component.
The present invention will be described in detail below.

[(A)クリンカアッシュ及び/又は石炭ガス化スラグの粉砕物と、ポルトランドセメントを含む粉末状セメント組成物]
上記粉末状セメント組成物は、クリンカアッシュ及び/又は石炭ガス化スラグの粉砕物と、ポルトランドセメントを含む粉末状セメント組成物とポルトランドセメントを含む。
[(A) Powdered cement composition containing pulverized clinker ash and / or coal gasification slag and Portland cement]
The powdery cement composition includes a pulverized product of clinker ash and / or coal gasified slag, a powdered cement composition containing Portland cement, and Portland cement.

上記粉砕物は、ムライト、アノーサイト、非晶質相、SiO、クリストバライトやウォラストナイト等を含有してもよい。 The pulverized product may contain mullite, anorthite, amorphous phase, SiO 2 , cristobalite, wollastonite and the like.

上記粉砕物のブレーン比表面積は、好ましくは2,500〜10,000cm/g、より好ましくは3,000〜9,000cm/gである。該ブレーン比表面積が2,500cm/g以上であれば、二酸化炭素の排出量の低減効果が大きくなる。また、得られるセメント質硬化体の圧縮強さが大きくなる。該ブレーン比表面積が10,000cm/g以下であれば、粉砕する手間がかからず、製造のコストを低くすることができる。 Blaine specific surface area of the ground product is preferably 2,500~10,000cm 2 / g, more preferably 3,000~9,000cm 2 / g. If the Blaine specific surface area is 2,500 cm 2 / g or more, the effect of reducing carbon dioxide emission is increased. Moreover, the compressive strength of the obtained cementitious hardened body becomes large. If the Blaine specific surface area is 10,000 cm 2 / g or less, it does not take time to grind, and the manufacturing cost can be reduced.

上記粉末状セメント組成物中、上記粉砕物の割合は、好ましくは10〜60質量%、より好ましくは15〜55質量%、特に好ましくは20〜50質量%である。該割合が10質量%以上であれば、二酸化炭素の排出量の低減効果が大きくなる。また、得られるセメント質硬化体の圧縮強さが大きくなる。該割合が60質量%以下であれば、脱型の時期が早くなり、セメント質硬化体からなる製品の生産効率が向上する。   In the powdered cement composition, the proportion of the pulverized product is preferably 10 to 60% by mass, more preferably 15 to 55% by mass, and particularly preferably 20 to 50% by mass. If this ratio is 10 mass% or more, the reduction effect of the discharge | emission amount of a carbon dioxide will become large. Moreover, the compressive strength of the obtained cementitious hardened body becomes large. If this ratio is 60 mass% or less, the demolding time will become early and the production efficiency of the product which consists of cementitious hardened bodies will improve.

本発明で用いられるポルトランドセメントは、特に限定されるものではなく、例えば、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント等の各種ポルトランドセメントを使用することができる。中でも、強度発現性やコストの観点から、普通ポルトランドセメントまたは早強ポルトランドセメントが好ましい。   The Portland cement used in the present invention is not particularly limited. For example, various Portland cements such as ordinary Portland cement, early-strength Portland cement, moderately hot Portland cement, and low heat Portland cement can be used. Among these, ordinary portland cement or early-strength portland cement is preferable from the viewpoint of strength development and cost.

上記粉末状セメント組成物中、上記ポルトランドセメントの割合は、好ましくは40〜90質量%、より好ましくは45〜85質量%、特に好ましくは50〜80質量%である。該割合が40質量%以上であれば、脱型の時期が早くなり、セメント質硬化体からなる製品の生産効率が向上する。該割合が90質量%以下であれば、二酸化炭素の排出量の低減効果が大きくなる。また、得られるセメント質硬化体の圧縮強さが大きくなる。   In the powdered cement composition, the proportion of the Portland cement is preferably 40 to 90% by mass, more preferably 45 to 85% by mass, and particularly preferably 50 to 80% by mass. When the ratio is 40% by mass or more, the time for demolding is advanced, and the production efficiency of a product made of a cementitious hardened body is improved. If this ratio is 90 mass% or less, the reduction effect of the discharge | emission amount of a carbon dioxide will become large. Moreover, the compressive strength of the obtained cementitious hardened body becomes large.

[(B)水]
上記セメント混練物において、粉末状セメント組成物100質量%に対する水の配合比(以下、「水/粉末状セメント組成物の質量比」ともいう。)は、好ましくは30〜100質量%、より好ましくは40〜70質量%である。該比が30質量%以上であれば、二酸化炭素の排出量の低減効果が大きくなる。また、セメント混練物のワーカビリティが向上する。該比が100質量%以下であれば、セメント質硬化体の圧縮強さが大きくなる。
[(B) Water]
In the cement kneaded material, the mixing ratio of water with respect to 100% by mass of the powdered cement composition (hereinafter also referred to as “the mass ratio of water / powdered cement composition”) is preferably 30 to 100% by mass, and more preferably. Is 40-70 mass%. When the ratio is 30% by mass or more, the effect of reducing the amount of carbon dioxide emission increases. Moreover, the workability of the cement kneaded product is improved. When the ratio is 100% by mass or less, the compressive strength of the cementitious cured body is increased.

[(C)骨材]
本発明で用いられる骨材としては、細骨材のみ、または、細骨材と粗骨材の組み合わせが挙げられる。
細骨材としては、川砂、山砂、陸砂、海砂、砕砂、珪砂またはこれらの混合物等を使用することができる。粗骨材としては、川砂利、山砂利、陸砂利、砕石またはこれらの混合物等を使用することができる。
骨材の配合量(細骨材と粗骨材を併用する場合はその合計量)は、粉末状セメント組成物100質量部に対して、好ましくは200〜700質量部、より好ましくは200〜600質量部である。該配合量が前記範囲内であれば、セメント質硬化体の圧縮強さが大きくなり、また、セメント質硬化体の収縮率が小さくなる。
また、粗骨材を用いる揚合、細骨材率は、好ましくは5〜60%である。細骨材率が前記範囲内であれば、セメント混練物のワーカビリティや成形のし易さが向上する。
[(C) Aggregate]
Aggregates used in the present invention include only fine aggregates or a combination of fine aggregates and coarse aggregates.
As fine aggregate, river sand, mountain sand, land sand, sea sand, crushed sand, silica sand, or a mixture thereof can be used. As the coarse aggregate, river gravel, mountain gravel, land gravel, crushed stone, or a mixture thereof can be used.
The amount of aggregate (the total amount when fine and coarse aggregates are used together) is preferably 200 to 700 parts by weight, more preferably 200 to 600 parts per 100 parts by weight of the powdered cement composition. Part by mass. When the blending amount is within the above range, the compressive strength of the cementitious cured body is increased, and the shrinkage rate of the cementitious cured body is decreased.
Moreover, the lift using a coarse aggregate and the fine aggregate rate are preferably 5 to 60%. When the fine aggregate ratio is within the above range, the workability of the cement kneaded material and the ease of molding are improved.

[その他の材料]
また、上記セメント混練物には、本発明の目的を阻害しない範囲内で、必要に応じて他の材料を配合してもよい。必要に応じて配合される他の材料としては、減水剤、消泡剤、収縮低減剤等の各種添加剤や、フライアッシュ、シリカフューム、高炉スラグ微粉末等の各種混和材が挙げられる。
[Other materials]
Moreover, you may mix | blend another material with the said cement kneaded material as needed within the range which does not inhibit the objective of this invention. Examples of other materials blended as necessary include various additives such as water reducing agents, antifoaming agents, shrinkage reducing agents, and various admixtures such as fly ash, silica fume, and blast furnace slag fine powder.

[セメント質硬化体の製造方法]
本発明のセメント質硬化体の製造方法は、上述の粉末状セメント組成物と、水と、骨材の各材料を混練して、セメント混練物を調製するセメント混練物調製工程と、上記セメント混練物を型枠内に打設する打設工程と、上記型枠内の上記セメント混練物が硬化した後に、上記セメント混練物の硬化体を上記型枠から脱型する脱型工程と、上記型枠から脱型した上記セメント混練物の硬化体を炭酸化養生して、セメント質硬化体を得る炭酸化養生工程、を含む。
[Method for producing hardened cementitious material]
The method for producing a hardened cementitious material of the present invention includes a cement kneaded material preparation step in which a cement kneaded material is prepared by kneading the above powdered cement composition, water, and aggregate materials, and the cement kneading method. A casting step of casting an object in a mold, a demolding process of demolding a cured body of the cement kneaded material from the mold after the cement kneaded material in the mold is cured, and the mold A carbonation curing step of carbonizing and curing the hardened body of the cement kneaded material released from the frame to obtain a cementitious hardened body.

上記セメント混練物調製工程において、各材料を混練する方法は、特に限定されるものではない。また、混練に用いる装置も特に限定されるものではなく、オムニミキサ、パン型ミキサ、二軸練りミキサ、傾胴ミキサ等の慣用のミキサを使用することができる。   In the cement kneaded material preparation step, the method for kneading each material is not particularly limited. Moreover, the apparatus used for kneading is not particularly limited, and a conventional mixer such as an omni mixer, a pan-type mixer, a biaxial kneading mixer, and a tilting mixer can be used.

上記打設工程において、上記セメント混練物は所望の型枠内に打設される。打設方法としては、特に限定されるものではなく、流し込み成形等の慣用の方法を使用することができる。
上記セメント混練物を型枠内に打設した後、脱型するまでの養生方法としては、特に限定されるものではなく、例えば、気中養生、湿空養生、水中養生、及び蒸気養生等の一般的な養生方法を採用することができる。
In the placing step, the cement kneaded material is placed in a desired mold. The casting method is not particularly limited, and a conventional method such as casting can be used.
The curing method after the cement kneaded material is placed in the mold and before demolding is not particularly limited, and examples thereof include air curing, wet air curing, underwater curing, and steam curing. A general curing method can be employed.

上記炭酸化養生工程における二酸化炭素ガスの濃度は、好ましくは1体積%以上、より好ましくは3体積%以上、特に好ましくは5体積%以上である。該濃度が1体積%以上であれば、炭酸化養生工程における二酸化炭素の吸収量を大きくすることができる。
二酸化炭素ガスの濃度の上限は、特に限定されるものではなく、二酸化炭素ガスの濃度が高いほど、二酸化炭素の吸収量を増加させることができるが、養生設備等のコストを低くする観点から、好ましくは90体積%以下、より好ましくは70体積%以下、特に好ましくは50体積%以下である。
The concentration of carbon dioxide gas in the carbonation curing step is preferably 1% by volume or more, more preferably 3% by volume or more, and particularly preferably 5% by volume or more. If this density | concentration is 1 volume% or more, the absorbed amount of the carbon dioxide in a carbonation curing process can be enlarged.
The upper limit of the concentration of carbon dioxide gas is not particularly limited, and as the concentration of carbon dioxide gas is higher, the amount of carbon dioxide absorbed can be increased, but from the viewpoint of reducing the cost of curing equipment, etc. Preferably it is 90 volume% or less, More preferably, it is 70 volume% or less, Most preferably, it is 50 volume% or less.

また、上記炭酸化養生工程における温度は、特に限定されるものではないが、好ましくは5〜100℃、より好ましくは10〜50℃、特に好ましくは15〜35℃である。
炭酸化養生における温度が、上記数値範囲内であれば、セメント質硬化体からなる製品の生産性が向上し、セメント質硬化体の圧縮強さが大きくなる。
また、本発明のセメント質硬化体は、比較的低温(例えば、5〜30℃)で炭酸化養生を行った場合であっても、二酸化炭素の排出量の低減効果が大きいものである。
また、上記炭酸化養生工程における相対湿度は、特に限定されるものではないが、好ましくは30〜90%、より好ましくは40〜80%である。該相対湿度が、上記数値範囲内であれば、セメント質硬化体からなる製品の生産性が向上し、セメント質硬化体の圧縮強さが大きくなる。
Moreover, although the temperature in the said carbonation curing process is not specifically limited, Preferably it is 5-100 degreeC, More preferably, it is 10-50 degreeC, Most preferably, it is 15-35 degreeC.
When the temperature in the carbonation curing is within the above numerical range, the productivity of the product made of the cementitious hardened body is improved, and the compressive strength of the cementitious hardened body is increased.
Moreover, the cementitious hardened body of the present invention has a great effect of reducing carbon dioxide emission even when carbonation curing is performed at a relatively low temperature (for example, 5 to 30 ° C.).
Moreover, although the relative humidity in the said carbonation curing process is not specifically limited, Preferably it is 30 to 90%, More preferably, it is 40 to 80%. When the relative humidity is within the above numerical range, the productivity of a product made of a cementitious hardened body is improved, and the compressive strength of the cementitious hardened body is increased.

上記炭酸化養生工程は、脱型工程において、セメント混練物の硬化体を型枠から脱型した直後から行ってもよいが、セメント質硬化体の圧縮強さを高める観点から、上記脱型工程と上記炭酸化養生工程の間に、高強度化養生工程を設けてもよい。
高強度化養生工程において、型枠から脱型したセメント混練物の硬化体を、その圧縮強さが、好ましくは15N/mm以上、より好ましくは20N/mm以上、特に好ましくは30N/mm以上となるまで養生することで、炭酸化養生後のセメント質硬化体の圧縮強さを高めることができる。
上記高強度化養生工程における養生方法としては、特に限定されるものではなく、例えば、気中養生、湿空養生、水中養生、及び蒸気養生等の一般的な養生方法を採用することができる。なお、高強度化養生工程における「養生」には、炭酸化養生は含まれないものとする。
The carbonation curing step may be performed immediately after the hardened body of the cement kneaded product is removed from the mold in the demolding step, but from the viewpoint of increasing the compressive strength of the cementitious hardened body, the demolding step. A high-strength curing process may be provided between the carbonation curing process.
In the high-strength curing process, the cement kneaded cured product released from the mold is preferably 15 N / mm 2 or more, more preferably 20 N / mm 2 or more, and particularly preferably 30 N / mm. By curing to 2 or more, the compressive strength of the cementitious cured body after carbonation curing can be increased.
The curing method in the high-strength curing process is not particularly limited, and for example, general curing methods such as air curing, wet air curing, underwater curing, and steam curing can be adopted. Note that “curing” in the high-strength curing process does not include carbonation curing.

なお、本発明においては、上記製造方法によって得られたセメント質硬化体は、上記焼成物の粉砕物に代えて、上記粉末状セメント組成物に含まれるポルトランドセメントと同じポルトランドセメントを用いた場合に比べて、セメント質硬化体の製造に際して排出される二酸化炭素の量が15%以上(より好ましくは20%以上、さらに好ましくは30%以上、特に好ましくは40%以上)低減され、かつ、セメント質硬化体の圧縮強さの低下の割合が50%以下(より好ましくは40%以下)であるものが好ましい。   In the present invention, the hardened cementitious material obtained by the above production method uses the same Portland cement as the Portland cement contained in the powdered cement composition instead of the pulverized product of the fired product. In comparison, the amount of carbon dioxide discharged during the production of a cementitious hardened body is reduced by 15% or more (more preferably 20% or more, more preferably 30% or more, particularly preferably 40% or more), and the cementum It is preferable that the rate of decrease in the compressive strength of the cured product is 50% or less (more preferably 40% or less).

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
使用材料は、以下に示すとおりである。
(1)クリンカアッシュの粉砕物:ブレーン比表面積4000cm2/gで、化学成分は、表1の通りである。
調整法:105℃で24時間以上乾燥後、所定の粉末度まで粉砕した。
(2)石炭ガス化スラグの粉砕物:ブレーン比表面積4000cm2/gで、化学成分は、表2の通りである。
調整法:105℃で24時間以上乾燥後、所定の粉末度まで粉砕した。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
The materials used are as shown below.
(1) Crusher ash pulverized product: Blaine specific surface area of 4000 cm 2 / g, and chemical components are as shown in Table 1.
Adjustment method: After drying at 105 ° C. for 24 hours or more, the mixture was pulverized to a predetermined fineness.
(2) Coal gasified slag pulverized product: Blaine specific surface area of 4000 cm 2 / g, chemical composition as shown in Table 2.
Adjustment method: After drying at 105 ° C. for 24 hours or more, the mixture was pulverized to a predetermined fineness.

(3)γ−CS粉末:試薬である炭酸カルシウム粉末と試薬である二酸化珪素粉末を、電気炉で焼成したもの (ブレーン比表面積;6,000cm/g:γ−CS (γ−2CaO・SiO)の含有率が95質量%以上のもの)
(4)普通ポルトランドセメント(OPC):太平洋セメント社製
(5)細骨材:「JlS R 5201 (セメントの物理試験方法)」の標準砂
(6)水:上水道水
(3) γ-C 2 S powder: a calcium carbonate powder as a reagent and silicon dioxide powder as a reagent fired in an electric furnace (Brain specific surface area: 6,000 cm 2 / g: γ-C 2 S (γ -2CaO · SiO 2 ) content of 95% by mass or more)
(4) Ordinary Portland cement (OPC): Taiheiyo Cement Co., Ltd. (5) Fine aggregate: Standard sand of “JlS R 5201 (Cement physical test method)” (6) Water: Tap water

[実験例1]
上記普通ポルトランドセメントと上記細骨材を1:3の質量比で、ホバートミキサに投入後、空練りして、これらの混合物を得た。得られた混合物と水を、水/粉末状セメント組成物の質量比が50質量%となるように混合して、モルタルを調製した。得られたモルタルを、4×4×16cmの型枠内に充填した後、温度20℃の条件下で24時間湿空養生を行い、次いで、脱型を行った。その後、脱型したモルタル硬化体を、材齢28日までは温度20℃の条件下で水中養生を行い、材齢84日までは、温度20℃、相対湿度60℃の条件下で、促進中性化槽内において炭酸化養生を行った。炭酸化養生における二酸化炭素ガスの濃度は5体積%であった。
[Experiment 1]
The ordinary Portland cement and the fine aggregate were put into a Hobart mixer at a mass ratio of 1: 3, and then kneaded to obtain a mixture thereof. The obtained mixture and water were mixed so that the mass ratio of the water / powdered cement composition was 50% by mass to prepare a mortar. After the obtained mortar was filled in a 4 × 4 × 16 cm mold, it was subjected to moisture curing under a temperature of 20 ° C. for 24 hours, and then demolded. Thereafter, the demolded mortar hardened body is cured under water at a temperature of 20 ° C. until the age of 28 days, and is promoted at a temperature of 20 ° C. and a relative humidity of 60 ° C. until the age of 84 days. Carbonation curing was performed in the oxidization tank. The concentration of carbon dioxide gas in the carbonation curing was 5% by volume.

水中養生後の供試体、及び、炭酸化養生後の供試体を用いて、「JIS R 5201(セメントの物理試験方法)」に準拠して、モルタルの圧縮強さを測定した。それぞれの結果を表1に示す。
また、供試体1本あたりの、二酸化炭素吸収量を、熱重量分析(TG)から算出した。また、供試体の材料の組成から算出される二酸化炭素排出量から、二酸化炭素吸収量を減じることで、排出される二酸化炭素の総量を算出した。それぞれの結果を表2に示す。
さらに、炭酸化養生後の4×4×16cmの供試体から、モルタルカッターを用いて、4×4×4cmの立方供試体を3個切り出した。切断は4×4×16cmの供試休の端面より略20mmの部分から開始して、供試体の長手方向に垂直な方向に切断面を有するようにして行った。切断の結果、得られた供試体の両端部分の部材については使用せずに処分した。
該立方供試体の切断面にフェノールフタレインを塗布した。その結果、切断面の中央部分が、略正方形状に変色した。このことから、切断面の中央部分は中性化されていないことがわかった。
The compressive strength of the mortar was measured in accordance with “JIS R 5201 (Cement physical test method)” using the specimen after underwater curing and the specimen after carbonation curing. The results are shown in Table 1.
In addition, the amount of carbon dioxide absorbed per specimen was calculated from thermogravimetric analysis (TG). In addition, the total amount of carbon dioxide emitted was calculated by subtracting the carbon dioxide absorption from the carbon dioxide emission calculated from the composition of the specimen material. The results are shown in Table 2.
Further, three 4 × 4 × 4 cm cubic specimens were cut out from the 4 × 4 × 16 cm specimens after carbonation curing using a mortar cutter. The cutting was started from a portion approximately 20 mm from the end face of the test holiday of 4 × 4 × 16 cm, and was carried out so as to have a cut surface in a direction perpendicular to the longitudinal direction of the specimen. As a result of cutting, members at both ends of the obtained specimen were disposed without being used.
Phenolphthalein was applied to the cut surface of the cubic specimen. As a result, the central portion of the cut surface changed to a substantially square shape. From this, it was found that the central portion of the cut surface was not neutralized.

[実験例2]
普通ポルトランドセメントの代わりに、上記普通ポルトランドセメントと石炭ガス化スラグを用いた以外は、実験例1と同様にして、供試体を得た。
得られた供試体について、実験例1と同様にして、モルタルの圧縮強さ、二酸化炭素排出量、及び二酸化炭素吸収量等を測定または算出し、得られた結果から、排出される二酸化炭素の総量、圧縮強さの低減率、及び排出される二酸化炭素の総量の低減率を算出した。それぞれの結果を表3−4に示す。
なお、圧縮強さの低減率(単位:%)は。下記式(1)によって算出されるものである。
(実験例1の炭酸化養生後の圧縮強さ−供試体の炭酸化養生後の圧縮強さ)/実験例1の炭酸化養生後の圧縮強さ)×100 (1)
また、排出される二酸化炭素の総量の低減率(単位:%)は、下記式(2)によって算出されるものである。
(実験例1の排出される二酸化炭素の総量−供試体の排出される二酸化炭素の総量)/実験例1の排出される二酸化炭素の総量)×100 (2)
[Experiment 2]
A specimen was obtained in the same manner as in Experimental Example 1 except that the above ordinary Portland cement and coal gasification slag were used instead of ordinary Portland cement.
For the obtained specimen, the mortar compressive strength, carbon dioxide emission, carbon dioxide absorption, etc. were measured or calculated in the same manner as in Experimental Example 1, and from the obtained results, The total amount, the reduction rate of compressive strength, and the reduction rate of the total amount of discharged carbon dioxide were calculated. Each result is shown in Table 3-4.
The reduction rate of compressive strength (unit:%). It is calculated by the following formula (1).
(Compressive strength after carbonation curing of Experimental Example 1−Compressive strength after carbonation curing of test sample) / Compressive strength after carbonation curing of Experimental Example 1) × 100 (1)
Moreover, the reduction rate (unit:%) of the total amount of carbon dioxide discharged is calculated by the following formula (2).
(Total amount of carbon dioxide discharged in Experimental Example 1−Total amount of carbon dioxide discharged from the specimen) / Total amount of carbon dioxide discharged in Experimental Example 1) × 100 (2)

また、実験例1と同様にして、4×4×4cmの立方供試体を3個切り出して、フェノールフタレインを塗布したところ、切断面の中央部分が略円形状に変色した。変色部分の面積は、実験例1における変色部分の面積よりも小さかったことから、切断面の中央部分は、中性化されていないものの、実験例1と比べて、中性化が進んでいることがわかった。   Further, in the same manner as in Experimental Example 1, three 4 × 4 × 4 cm cubic specimens were cut out and applied with phenolphthalein, and the central portion of the cut surface was changed to a substantially circular shape. Since the area of the discolored portion was smaller than the area of the discolored portion in Experimental Example 1, the central portion of the cut surface was not neutralized, but was neutralized compared to Experimental Example 1. I understood it.

[実験例3]
石炭ガス化スラグの代わりに、上記クリンカアッシュを用いる以外は実験例2と同様にして、モルタルの圧縮強さ等の測定、及び排出される二酸化炭素の総量等の算出を行った。それぞれの結果を表3〜4に示す。
また、実験例1と同様にして、4×4×4cmの立方供試体を3個切り出して、フェノールフタレインを塗布したところ、切断面の中央部分が略正方形状に変色した。また、変色部分の面積は、実験例1における変色部分の面積よりも小さかったことから、切断面の中央部分は、中性化されていないものの、実験例1と比べて、中性化が進んでいることがわかった。
[Experiment 3]
Instead of the coal gasification slag, the measurement of the compressive strength of the mortar and the calculation of the total amount of carbon dioxide discharged were performed in the same manner as in Experimental Example 2 except that the above clinker ash was used. Each result is shown to Tables 3-4.
Further, in the same manner as in Experimental Example 1, three 4 × 4 × 4 cm cubic specimens were cut out and applied with phenolphthalein, and the central portion of the cut surface was changed to a substantially square shape. In addition, since the area of the discolored portion was smaller than the area of the discolored portion in Experimental Example 1, the central portion of the cut surface was not neutralized, but was neutralized as compared with Experimental Example 1. I found out.

[実験例4]
石炭ガス化スラグの代わりに、γ−CS粉末を用いる以外は実験例2と同様にして、モルタルの圧縮強さ等の測定、及び排出される二酸化炭素の総量等の算出を行った。それぞれの結果を表3〜4に示す。
また、実験例1と同様にして、4×4×4cmの立方供試体を3個切り出して、フェノールフタレインを塗布したところ、切断面の中央部分が略正方形状に変色した。また、変色部分の面積は、実験例1における変色部分の面積よりも若干大きいものであった。このことから、切断面の中央部分は、中性化されておらず、かつ、実験例1と比べて、若干中性化が進んでいないことがわかった。
[Experiment 4]
Instead of the coal gasification slag, measurement of the compressive strength of the mortar and calculation of the total amount of discharged carbon dioxide and the like were performed in the same manner as in Experimental Example 2 except that γ-C 2 S powder was used. Each result is shown to Tables 3-4.
Further, in the same manner as in Experimental Example 1, three 4 × 4 × 4 cm cubic specimens were cut out and applied with phenolphthalein, and the central portion of the cut surface was changed to a substantially square shape. Further, the area of the discolored portion was slightly larger than the area of the discolored portion in Experimental Example 1. From this, it was found that the central portion of the cut surface was not neutralized and was not slightly neutralized as compared with Experimental Example 1.

[実験例5]
石炭ガス化スラグを45質量%に増量して用いる以外は実験例2と同様にして、モルタルの圧縮強さ等の測定、及び排出される二酸化炭素の総量等の算出を行った。それぞれの結果を表3〜4に示す。
また、実験例1と同様にして、4×4×4cmの立方供試体を3個切り出して、フェノールフタレインを塗布したところ、切断面に変色が見られなかった。このことから、供試体の中央部分にまで中性化が進んでいることがわかった。
[Experimental Example 5]
Except for increasing the amount of coal gasification slag to 45% by mass, the measurement of the mortar compressive strength and the like and the calculation of the total amount of carbon dioxide discharged were performed in the same manner as in Experimental Example 2. Each result is shown to Tables 3-4.
Further, in the same manner as in Experimental Example 1, three 4 × 4 × 4 cm cubic specimens were cut out and phenolphthalein was applied, and no discoloration was observed on the cut surface. From this, it was found that neutralization has progressed to the central part of the specimen.

[実験例6]
クリンカアッシュを45質量%に増量して用いる以外は実験例3と同様にして、モルタルの圧縮強さ等の測定、及び排出される二酸化炭素の総量等の算出を行った。それぞれの結果を表3〜4に示す。
また、実験例1と同様にして、4×4×4cmの立方供試体を3個切り出して、フェノールフタレインを塗布したところ、切断面に変色が見られなかった。このことから、供試体の中央部分にまで中性化が進んでいることがわかった。
[Experimental example 6]
Except for increasing the amount of clinker ash to 45% by mass and using the clinker ash in the same manner as in Experimental Example 3, the compression strength of the mortar and the total amount of carbon dioxide discharged were calculated. Each result is shown to Tables 3-4.
Further, in the same manner as in Experimental Example 1, three 4 × 4 × 4 cm cubic specimens were cut out and phenolphthalein was applied, and no discoloration was observed on the cut surface. From this, it was found that neutralization has progressed to the central part of the specimen.

[実験例7]
上記γ−CS粉末を45質量%に増量して用いる以外は実験例4と同様にして、モルタルの圧縮強さ等の測定、及び排出される二酸化炭素の総量等の算出を行った。それぞれの結果を表3〜4に示す。
また、実験例1と同様にして、4×4×4cmの立方供試体を3個切り出して、フェノールフタレインを塗布したところ、切断面の中央部分が、略正方形状に変色した。また、変色部分の面積は、実験例1における変色部分の両積よりも大きいものであった。このことから、切断面の中央部分は、中性化されておらず、かつ、実験例1と比べて、中性化が進んでいないことがわかった。
[Experimental example 7]
Except for increasing the amount of the γ-C 2 S powder to 45% by mass, the measurement of the compression strength of the mortar and the calculation of the total amount of discharged carbon dioxide and the like were performed in the same manner as in Experimental Example 4. Each result is shown to Tables 3-4.
Further, in the same manner as in Experimental Example 1, three 4 × 4 × 4 cm cubic specimens were cut out and coated with phenolphthalein, and the central portion of the cut surface was changed to a substantially square shape. Further, the area of the discolored portion was larger than the product of the discolored portions in Experimental Example 1. From this, it was found that the central portion of the cut surface was not neutralized and was not neutralized as compared with Experimental Example 1.


表3、表4より、実験例2、実験例3のセメント質硬化体の圧縮強さの低減率は、実験例4のセメント質硬化体の圧縮強さの低減率よりも小さいことがわかる。同様に実験例5、実験例6の圧縮強さの低減率は、実験例7の低減率よりも小さいことがわかる。また、実験例2、実験例3のセメント質硬化体の排出される二酸化炭索の総量の低減率は、実験例4のセメント質硬化体の排出される二酸化炭素の総量の低減率より大きいことがわかる。同様に実験例5、実験例6の二酸化炭索の総量の低減率は、実験例7の低減率よりも大きいことがわかる。
From Tables 3 and 4, it can be seen that the reduction rate of the compressive strength of the cementitious cured bodies of Experimental Example 2 and Experimental Example 3 is smaller than the reduction rate of the compressive strength of the cementitious hardened body of Experimental Example 4. Similarly, it can be seen that the reduction rate of the compressive strength in Experimental Example 5 and Experimental Example 6 is smaller than that of Experimental Example 7. Moreover, the reduction rate of the total amount of carbon dioxide cord discharged from the cementitious hardened body of Experimental Example 2 and Experimental Example 3 is greater than the reduction rate of the total amount of carbon dioxide discharged from the hardened cementitious body of Experimental Example 4 I understand. Similarly, it can be seen that the reduction rate of the total amount of the carbon dioxide cable of Experimental Example 5 and Experimental Example 6 is larger than the reduction rate of Experimental Example 7.

Claims (5)

(A)クリンカアッシュ及び/又は石炭ガス化スラグの粉砕物と、ポルトランドセメントを含む粉末状セメント組成物と、(B)水と、(C)骨材、の各材料を含むセメント混練物の硬化体を、炭酸化してなることを特徴とするセメント質硬化体。 Hardening of a cement kneaded material containing (A) pulverized clinker ash and / or coal gasified slag, powdered cement composition containing Portland cement, (B) water, and (C) aggregate. A cementitious hardened body obtained by carbonizing a body. 上記(A)粉末状セメント組成物中、前記クリンカアッシュ及び/又は石炭ガス化スラグの粉砕物の割合が10〜60質量%であり、上記ポルトランドセメントの割合が40〜90質量%である請求項2に記載のセメント質硬化体。 The proportion of the pulverized product of the clinker ash and / or coal gasification slag in the powdered cement composition (A) is 10 to 60% by mass, and the proportion of the Portland cement is 40 to 90% by mass. 2. The cementitious cured product according to 2. 請求項1又は請求項2に記載のセメント質硬化体を製造するための方法であって、前記(A)〜(C)の各材料を混練して、前記セメント混練物を調製するセメント混練物調製工程と、前記セメント混練物を型枠内に打設する打設工程と、上記型枠内の上記セメント混練物が硬化した後に、上記セメント混練物の硬化体を前記型枠から脱型する脱型工程と、前記型枠から脱型した上記セメント混練物の硬化体を炭酸化養生して、上記セメント質硬化体を得る炭酸化養生工程、を含むことを特徴とするセメント質硬化体の製造方法。 It is a method for manufacturing the cementitious hardened | cured material of Claim 1 or Claim 2, Comprising: Each material of said (A)-(C) is knead | mixed, The cement kneaded material which prepares the said cement kneaded material A preparation step, a placing step of placing the cement kneaded material in a mold, and after the cement kneaded material in the mold is cured, the cured body of the cement kneaded material is demolded from the mold. A cementitious hardened body comprising a demolding step and a carbonation curing step of obtaining a cementitious hardened body by carbonizing and curing the hardened body of the cement kneaded material released from the mold. Production method. 前記脱型工程と、前記炭酸化養生工程の間に、上記セメント混練物の硬化体の圧縮強さを高めるための高強度化養生工程、を含む請求項3に記載のセメント質硬化体の製造万法。 The cementitious hardened body according to claim 3, further comprising a high-strength curing step for increasing the compressive strength of the hardened body of the cement kneaded material between the demolding step and the carbonation curing step. All the way. 前記炭酸化養生工程の開始時における上記セメント混練物の硬化体の圧縮強さが、15N/mm以上である請求項3又は請求項4に記載のセメント質硬化体の製造方法。
The method for producing a cementitious hardened body according to claim 3 or 4, wherein the compressive strength of the hardened body of the cement kneaded product at the start of the carbonation curing step is 15 N / mm 2 or more.
JP2015039171A 2015-02-27 2015-02-27 Cementitious hardened body and method for producing the same Active JP6418602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015039171A JP6418602B2 (en) 2015-02-27 2015-02-27 Cementitious hardened body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015039171A JP6418602B2 (en) 2015-02-27 2015-02-27 Cementitious hardened body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2016160125A true JP2016160125A (en) 2016-09-05
JP6418602B2 JP6418602B2 (en) 2018-11-07

Family

ID=56846100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015039171A Active JP6418602B2 (en) 2015-02-27 2015-02-27 Cementitious hardened body and method for producing the same

Country Status (1)

Country Link
JP (1) JP6418602B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019052073A (en) * 2017-09-19 2019-04-04 太平洋セメント株式会社 Cement additive and cement composition

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046955A (en) * 1983-08-22 1985-03-14 太平洋セメント株式会社 Carbonation process for flyash cement pellet
JP2002121064A (en) * 2000-10-11 2002-04-23 Central Res Inst Of Electric Power Ind Hydration reaction retardation type cement composition
JP2003176160A (en) * 2001-12-06 2003-06-24 Denki Kagaku Kogyo Kk Carbonated hardened cement composition
JP2007037413A (en) * 2005-07-29 2007-02-15 Kyushu Electric Power Co Inc Method for producing alga/coral multiplication member
JP2007186371A (en) * 2006-01-12 2007-07-26 Denki Kagaku Kogyo Kk Explosive fracture-resistant cement hardened body and method for producing the same
JP2007528335A (en) * 2003-06-20 2007-10-11 ジェームス・ハーディー・インターナショナル・ファイナンス・ベスローテン・ベンノートシャープ Durable building materials and manufacturing method thereof
JP2011168436A (en) * 2010-02-18 2011-09-01 Kajima Corp Concrete kneading material, co2 absorption precast concrete and method of producing the same
EP2628718A1 (en) * 2010-12-17 2013-08-21 The Chugoku Electric Power Co., Inc. Carbonation curing eqipment, process for producing carbonated concrete, and method for fixing carbon dioxide

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046955A (en) * 1983-08-22 1985-03-14 太平洋セメント株式会社 Carbonation process for flyash cement pellet
JP2002121064A (en) * 2000-10-11 2002-04-23 Central Res Inst Of Electric Power Ind Hydration reaction retardation type cement composition
JP2003176160A (en) * 2001-12-06 2003-06-24 Denki Kagaku Kogyo Kk Carbonated hardened cement composition
JP2007528335A (en) * 2003-06-20 2007-10-11 ジェームス・ハーディー・インターナショナル・ファイナンス・ベスローテン・ベンノートシャープ Durable building materials and manufacturing method thereof
JP2007037413A (en) * 2005-07-29 2007-02-15 Kyushu Electric Power Co Inc Method for producing alga/coral multiplication member
JP2007186371A (en) * 2006-01-12 2007-07-26 Denki Kagaku Kogyo Kk Explosive fracture-resistant cement hardened body and method for producing the same
JP2011168436A (en) * 2010-02-18 2011-09-01 Kajima Corp Concrete kneading material, co2 absorption precast concrete and method of producing the same
EP2628718A1 (en) * 2010-12-17 2013-08-21 The Chugoku Electric Power Co., Inc. Carbonation curing eqipment, process for producing carbonated concrete, and method for fixing carbon dioxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019052073A (en) * 2017-09-19 2019-04-04 太平洋セメント株式会社 Cement additive and cement composition

Also Published As

Publication number Publication date
JP6418602B2 (en) 2018-11-07

Similar Documents

Publication Publication Date Title
TWI393690B (en) Concrete addition materials and concrete compositions
KR101713828B1 (en) Cementless promotion-type admixture, and cementless composition comprising it
KR20110024618A (en) A composition of cement zero concrete using the mixed blast slag, powder type sodium silicate and desulfurization gypsum as binder and method for it
Reddy et al. Experimental studies on compressive strength of ternary blended concretes at different levels of micro silica and ggbs
JP4176660B2 (en) Hydraulic composition
JP6563270B2 (en) Cementitious hardened body and method for producing the same
JP2007055843A (en) Cement additive
JP2011132111A (en) Hydraulic composition
JP6418602B2 (en) Cementitious hardened body and method for producing the same
JP2007186360A (en) Cement composition
JP5535106B2 (en) Cement composition
JP2009227549A (en) Cement additive and cement composition
CN101244582A (en) Novel technique for producing autoclaved air entrainment building block
RU2378228C1 (en) Cellular concrete of autoclave hardening
JP2007246293A (en) Low shrinkage type light-weight concrete
JP6832188B2 (en) Artificial aggregate and cementum hardened material
JP2010168256A (en) Cement additive and cement composition
JP2007131477A (en) Fly ash cement composition and concrete mold using it
JP5724188B2 (en) Concrete production method
JP6305874B2 (en) Method for producing hardened cementitious body
JP4176668B2 (en) concrete
Darweesh Physical and chemo/mechanical behaviors of fly ash and silica fume belite cement pastes-Part I
JP2022135892A (en) Clinker powder and production method thereof
JP4786220B2 (en) Wood cement board and manufacturing method thereof
JP5350770B2 (en) Cement composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181003

R150 Certificate of patent or registration of utility model

Ref document number: 6418602

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250