JP2007037413A - Method for producing alga/coral multiplication member - Google Patents

Method for producing alga/coral multiplication member Download PDF

Info

Publication number
JP2007037413A
JP2007037413A JP2005222266A JP2005222266A JP2007037413A JP 2007037413 A JP2007037413 A JP 2007037413A JP 2005222266 A JP2005222266 A JP 2005222266A JP 2005222266 A JP2005222266 A JP 2005222266A JP 2007037413 A JP2007037413 A JP 2007037413A
Authority
JP
Japan
Prior art keywords
coal ash
algae
mixed powder
molded body
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005222266A
Other languages
Japanese (ja)
Inventor
Yukio Imaizumi
幸男 今泉
Kosei Tsubota
晃誠 坪田
Toyonobu Hirosaki
豊伸 廣崎
Takuo Shibuya
拓郎 渋谷
Satoshi Goto
聡志 後藤
Takayuki Naganuma
孝之 永沼
Tetsuo Oike
哲郎 尾池
Mika Hayashi
美香 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAGAWA SANGYO KK
Kyushu Electric Power Co Inc
Nishinippon Environmental Energy Co Inc
Original Assignee
TAGAWA SANGYO KK
Kyushu Electric Power Co Inc
Nishinippon Environmental Energy Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAGAWA SANGYO KK, Kyushu Electric Power Co Inc, Nishinippon Environmental Energy Co Inc filed Critical TAGAWA SANGYO KK
Priority to JP2005222266A priority Critical patent/JP2007037413A/en
Publication of JP2007037413A publication Critical patent/JP2007037413A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2

Landscapes

  • Artificial Fish Reefs (AREA)
  • Cultivation Of Seaweed (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an alga/coral multiplication member by which the intensive alga/coral multiplication member having high mechanical strength, eluting a small amount of an alkali component, scarcely increasing pH of seawater near the surface, readily compatible with the natural environment, easily establishing spores of the alga and larvae of the coral and having excellent multiplication effects can be produced at a low cost with excellent productivity and wastes can effectively be utilized with excellent resource saving and energy saving properties. <P>SOLUTION: The method for production comprises a mixing step of mixing (a) coal ash with (b) inorganic binding powder such as slaked lime, dolomite or magnesium hydroxide and affording mixed powder, a pressure forming step of pressurizing the mixed powder under a vacuum, carrying out pressure forming of the mixed powder into a prescribed shape and providing a formed product of the coal ash and a carbonating step of housing the formed product of the coal ash in a vessel, bringing the formed product of the coal ash into contact with a gas containing carbon dioxide and introduced into the vessel and carbonating the formed product of the coal ash from the surface thereof toward the interior. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、藻類や珊瑚を増殖する藻・珊瑚増殖部材の製造方法に関するものである。   The present invention relates to a method for producing algae and cocoon breeding members that grow algae and cocoons.

従来より、海洋沿岸域には、コンブ科やホンダワラ科植物等の大型の海藻で構成される藻場が形成されている。藻場は、魚介類の保護育成或いは藻食動物に餌料を供給する漁場として、さらには沿岸生態系の基盤として、重要な役割を果たしている。そのため、水産生物資源の維持或いは増大を目指した漁場造成の一つである藻場育成が各地で行われており、藻類の増殖部材の研究も行われている。   Conventionally, seaweed beds composed of large-scale seaweeds such as the family Kombuaceae and the Amaranthaceae are formed in the ocean coastal area. The seaweed basin plays an important role as a fishing ground for protecting and cultivating seafood or supplying food to algae, and as a foundation for coastal ecosystems. For this reason, algae cultivation, which is one of the fishing grounds aimed at maintaining or increasing aquatic resources, has been carried out in various places, and research on algae breeding members has also been conducted.

また、海洋には、珊瑚等の造礁生物が集積・固結して珊瑚礁を形成している。珊瑚礁は多数の穴、クレバス等をつくり豊富な生物が生活する棲み場所を提供するため、海の様々な環境の中で、最も豊富な種類と複雑な種間関係をもった貴重な生物群集を形成している。
しかしながら、近年の海洋汚染、埋立て、土地改良等の開発工事に伴い、珊瑚礁の消失がみられ、珊瑚礁域に生息する造礁珊瑚、魚類等の生物群集が疲弊している。そのため、珊瑚の増殖を目指した技術が開発されている。
従来の技術としては、例えば(特許文献1)に「クリンカアッシュ若しくは石炭殻を主材料とし、これに粘土鉱物質の混合物を形成して得た成形素材を焼結した吸水率10%以上の焼結セラミック成形体を海中に積み重ねて沈設して形成した漁礁」が開示されている。
(特許文献2)には、「サイコロ状の定着基盤に着生させた珊瑚種苗を石炭灰硬化体やコンクリート等で形成された造園ブロックに嵌め込んで固定する珊瑚礁造園法」が開示されている。
特開2000−262179号公報 特開平11−308939号公報
In the ocean, coral reefs such as corals are accumulated and consolidated to form coral reefs. Coral reefs create a number of holes, crevasses, etc., and provide a place to live where abundant organisms live, so in the various environments of the sea, the most abundant species and complex species relationships are precious. Forming.
However, along with recent development works such as marine pollution, land reclamation and land improvement, the disappearance of coral reefs has been observed, and the reef corals and fish communities living in the coral reef areas are exhausted. For this reason, techniques aimed at breeding cocoons have been developed.
As a conventional technique, for example, (Patent Document 1) states that “a clinker ash or coal husk is a main material, and a molding material obtained by forming a mixture of clay minerals on this is sintered into a sintered body having a water absorption of 10% or more. A fishing reef formed by stacking sintered ceramic bodies and submerging them in the sea is disclosed.
(Patent Document 2) discloses “a coral reef landscaping method in which rape seedlings grown on a dice-like anchorage base are fitted and fixed in a landscaping block formed of hardened coal ash, concrete, or the like”. .
JP 2000-262179 A JP 11-308939 A

しかしながら上記従来の技術においては、以下のような課題を有していた。
(1)(特許文献1)に開示の技術は、クリンカアッシュ若しくは石炭殻と粘土鉱物質との混合物の成形素材を焼結するので、焼結の過程で、クリンカアッシュ、石炭殻、粘土鉱物質が凝結し各々の表面エネルギが減少し表面が緻密化するので、藻や珊瑚の胞子や幼生が定着し難く増殖効果に欠けるという課題を有していた。
(2)焼結するために成形素材を加熱しなければならず、このため多大なエネルギを消費し省エネルギ性に欠けるという課題を有していた。
(3)(特許文献2)に開示の技術は、珊瑚種苗が着生した定着基盤を用いて珊瑚礁を形成するものであるが、珊瑚の増殖に適した定着基盤の材質が開示されていないという課題を有していた。
However, the above conventional techniques have the following problems.
(1) Since the technique disclosed in (Patent Document 1) sinters a molding material of clinker ash or a mixture of coal husk and clay mineral, clinker ash, coal husk, clay mineral in the process of sintering Condensation causes the surface energy to decrease and the surface to become denser, so that there is a problem that algae, spore spores and larvae are difficult to settle and lack a proliferation effect.
(2) The molding material has to be heated in order to sinter, and thus has a problem of consuming a great deal of energy and lacking energy savings.
(3) The technology disclosed in (Patent Document 2) is to form a coral reef using the anchoring base on which the seedlings of vines have settled, but the material of the fixing base suitable for the propagation of the coral is not disclosed. Had problems.

本発明は上記従来の課題を解決するもので、機械的強度が高く、またアルカリ成分の溶出量が少なく表面付近の海水のpHが上昇し難いとともに自然環境に馴染み易く藻の胞子や珊瑚の幼生が定着し易く増殖効果に優れた藻・珊瑚増殖部材を低原価で製造でき、さらに集約的で生産性に優れ、また廃棄物の有効利用を図ることができ省資源性に優れるとともに省エネルギ性に優れる藻・珊瑚増殖部材の製造方法を提供することを目的とする。   The present invention solves the above-described conventional problems, and has high mechanical strength, low elution amount of alkaline components, hardly raises the pH of seawater in the vicinity of the surface, and is easy to adapt to the natural environment. Can produce algae and cocoon breeding members that are easy to settle and have excellent growth effects at low cost, and are more intensive and more productive. An object of the present invention is to provide a method for producing an algae / soil-growing member that is excellent in the quality.

上記従来の課題を解決するために本発明の藻・珊瑚増殖部材の製造方法は、以下の構成を有している。
本発明の請求項1に記載の藻・珊瑚増殖部材の製造方法は、a.石炭灰と、b.消石灰,ドロマイト,水酸化マグネシウム等の無機質結合粉体と、を混合して混合粉体を得る混合工程と、前記混合粉体を減圧下で加圧して所定形状に加圧成形し石炭灰成形体を得る加圧成形工程と、前記石炭灰成形体を容器内に収容し前記容器内に導入された二酸化炭素含有ガスに接触させ前記石炭灰成形体の表面から内部に向かって炭酸化させる炭酸化工程と、を備えた構成を有している。
この構成により、以下のような作用が得られる。
(1)減圧下の加圧成形工程で得られた石炭灰成形体は、石炭灰成形体内の消石灰等の水溶性の無機質結合粉体が、成形直後から空気中の二酸化炭素を吸収して水に難溶の炭酸カルシウム等の炭酸塩となって粒子同士を互いに結合させながら硬化する。このため、石炭灰成形体は機械的強度を増していくが、石炭灰成形体の表面から内部に向かって炭酸化させる炭酸化工程を有しているので、無機質結合粉体への二酸化炭素の吸収を促進させて、石炭灰成形体の機械的強度を短時間で高めることができる。この結果、空気中の二酸化炭素で炭酸化させるために石炭灰成形体を長期間放置する養生場所や養生時間が不要なため、集約的で生産性に優れるとともに、藻や珊瑚を増殖させる水中に浸漬しても崩壊することがなく、珊瑚等の定着及び増殖効果を高めることができる増殖部材を低原価で製造できる。
(2)石炭灰を用いているので廃棄物の有効利用を図ることができるとともに、石炭灰は天然の珪酸白土や珪藻土等と同様にシリカとアルミナを主成分とするため、自然環境に馴染み易く藻の胞子や珊瑚の幼生が定着し易く増殖効果に優れる。
(3)炭酸化工程を備えており、石炭灰成形体が難溶性の炭酸塩で硬化されているので、石炭灰成形体に切削,切断,穿孔等の加工を施す際、水等の切削剤を用いても泥状になって崩壊することがなく、加工性に優れる。
(4)炭酸化工程を備えているので、石炭灰成形体の表面に存在する消石灰等の水溶性の無機質結合粉体が二酸化炭素を吸収して水に難溶の炭酸カルシウム等の炭酸塩となって硬化するため、未反応の消石灰等のアルカリ成分が溶出するのを抑制して表面付近の海水のpHが上昇するのを防止でき、珊瑚等の定着及び増殖効果を高めることができる。また、有害物質等の溶出も抑えることができ環境保全性に優れる。
(5)焼成等することなく加圧成形するだけで、潮流のある海中に沈めても割れたり崩壊したりしないだけの機械的強度を得ることができるため、省エネルギ性に優れる。
(6)減圧下で加圧されるので、混合粉体が脱気され成形された石炭灰成形体内には空気が残留し難いため、石炭灰成形体内に残留した空気が膨張して石炭灰成形体が破壊し易くなるのを防止でき製品得率を高めることができる。
In order to solve the above-described conventional problems, the method for producing an algae / spoilage-growing member of the present invention has the following configuration.
The method for producing an algae / spider-growing member according to claim 1 of the present invention comprises: a. Coal ash; b. A mixing step of mixing an inorganic binder powder such as slaked lime, dolomite, and magnesium hydroxide to obtain a mixed powder, and pressurizing the mixed powder under reduced pressure to form a coal ash molded body And a carbonization process in which the coal ash compact is accommodated in a container and brought into contact with a carbon dioxide-containing gas introduced into the container, and carbonized from the surface of the coal ash compact toward the inside. And a process.
With this configuration, the following effects can be obtained.
(1) The coal ash molded body obtained in the pressure molding step under reduced pressure has a water-soluble inorganic binder powder such as slaked lime in the coal ash molded body that absorbs carbon dioxide in the air immediately after molding and is water. It becomes a carbonate such as calcium carbonate, which is hardly soluble, and hardens while bonding the particles to each other. For this reason, although the coal ash molded body increases the mechanical strength, it has a carbonation step of carbonating from the surface of the coal ash molded body toward the inside, so that the carbon dioxide to the inorganic binder powder is reduced. Absorption is promoted and the mechanical strength of the coal ash compact can be increased in a short time. As a result, because it does not require a curing place or curing time to leave the coal ash compacts for a long time in order to carbonize with carbon dioxide in the air, it is intensive and excellent in productivity, and in the water where algae and straw are grown. It is possible to manufacture a breeding member that does not collapse even when immersed, and that can enhance the fixing and breeding effect of wrinkles and the like at a low cost.
(2) Since coal ash is used, waste can be used effectively, and coal ash is composed mainly of silica and alumina, like natural silicate clay and diatomaceous earth, so it is easy to adapt to the natural environment. Algae spores and moth larvae are easy to settle and have excellent proliferation effect.
(3) Since it has a carbonation step and the coal ash molded body is hardened with a poorly soluble carbonate, a cutting agent such as water is used when the coal ash molded body is processed such as cutting, cutting, drilling, etc. Even if is used, it does not become muddy and does not collapse, and it is excellent in workability.
(4) Since it has a carbonation step, the water-soluble inorganic binding powder such as slaked lime existing on the surface of the coal ash molded body absorbs carbon dioxide, and the carbonate such as calcium carbonate hardly soluble in water and Since it becomes hardened, it can suppress that alkaline components, such as unreacted slaked lime, elute, can prevent the pH of seawater near the surface from rising, and can improve the fixing and proliferation effect of sea bream. In addition, elution of harmful substances and the like can be suppressed, and the environmental conservation is excellent.
(5) Since it is possible to obtain mechanical strength that does not crack or collapse even if it is submerged in a tidal sea simply by pressure molding without firing, etc., it is excellent in energy saving.
(6) Since it is pressurized under reduced pressure, air hardly remains in the coal ash molded body formed by degassing and molding the mixed powder. Therefore, the air remaining in the coal ash molded body expands and coal ash molding is performed. It is possible to prevent the body from being easily broken and to increase the product yield.

ここで、石炭灰としては、石炭火力発電等の石炭を主として使用する微粉炭燃焼ボイラ等の燃焼装置の燃焼ガスに含まれサイクロン,フィルタ等の集塵装置で採取されるフライアッシュ、微粉炭燃焼ボイラ等の燃焼装置の燃焼ガスが空気予熱器,節炭器等を通過する際に落下採取されるシンダアッシュ、微粉炭燃焼ボイラ等の燃焼装置の底部に落下採取されるクリンカアッシュやこれらの混合物等が用いられる。   Here, as coal ash, fly ash, pulverized coal combustion that is included in the combustion gas of combustion devices such as pulverized coal combustion boilers that mainly use coal such as coal-fired power generation, and is collected by dust collectors such as cyclones and filters Cinder ash collected by falling when the combustion gas of a combustion device such as a boiler passes through an air preheater or a economizer, clinker ash or a mixture thereof collected by dropping at the bottom of a combustion device such as a pulverized coal combustion boiler Etc. are used.

無機質結合粉体としては、消石灰,ドロマイト,水酸化マグネシウム等の水分の存在下で二酸化炭素を吸収し炭酸塩を形成して硬化するものが用いられる。これらは単独で用いても、複数種を混合して用いてもよい。   As the inorganic binder powder, a powder that absorbs carbon dioxide in the presence of moisture such as slaked lime, dolomite, magnesium hydroxide and forms a carbonate to be cured is used. These may be used alone or as a mixture of plural kinds.

加圧成形工程において、石炭灰と無機質結合粉体とが混合された混合粉体は、所定の形状に形成され内部が−101〜−80kPa好ましくは−100〜−90kPaに減圧された金型等の成形型内で加圧成形される。
減圧下の圧力が−100kPaより低くなるにつれ減圧に用いる真空ポンプが大型化するとともに減圧するのに時間を要し生産性が低下する傾向がみられ、−90kPaより高くなるにつれ残留した空気によって石炭灰成形体の内部に空隙が形成され易く機械的強度が低下するとともに、混合粉体内に残留して石炭灰成形体の内部に封じ込められた空気が成形後に膨張して石炭灰成形体が破壊し易くなる傾向がみられる。特に、−80kPaより高くなると、この傾向が著しくなるため好ましくない。
In the pressure forming step, the mixed powder obtained by mixing coal ash and inorganic binder powder is a mold having a predetermined shape and the inside of which is decompressed to −101 to −80 kPa, preferably −100 to −90 kPa, etc. Is pressure-molded in the mold.
As the pressure under reduced pressure becomes lower than −100 kPa, the vacuum pump used for the pressure reduction becomes larger and it takes time to reduce the pressure, and the productivity tends to decrease. Voids are easily formed inside the ash compact, and the mechanical strength is reduced, and the air remaining in the mixed powder and encapsulated inside the coal ash compact expands after molding and destroys the coal ash compact. There is a tendency to become easier. In particular, if it is higher than -80 kPa, this tendency becomes remarkable, which is not preferable.

加圧成形工程における加圧成形の圧力は、49〜200MPa好ましくは73〜150MPaが好適に用いられる。石炭灰成形体を適度に緻密化することができるので、加圧成形直後の石炭灰成形体の機械的強度をある程度の高さに維持できるとともに、成形体の内部まで二酸化炭素が浸透し易いので、炭酸化工程を経ることにより、成形体の内部まで炭酸化反応を進行させることができ、機械的強度を飛躍的に高めることができるからである。
なお、加圧成形の圧力が73MPaより低くなるにつれ石炭灰成形体が緻密化しないため炭酸化工程を経ても藻・珊瑚増殖部材の機械的強度が低く破損し易く、また耐摩耗性も向上し難く早期に摩耗し易く耐久性に欠ける傾向がみられ、150MPaより高くなるにつれ石炭灰成形体にラミネーションが発生し易く製品得率が低下するとともに、石炭灰成形体が緻密化し炭酸化工程において成形体の内部まで二酸化炭素が浸透し難く成形体内部の炭酸化反応が進行せず、表面の炭酸化層が薄いため藻・珊瑚増殖部材の機械的強度が低下する傾向がみられる。特に、49MPaより低くなるか、200MPaより高くなると、これらの傾向が著しくなるため、いずれも好ましくない。
The pressure for pressure molding in the pressure molding step is suitably 49 to 200 MPa, preferably 73 to 150 MPa. Since the coal ash compact can be appropriately densified, the mechanical strength of the coal ash compact immediately after pressure molding can be maintained at a certain level, and carbon dioxide can easily penetrate into the compact. This is because, through the carbonation step, the carbonation reaction can proceed to the inside of the molded body, and the mechanical strength can be dramatically increased.
It should be noted that as the pressure of the pressure molding becomes lower than 73 MPa, the coal ash compact does not become densified, so that the mechanical strength of the algae / soot breeding member is low and easily damaged even through the carbonation step, and the wear resistance is also improved. It is difficult to wear early and tends to lack durability, and as it becomes higher than 150 MPa, lamination tends to occur in the coal ash compact and the product yield decreases, and the coal ash compact becomes dense and molded in the carbonation process. Since carbon dioxide does not easily penetrate into the body, the carbonation reaction inside the molded body does not proceed, and the carbonation layer on the surface is thin, so that the mechanical strength of the algae / spider breeding member tends to decrease. In particular, when the pressure is lower than 49 MPa or higher than 200 MPa, these tendencies become remarkable, so that neither is preferable.

炭酸化工程において、容器としては、空気中の二酸化炭素濃度よりも高濃度の二酸化炭素含有ガス雰囲気下に石炭灰成形体を置くことができるようにある程度密封可能なものであれば、特に限定せずに用いることができ、チャンバ等の室、石炭灰成形体の周囲を覆うようにシートやフィルム等で形成された簡易的な収納容器等を用いることができる。
二酸化炭素含有ガスは常圧下で石炭灰成形体に接触させたり、加圧した二酸化炭素含有ガスを加圧チャンバ等の中で石炭灰成形体に接触させたりすることができる。
In the carbonation step, the container is not particularly limited as long as it can be sealed to some extent so that the coal ash molded body can be placed in a gas atmosphere containing carbon dioxide having a concentration higher than the concentration of carbon dioxide in the air. For example, a simple storage container or the like formed of a sheet, a film, or the like so as to cover a chamber such as a chamber or the periphery of a coal ash molded body can be used.
The carbon dioxide-containing gas can be brought into contact with the coal ash compact under normal pressure, or the pressurized carbon dioxide-containing gas can be brought into contact with the coal ash compact in a pressurized chamber or the like.

二酸化炭素含有ガスとしては、工業的に生産された二酸化炭素、工業製品を生産する際に副製品として得られた二酸化炭素、工場や発電所等の燃焼排ガス等が用いられる。なかでも、二酸化炭素含有ガスとして燃焼排ガスを用い、石炭灰成形体に接触させた後に大気中に放出すれば、温室効果ガスとしての燃焼排ガスを藻・珊瑚増殖部材の生産のために用いることができ、温室効果ガスの有効活用を図ることができ好適である。   As the carbon dioxide-containing gas, carbon dioxide produced industrially, carbon dioxide obtained as a by-product when producing industrial products, combustion exhaust gas from factories, power plants, and the like are used. In particular, if combustion exhaust gas is used as a carbon dioxide-containing gas and released into the atmosphere after being brought into contact with the coal ash compact, the combustion exhaust gas as a greenhouse gas can be used for the production of algae / soot breeding members. This is preferable because it enables effective utilization of greenhouse gases.

炭酸化工程において、石炭灰成形体と二酸化炭素含有ガスとの接触時間は、二酸化炭素含有ガスの二酸化炭素濃度、石炭灰成形体の厚さ等にもよるが、2〜8時間好ましくは2〜5時間が好適に用いられる。接触時間が2時間より短くなると、石炭灰成形体の表面から内部に向かって炭酸化して形成された炭酸化層が薄いため機械的強度が低く割れ易くなるため、好ましくない。接触時間が5時間より長くなるにつれ石炭灰成形体に形成された炭酸化層が深さ方向に進行する速度が遅くなり接触時間に比して機械的強度が高まらず生産性が低下する傾向がみられ、特に8時間より長くなると、この傾向が著しいため好ましくない。   In the carbonation step, the contact time between the coal ash compact and the carbon dioxide-containing gas depends on the carbon dioxide concentration of the carbon dioxide-containing gas, the thickness of the coal ash compact, etc., but is preferably 2 to 8 hours. 5 hours is preferably used. When the contact time is shorter than 2 hours, the carbonized layer formed by carbonation from the surface of the coal ash molded body toward the inside is thin, so that the mechanical strength is low and the crack is easily broken. As the contact time becomes longer than 5 hours, the rate at which the carbonation layer formed on the coal ash molded body proceeds in the depth direction becomes slower, and the mechanical strength does not increase as compared with the contact time and the productivity tends to decrease. In particular, when the time is longer than 8 hours, this tendency is remarkable, which is not preferable.

炭酸化工程において容器内の湿度は、50〜100%好ましくは55〜100%が好適である。水の存在下で無機質結合粉体が炭酸化される炭酸化反応が起こり易く、石炭灰成形体内の無機質結合粉体が表面から確実に炭酸化されるため、石炭灰成形体の機械的強度を高め製品得率を高めることができるからである。   In the carbonation step, the humidity in the container is 50 to 100%, preferably 55 to 100%. Carbonation reaction is likely to occur when the inorganic binder powder is carbonated in the presence of water, and the inorganic binder powder in the coal ash compact is reliably carbonated from the surface, so the mechanical strength of the coal ash compact is reduced. This is because the product yield can be increased.

容器内の湿度を50〜100%好ましくは55〜100%にする手段としては、上記の範囲に保たれた二酸化炭素含有ガスを容器内に導入する手段、容器内を上記の範囲に加湿する手段等を用いることができる。
なお、容器内の湿度が55%より低くなるにつれ、炭酸化反応の反応速度が遅く無機質結合粉体の炭酸化に斑ができ、石炭灰成形体の中に炭酸化が不十分なものが現れ、製品得率が低下する傾向がみられる。特に、容器内の湿度が50%より低くなると、この傾向が著しくなるため好ましくない。
Means for setting the humidity in the container to 50 to 100%, preferably 55 to 100%, means for introducing the carbon dioxide-containing gas kept in the above range into the container, means for humidifying the inside of the container to the above range Etc. can be used.
In addition, as the humidity in the container becomes lower than 55%, the reaction rate of the carbonation reaction is slow, and the carbonation of the inorganic binder powder becomes uneven, and some of the coal ash compacts show insufficient carbonation. The product yield tends to decrease. In particular, when the humidity in the container is lower than 50%, this tendency is remarkable, which is not preferable.

また、炭酸化工程において、炭酸化反応が開始されると反応生成物として水が得られ、生成された水を用いて炭酸化反応が進行する。このため、容器内の湿度は炭酸化反応の開始時に上記の範囲であればよく、反応が開始された後は、容器内の湿度を上記の範囲よりも低湿度にすることもできる。   In the carbonation step, when the carbonation reaction is started, water is obtained as a reaction product, and the carbonation reaction proceeds using the generated water. For this reason, the humidity in a container should just be said range at the time of the start of carbonation reaction, and after reaction is started, the humidity in a container can also be made into humidity lower than said range.

炭酸化工程において、石炭灰成形体は、2〜10mmの深さの炭酸化層、又は、前記石炭灰成形体の厚さに対して10〜50%の深さの炭酸化層が形成された藻・珊瑚増殖部材となる。
これにより、石炭灰成形体の表面に適度の厚さの炭酸化層が形成されるので、石炭灰成形体の機械的強度を高めることができるとともに、未反応の消石灰等のアルカリ成分が海水に溶出するのを抑制して表面付近の海水のpHが上昇するのを防止でき、珊瑚等の定着及び増殖効果を高めることができる。
なお、炭酸化層の深さが2mmより浅くなるにつれ石炭灰成形体の機械的強度が低下し割れ易く加工性に欠けるとともに製品得率が低下する傾向がみられ、10mmより深くなるにつれ炭酸化工程における二酸化炭素含有ガスとの接触時間が長くなり生産性が低下する傾向がみられるため、いずれも好ましくない。
また、炭酸化層の深さが石炭灰成形体の片面から厚さに対して10%より浅くなるにつれ石炭灰成形体の機械的強度が低下し割れ易く製品得率が低下する傾向がみられるため、好ましくない。なお、石炭灰成形体の厚さに対して50%の深さの炭酸化層とは、石炭灰成形体の厚さ方向の断面の全てが炭酸化されていることをいう。
In the carbonation step, the coal ash molded body was formed with a carbonized layer having a depth of 2 to 10 mm, or a carbonized layer having a depth of 10 to 50% with respect to the thickness of the coal ash molded body. It becomes an algae and cocoon breeding member.
As a result, since a carbonized layer having an appropriate thickness is formed on the surface of the coal ash molded body, the mechanical strength of the coal ash molded body can be increased, and alkali components such as unreacted slaked lime are added to seawater. Elution can be suppressed and the pH of seawater in the vicinity of the surface can be prevented from rising, and anchoring and propagation effects such as drought can be enhanced.
In addition, as the depth of the carbonation layer becomes shallower than 2 mm, the mechanical strength of the coal ash compact decreases, it tends to crack and lacks workability, and the product yield tends to decrease. Since the contact time with the carbon dioxide containing gas in a process becomes long and the tendency for productivity to fall is seen, neither is preferable.
In addition, as the depth of the carbonized layer becomes shallower than 10% of the thickness from one side of the coal ash molded body, the mechanical strength of the coal ash molded body tends to decrease and the product yield tends to decrease. Therefore, it is not preferable. The carbonation layer having a depth of 50% with respect to the thickness of the coal ash molded body means that the entire cross section in the thickness direction of the coal ash molded body is carbonated.

藻・珊瑚増殖部材は、金型により平板状,波板状,凹凸板状等の所定の形状に形成することができ、珊瑚礁の岩盤,防波堤,離岸堤,突堤,テトラポット等の消波ブロック等に固定して用いることができる。また、コンクリート製や鋳鉄製等でブロック状や塊状等に形成された沈錘体に固定し、沈錘体とともに海底に沈めて用いることもできる。また、海底や筏等に係留して用いることもできる。   Algae and coral breeding members can be formed into a predetermined shape such as flat plate, corrugated plate, uneven plate, etc. by molds, and wave extinction of coral reef rocks, breakwaters, breakwaters, jetty, tetrapots, etc. It can be fixed to a block or the like. Moreover, it can fix to the weight body formed in the shape of blocks, blocks, etc. by the product made from concrete, cast iron, etc., and it can also be used by sinking to the seabed with a weight body. It can also be moored on the seabed or dredging.

本発明の請求項2に記載の発明は、請求項1に記載の藻・珊瑚増殖部材の製造方法であって、前記混合粉体が、前記石炭灰100重量部と、前記無機質結合粉体10〜100重量部好ましくは25〜70重量部と、を含有した構成を有している。
この構成により、請求項1で得られる作用に加え、以下のような作用が得られる。
(1)混合粉体が、石炭灰100重量部と無機質結合粉体10〜100重量部好ましくは25〜70重量部とを含有しているので、無機質結合粉体が炭酸化されて石炭灰成形体が表面から硬化し、機械的強度を高め製品得率を高めることができるとともに、石炭灰成形体を水中に浸漬しても崩壊しないようにでき、さらに藻や珊瑚の増殖効果を高めることができる。
Invention of Claim 2 of this invention is a manufacturing method of the algae and cocoon growth member of Claim 1, Comprising: The said mixed powder is the said coal ash 100 weight part, and the said inorganic binding powder 10 It has a constitution containing -100 parts by weight, preferably 25-70 parts by weight.
With this configuration, in addition to the operation obtained in the first aspect, the following operation can be obtained.
(1) Since the mixed powder contains 100 parts by weight of coal ash and 10 to 100 parts by weight of inorganic binder powder, preferably 25 to 70 parts by weight, the inorganic binder powder is carbonated to form coal ash. The body can harden from the surface, increase the mechanical strength and increase the product yield, and even if the coal ash molded body is immersed in water, it can be prevented from collapsing, and further increase the growth effect of algae and straw it can.

ここで、混合粉体において、無機質結合粉体の含有量が石炭灰100重量部に対し25重量部より少なくなるにつれ無機質結合粉体の量が少なく無機質結合粉体の炭酸化反応による石炭灰の結合力が小さく石炭灰成形体の機械的強度が小さくなり割れ易く製品得率が低下する傾向がみられ、70重量部より多くなるにつれ石炭灰の含有量が相対的に少なくなり珊瑚の増殖効果が低下する傾向がみられる。特に、10重量部より少なくなるか100重量部より多くなると、これらの傾向が著しいため、いずれも好ましくない。   Here, in the mixed powder, as the content of the inorganic binder powder is less than 25 parts by weight with respect to 100 parts by weight of the coal ash, the amount of the inorganic binder powder is small, and the coal ash produced by the carbonation reaction of the inorganic binder powder is reduced. Cohesive strength is low and the mechanical strength of the coal ash compact becomes small, and the product yield tends to decrease, and as the amount exceeds 70 parts by weight, the content of coal ash becomes relatively small and the growth effect of soot There is a tendency to decrease. In particular, when the amount is less than 10 parts by weight or more than 100 parts by weight, these tendencies tend to be remarkable, and neither is preferable.

本発明の請求項3に記載の発明は、請求項1又は2に記載の藻・珊瑚増殖部材の製造方法であって、前記炭酸化工程における前記容器内の温度が、0〜90℃好ましくは0〜50℃である構成を有している。
この構成により、請求項1又は2で得られる作用に加え、以下のような作用が得られる。
(1)炭酸化工程における容器内の温度が0〜90℃好ましくは0〜50℃であるため、無機質結合粉体が炭酸化される発熱反応である炭酸化反応の反応速度が大きく、炭酸化工程において石炭灰成形体と二酸化炭素含有ガスとの接触時間を短縮でき生産性を高めることができる。
Invention of Claim 3 of this invention is a manufacturing method of the algae and cocoon growth member of Claim 1 or 2, Comprising: The temperature in the said container in the said carbonation process is 0-90 degreeC, Preferably It has the structure which is 0-50 degreeC.
With this configuration, in addition to the operation obtained in the first or second aspect, the following operation can be obtained.
(1) Since the temperature in the container in the carbonation step is 0 to 90 ° C., preferably 0 to 50 ° C., the reaction rate of the carbonation reaction, which is an exothermic reaction in which the inorganic binder powder is carbonated, is large, and the carbonation In the process, the contact time between the coal ash compact and the carbon dioxide-containing gas can be shortened, and the productivity can be increased.

ここで、炭酸化工程における容器内の温度が0℃より低くなるにつれ石炭灰成形体が含有する水分が凍結膨張し石炭灰成形体が破損し易くなる傾向がみられるため、好ましくない。50℃より高くなるにつれ炭酸化反応の反応速度が低下し、炭酸化工程において石炭灰成形体と二酸化炭素含有ガスとの接触時間が長くなり生産性が低下する傾向がみられる。特に、90℃より高くなるとこの傾向が著しくなるため、好ましくない。   Here, since the water | moisture content which a coal ash molded object contains freezes and expands and the coal ash molded object tends to be damaged as the temperature in the container in a carbonation process becomes lower than 0 degreeC, it is unpreferable. As the temperature rises above 50 ° C., the reaction rate of the carbonation reaction decreases, and in the carbonation step, the contact time between the coal ash compact and the carbon dioxide-containing gas tends to increase, and the productivity tends to decrease. In particular, when the temperature is higher than 90 ° C., this tendency is remarkable, which is not preferable.

本発明の請求項4に記載の発明は、請求項1乃至3の内いずれか1に記載の藻・珊瑚増殖部材の製造方法であって、前記混合粉体の含水率が、2〜20重量%好ましくは2〜8重量%である構成を有している。
この構成により、請求項1乃至3の内いずれか1で得られる作用に加え、以下のような作用が得られる。
(1)混合粉体の含水率が2〜20重量%好ましくは2〜8重量%なので、混合粉体の粒子間の付着力を向上させ、加圧成形工程における石炭灰成形体の成形性を高め、成形された石炭灰成形体が割れ難く製品得率を高めることができる。
Invention of Claim 4 of this invention is a manufacturing method of the algae and anther growth member of any one of Claim 1 thru | or 3, Comprising: The moisture content of the said mixed powder is 2-20 weight %, Preferably 2 to 8% by weight.
According to this configuration, in addition to the action obtained in any one of claims 1 to 3, the following action is obtained.
(1) Since the moisture content of the mixed powder is 2 to 20% by weight, preferably 2 to 8% by weight, the adhesion between the particles of the mixed powder is improved, and the formability of the coal ash compact in the pressure molding process is improved. The molded coal ash molded body is hard to break and the product yield can be increased.

ここで、混合粉体の含水率は、混合粉体の質量からその混合粉体の乾燥状態における質量を減じた質量(混合粉体に含まれる水の質量)を、その混合粉体の乾燥状態における質量で除し、その結果を百分率で表した値をいう。
含水率が2重量%より少なくなるか8重量%より多くなるにつれ混合粉体の粒子間の付着力が低下し石炭灰成形体が割れ易く製品得率が低下する傾向がみられる。特に、20重量%より多くなると、この傾向が著しくなるため好ましくない。
Here, the moisture content of the mixed powder is the mass obtained by subtracting the mass in the dry state of the mixed powder from the mass of the mixed powder (the mass of water contained in the mixed powder), and the dry state of the mixed powder. It is a value obtained by dividing the result by the mass and expressing the result as a percentage.
As the water content is less than 2% by weight or more than 8% by weight, the adhesion between the particles of the mixed powder is reduced, and the coal ash compact tends to break and the product yield tends to decrease. In particular, if it exceeds 20% by weight, this tendency becomes remarkable, which is not preferable.

なお、加圧流動層ボイラの燃焼ガスに含まれ集塵装置で採取されるフライアッシュ等のように無水石膏成分を多量に含有する石炭灰を用いた場合には、無機質結合粉体と混合する前に、予め水分を散布して二水石膏化したものを乾燥しておく。これにより、混合工程において混合粉体の含水率を最適化する際に、混合粉体が固化することなく石炭灰と無機質結合粉体とを均一に混合することができる。   In addition, when coal ash containing a large amount of anhydrous gypsum components such as fly ash contained in the combustion gas of a pressurized fluidized bed boiler and collected by a dust collector is used, it is mixed with an inorganic binder powder. Before that, water that has been sprayed in advance to form dihydrate gypsum is dried. Thereby, when optimizing the moisture content of the mixed powder in the mixing step, the coal ash and the inorganic binder powder can be uniformly mixed without solidifying the mixed powder.

以上のように、本発明の藻・珊瑚増殖部材の製造方法によれば、以下のような有利な効果が得られる。
請求項1に記載の発明によれば、
(1)石炭灰成形体を長期間放置する養生場所や養生時間が不要なため、集約的で生産性に優れた藻・珊瑚増殖部材の製造方法を提供することができる。また、藻や珊瑚を増殖させる水中に浸漬しても崩壊することがなく、珊瑚等の定着及び増殖効果に優れた藻・珊瑚増殖部材が低原価で得られる藻・珊瑚増殖部材の製造方法を提供することができる。
(2)廃棄物の有効利用を図ることができ省資源性に優れた藻・珊瑚増殖部材の製造方法を提供することができる。また、自然環境に馴染み易く藻の胞子や珊瑚の幼生が定着し易く増殖効果に優れた藻・珊瑚増殖部材が得られる藻・珊瑚増殖部材の製造方法を提供することができる。
(3)石炭灰成形体に切削,切断,穿孔等の加工を施す際、水等の切削剤を用いても泥状になって崩壊することがなく加工性に優れ、また加工速度を大きくすることができ生産性に優れた藻・珊瑚増殖部材の製造方法を提供することができる。
(4)未反応の消石灰等のアルカリ成分が溶出するのを抑制して表面の付近の海水のpHが上昇するのを防止し、珊瑚等の定着及び増殖効果を高めることができ、また、有害物質等の溶出も抑えることができ環境保全性に優れた藻・珊瑚増殖部材が得られる藻・珊瑚増殖部材の製造方法を提供することができる。
(5)加圧成形するだけで海中に沈めても壊れたり崩壊しないだけの機械的強度を得ることができるため、省エネルギ性に優れた藻・珊瑚増殖部材の製造方法を提供することができる。
(6)減圧下で混合粉体が脱気され成形された石炭灰成形体内には空気が残留し難いため、石炭灰成形体内に残留した空気が膨張して石炭灰成形体が破壊し易くなるのを防止でき製品得率を高めることができる藻・珊瑚増殖部材の製造方法を提供することができる。
As described above, according to the method for producing an algae / spider growing member of the present invention, the following advantageous effects can be obtained.
According to the invention of claim 1,
(1) Since a curing place and a curing time for leaving the coal ash compact for a long period of time are unnecessary, it is possible to provide a method for producing an algae / soil growth member that is intensive and excellent in productivity. Also, there is provided a method for producing algae and cocoon breeding members that can be obtained at a low cost without being broken down even when immersed in water for growing algae and cocoons, and capable of obtaining algae and cocoon breeding members that are excellent in anchoring and breeding effects of cocoons and the like. Can be provided.
(2) It is possible to provide a method for producing an algae / soil breeding member that can effectively use waste and is excellent in resource saving. In addition, it is possible to provide a method for producing an algae / spider-growing member that is easily accustomed to the natural environment and is capable of obtaining algae / spider-growing members that are easy to colonize algae spores and spider larvae and have an excellent proliferation effect.
(3) When processing such as cutting, cutting, drilling, etc. to coal ash compacts, even if a cutting agent such as water is used, it is excellent in workability without becoming muddy and disintegrating and increasing the processing speed. Therefore, it is possible to provide a method for producing an algae / spider-growing member having excellent productivity.
(4) Suppressing the elution of alkali components such as unreacted slaked lime to prevent the pH of seawater in the vicinity of the surface from rising, and improving the anchoring and growth effect of drought etc. It is possible to provide a method for producing an algae / cullet breeding member that can suppress elution of substances and the like and obtain an algae / spider breeding member excellent in environmental conservation.
(5) Since it is possible to obtain mechanical strength that does not break or collapse even if it is submerged in the sea simply by pressure molding, it is possible to provide a method for producing an algae / soil growth member that is excellent in energy saving. .
(6) Since it is difficult for air to remain in the coal ash molded body formed by degassing and molding the mixed powder under reduced pressure, the air remaining in the coal ash molded body expands and the coal ash molded body is easily destroyed. It is possible to provide a method for producing an algae / spider-growing member that can prevent the above-described problem and increase the product yield.

請求項2に記載の発明によれば、請求項1の効果に加え、
(1)無機質結合粉体が炭酸化されて石炭灰成形体が表面から硬化し、機械的強度を高め製品得率を高めることができる藻・珊瑚増殖部材の製造方法を提供することができる。また、水中に浸漬しても崩壊しないようにできるとともに藻や珊瑚の増殖効果に優れた藻・珊瑚増殖部材が得られる藻・珊瑚増殖部材の製造方法を提供することができる。
According to invention of Claim 2, in addition to the effect of Claim 1,
(1) It is possible to provide a method for producing an algae / soot-growing member, in which the inorganic binder powder is carbonated and the coal ash molded body is cured from the surface, and the mechanical strength is increased and the product yield is increased. In addition, it is possible to provide a method for producing an algae / cocoon breeding member that can be prevented from disintegrating even when immersed in water and obtain an algae / cocoon breeding member having an excellent effect of algae and cocoon multiplication.

請求項3に記載の発明によれば、請求項1又は2の効果に加え、
(1)炭酸化反応の反応速度が大きく、炭酸化工程において石炭灰成形体と二酸化炭素含有ガスとの接触時間を短縮でき生産性に優れた藻・珊瑚増殖部材の製造方法を提供することができる。
According to invention of Claim 3, in addition to the effect of Claim 1 or 2,
(1) To provide a method for producing an algae / soil-growing member that has a high carbonation reaction rate and that can shorten the contact time between the coal ash compact and the carbon dioxide-containing gas in the carbonation step and has excellent productivity. it can.

請求項4に記載の発明によれば、請求項1乃至3の内いずれか1の効果に加え、
(1)加圧成形工程における石炭灰成形体の成形性を高め、成形された石炭灰成形体が割れ難く製品得率の高い藻・珊瑚増殖部材の製造方法を提供することができる。
According to the invention of claim 4, in addition to the effect of any one of claims 1 to 3,
(1) The moldability of the coal ash molded body in the pressure molding process can be improved, and a method for producing an algae / soot breeding member having a high product yield in which the molded coal ash molded body is difficult to break can be provided.

以下、本発明を実施するための最良の形態を、図面を参照しながら説明する。
(実施の形態1)
図1は加圧成形工程で用いる藻・珊瑚増殖部材の石炭灰成形体の加圧成形装置の模式図であり、図2は内部に石炭灰成形体が収容された炭酸化工程で用いる容器の模式図であり、図3は炭酸化工程を経た後の石炭灰成形体(藻・珊瑚増殖部材)の斜視図であり、図4は図3のA−A線における断面写真であり、図5は図4に示す藻・珊瑚増殖部材の断面の模式図である。
図1において、1は加圧成形装置、2は加圧成形装置1の枠体、3は枠体2の下部に配設された下金型、3aは下金型3に形成された凹部、4は枠体2の上部に配設された油圧式の昇降シリンダ、5は昇降シリンダ4から先端を下方に向けて配設されたシリンダロッド、6はシリンダロッド5の先端に連設され昇降シリンダ4の昇降動作によって下金型3の凹部3aに出入り自在に形成された上金型、7は上部の孔部にシリンダロッド5が嵌挿され下金型3及びシリンダロッド5の先端の上金型6を囲繞する減圧室、7aは減圧室7の上部の孔部とシリンダロッド5との間を気密に保つパッキン、8は減圧室7に連通した真空ポンプ、9は昇降シリンダ4に連通した油圧ポンプ、10は油圧操作盤である。
Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.
(Embodiment 1)
FIG. 1 is a schematic diagram of a pressure molding apparatus for a coal ash molded body of an algae / spoil breeding member used in the pressure molding process, and FIG. 2 is a container used in a carbonation process in which the coal ash molded body is housed. FIG. 3 is a schematic view, FIG. 3 is a perspective view of a coal ash molded body (algae / soot breeding member) after undergoing a carbonation step, FIG. 4 is a cross-sectional photograph taken along line AA in FIG. FIG. 5 is a schematic view of a cross-section of the algae / spider breeding member shown in FIG.
In FIG. 1, 1 is a pressure molding apparatus, 2 is a frame of the pressure molding apparatus 1, 3 is a lower mold disposed under the frame 2, 3 a is a recess formed in the lower mold 3, 4 is a hydraulic lifting cylinder disposed at the top of the frame 2, 5 is a cylinder rod disposed with its tip facing downward from the lifting cylinder 4, and 6 is a lifting cylinder connected to the tip of the cylinder rod 5. 4 is an upper mold formed so as to freely enter and exit the recess 3a of the lower mold 3, and a cylinder rod 5 is fitted in the upper hole so that the upper mold at the tip of the lower mold 3 and the cylinder rod 5 is inserted. A decompression chamber that surrounds the mold 6, 7 a is a packing that keeps an airtight space between the upper hole of the decompression chamber 7 and the cylinder rod 5, 8 is a vacuum pump that communicates with the decompression chamber 7, and 9 communicates with the elevating cylinder 4. A hydraulic pump 10 is a hydraulic operation panel.

図2において、11はチャンバ等の室,シートやフィルム等で形成された簡易的な収納容器等のある程度密閉可能に形成された容器、12は工業的に生産された二酸化炭素や燃焼排ガス等の二酸化炭素含有ガスを容器11内に導入する導入口、13は二酸化炭素含有ガスを容器11からに外部に排気する排気口、14は容器11内に所定の間隔をあけて収容された石炭灰成形体である。
図3、図4、図5において、14は炭酸化された石炭灰成形体、15は二酸化炭素含有ガスの接触によって石炭灰成形体14内の無機質結合粉体が炭酸化されて表面から内部に向かって所定の深さで形成された炭酸化層(図4において黒っぽく見える部分)、16は二酸化炭素含有ガスが浸透せずに未反応の無機質結合粉体が残る石炭灰成形体14の内部の未反応層(図4において白っぽく見える部分)である。なお、本実施の形態においては、炭酸化層15の深さdは、2〜10mm、又は、石炭灰成形体14の厚さtに対して20〜40%に形成されている。
In FIG. 2, 11 is a chamber such as a chamber, a simple storage container formed of a sheet or a film, etc., and a container formed so as to be sealed to some extent, and 12 is an industrially produced carbon dioxide, combustion exhaust gas, etc. An inlet for introducing the carbon dioxide-containing gas into the container 11, 13 is an exhaust outlet for exhausting the carbon dioxide-containing gas from the container 11 to the outside, and 14 is a coal ash molding housed in the container 11 at a predetermined interval. Is the body.
3, 4, and 5, 14 is a carbonated coal ash molded body, 15 is a carbon dioxide-containing gas, and the inorganic bound powder in the coal ash molded body 14 is carbonated by contact with the carbon dioxide-containing gas. A carbonation layer formed at a predetermined depth (a portion that looks black in FIG. 4), 16 is an inside of the coal ash compact 14 in which the carbon dioxide-containing gas does not penetrate and an unreacted inorganic binder powder remains. It is an unreacted layer (a portion that looks whitish in FIG. 4). In the present embodiment, the depth d of the carbonation layer 15 is 2 to 10 mm, or 20 to 40% of the thickness t of the coal ash molded body 14.

以上のように構成された加圧成形装置及び容器を用いた藻・珊瑚増殖部材の製造方法を以下説明する。
まず、混合工程において、石炭灰100重量部と、消石灰等の無機質結合粉体10〜100重量部好ましくは25〜70重量部と、を混合して混合粉体を得る。この際、混合粉体の含水率が2〜20重量%好ましくは2〜8重量%になるように、アイリッヒミキサ等を用いて水分を添加し含水率を調整する。
次に、加圧成形工程において、加圧成形装置1の下金型3の凹部3aに所定量の混合粉体を入れる。次いで、真空ポンプ8を用いて減圧室7内を−101〜−80kPa好ましくは−100〜−90kPaに減圧した後、油圧操作盤10を操作して油圧ポンプ9の油圧によって昇降シリンダ4を下降させ、シリンダロッド5の先端の上金型6で下金型3の凹部3aに入れられた混合粉体を49〜200MPa好ましくは73〜150MPaの圧力で加圧し、所定形状の石炭灰成形体を成形する。なお、本実施の形態では、平板状の石炭灰成形体を製造した。石炭灰成形体の成形が終わった後、昇降シリンダ4を上昇させてシリンダロッド5の先端の上金型6を下金型3の凹部3aから抜くとともに、減圧室7内に空気を導入し減圧室7内を大気圧に戻す。次いで、成形された石炭灰成形体を下金型3の凹部3aから取り出す。
次に、炭酸化工程において、容器11内に成形された石炭灰成形体14を所定間隔をあけて収容した後、導入口12から燃焼排ガス等の二酸化炭素含有ガスを容器11内に導入する。このときの容器11内は、湿度が50〜100%好ましくは55〜100%、温度が0〜90℃好ましくは0〜50℃になるように調整する。
容器11内に収容された石炭灰成形体14に二酸化炭素含有ガスを2〜8時間好ましくは2〜5時間接触させ、石炭灰成形体14の表面から内部に向かって炭酸化させる。これにより、石炭灰成形体14に所定の深さの炭酸化層15が形成された藻・珊瑚増殖部材が製造される。
A method for producing an algae / soil growth member using the pressure molding apparatus and container configured as described above will be described below.
First, in the mixing step, 100 parts by weight of coal ash and 10 to 100 parts by weight, preferably 25 to 70 parts by weight of inorganic binder powder such as slaked lime are mixed to obtain a mixed powder. At this time, the moisture content is adjusted by adding water using an Eirich mixer or the like so that the moisture content of the mixed powder is 2 to 20 wt%, preferably 2 to 8 wt%.
Next, in the pressure molding step, a predetermined amount of the mixed powder is put into the recess 3 a of the lower mold 3 of the pressure molding apparatus 1. Next, after the inside of the decompression chamber 7 is decompressed to −101 to −80 kPa, preferably −100 to −90 kPa, using the vacuum pump 8, the lifting / lowering cylinder 4 is lowered by the hydraulic pressure of the hydraulic pump 9 by operating the hydraulic operation panel 10. Then, the mixed powder placed in the recess 3a of the lower mold 3 is pressed by the upper mold 6 at the tip of the cylinder rod 5 with a pressure of 49 to 200 MPa, preferably 73 to 150 MPa to form a coal ash molded body of a predetermined shape. To do. In the present embodiment, a flat coal ash compact is manufactured. After the molding of the coal ash compact is finished, the elevating cylinder 4 is raised to remove the upper die 6 at the tip of the cylinder rod 5 from the recess 3a of the lower die 3 and introduce air into the decompression chamber 7 to reduce the pressure. The inside of the chamber 7 is returned to atmospheric pressure. Next, the molded coal ash compact is taken out from the recess 3 a of the lower mold 3.
Next, in the carbonation step, after the coal ash molded body 14 formed in the container 11 is accommodated at a predetermined interval, a carbon dioxide-containing gas such as combustion exhaust gas is introduced into the container 11 from the introduction port 12. The inside of the container 11 is adjusted so that the humidity is 50 to 100%, preferably 55 to 100%, and the temperature is 0 to 90 ° C, preferably 0 to 50 ° C.
Carbon dioxide-containing gas is brought into contact with the coal ash molded body 14 accommodated in the container 11 for 2 to 8 hours, preferably 2 to 5 hours, and carbonized from the surface of the coal ash molded body 14 toward the inside. As a result, an algae / soot breeding member in which the carbonized layer 15 having a predetermined depth is formed on the coal ash compact 14 is manufactured.

以上のような本発明の実施の形態1における藻・珊瑚増殖部材の製造方法によれば、以下のような作用が得られる。
(1)減圧下の加圧成形工程で得られた石炭灰成形体は、石炭灰成形体内の消石灰等の水溶性の無機質結合粉体が、成形直後から空気中の二酸化炭素を吸収して水に難溶の炭酸カルシウム等の炭酸塩となって硬化する。このため、石炭灰成形体は機械的強度を増していくが、石炭灰成形体を容器11内へ収容して強制的に炭酸化させる炭酸化工程を有しているので、無機質結合粉体への二酸化炭素の吸収を促進させて、石炭灰成形体の機械的強度を短時間で高めることができる。この結果、空気中の二酸化炭素で炭酸化させるために石炭灰成形体を長期間放置する養生場所や養生時間が不要なため、集約的で生産性に優れるとともに、藻や珊瑚を増殖させる水中に浸漬しても崩壊することがなく、珊瑚等の定着及び増殖効果の高い藻・珊瑚増殖部材を低原価で製造できる。
(2)原料に石炭灰を用いているので廃棄物の有効利用を図ることができるとともに、石炭灰は天然の珪酸白土や珪藻土等と同様にシリカとアルミナを主成分とするため、自然環境に馴染み易く藻の胞子や珊瑚の幼生が定着し易く増殖効果に優れる。
(3)炭酸化工程を備えており、石炭灰成形体が難溶性の炭酸塩で硬化されているので、石炭灰成形体に切削,切断,穿孔等の加工を施す際、水等の切削剤を用いても泥状になって崩壊することがなく、加工性に優れる。
(4)炭酸化工程を備えているので、石炭灰成形体の表面に存在する消石灰等の水溶性の無機質結合粉体が二酸化炭素を吸収して水に難溶の炭酸カルシウム等の炭酸塩となって硬化するため、未反応の消石灰等のアルカリ成分が海水に溶出するのを抑制して表面付近の海水のpHが上昇するのを防止でき、珊瑚等の定着及び増殖効果を高めることができる。
(5)石炭灰成形体は、焼成等することなく加圧成形するだけで所定の機械的強度を得ることができるため、省エネルギ性に優れる。
(6)混合粉体の含水率が2〜20重量%好ましくは2〜8重量%なので、混合粉体の粒子間の付着力を向上させ、加圧成形工程における石炭灰成形体の成形性を高め、成形された石炭灰成形体が割れ難く製品得率を高めることができる。
(7)混合粉体が、石炭灰100重量部と無機質結合粉体10〜100重量部好ましくは25〜70重量部とを含有しているので、無機質結合粉体が炭酸化されて石炭灰成形体が表面から硬化し、機械的強度を高め製品得率を高めることができるとともに、石炭灰成形体を水中に浸漬しても崩壊しないようにでき、さらに藻や珊瑚の増殖効果を高めることができる。
(8)加圧成形工程において、混合粉体が−101〜−80kPa好ましくは−100〜−90kPaに減圧された金型内で加圧成形されるので、短時間で減圧でき生産性に優れるとともに、石炭灰成形体内に空気が残留し難いため残留した空気が膨張して石炭灰成形体が破壊し易くなるのを防止でき製品得率を高めることができる。
(9)加圧成形工程において、加圧成形の圧力が49〜200MPa好ましくは73〜150MPaなので、石炭灰成形体を適度に緻密化することができるので、加圧成形直後の石炭灰成形体の機械的強度をある程度の高さに維持できるとともに、成形体の内部まで二酸化炭素が浸透し易いので、炭酸化工程を経ることにより、成形体の内部まで炭酸化反応を進行させることができ、機械的強度を飛躍的に高めることができる。
(10)炭酸化工程において、二酸化炭素含有ガスに石炭灰成形体を2〜8時間好ましくは2〜5時間接触させているので、生産性に優れるとともに、適度の深さの炭酸化層を形成でき機械的強度を高くでき製品得率を高めることができる。
(11)炭酸化工程における容器内の湿度が50〜100%好ましくは55〜100%であるため、無機質結合粉体が水の存在下で炭酸化される炭酸化反応がの反応速度が速く、石炭灰成形体内の無機質結合粉体が表面から確実に炭酸化されるため、石炭灰成形体の機械的強度を高め製品得率を高めることができる。
(12)炭酸化工程における容器内の温度が0〜90℃好ましくは0〜50℃であるため、無機質結合粉体が炭酸化される発熱反応である炭酸化反応の反応速度が大きく、炭酸化工程において石炭灰成形体と二酸化炭素含有ガスとの接触時間を短縮でき生産性を高めることができる。
(13)炭酸化工程において、石炭灰成形体に2〜10mmの深さの炭酸化層、又は、前記石炭灰成形体の厚さに対して20〜40%の深さの炭酸化層が形成されるので、石炭灰成形体の機械的強度を高めることができるとともに、未反応の消石灰等のアルカリ成分が海水に溶出するのを抑制して石炭灰成形体の表面付近の海水のpHが上昇するのを防止でき、珊瑚等の定着及び増殖効果を高めることができる。また、有害物質等が海水に溶出するのも防止でき環境保全性に優れる。
According to the method for producing an algae / spider-growing member in Embodiment 1 of the present invention as described above, the following effects are obtained.
(1) The coal ash molded body obtained in the pressure molding step under reduced pressure has a water-soluble inorganic binder powder such as slaked lime in the coal ash molded body that absorbs carbon dioxide in the air immediately after molding and is water. Hardens as a carbonate such as calcium carbonate, which is hardly soluble. For this reason, although a coal ash molded object increases mechanical strength, since it has the carbonation process which accommodates a coal ash molded object in the container 11 and forcibly carbonizes, it is to inorganic binding powder. By promoting the absorption of carbon dioxide, the mechanical strength of the coal ash compact can be increased in a short time. As a result, because it does not require a curing place or curing time to leave the coal ash compacts for a long time in order to carbonize with carbon dioxide in the air, it is intensive and excellent in productivity, and in the water where algae and straw are grown. Even if immersed, it does not disintegrate, and it is possible to produce algae and cocoon breeding members with high effect of colonization and growth of cocoons at a low cost.
(2) Since coal ash is used as a raw material, waste can be used effectively, and coal ash contains silica and alumina as the main components in the same way as natural silicate white clay and diatomaceous earth. It is easy to get familiar with, and the algae spores and cocoon larvae are easy to settle and have an excellent proliferation effect.
(3) Since it has a carbonation step and the coal ash molded body is hardened with a poorly soluble carbonate, a cutting agent such as water is used when the coal ash molded body is processed such as cutting, cutting, drilling, etc. Even if is used, it does not become muddy and does not collapse, and it is excellent in workability.
(4) Since it has a carbonation step, the water-soluble inorganic binding powder such as slaked lime existing on the surface of the coal ash molded body absorbs carbon dioxide, and the carbonate such as calcium carbonate hardly soluble in water and Since it becomes hardened, it is possible to prevent alkaline components such as unreacted slaked lime from eluting into seawater, and to prevent the pH of seawater near the surface from rising, and to enhance the fixation and proliferation effect of sea bream etc. .
(5) Since the coal ash molded body can obtain a predetermined mechanical strength simply by pressure molding without firing, etc., it is excellent in energy saving.
(6) Since the water content of the mixed powder is 2 to 20% by weight, preferably 2 to 8% by weight, the adhesion between the particles of the mixed powder is improved, and the formability of the coal ash compact in the pressure molding process is improved. The molded coal ash molded body is hard to break and the product yield can be increased.
(7) Since the mixed powder contains 100 parts by weight of coal ash and 10 to 100 parts by weight of inorganic binder powder, preferably 25 to 70 parts by weight, the inorganic binder powder is carbonated to form coal ash. The body can harden from the surface, increase the mechanical strength and increase the product yield, and even if the coal ash molded body is immersed in water, it can be prevented from collapsing, and further increase the growth effect of algae and straw it can.
(8) In the pressure molding step, the mixed powder is pressure-molded in a mold whose pressure is reduced to −101 to −80 kPa, preferably −100 to −90 kPa, so that the pressure can be reduced in a short time and the productivity is excellent. In addition, since it is difficult for air to remain in the coal ash molded body, it is possible to prevent the remaining air from expanding and easily destroying the coal ash molded body, and to increase the product yield.
(9) In the pressure molding step, since the pressure of the pressure molding is 49 to 200 MPa, preferably 73 to 150 MPa, the coal ash molded body can be appropriately densified. The mechanical strength can be maintained at a certain level, and carbon dioxide can easily penetrate into the molded body, so that the carbonation reaction can proceed to the inside of the molded body through the carbonation process. Strength can be dramatically increased.
(10) In the carbonation step, the coal ash compact is brought into contact with the carbon dioxide-containing gas for 2 to 8 hours, preferably 2 to 5 hours, so that it is excellent in productivity and forms a carbonation layer with an appropriate depth. The mechanical strength can be increased and the product yield can be increased.
(11) Since the humidity in the container in the carbonation step is 50 to 100%, preferably 55 to 100%, the reaction rate of the carbonation reaction in which the inorganic binder powder is carbonated in the presence of water is high, Since the inorganic binder powder in the coal ash compact is reliably carbonated from the surface, the mechanical strength of the coal ash compact can be increased and the product yield can be increased.
(12) Since the temperature in the container in the carbonation step is 0 to 90 ° C., preferably 0 to 50 ° C., the reaction rate of the carbonation reaction, which is an exothermic reaction in which the inorganic binder powder is carbonated, is large, and carbonation In the process, the contact time between the coal ash compact and the carbon dioxide-containing gas can be shortened, and the productivity can be increased.
(13) In the carbonation step, a carbonized layer having a depth of 2 to 10 mm or a carbonized layer having a depth of 20 to 40% of the thickness of the coal ash molded body is formed on the coal ash molded body. As a result, the mechanical strength of the coal ash molded body can be increased, and the pH of seawater near the surface of the coal ash molded body is increased by suppressing the dissolution of alkaline components such as unreacted slaked lime into the seawater. Can be prevented, and the fixing and proliferation effect of wrinkles and the like can be enhanced. Moreover, it is possible to prevent toxic substances from leaching into seawater, which is excellent in environmental conservation.

以下、本発明を実施例により具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
(実施例1)
石炭灰としてフライアッシュ(粒径0.1mm以下の粒子が90重量%以上)100重量部と、無機質結合粉体として消石灰25重量部とを混合した混合粉体を、−100〜−90kPaの減圧下、150MPaの圧力で加圧成形し、縦10cm、横10cm、厚さ1.6cmの板状の石炭灰成形体を得た。得られた石炭灰成形体を容器内に収容し、二酸化炭素含有ガスとして二酸化炭素濃度20〜30%の燃焼排ガスを容器内に3時間導入し、石炭灰成形体の表面から内部に向かって炭酸化した。なお、容器内に収容された石炭灰成形体の総体積は、容器の容積の約6%であった。また、容器内の湿度は97%、温度は27℃であった。以上のようにして、板状の実施例1の藻・珊瑚増殖部材を得た。
なお、実施例1の藻・珊瑚増殖部材の断面観察の結果から、炭酸化層の深さは3〜4mmであった。
また、実施例1の藻・珊瑚増殖部材の圧縮強度は、JISに準じた方法で測定したところ35N/mmであることがわかった。これはJISで規定されている煉瓦(2種、3種、4種)より圧縮強度が高い(煉瓦2種の規格値は14.71N/mm以上、3種は19.61N/mm以上、4種は29.42N/mm以上。)ことがわかった。
Hereinafter, the present invention will be specifically described by way of examples. The present invention is not limited to these examples.
Example 1
A mixed powder obtained by mixing 100 parts by weight of fly ash as coal ash (particles having a particle size of 0.1 mm or less of 90% by weight or more) and 25 parts by weight of slaked lime as an inorganic binding powder is reduced in pressure from −100 to −90 kPa. Under pressure molding at a pressure of 150 MPa, a plate-shaped coal ash compact having a length of 10 cm, a width of 10 cm, and a thickness of 1.6 cm was obtained. The obtained coal ash compact is accommodated in a container, and a combustion exhaust gas having a carbon dioxide concentration of 20 to 30% is introduced into the container as a carbon dioxide-containing gas for 3 hours, and then carbonized from the surface of the coal ash compact toward the inside. Turned into. In addition, the total volume of the coal ash molded object accommodated in the container was about 6% of the volume of the container. The humidity inside the container was 97% and the temperature was 27 ° C. As described above, a plate-like algae / spider-growing member of Example 1 was obtained.
In addition, the depth of the carbonation layer was 3-4 mm from the result of cross-sectional observation of the algae / spider breeding member of Example 1.
Moreover, it was found that the compressive strength of the algae / spider growing member of Example 1 was 35 N / mm 2 as measured by a method according to JIS. This is higher in compressive strength than bricks (2 types, 3 types, 4 types) specified by JIS (standard values of 2 types of bricks are 14.71 N / mm 2 or more, 3 types are 19.61 N / mm 2 or more) 4 types were found to be 29.42 N / mm 2 or more.)

(実施例2)
石炭灰としてクリンカアッシュ(粒径0.1〜1mmの粒子が50重量%、粒径1〜2mm以上の粒子が50重量%)100重量部と、無機質結合粉体として消石灰25重量部とを混合した混合粉体を用いた以外は実施例1と同様にして、実施例2の藻・珊瑚増殖部材を得た。
(Example 2)
100 parts by weight of clinker ash (50% by weight of particles having a particle size of 0.1 to 1 mm and 50% by weight of particles having a particle size of 1 to 2 mm or more) as coal ash and 25 parts by weight of slaked lime as an inorganic binder powder Except for using the mixed powder thus obtained, the algae / spider-growing member of Example 2 was obtained in the same manner as Example 1.

(比較例1)
縦10cm、横10cm、厚さ1.6cmの天草陶石製の板状体を比較例1とした。天草陶石製の板状体は、これまでの試験の結果から、珊瑚礁石灰岩とほぼ同じか、それ以上の稚珊瑚の定着が確認された現状では最も優れた藻・珊瑚増殖部材である。
(Comparative Example 1)
A plate made of Amakusa pottery stone having a length of 10 cm, a width of 10 cm, and a thickness of 1.6 cm was used as Comparative Example 1. Amakusa porcelain stone plates are the most excellent algae / spider-growing members in the present situation where it has been confirmed that juveniles are almost the same as or more than coral reef limestone based on the results of previous tests.

(供試体の作成)
実施例1、実施例2、比較例1の藻・珊瑚増殖部材を用いて供試体を作成し、実際に海中に浸漬して藻・珊瑚の定着性試験を行った。
図6は藻・珊瑚の定着性試験のために作成した供試体の斜視図である。
図6において、20は調査のために作成した供試体、14は炭酸化された石炭灰成形体(藻・珊瑚増殖部材)、21はコンクリート製等でブロック状に形成された沈錘体、22は沈錘体21の所定箇所に複数立設された鉄筋,棒鋼,管材,ボルト等の棒状部材である。藻・珊瑚増殖部材14は所定箇所に貫通孔部が形成され棒状部材22が挿通されて所定間隔をあけて2枚配置されている。23は棒状部材22が挿通され沈錘体21と藻・珊瑚増殖部材14との間隔、藻・珊瑚増殖部材14,14の間隔を10mmに保持するスペーサ、24は棒状部材22の上部に固定され藻・珊瑚増殖部材14が棒状部材22から外れるのを防止するナット等の固定部材である。
(Creation of specimen)
Specimens were prepared using the algae / spider-growing members of Example 1, Example 2, and Comparative Example 1, and were actually immersed in the sea to conduct algae / spear fixing test.
FIG. 6 is a perspective view of a specimen prepared for the algae / salach fixation test.
In FIG. 6, 20 is a specimen prepared for investigation, 14 is a carbonated coal ash molded body (algae / soot breeding member), 21 is a weight body made of concrete or the like and formed into a block shape, 22 Is a bar-shaped member such as a reinforcing bar, a steel bar, a pipe, or a bolt that is erected at a predetermined location of the sink body 21. The algae / spider breeding member 14 has two through-holes formed at predetermined locations, the rod-shaped member 22 is inserted therethrough, and two algae / spider-growing members 14 are arranged at a predetermined interval. Reference numeral 23 denotes a spacer between which the rod-shaped member 22 is inserted and the weight body 21 and the algae / spider-growing member 14 are spaced apart, and the algae / spider-growing members 14, 14 are maintained at a distance of 10 mm. It is a fixing member such as a nut that prevents the algae / sallet breeding member 14 from being detached from the rod-shaped member 22.

(稚珊瑚の定着性試験)
上述の供試体を用いた稚珊瑚の定着性試験は、沖縄県八重山諸島、石垣島と西表島の間に広がる日本最大の珊瑚礁である石西礁湖のほぼ中心に位置するマルグー(世界測地系WGS−84:24°17.241´N、124°02.046´E)において行った。
実施例1及び実施例2の藻・珊瑚増殖部材(1実施例につき30枚)、比較例1の板状体(30枚)を、リーフ内の水深5mの砂底に予め設置しておいたコンクリート製ブロックの沈錘体21の上面に棒状部材22等を用いて配設固定し、上述の供試体20を形成した。即ち、内径10mmの貫通孔部を実施例1、実施例2、比較例1の藻・珊瑚増殖部材に形成し、該貫通孔部に沈錘体21の上面に立設された複数本のボルト(直径6mm、長さ9cm)からなる棒状部材22を挿通し、藻・珊瑚増殖部材14を沈錘体21の1箇所につき2枚ずつ間隔が10mmになるように配置した。このときの水温は25℃であった。
周辺海域では、藻・珊瑚増殖部材を設置した翌々日に珊瑚が産卵したのが確認された。また、翌日の日中には、卵が集中して浮遊するいわゆるスリックが諸処で観察された。即ち、実施例1、実施例2、比較例1の藻・珊瑚増殖部材は、珊瑚の幼生の定着する直前に設置されたことになる。この状態で3.5ヶ月間放置した。
(Familiar fixation test)
The juvenile fixation test using the above-mentioned specimens was conducted at the Margu (World Geodetic System WGS) located at the center of Sekisei Lagoon, Japan's largest coral reef spreading between Ishigakijima and Ishigakijima, Okinawa Prefecture. -84: 24 ° 17.241'N, 124 ° 02.046'E).
The algae / spoilage-growing members of Example 1 and Example 2 (30 sheets per example) and the plate-like body of Comparative Example 1 (30 sheets) were previously set on the sand bottom 5 m deep in the leaf. The above-mentioned specimen 20 was formed by arranging and fixing on the upper surface of the sink body 21 of the concrete block using a rod-like member 22 or the like. That is, a through-hole portion having an inner diameter of 10 mm is formed in the algae / spider breeding member of Example 1, Example 2, and Comparative Example 1, and a plurality of bolts erected on the upper surface of the sink body 21 in the through-hole portion. A rod-shaped member 22 having a diameter of 6 mm and a length of 9 cm was inserted, and two algae / spider-growing members 14 were arranged at a distance of 10 mm for each place of the weight body 21. The water temperature at this time was 25 degreeC.
In the surrounding sea area, it was confirmed that spiders laid eggs the day after the algae / spider breeding member was installed. In the next day, so-called slicks in which eggs were concentrated and floated were observed in various places. That is, the algae / cocoon breeding members of Example 1, Example 2, and Comparative Example 1 were installed immediately before the cocoon larvae settled. This state was left for 3.5 months.

3.5ヶ月後、設置した藻・珊瑚増殖部材を回収した。回収した藻・珊瑚増殖部材を2日間天日乾燥した後、実験施設へ移送した。なお、回収時の水温は29℃であった。
実験施設に移送した藻・珊瑚増殖部材を実体顕微鏡で観察し、下面(沈錘体21側の面)、上面、側面に定着した稚珊瑚の種類毎の数を数えた。その結果を(表1)に示す。
After 3.5 months, the algae / spider breeding members installed were collected. The collected algae and cocoon breeding members were sun-dried for 2 days and then transferred to the experimental facility. The water temperature at the time of recovery was 29 ° C.
The algae / spider-growing members transferred to the experimental facility were observed with a stereomicroscope, and the number of each kind of juvenile settled on the lower surface (surface on the side of the mass 21), the upper surface, and the side surface was counted. The results are shown in (Table 1).

定着した稚珊瑚は、大多数がミドリイシ属、次にアナサンゴモドキ属、残りがハナヤサイサンゴ科であった。いずれもこの海域での優占種である。
実施例1及び2の藻・珊瑚増殖部材に定着した稚珊瑚の数は、比較例1の板状体に定着した稚珊瑚の数の1.5〜2.5倍であった。
Most of the settled juveniles belonged to the genus Midorii, followed by the genus Coralidae, and the rest were the genus Coralaceae. Both are the dominant species in this area.
The number of young pods fixed on the algae / spider growing members of Examples 1 and 2 was 1.5 to 2.5 times the number of young shoots fixed on the plate-like body of Comparative Example 1.

次に、藻・珊瑚増殖部材のどの部位に稚珊瑚が定着するのかを比較した。
図7は供試体20における藻・珊瑚増殖部材の部位と、実施例1,実施例2,比較例1における藻・珊瑚増殖部材に定着した稚珊瑚の部位別密度を示した図である。なお、バーは95%信頼区間を示している。
図7において、A〜Fは供試体20における藻・珊瑚増殖部材(又は板状体)の部位を示しており、図7(a)に示すように、Aは2枚重ねて配置した下側の藻・珊瑚増殖部材の下面、Bは下側の藻・珊瑚増殖部材の側面、Cは下側の藻・珊瑚増殖部材の上面、Dは2枚重ねた上側の藻・珊瑚増殖部材の下面、Eは上側の藻・珊瑚増殖部材の側面、Fは上側の藻・珊瑚増殖部材の上面を示している。
図7(b),(c),(d)から明らかなように、藻・珊瑚増殖部材の下面(A,D)に稚珊瑚が多く定着する傾向がみられ、実施例1及び2の密度は比較例1に比べ、1.5〜2倍であった。また、実施例1及び2の藻・珊瑚増殖部材の側面(B,E)の稚珊瑚の密度は比較例1の側面の密度の2倍以上であり、本実施例によれば、側面への稚珊瑚の定着効果も高いことが明らかになった。
なお、上側の藻・珊瑚増殖部材の上面(F)には稚珊瑚は全く定着しなかった。これは、Fの部位には微小海藻が生え易く、またシルト等が溜まり易く、さらにウニのグレージングも受け易い等、稚珊瑚の定着し難い条件が重なるためと推察される。事実、実施例1及び実施例2の藻・珊瑚増殖部材の上面(F)には、藻類が定着していることが確認された。
図7から明らかなように、フライアッシュで作製した実施例1の藻・珊瑚増殖部材に最も多くの稚珊瑚が定着し、次いでクリンカアッシュで作製した実施例2の藻・珊瑚増殖部材に稚珊瑚が定着することがわかった。比較例1との間にはいずれも有意差がみられた。
実施例1、実施例2の藻・珊瑚増殖部材は、潮流のある海中に3.5ヶ月沈められていても、ひびや割れ等の外観上の異常は発生していないことが目視確認された。
Next, it was compared to which part of the algae and cocoon breeding member the juveniles settled.
FIG. 7 is a diagram showing the site-specific density of the algae / spider-growing member in the specimen 20 and the juveniles grown on the algae / spider-growing member in Example 1, Example 2, and Comparative Example 1. Bars indicate 95% confidence intervals.
In FIG. 7, A to F indicate the site of the algae / spider growth member (or plate-like body) in the specimen 20, and as shown in FIG. The bottom surface of the algae / spider breeding member, B is the side surface of the bottom algae / spear breeding member, C is the top surface of the bottom algae / spider breeding member, and D is the bottom surface of the upper algae / spear breeding member , E indicates the side surface of the upper algae / spider breeding member, and F indicates the top surface of the upper algae / spider breeding member.
As is clear from FIGS. 7B, 7C, and 7D, there is a tendency for young juveniles to settle on the lower surface (A, D) of the algae / spider breeding member, and the density of Examples 1 and 2 Compared with Comparative Example 1, it was 1.5 to 2 times. Moreover, the density of the juveniles on the side surfaces (B, E) of the algae / spider breeding members of Examples 1 and 2 is more than twice the density of the side surfaces of Comparative Example 1, and according to this example, It became clear that the kindergarten's fixing effect was also high.
In addition, the young pod did not settle at all on the upper surface (F) of the upper algae / spider breeding member. This is presumed to be due to the fact that small seaweeds are likely to grow on site F, silt and the like are easily accumulated, and sea urchin glazing is more likely to occur. In fact, it was confirmed that the algae were fixed on the upper surface (F) of the algae / spider growing member of Example 1 and Example 2.
As apparent from FIG. 7, the largest number of young shoots settled on the algae / spider breeding member of Example 1 prepared with fly ash, and then the young algae on the algae / spider breeding member of Example 2 prepared with clinker ash. Was found to settle. Significant differences were observed with Comparative Example 1.
It was visually confirmed that the algae and cocoon growth members of Example 1 and Example 2 did not cause any abnormalities in appearance such as cracks and cracks even if they were submerged in a tidal current for 3.5 months. .

以上のように本実施例によれば、現状では稚珊瑚の定着性が最も優れているといわれている天草陶石と比較しても、藻の胞子や珊瑚の幼生が遥かに定着し易く増殖効果に優れるとともに、海中に長期間浸漬されても崩壊することなく機械的強度の高い藻・珊瑚増殖部材が得られ、さらに集約的で生産性に優れ、また廃棄物の有効利用を図ることができ省資源性に優れるとともに省エネルギ性に優れる藻・珊瑚増殖部材の製造方法が提供できることが明らかになった。   As described above, according to this example, algal spores and moth larvae are much easier to settle and proliferate compared to Amakusa pottery stone, which is said to have the best fixability of juveniles. Along with being effective, it is possible to obtain algae and cocoon breeding members with high mechanical strength without disintegrating even when immersed in the sea for a long period of time. It has been clarified that a method for producing algae and anther-growing members that are excellent in resource saving and energy saving can be provided.

(藻・珊瑚増殖部材が浸漬された海水のpH測定)
藻・珊瑚増殖部材が浸漬された海水のpHを測定するために、昭和48年環境庁告示第48号に準拠して検液を作成した。まず、実施例1の藻・珊瑚増殖部材を破砕し、さらに粒径0.2〜0.5mm程度に粉砕した。次に、粉砕された藻・珊瑚増殖部材100gに対して海水1Lを加えたものを200回/分、6時間連続振とうした。これをろ過(ろ紙:GS25)し、ろ液を採取し検液として、そのpHを測定した。この結果、検液のpHは10であった。
なお、同様にして、消石灰が浸漬された海水のpH、ポルトランドセメントで形成された板状体の粉砕物が浸漬された海水のpHを測定したところ、消石灰が浸漬された検液のpH=12.4、ポルトランドセメントが浸漬された検液のpH=12.8であった。また海水のpHは8であった。
以上のように本発明によれば、未反応の消石灰等のアルカリ成分が海水に溶出するのを抑制して藻・珊瑚増殖部材の表面付近の海水のpHが上昇するのを防止でき、珊瑚等の定着及び増殖効果を高めることができることが明らかになった。
(PH measurement of seawater in which algae and cocoon breeding members are immersed)
In order to measure the pH of the seawater in which the algae and cocoon breeding members were immersed, a test solution was prepared in accordance with Environmental Agency Notification No. 48 of 1973. First, the algae / cocoon growth member of Example 1 was crushed and further pulverized to a particle size of about 0.2 to 0.5 mm. Next, 100 g of the crushed algae / soil propagation member added with 1 L of seawater was shaken continuously at 200 times / min for 6 hours. This was filtered (filter paper: GS25), and the filtrate was collected and its pH was measured as a test solution. As a result, the pH of the test solution was 10.
Similarly, when the pH of seawater in which slaked lime was immersed and the pH of seawater in which a pulverized plate-like body formed of Portland cement was measured were measured, the pH of the test solution in which slaked lime was immersed was 12. .4, pH of the test solution in which Portland cement was immersed was 12.8. The pH of the seawater was 8.
As described above, according to the present invention, alkali components such as unreacted slaked lime can be prevented from eluting into seawater, and the pH of seawater near the surface of the algae / soil growth member can be prevented from increasing. It became clear that the colonization and proliferation effect can be enhanced.

本発明は、藻・珊瑚増殖部材の製造方法に関し、機械的強度が高く、またアルカリ成分の溶出量が少なく表面付近の海水のpHが上昇するのを防止できるとともに自然環境に馴染み易く藻の胞子や珊瑚の幼生が定着し易く増殖効果に優れた藻・珊瑚増殖部材が低原価で製造でき、さらに集約的で生産性に優れ、また廃棄物の有効利用を図ることができ省資源性に優れるとともに省エネルギ性に優れる藻・珊瑚増殖部材の製造方法を提供することができる。   TECHNICAL FIELD The present invention relates to a method for producing algae / spider-growing members, which has high mechanical strength, has little alkaline component elution, can prevent the pH of seawater in the vicinity of the surface from rising, and is easy to adapt to the natural environment, and is an algae spore. Algae and cocoon breeding members that are easy to settle larvae and cocoons can be manufactured at low cost, and are more intensive and productive. Also, waste can be used effectively and resources are excellent. At the same time, it is possible to provide a method for producing an algae / spider breeding member that is excellent in energy saving.

加圧成形工程で用いる藻・珊瑚増殖部材の石炭灰成形体の加圧成形装置の模式図Schematic diagram of the pressure molding device for coal ash moldings of algae and cocoon breeding members used in the pressure molding process 内部に石炭灰成形体が収容された炭酸化工程で用いる容器の模式図Schematic diagram of container used in carbonation process with coal ash compact contained inside 炭酸化工程を経た後の石炭灰成形体(藻・珊瑚増殖部材)の斜視図Perspective view of a coal ash molded body (algae / kite breeding member) after undergoing a carbonation step 図3のA−A線における断面写真Cross-sectional photograph taken along line AA in FIG. 図4に示す藻・珊瑚増殖部材の断面の模式図Schematic diagram of the cross section of the algae / spider breeding member shown in FIG. 藻・珊瑚の定着性試験のために作成した供試体の斜視図Perspective view of specimens prepared for algae and cocoon fixation test 供試体における藻・珊瑚増殖部材の部位と、藻・珊瑚増殖部材に定着した稚珊瑚の部位別密度を示した図Figure showing the density of each part of the algae / spider-growing member in the specimen and the juveniles that have settled on the algae / spear-growing member

符号の説明Explanation of symbols

1 加圧成形装置
2 枠体
3 下金型
3a 凹部
4 昇降シリンダ
5 シリンダロッド
6 上金型
7 減圧室
7a パッキン
8 真空ポンプ
9 油圧ポンプ
10 油圧操作盤
11 容器
12 導入口
13 排気口
14 石炭灰成形体
15 炭酸化層
16 未反応層
20 供試体
21 沈錘体
22 棒状部材
23 スペーサ
24 固定部材
DESCRIPTION OF SYMBOLS 1 Pressure molding apparatus 2 Frame 3 Lower die 3a Concave 4 Elevating cylinder 5 Cylinder rod 6 Upper die 7 Decompression chamber 7a Packing 8 Vacuum pump 9 Hydraulic pump 10 Hydraulic operation panel 11 Container 12 Inlet 13 Exhaust port 14 Coal ash Molded body 15 Carbonated layer 16 Unreacted layer 20 Specimen 21 Sedimentation body 22 Bar-shaped member 23 Spacer 24 Fixing member

Claims (4)

a.石炭灰と、b.消石灰,ドロマイト,水酸化マグネシウム等の無機質結合粉体と、を混合して混合粉体を得る混合工程と、
前記混合粉体を減圧下で加圧して所定形状に加圧成形し石炭灰成形体を得る加圧成形工程と、
前記石炭灰成形体を容器内に収容し前記容器内に導入された二酸化炭素含有ガスに接触させ前記石炭灰成形体の表面から内部に向かって炭酸化させる炭酸化工程と、
を備えていることを特徴とする藻・珊瑚増殖部材の製造方法。
a. Coal ash; b. A mixing step of obtaining a mixed powder by mixing inorganic binding powder such as slaked lime, dolomite, magnesium hydroxide, and the like;
A pressure forming step of pressing the mixed powder under reduced pressure to form a coal ash compact by pressure forming into a predetermined shape;
A carbonation step in which the coal ash compact is accommodated in a container and brought into contact with a carbon dioxide-containing gas introduced into the container to be carbonized from the surface of the coal ash compact toward the inside;
A method for producing an algae / sallet breeding member, comprising:
前記混合粉体が、前記石炭灰100重量部と、前記無機質結合粉体10〜100重量部好ましくは25〜70重量部と、を含有していることを特徴とする請求項1に記載の藻・珊瑚増殖部材の製造方法。   The algae according to claim 1, wherein the mixed powder contains 100 parts by weight of the coal ash and 10 to 100 parts by weight, preferably 25 to 70 parts by weight of the inorganic binding powder. -Manufacturing method of a soot breeding member. 前記炭酸化工程における前記容器内の温度が、0〜90℃好ましくは0〜50℃であることを特徴とする請求項1又は2に記載の藻・珊瑚増殖部材の製造方法。   The temperature in the container in the carbonation step is 0 to 90 ° C, preferably 0 to 50 ° C. 前記混合粉体の含水率が、2〜20重量%好ましくは2〜8重量%であることを特徴とする請求項1乃至3の内いずれか1に記載の藻・珊瑚増殖部材の製造方法。   4. The method for producing an algae / grass-growing member according to claim 1, wherein a moisture content of the mixed powder is 2 to 20 wt%, preferably 2 to 8 wt%.
JP2005222266A 2005-07-29 2005-07-29 Method for producing alga/coral multiplication member Withdrawn JP2007037413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005222266A JP2007037413A (en) 2005-07-29 2005-07-29 Method for producing alga/coral multiplication member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005222266A JP2007037413A (en) 2005-07-29 2005-07-29 Method for producing alga/coral multiplication member

Publications (1)

Publication Number Publication Date
JP2007037413A true JP2007037413A (en) 2007-02-15

Family

ID=37795949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005222266A Withdrawn JP2007037413A (en) 2005-07-29 2005-07-29 Method for producing alga/coral multiplication member

Country Status (1)

Country Link
JP (1) JP2007037413A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101154438B1 (en) 2009-10-12 2012-06-15 주식회사 기성 Method for manufacturing carbonated bottom ash
KR101619777B1 (en) * 2013-12-05 2016-05-12 주식회사 씨엠디기술단 Removing agent of green tides and red tides
JP2016160125A (en) * 2015-02-27 2016-09-05 太平洋セメント株式会社 Cement hardening body and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101154438B1 (en) 2009-10-12 2012-06-15 주식회사 기성 Method for manufacturing carbonated bottom ash
KR101619777B1 (en) * 2013-12-05 2016-05-12 주식회사 씨엠디기술단 Removing agent of green tides and red tides
JP2016160125A (en) * 2015-02-27 2016-09-05 太平洋セメント株式会社 Cement hardening body and manufacturing method therefor

Similar Documents

Publication Publication Date Title
KR100430331B1 (en) Method of reducing discharged carbon dioxide
JP3169581U (en) Hardened product for seaweed formation
JP2006304711A (en) Stone to be installed under water and method for producing the same
CN102786320A (en) Autoclaved aerated concrete building block containing industrial solid waste and preparation method thereof
JP2008263928A (en) Dredged soil block for installing beach bedrock
JP2007039259A (en) Molded product and method for manufacturing the same
JP2000157094A (en) Stone material for sinking and disposing in water and its production
JP5224692B2 (en) Dredging block construction method
JP2007037412A (en) Alga/coral multiplication member
JP2007037413A (en) Method for producing alga/coral multiplication member
JP2006028006A (en) Fired gravel material made of kimachi stone
JP4949304B2 (en) Equipment for underwater organism settlement, manufacturing method thereof and installation method thereof
JP2000139268A (en) Seaweed bed growth promotion-type fishbank
JP2018515064A (en) How to make artificial reefs
JP3729160B2 (en) Environmental improvement method and environmental improvement materials for underwater or beach
EP2055685A1 (en) Method for preparing a structure in a body of water.
JP2012024033A (en) Porous artificial corallite and method of producing the same
KR100316178B1 (en) Stone material for submerging into water and method of production thereof
JP2002176877A (en) Block to be installed under water
WO2001019180A1 (en) Seaweed field forming material and its block
JP3774637B2 (en) Porous plate carrier for seaweed seedling growth
JP2000143304A (en) Artificial stone made from slag as principal raw material and production of the same stone
JP4797402B2 (en) Equipment for underwater organism settlement and method for producing the same
JP2006096646A (en) Kimachi sandstone powder sintered compact and method of manufacturing the same
JP4433831B2 (en) Ecosystem-constructed underwater structures

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081007