JP2016158432A - Power conversion device, active filter and motor drive device - Google Patents

Power conversion device, active filter and motor drive device Download PDF

Info

Publication number
JP2016158432A
JP2016158432A JP2015035756A JP2015035756A JP2016158432A JP 2016158432 A JP2016158432 A JP 2016158432A JP 2015035756 A JP2015035756 A JP 2015035756A JP 2015035756 A JP2015035756 A JP 2015035756A JP 2016158432 A JP2016158432 A JP 2016158432A
Authority
JP
Japan
Prior art keywords
voltage
power supply
phase
power
inverter circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015035756A
Other languages
Japanese (ja)
Other versions
JP6453108B2 (en
Inventor
東昇 李
Tosho Ri
東昇 李
能登原 保夫
Yasuo Notohara
保夫 能登原
貴之 橋本
Takayuki Hashimoto
貴之 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Controls Hitachi Air Conditioning Technology Hong Kong Ltd
Original Assignee
Johnson Controls Hitachi Air Conditioning Technology Hong Kong Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Controls Hitachi Air Conditioning Technology Hong Kong Ltd filed Critical Johnson Controls Hitachi Air Conditioning Technology Hong Kong Ltd
Priority to JP2015035756A priority Critical patent/JP6453108B2/en
Publication of JP2016158432A publication Critical patent/JP2016158432A/en
Application granted granted Critical
Publication of JP6453108B2 publication Critical patent/JP6453108B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power conversion device capable of appropriately controlling a current that flows to an AC power supply system.SOLUTION: A power conversion device 10 connected to an AC power source 1 comprises: an inverter circuit 4 that is connected with the AC power source 1 via a reactor 3; a voltage dividing resistor circuit 6 that is connected between an input terminal of each of phases of the AC power source 1 and a ground terminal at a DC side of the inverter circuit 4; a differential amplifier 7 that calculates a differential between detection voltages of any two phases detected by the voltage dividing resistor circuit 6 as an inter-line voltage of any two phases; and a control device 8 which performs PWM control on the inverter circuit 4, based on a PWM control signal that is corrected by using the inter-line voltage of any two phases calculated by the differential amplifier 7. The inter-line voltage of any two phases does not include a ripple component. Therefore, the control device 8 is capable of appropriately controlling the current that flows to the AC power supply system by performing the PWM control of the inverter circuit 4, based on the PWM control signal corrected by using the inter-line voltage.SELECTED DRAWING: Figure 1

Description

本発明は、交流電源系統に接続される電力変換装置、高調波電流を抑制するアクティブフィルタ、及びこのアクティブフィルタを備えたモータ駆動装置に関する。   The present invention relates to a power conversion device connected to an AC power supply system, an active filter that suppresses harmonic current, and a motor drive device including the active filter.

従来、交流電源系統に接続され、直流/交流変換又は交流/直流変換を行う電力変換装置は、蓄電装置、無停電電源装置(UPS:Uninterruptible Power Supply)や、太陽光発電装置、風力発電装置などの再生可能エネルギー発電装置等に広く利用されている。通常、このような電力変換装置は、アクティブフィルタ機能や無効電流補正機能などを備えている。そのため、こうした電力変換装置の制御には、交流電源情報(例えば、相電圧、周波数、位相、相順などの情報)が必要である。   Conventionally, power converters connected to an AC power supply system and performing DC / AC conversion or AC / DC conversion are power storage devices, uninterruptible power supplies (UPS), solar power generation devices, wind power generation devices, and the like. It is widely used in renewable energy power generation devices. Usually, such a power converter has an active filter function, a reactive current correction function, and the like. Therefore, AC power supply information (for example, information on phase voltage, frequency, phase, phase order, etc.) is necessary for the control of such a power converter.

かかる交流電源情報の検出技術として、例えば、フォトカプラなど安価な回路で交流電圧のゼロクロスを検出し、交流電源の位相、周波数、相順などを推定する技術が知られている(例えば、特許文献1参照)。しかし、この技術では交流電圧の瞬時値を検出することができないため、交流電源系統の電圧変動や三相不平衡など交流電源異常を検知することができない。
そこで、交流電圧の瞬時値を検出するために、絶縁型の電圧センサや小型の交流トランスを用いて、交流電圧を電圧信号に変換する技術も知られている。この技術では、電圧センサや交流トランスなどの部品コストが高くなるため、汎用製品には適用され難い。
As a technique for detecting such AC power supply information, for example, a technique for detecting a zero cross of an AC voltage with an inexpensive circuit such as a photocoupler and estimating the phase, frequency, phase order, etc. of the AC power supply is known (for example, Patent Documents). 1). However, since this technology cannot detect the instantaneous value of the AC voltage, it cannot detect an AC power supply abnormality such as a voltage fluctuation or a three-phase imbalance in the AC power supply system.
In order to detect the instantaneous value of the AC voltage, a technique for converting the AC voltage into a voltage signal using an insulating voltage sensor or a small AC transformer is also known. This technology increases the cost of components such as voltage sensors and AC transformers, and thus is difficult to apply to general-purpose products.

また、部品コストを抑えた他の交流電源情報の検出技術として、三相簡易コンバータに適用する分圧抵抗回路によって三相交流の電源位相を検出する技術が開示されている(例えば、特許文献2参照)。この技術では、三相交流電源の各相の電圧を検出する分圧抵抗回路による検出手段から得られた信号を用いて、直流側の正極/負極間に直列に接続された複数の平滑コンデンサの中点と三相交流電源の各相との間を開閉する双方向スイッチを制御することにより、電源電流の高調波成分を低減させている。なお、参考技術として、電力変換装置で駆動するモータの空転時の誘起電圧を検出する技術が開示されている(例えば、特許文献3参照)。   In addition, as another AC power supply information detection technique with reduced component costs, a technique for detecting a three-phase AC power supply phase using a voltage dividing resistor circuit applied to a three-phase simple converter is disclosed (for example, Patent Document 2). reference). In this technique, a plurality of smoothing capacitors connected in series between the positive electrode and the negative electrode on the DC side are used by using a signal obtained from detection means by a voltage dividing resistor circuit that detects the voltage of each phase of the three-phase AC power supply. By controlling a bidirectional switch that opens and closes between the midpoint and each phase of the three-phase AC power supply, the harmonic component of the power supply current is reduced. As a reference technique, a technique for detecting an induced voltage at the time of idling of a motor driven by a power converter is disclosed (for example, see Patent Document 3).

特開2012−143095号公報JP 2012-143095 A 特許第5119222号公報Japanese Patent No. 5119222 特許第4406552号公報Japanese Patent No. 4406552

しかしながら、特許文献2に記載の技術では、分圧抵抗回路で検出された電圧信号の立ち上がりエッジ又は立ち下がりエッジから交流電源の位相、周波数、及び相順を推定することはできるが、交流電源の瞬時電圧などの情報を得ることはできない。そのため、電力変換装置の交流電圧の変動時においては、交流電源系統に流れる電流の制御を適切に行うことができない。
また、特許文献3に記載の技術では、モータの空転時において分圧抵抗回路で該モータの誘起電圧を検出することはできるが、インバータが動作中においてはモータの誘起電圧を検出することができない。
However, in the technique described in Patent Document 2, although the phase, frequency, and phase sequence of the AC power supply can be estimated from the rising edge or falling edge of the voltage signal detected by the voltage dividing resistor circuit, Information such as instantaneous voltage cannot be obtained. Therefore, when the AC voltage of the power conversion device fluctuates, the current flowing through the AC power supply system cannot be properly controlled.
Further, in the technique described in Patent Document 3, the induced voltage of the motor can be detected by the voltage dividing resistor circuit when the motor is idling, but the induced voltage of the motor cannot be detected while the inverter is operating. .

本発明は、前記事情に鑑みてなされたものであり、交流電源系統に流れる電流を適切に制御可能な電力変換装置、高調波電流を抑制するアクティブフィルタ、及びこのアクティブフィルタを備えたモータ駆動装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and includes a power conversion device that can appropriately control a current flowing in an AC power supply system, an active filter that suppresses harmonic current, and a motor drive device including the active filter. The purpose is to provide.

前記目的を達成するために、本発明の電力変換装置は、多相交流(例えば、三相交流)の交流電源に接続され、交流/直流変換モードと直流/交流変換モードとを有するインバータ回路と、前記交流電源の各相の入力端子と前記インバータ回路の直流側の接地端子との間に接続され、該交流電源の各相の電圧を検出する電圧検出手段と、前記電圧検出手段で検出した任意の二相の検出電圧の差分を、該任意の二相の線間電圧として求める差分電圧演算手段と、前記差分電圧演算手段で求めた任意の二相の線間電圧を用いて補正された制御信号(例えば、PWM(Pulse Width Modulation)制御信号)に基づいて、前記インバータ回路を制御する制御手段と、を備えることを最も主要な特徴とする。   In order to achieve the above object, a power conversion device of the present invention is connected to an AC power supply of multiphase AC (for example, three-phase AC), and has an inverter circuit having an AC / DC conversion mode and a DC / AC conversion mode. A voltage detecting means connected between an input terminal of each phase of the AC power supply and a ground terminal on the DC side of the inverter circuit, and detecting the voltage of each phase of the AC power supply, and detected by the voltage detecting means; The difference between the two-phase detection voltages is corrected using the differential voltage calculation means for obtaining the arbitrary two-phase line voltage, and the arbitrary two-phase line voltage obtained by the difference voltage calculation means. The main feature is that it comprises control means for controlling the inverter circuit based on a control signal (for example, a PWM (Pulse Width Modulation) control signal).

本発明によれば、交流電源系統に流れる電流を適切に制御可能な電力変換装置を得ることができる。 ADVANTAGE OF THE INVENTION According to this invention, the power converter device which can control appropriately the electric current which flows into an alternating current power supply system can be obtained.

本発明の第1実施形態に係る電力変換装置の構成図である。It is a lineblock diagram of the power converter concerning a 1st embodiment of the present invention. 図1に示す制御装置の制御構成を示すブロック図である。It is a block diagram which shows the control structure of the control apparatus shown in FIG. 図2に示す電源情報演算部の制御構成を示すブロック図である。It is a block diagram which shows the control structure of the power supply information calculating part shown in FIG. 図3に示す電源異常検出・記録部の制御構成を示すブロック図である。It is a block diagram which shows the control structure of the power supply abnormality detection and recording part shown in FIG. 本発明の第1実施形態に係る電力変換装置の各部波形であり、(a)はU相電圧波形、(b)はU相に対応する分圧抵抗回路6の中点の電圧波形、(c)はV相に対応する分圧抵抗回路6の中点の電圧波形、(d)は一対の差動アンプ7の各々から出力されるUV間電圧信号EUVとVW間電圧信号EVW、(e)は電源情報演算部13の位相演算部21から出力される位相演算値θの波形を示す。It is each part waveform of the power converter device which concerns on 1st Embodiment of this invention, (a) is a U-phase voltage waveform, (b) is a voltage waveform of the middle point of the voltage dividing resistor circuit 6 corresponding to a U-phase, (c ) the voltage waveform of the midpoint of the divider resistor circuit 6 corresponding to the V phase, (d) the UV voltage signal E UV and VW voltage signal E VW output from each of the pair of the differential amplifier 7, ( e) shows the waveform of the phase calculation value θ S output from the phase calculation unit 21 of the power supply information calculation unit 13. 本発明の第2実施形態に係るアクティブフィルタの構成図である。It is a block diagram of the active filter which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係るアクティブフィルタを備えたモータ駆動装置の構成図である。It is a block diagram of the motor drive device provided with the active filter which concerns on 3rd Embodiment of this invention.

以下、本発明の実施形態に係る電力変換装置、アクティブフィルタ、及びこのアクティブフィルタを備えたモータ駆動装置について、図面を参照しながら詳細に説明する。なお、各実施形態では、説明を容易にするために、交流電源系統の相数として三相を代表的に例示して説明する。   Hereinafter, a power converter, an active filter, and a motor driving device including the active filter according to an embodiment of the present invention will be described in detail with reference to the drawings. In each embodiment, for ease of explanation, three phases will be representatively exemplified as the number of phases of the AC power supply system.

《第1実施形態》
第1実施形態では、三相交流電源系統に連結される電力変換装置10について説明する。
<装置構成>
図1は、本発明の第1実施形態に係る電力変換装置10の全体構成図である。
電力変換装置10は、図1に示すように、三相で構成されたノイズフィルタ2と、三相の各線に直列に接続されたリアクトル3と、三相ブリッジ回路で構成された半導体スイッチング素子からなるインバータ回路4と、インバータ回路4の直流側の正極/負極間に接続された平滑コンデンサ5と、三相の各相電圧を検出する分圧抵抗回路(電圧検出手段)6と、分圧抵抗回路6で検出された任意の二相の電圧の差分を求める一対の差動アンプ(差分電圧演算手段)7と、インバータ回路4のPWM制御を行う制御装置(制御手段)8と、三相交流の各相の電流を検出する電流検出部11と、を備えて構成されている。なお、電力変換装置10の入力側は三相の交流電源1に接続され、電力変換装置10の出力側は直流負荷又は直流電源(直流負荷/直流電源)9に接続されている。
<< First Embodiment >>
1st Embodiment demonstrates the power converter device 10 connected with a three-phase alternating current power supply system.
<Device configuration>
FIG. 1 is an overall configuration diagram of a power conversion apparatus 10 according to the first embodiment of the present invention.
As shown in FIG. 1, the power converter 10 includes a noise filter 2 configured in three phases, a reactor 3 connected in series to each of the three-phase lines, and a semiconductor switching element configured in a three-phase bridge circuit. An inverter circuit 4, a smoothing capacitor 5 connected between the positive and negative electrodes on the DC side of the inverter circuit 4, a voltage dividing resistor circuit (voltage detecting means) 6 for detecting each phase voltage of three phases, and a voltage dividing resistor A pair of differential amplifiers (difference voltage calculation means) 7 for obtaining a difference between arbitrary two-phase voltages detected by the circuit 6, a control device (control means) 8 for performing PWM control of the inverter circuit 4, and a three-phase alternating current And a current detector 11 for detecting the current of each phase. The input side of the power converter 10 is connected to a three-phase AC power source 1, and the output side of the power converter 10 is connected to a DC load or a DC power source (DC load / DC power source) 9.

インバータ回路4の動作モードとして、交流電源1から交流電力を受電して直流負荷/直流電源9に直流電力を供給する整流モード(交流/直流変換モード)と、直流負荷/直流電源9からの直流電力を逆変換して交流電源1へ交流電力を出力する回生モード(直流/交流変換モード)とがある。整流モードと回生モード(インバータモード)との動作モードの切り替えは、制御装置8からの制御信号によって実現される。なお、直流負荷/直流電源9における直流電源手段としては、例えば、図示しない太陽光発電設備や蓄電池などが適宜用いられる。   As an operation mode of the inverter circuit 4, a rectification mode (AC / DC conversion mode) for receiving AC power from the AC power supply 1 and supplying DC power to the DC load / DC power supply 9, and DC from the DC load / DC power supply 9 There is a regenerative mode (DC / AC conversion mode) in which power is reversely converted and AC power is output to the AC power supply 1. Switching between the rectification mode and the regeneration mode (inverter mode) is realized by a control signal from the control device 8. In addition, as a DC power supply means in the DC load / DC power supply 9, for example, a solar power generation facility or a storage battery (not shown) is appropriately used.

インバータ回路4は、6個の半導体スイッチング素子(本実施形態ではIGBT(Insulated Gate Bipolar Transistor))と各半導体スイッチング素子に逆並列に接続されたダイオードとによって三相ブリッジ回路が構成されている。この三相ブリッジ回路は、三相の交流電源1に対応している。なお、各半導体スイッチング素子に逆並列に接続されたダイオードは、それぞれの半導体スイッチング素子のOFF時の転流用ダイオードであり、インバータ回路の公知の基本構成に属するものである。そのため、ダイオードについての詳細な説明は省略する。   The inverter circuit 4 includes a three-phase bridge circuit including six semiconductor switching elements (in this embodiment, IGBTs (Insulated Gate Bipolar Transistors)) and diodes connected in antiparallel to the semiconductor switching elements. This three-phase bridge circuit corresponds to a three-phase AC power source 1. The diodes connected in antiparallel to each semiconductor switching element are commutation diodes when the respective semiconductor switching elements are OFF, and belong to a known basic configuration of the inverter circuit. Therefore, detailed description of the diode is omitted.

平滑コンデンサ5は、インバータ回路4の直流側の直流電圧のリップルとサージ電圧を抑制するための要素である。   The smoothing capacitor 5 is an element for suppressing a DC voltage ripple and a surge voltage on the DC side of the inverter circuit 4.

分圧抵抗回路6は、交流電源1の各相の入力端子とインバータ回路4の出力の直流側の負極端子(接地端子)との間に接続される。分圧抵抗回路6の各相の分圧抵抗の中点から検出される検出電圧(中点電圧)は、一対の差動アンプ7の各々で差分演算されて制御装置8に入力される。   The voltage dividing resistor circuit 6 is connected between the input terminal of each phase of the AC power supply 1 and the negative terminal (ground terminal) on the DC side of the output of the inverter circuit 4. The detected voltage (midpoint voltage) detected from the middle point of the voltage dividing resistor of each phase of the voltage dividing resistor circuit 6 is subjected to a difference calculation by each of the pair of differential amplifiers 7 and input to the control device 8.

制御装置8は、一対の差動アンプ7の各々で差分演算されて入力された差分電圧に基づいて、交流電源1の電圧、位相、周波数、相順などの電源電圧情報を算出する。ここで、分圧抵抗回路6における各相の分圧抵抗の分圧比は、各々の分圧抵抗の中点から検出される中点電圧が差動アンプの入力範囲(例えば、0V〜15V)内に収束するように調整すればよい。本実施形態では、一対の差動アンプ7のそれぞれに入力される中点電圧は、U相とV相、及びV相とW相の各中点電圧であるが、これに限らず、任意の二相で検出した中点電圧を用いてもよい。   The control device 8 calculates power supply voltage information such as a voltage, a phase, a frequency, and a phase order of the AC power supply 1 based on the differential voltage inputted by performing the differential calculation in each of the pair of differential amplifiers 7. Here, the voltage dividing ratio of the voltage dividing resistors of each phase in the voltage dividing resistor circuit 6 is such that the midpoint voltage detected from the middle point of each voltage dividing resistor is within the input range (for example, 0 V to 15 V) of the differential amplifier. It may be adjusted so as to converge. In the present embodiment, the midpoint voltages input to each of the pair of differential amplifiers 7 are the U-phase and V-phase, and V-phase and W-phase midpoint voltages. A midpoint voltage detected in two phases may be used.

制御装置8としては、マイクロコンピュータ、DSP(Digital Signal Processor)等の演算処理装置が好適に用いられる。制御装置8に内蔵されるサンプリングホールド回路とA/D(Analog/Digital)変換部などにより、一対の差動アンプ7に入力された各中点電圧はデジタル信号に変換される。本実施形態では、制御装置8及び一対の差動アンプ7の電源の負極側の電位は、インバータ回路4の直流側の接地端子と同電位にしてあるため、各検出信号(各中点電圧)の電気絶縁対策はなくてもよい。
なお、本実施形態において、実際の電力変換用途に応じて、インバータ回路4の直流側の直流電圧などを検出する必要がある場合、適宜に分圧抵抗等を追加して検出すればよい。
As the control device 8, an arithmetic processing device such as a microcomputer or a DSP (Digital Signal Processor) is preferably used. Each midpoint voltage input to the pair of differential amplifiers 7 is converted into a digital signal by a sampling hold circuit and an A / D (Analog / Digital) conversion unit incorporated in the control device 8. In the present embodiment, since the potential on the negative side of the power supply of the control device 8 and the pair of differential amplifiers 7 is the same as that of the ground terminal on the DC side of the inverter circuit 4, each detection signal (each midpoint voltage) There is no need for electrical insulation measures.
In the present embodiment, when it is necessary to detect the DC voltage on the DC side of the inverter circuit 4 according to the actual power conversion application, it may be detected by appropriately adding a voltage dividing resistor or the like.

<制御の説明>
図2は、図1に示す制御装置8の制御構成を示すブロック図である。
図2に例示する制御装置8は、演算処理装置が所定のプログラムを実行することで、dqベクトル制御により、インバータ回路4の回生モード(つまり、インバータモード)における交流電圧指令信号を演算し、該インバータ回路4の各半導体スイッチング素子をスイッチング制御するためのPWM制御信号を生成するように動作する。ただし、制御装置8は、dqベクトル制御以外に、同様な機能を実現できる他の制御方式で構成してもよい。すなわち、例えば、無停電電源装置のインバータ回路で汎用されているような制御方式、つまり、ベクトル変換を行わないで、検出した電圧信号と三角波又は鋸歯状波のキャリア波形と比較して直接制御信号を生成するような制御方式の構成であってもよい。
<Description of control>
FIG. 2 is a block diagram showing a control configuration of the control device 8 shown in FIG.
The control device 8 illustrated in FIG. 2 calculates an AC voltage command signal in the regeneration mode (that is, the inverter mode) of the inverter circuit 4 by dq vector control by causing the arithmetic processing device to execute a predetermined program. The inverter circuit 4 operates to generate a PWM control signal for switching control of each semiconductor switching element. However, the control device 8 may be configured by another control method that can realize the same function in addition to the dq vector control. That is, for example, a control method that is widely used in an inverter circuit of an uninterruptible power supply device, that is, without performing vector conversion, the detected voltage signal is directly compared with a triangular or sawtooth carrier waveform. It may be a configuration of a control system that generates

詳しく述べると、制御装置8は、図2に示すように、電源情報演算部13と、3相/2軸変換部14と、電圧制御部15と、2軸/3相変換部16と、PWM制御部17とを備えて構成されている。   More specifically, as shown in FIG. 2, the control device 8 includes a power supply information calculation unit 13, a 3-phase / 2-axis conversion unit 14, a voltage control unit 15, a 2-axis / 3-phase conversion unit 16, and a PWM. And a control unit 17.

電源情報演算部13は、交流電圧検出信号である交流電圧の差分信号(EUV、EVW)を入力して、種々の交流電圧情報(電源電圧情報)を演算する。すなわち、電源情報演算部13は、電源電圧位相(θs)を演算して3相/2軸変換部14及び2軸/3相変換部16へそれぞれ出力し、電源周波数(fs)を演算して電圧制御部15へ出力し、さらに、三相電圧(E,E,E)を演算して電圧制御部15へ出力する。また、電源情報演算部13は、電源異常を検知した場合は電源異常検知信号をPWM制御部17へ出力する。 The power supply information calculation unit 13 inputs an AC voltage difference signal (E UV , E VW ), which is an AC voltage detection signal, and calculates various AC voltage information (power supply voltage information). That is, the power supply information calculation unit 13 calculates the power supply voltage phase (θs) and outputs it to the 3-phase / 2-axis conversion unit 14 and the 2-axis / 3-phase conversion unit 16, respectively, and calculates the power supply frequency (fs). The voltage is output to the voltage controller 15, and the three-phase voltages (E U , E V , E W ) are calculated and output to the voltage controller 15. Further, the power supply information calculation unit 13 outputs a power supply abnormality detection signal to the PWM control unit 17 when a power supply abnormality is detected.

3相/2軸変換部14は、三相交流系統の各相の電流検出部11で検出された三相電流の交流電流検出信号(I,I,I)と、電源情報演算部13で演算された電源電圧位相(θs)とに基づいて、d軸電流Iとq軸電流Iとを、下記の式(1)及び式(2)に基づいて演算する。式(1)は、3相/2軸変換の演算式を表し、式(2)は回転座標系への変換の演算式を表している。 The three-phase / two-axis conversion unit 14 includes a three-phase AC current detection signal (I U , I V , I W ) detected by the current detection unit 11 of each phase of the three-phase AC system, and a power source information calculation unit. Based on the power supply voltage phase (θs) calculated in 13, the d-axis current I d and the q-axis current I q are calculated based on the following equations (1) and (2). Expression (1) represents an arithmetic expression for three-phase / two-axis conversion, and Expression (2) represents an arithmetic expression for conversion to a rotating coordinate system.

Figure 2016158432

式(1)

Figure 2016158432

式(2)
Figure 2016158432

Formula (1)

Figure 2016158432

Formula (2)

電圧制御部15は、d軸電流指令値I *及びq軸電流指令値I *と、3相/2軸変換部14で求められたd軸電流検出値I及びq軸電流検出値Iと、電源情報演算部13で求められた電源周波数(fs)及び三相電圧(Vs;E,E,E)とを用いて、d軸電圧指令値V *及びq軸電圧指令値V *を演算して2軸/3相変換部16へ出力する。 The voltage control unit 15 includes the d-axis current command value I d * and the q-axis current command value I q * , the d-axis current detection value I d and the q-axis current detection value obtained by the three-phase / 2-axis conversion unit 14. and I q, the power supply frequency (fs) and the three-phase voltage determined by the power information calculation section 13; using (Vs E U, E V, E W) and, d-axis voltage command value V d * and the q-axis The voltage command value V q * is calculated and output to the 2-axis / 3-phase converter 16.

2軸/3相変換部16は、電圧制御部15で求められたdq軸の電圧指令値(つまり、d軸電圧指令値V *及びq軸電圧指令値V *)と、電源情報演算部13で求められた電源電圧位相(θs)とを用いて、下記の式(3)及び式(4)に基づいて、三相電圧指令値(V ,V ,V )を算出してPWM制御部14へ出力する。なお、式(3)は、回転座標系から固定座標系への変換の演算式を表す。また、式(4)は、2軸/3相変換の演算式を表す。 The 2-axis / 3-phase conversion unit 16 calculates the dq-axis voltage command values (that is, the d-axis voltage command value V d * and the q-axis voltage command value V q * ) obtained by the voltage control unit 15 and the power source information calculation. Three-phase voltage command values (V U * , V V * , V W * ) based on the following formulas (3) and (4) using the power supply voltage phase (θs) obtained by the unit 13 Is calculated and output to the PWM control unit 14. Expression (3) represents an arithmetic expression for conversion from the rotating coordinate system to the fixed coordinate system. Expression (4) represents an arithmetic expression for 2-axis / 3-phase conversion.

Figure 2016158432

式(3)

Figure 2016158432

式(4)
Figure 2016158432

Formula (3)

Figure 2016158432

Formula (4)

PWM制御部17は、2軸/3相変換部16からの三相電圧指令値(V ,V ,V )と三角波又は鋸歯状波のキャリア波とに基づいてPWM制御信号を生成し、インバータ回路4の各半導体スイッチング素子をインバータモードでスイッチングさせ、該インバータ回路4をPWM駆動させる。また、PWM制御部17は、電源情報演算部13からの電源異常検知信号を用いて、PWM制御信号の出力を停止させる。 The PWM control unit 17 generates a PWM control signal based on the three-phase voltage command values (V U * , V V * , V W * ) from the 2-axis / 3-phase conversion unit 16 and the carrier wave of a triangular wave or a sawtooth wave. Are generated, and each semiconductor switching element of the inverter circuit 4 is switched in the inverter mode, and the inverter circuit 4 is PWM-driven. Further, the PWM control unit 17 stops the output of the PWM control signal by using the power supply abnormality detection signal from the power supply information calculation unit 13.

<電源情報演算の説明>
図3は、図2に示す電源情報演算部13の制御構成を示すブロック図である。
電源情報演算部13は、図3に示すように、一対のA/D変換部20、位相演算部21、相電圧演算部22、電源異常検出・記録部23、及び周波数演算部24を備えて構成されている。
<Description of power supply information calculation>
FIG. 3 is a block diagram showing a control configuration of the power information calculation unit 13 shown in FIG.
As shown in FIG. 3, the power supply information calculation unit 13 includes a pair of A / D conversion units 20, a phase calculation unit 21, a phase voltage calculation unit 22, a power supply abnormality detection / recording unit 23, and a frequency calculation unit 24. It is configured.

一対のA/D変換部20は、一対の差動アンプ7のそれぞれから入力される交流電圧の差分信号(UV間電圧信号EUV及びVW間電圧信号EVW)をデジタル信号に変換し、このデジタル信号を位相演算部21、相電圧演算部22、及び電源異常検出・記録部23へ出力する。 The pair of A / D converters 20 converts the differential signal of the AC voltage (the inter-UV voltage signal E UV and the inter-VW voltage signal E VW ) input from each of the pair of differential amplifiers 7 into a digital signal. The digital signal is output to the phase calculation unit 21, the phase voltage calculation unit 22, and the power supply abnormality detection / recording unit 23.

位相演算部21は、交流電圧の差分信号(EUV,EVW)のデジタル信号に基づいて、電源電圧位相(θs)を演算し、この電源電圧位相(θs)を2軸/3相変換部16と3相/2軸変換部14へ出力するとともに、この電源電圧位相(θs)を周波数演算部24へ出力する。位相演算部21が電源電圧位相(θs)を演算する際の計算式を下記の式(5)に示す。 The phase calculation unit 21 calculates a power supply voltage phase (θs) based on the digital signal of the differential signal (E UV , E VW ) of the AC voltage, and this power supply voltage phase (θs) is a 2-axis / 3-phase conversion unit. 16 and the three-phase / 2-axis converter 14 and the power supply voltage phase (θs) to the frequency calculator 24. A calculation formula used when the phase calculation unit 21 calculates the power supply voltage phase (θs) is shown in the following formula (5).

Figure 2016158432

式(5)
Figure 2016158432

Formula (5)

相電圧演算部22は、交流電圧の差分信号(EUV,EVW)のデジタル信号に基づいて三相電圧(E,E,E)を演算し、この三相電圧(E,E,E)を電圧制御部15へ出力する。相電圧演算部22が三相電圧(E,E,E)を演算する際の計算式を下記の式(6)に示す。
なお、電源異常検出・記録部23について、詳しくは後記する。
The phase voltage calculation unit 22 calculates a three-phase voltage (E U , E V , E W ) based on the digital signal of the differential signal (E UV , E VW ) of the AC voltage, and this three-phase voltage (E U , E V , E W ) are output to the voltage controller 15. A calculation formula used when the phase voltage calculation unit 22 calculates the three-phase voltages (E U , E V , E W ) is shown in the following formula (6).
The power supply abnormality detection / recording unit 23 will be described later in detail.

Figure 2016158432

式(6)
Figure 2016158432

Formula (6)

周波数演算部24は、位相演算部21で演算された電源電圧位相(θs)に基づいて、電源周波数(fs)を演算し、この電源周波数(fs)を電圧制御部15へ出力する。
具体的には、周波数演算部24は、位相の微分(差分)から下記の式(7)を用いて電源周波数(fs)を算出する。ここで、θs1とθs0はそれぞれ今回と前回の位相値であり、Δtは位相演算の時間間隔である。また、演算された電源周波数(fs)の正負により、三相電源の相順を判定することができる。
式(7) fs=(θs1−θs0)/Δt
The frequency calculation unit 24 calculates the power supply frequency (fs) based on the power supply voltage phase (θs) calculated by the phase calculation unit 21 and outputs the power supply frequency (fs) to the voltage control unit 15.
Specifically, the frequency calculation unit 24 calculates the power supply frequency (fs) from the phase differentiation (difference) using the following equation (7). Here, θs1 and θs0 are the current and previous phase values, respectively, and Δt is the phase calculation time interval. Further, the phase order of the three-phase power supply can be determined based on the calculated power supply frequency (fs).
Formula (7) fs = (θs1-θs0) / Δt

図4は、図3に示す電源異常検出・記録部23の制御構成を示すブロック図である。
電源異常検出・記録部23は、図4に示すように、振幅演算部30、不平衡演算部31、異常判定部32、バッファメモリ33、及び不揮発性メモリ34を備えて構成されている。電源異常検出・記録部23では、交流電圧の差分信号(EUV,EVW)が振幅演算部30と不平衡演算部31とに入力されると、これらの振幅演算部30と不平衡演算部31とによって交流電圧の振幅値と相電圧の不平衡率とが算出される。
FIG. 4 is a block diagram showing a control configuration of the power supply abnormality detection / recording unit 23 shown in FIG.
As shown in FIG. 4, the power supply abnormality detection / recording unit 23 includes an amplitude calculation unit 30, an unbalance calculation unit 31, an abnormality determination unit 32, a buffer memory 33, and a nonvolatile memory 34. In the power supply abnormality detection / recording unit 23, when an AC voltage difference signal (E UV , E VW ) is input to the amplitude calculation unit 30 and the unbalance calculation unit 31, the amplitude calculation unit 30 and the unbalance calculation unit 31 31, the amplitude value of the AC voltage and the unbalance rate of the phase voltage are calculated.

異常判定部32は、振幅演算部30と不平衡演算部31とで算出された交流電圧の振幅値と不平衡率とに基づいて、交流電源1の電圧変動(例えば、瞬時停電や電源電圧の急上昇)、電源電圧の不平衡、及び三相のうちのいずれかの相の欠相を検出し、電源異常検知信号(交流電源異常情報)をPWM制御部17へ出力する。PWM制御部17は、電源異常検知信号を受信すると、直ちに、PWM制御信号の出力を停止させインバータ回路4の動作を停止させることにより、電力変換装置10を保護するように動作する。   Based on the amplitude value and the unbalance rate of the AC voltage calculated by the amplitude calculation unit 30 and the unbalance calculation unit 31, the abnormality determination unit 32 detects voltage fluctuations of the AC power supply 1 (for example, instantaneous power failure or power supply voltage). A sudden increase), an imbalance in the power supply voltage, and an open phase in any one of the three phases are detected, and a power supply abnormality detection signal (AC power supply abnormality information) is output to the PWM control unit 17. When receiving the power supply abnormality detection signal, the PWM control unit 17 immediately stops the output of the PWM control signal and stops the operation of the inverter circuit 4 so as to protect the power conversion device 10.

電源異常検出・記録部23は、電源異常の前後の電源電圧の検出信号を記録するために、制御装置8のメモリの一部をバッファメモリ33として、その検出信号を一時的に保存する。すなわち、バッファメモリ33は交流電圧の差分信号(EUV,EVW)を常時入力し、異常判定部32が電源異常を検知した場合は、バッファメモリ33から不揮発性メモリ34(フラッシュメモリ)へデータを書き込み、電源異常の履歴(交流電源変化情報)を保存する。このような機能を有することにより、保存された異常履歴の内容から電力変換装置10の電源異常の追跡調査などを行うことができる。 The power supply abnormality detection / recording unit 23 temporarily stores the detection signal using the buffer memory 33 as a part of the memory of the control device 8 in order to record the detection signal of the power supply voltage before and after the power supply abnormality. That is, the buffer memory 33 always receives an AC voltage difference signal (E UV , E VW ), and when the abnormality determination unit 32 detects a power supply abnormality, data is transferred from the buffer memory 33 to the nonvolatile memory 34 (flash memory). To save the history of power supply abnormality (AC power supply change information). By having such a function, it is possible to perform a follow-up survey of power supply abnormality of the power conversion device 10 from the contents of the stored abnormality history.

図5は、本発明の第1実施形態に係る電力変換装置の各部波形である。図5に示す各波形図において、横軸は時間軸を表し、(a)、(b)、(c)の縦軸は電圧レベル、(d)の縦軸は位相を表している。   FIG. 5 is a waveform of each part of the power conversion device according to the first embodiment of the present invention. In each waveform diagram shown in FIG. 5, the horizontal axis represents the time axis, the vertical axes of (a), (b), and (c) represent the voltage level, and the vertical axis of (d) represents the phase.

図5に示すように、(a)は交流電源1のU相電圧Vu40、(b)はU相に対応する分圧抵抗回路6の中点電圧41、(c)はV相に対応する分圧抵抗回路6の中点電圧42、(d)は一対の差動アンプ7からそれぞれ出力されるUV間電圧信号EUV43及びVW間電圧信号EVW44、(e)は位相演算部21から出力される位相演算値(つまり、電源電圧位相)θの波形であり、いずれの波形も時間的な推移を示している。なお、時間軸の0.2sより前はインバータ回路4のインバータモードが動作を停止し、0.2s以降はインバータモードが動作を開始している状態を示している。 As shown in FIG. 5, (a) is the U-phase voltage Vu 40 of the AC power supply 1, (b) is the midpoint voltage 41 of the voltage dividing resistor circuit 6 corresponding to the U-phase, and (c) is the voltage corresponding to the V-phase. The midpoint voltage 42, (d) of the piezoresistive circuit 6 is output from the pair of differential amplifiers 7, and the inter-UV voltage signal E UV 43 and the inter-VW voltage signal E VW 44, (e) are output from the phase calculation unit 21. This is a waveform of an output phase calculation value (that is, a power supply voltage phase) θ S , and each waveform shows a temporal transition. Note that the inverter mode of the inverter circuit 4 stops operating before 0.2 s on the time axis, and the inverter mode starts operating after 0.2 s.

図5に示すように、インバータ回路4のインバータモードが動作を開始した後(つまり、0.2s以降)には、U相、V相に対応する分圧抵抗回路6の中点電圧41、42にはリップル成分が現れている。このリップル成分は、インバータ回路4がPWM制御でスイッチング動作を行っているために、インバータ回路4の各半導体スイッチング素子の通電状態によって直流側の負極(接地)電位が変動していることに起因している。   As shown in FIG. 5, after the inverter mode of the inverter circuit 4 starts operating (that is, after 0.2 s), the midpoint voltages 41 and 42 of the voltage dividing resistor circuit 6 corresponding to the U-phase and the V-phase. Shows a ripple component. This ripple component is due to the fact that the negative side (ground) potential on the DC side varies depending on the energization state of each semiconductor switching element of the inverter circuit 4 because the inverter circuit 4 performs a switching operation by PWM control. ing.

ところが、各相に対応する分圧抵抗回路6の一端はインバータ回路4の直流側の負極(接地)ラインと繋がっているため、分圧抵抗回路6のU相、V相の各分圧抵抗の中点電圧のリップル成分の大きさは同じである。そのため、差動アンプ7で2相分(つまり、U相とV相)の分圧抵抗の中点電圧を差分処理すれば、差動アンプ7はリップル成分の影響を除去した線間電圧信号(UV間電圧信号EUV43,VW間電圧信号EVW44)を出力することができる。 However, since one end of the voltage dividing resistor circuit 6 corresponding to each phase is connected to the negative electrode (ground) line on the DC side of the inverter circuit 4, each of the U-phase and V-phase voltage dividing resistors of the voltage dividing resistor circuit 6 is connected. The magnitude of the ripple component of the midpoint voltage is the same. Therefore, if the differential amplifier 7 performs differential processing on the midpoint voltage of the voltage dividing resistors for two phases (that is, the U phase and the V phase), the differential amplifier 7 removes the influence of the ripple component from the line voltage signal ( An inter-UV voltage signal E UV 43 and an inter-VW voltage signal E VW 44) can be output.

すなわち、図5(d)に示すように、一対の差動アンプ7でそれぞれ処理された線間電圧信号(UV間電圧信号EUV43及びVW間電圧信号EVW44)には、インバータモードが動作を開始している0.2s以降においてもリップル成分が殆どなく、電源情報演算部13の位相演算部21で演算された電源電圧位相θ45への影響もないことがわかる。 That is, as shown in FIG. 5D, the line voltage signals (the UV voltage signal E UV 43 and the VW voltage signal E VW 44) respectively processed by the pair of differential amplifiers 7 have an inverter mode. It can be seen that there is almost no ripple component even after 0.2 s when the operation is started, and there is no influence on the power supply voltage phase θ S 45 calculated by the phase calculation unit 21 of the power supply information calculation unit 13.

以上説明したように、本発明の第1実施形態に係る電力変換装置10では、電圧検出手段(分圧抵抗回路6)は、各相の交流電圧を検出する。差分電圧演算手段(差動アンプ7)は、検出された2つの相の検出電圧を比較することにより、リップル成分の影響が除去された線間電圧を出力する。制御手段(制御装置8)は、差動アンプ7が出力した線間電圧を用いて補正されたPWM制御信号に基づいて、インバータ回路4のPWM制御を行う。これにより、仮に、交流電源1の交流電圧が変動したとしても、交流電源系統に流れる高調波電流を適切に抑制することができる。
本発明の第1実施形態に係る電力変換装置10によれば、絶縁型の電圧センサや小型の交流トランスなどの部品を要することなく、交流電源系統に流れる高調波電流を適切に抑制することができるため、アクティブフィルタ機能を有する電力変換装置のコスト低減及び信頼性向上を両立させることができる。
As described above, in the power conversion device 10 according to the first embodiment of the present invention, the voltage detection means (the voltage dividing resistor circuit 6) detects the AC voltage of each phase. The differential voltage calculation means (differential amplifier 7) outputs the line voltage from which the influence of the ripple component is removed by comparing the detected voltages of the two phases detected. The control means (control device 8) performs PWM control of the inverter circuit 4 based on the PWM control signal corrected using the line voltage output from the differential amplifier 7. Thereby, even if the alternating voltage of the alternating current power supply 1 fluctuates, the harmonic current flowing through the alternating current power supply system can be appropriately suppressed.
According to the power conversion device 10 according to the first embodiment of the present invention, it is possible to appropriately suppress the harmonic current flowing in the AC power supply system without requiring components such as an insulating voltage sensor and a small AC transformer. Therefore, it is possible to achieve both cost reduction and reliability improvement of the power conversion device having the active filter function.

本発明の第1実施形態に係る電力変換装置10では、電圧検出手段として機能する分圧抵抗回路6は、各相の分圧抵抗の比によって各相の検出電圧を検出する。
本発明の第1実施形態に係る電力変換装置10によれば、簡易な構成をもって、交流電源1の各相の検出電圧を得ることができる。
In the power conversion device 10 according to the first embodiment of the present invention, the voltage dividing resistor circuit 6 functioning as voltage detecting means detects the detection voltage of each phase based on the ratio of the voltage dividing resistors of each phase.
According to the power conversion device 10 according to the first embodiment of the present invention, the detection voltage of each phase of the AC power supply 1 can be obtained with a simple configuration.

また、本発明の第1実施形態に係る電力変換装置10では、差分電圧演算手段として機能する差動アンプ7は、分圧抵抗回路6の任意の二相の各々の分圧抵抗比で案分した電圧を任意の二相の検出電圧として入力し、入力された任意の二相の検出電圧の差分から任意の二相の線間電圧を求める。
したがって、本発明の第1実施形態に係る電力変換装置10によれば、簡易な構成をもって、交流電源1の任意の二相の線間電圧を得ることができる。
Further, in the power conversion device 10 according to the first embodiment of the present invention, the differential amplifier 7 functioning as the differential voltage calculation means is prorated according to the voltage dividing resistance ratio of each of any two phases of the voltage dividing resistor circuit 6. The input voltage is input as an arbitrary two-phase detection voltage, and an arbitrary two-phase line voltage is obtained from the difference between the input arbitrary two-phase detection voltages.
Therefore, according to the power conversion device 10 according to the first embodiment of the present invention, an arbitrary two-phase line voltage of the AC power supply 1 can be obtained with a simple configuration.

また、本発明の第1実施形態に係る電力変換装置10では、制御装置(制御手段)8が備える電源情報演算部13は、差動アンプ7で求めた任意の二相の線間電圧から、交流電源1の周波数、位相、相順、及び各相電圧を含む交流電源情報を算出する。制御装置(制御手段)8は、この交流電源情報に基づいて、インバータ回路4の電圧又は電流の制御を行う。
本発明の第1実施形態に係る電力変換装置10によれば、時々刻々と変動する交流電源情報に基づいて、インバータ回路4の電圧又は電流を適切に制御することができる。
Further, in the power conversion device 10 according to the first embodiment of the present invention, the power supply information calculation unit 13 included in the control device (control means) 8 is based on an arbitrary two-phase line voltage obtained by the differential amplifier 7. The AC power supply information including the frequency, phase, phase sequence, and each phase voltage of the AC power supply 1 is calculated. The control device (control means) 8 controls the voltage or current of the inverter circuit 4 based on the AC power supply information.
According to the power conversion device 10 according to the first embodiment of the present invention, the voltage or current of the inverter circuit 4 can be appropriately controlled based on the alternating-current power supply information that varies from moment to moment.

また、本発明の第1実施形態に係る電力変換装置10では、電源情報演算部13は電源異常検出・記録部23を備え、この電源異常検出・記録部23は、差動アンプ7で求めた任意の二相の線間電圧から、交流電源1の欠相、交流電圧の急変動、及び三相不平衡を含む交流電源異常情報を検知する。制御装置(制御手段)8は、この交流電源異常情報に基づいて、PWM制御信号の出力を停止することにより、インバータ回路4を保護する。
本発明の第1実施形態に係る電力変換装置10によれば、仮に、交流電源1の欠相、交流電圧の急変動、及び三相不平衡を含む交流電源異常が生じた場合でも、インバータ回路4を保護することができる。
Further, in the power conversion device 10 according to the first embodiment of the present invention, the power supply information calculation unit 13 includes the power supply abnormality detection / recording unit 23, and the power supply abnormality detection / recording unit 23 is obtained by the differential amplifier 7. AC power supply abnormality information including an open phase of the AC power supply 1, a sudden change in the AC voltage, and a three-phase imbalance is detected from an arbitrary two-phase line voltage. The control device (control means) 8 protects the inverter circuit 4 by stopping the output of the PWM control signal based on the AC power supply abnormality information.
According to the power conversion device 10 according to the first embodiment of the present invention, even if an AC power supply abnormality including a phase failure of the AC power supply 1, a sudden change in AC voltage, and a three-phase imbalance occurs, the inverter circuit 4 can be protected.

また、本発明の第1実施形態に係る電力変換装置10では、電源異常検出・記録部23は、前記交流電源異常情報を検知した時点前後の交流電源1の周波数、位相、及び電圧を含む交流電源変化情報を不揮発性メモリ34に記憶する機能を有する。
本発明の第1実施形態に係る電力変換装置10によれば、仮に、交流電源1の欠相、交流電圧の急変動、及び三相不平衡を含む交流電源異常が生じた場合でも、その異常が生じた時点前後の交流電源1の周波数、位相、及び電圧を含む交流電源変化情報に基づいて、異常が生じた経緯を把握することができる。
Moreover, in the power converter device 10 according to the first embodiment of the present invention, the power supply abnormality detection / recording unit 23 is an alternating current including the frequency, phase, and voltage of the alternating current power supply 1 before and after the detection of the alternating current power supply abnormality information. It has a function of storing power supply change information in the nonvolatile memory 34.
According to the power conversion device 10 according to the first embodiment of the present invention, even if an AC power supply abnormality including a phase failure of the AC power supply 1, a sudden change in AC voltage, and a three-phase imbalance occurs, the abnormality Based on the AC power supply change information including the frequency, phase, and voltage of the AC power supply 1 before and after the occurrence of the failure, it is possible to grasp the background of the occurrence of the abnormality.

《第2実施形態》
(アクティブフィルタ)
第1実施形態では、交流電源系統に接続される電力変換装置について説明したが、第2実施形態では、高調波電流を抑制するアクティブフィルタの構成について説明する。
第2実施形態に係るアクティブフィルタでは、交流電源系統から負荷に電力を供給している。この負荷に並列に接続されるアクティブフィルタは、負荷電流の高調波成分だけを補正するため、インバータ回路4は小容量の半導体スイッチング素子及びダイオードで構成すればよい。
<< Second Embodiment >>
(Active filter)
In 1st Embodiment, although the power converter device connected to an alternating current power supply system was demonstrated, 2nd Embodiment demonstrates the structure of the active filter which suppresses a harmonic current.
In the active filter according to the second embodiment, power is supplied from the AC power supply system to the load. Since the active filter connected in parallel to the load corrects only the harmonic component of the load current, the inverter circuit 4 may be constituted by a small-capacity semiconductor switching element and a diode.

図6は、本発明の第2実施形態に係るアクティブフィルタの構成図である。基本的には、図1の電力変換装置10と図6のアクティブフィルタ50とは同じ回路構成であるため、同一部品間で共通の符号を付すことにする。   FIG. 6 is a configuration diagram of an active filter according to the second embodiment of the present invention. Basically, the power converter 10 of FIG. 1 and the active filter 50 of FIG. 6 have the same circuit configuration, and therefore, common reference numerals are given to the same components.

すなわち、図6に示すアクティブフィルタ50は、交流電源1から負荷52に流れる入力電流に含まれる高調波成分を相殺する補償電流を出力する機能を有する装置であり、交流電源1と並列に接続されている。このアクティブフィルタ50は、図1の電力変換装置10とほぼ同様の回路構成になっている。そのため、アクティブフィルタ50について、重複する説明は省略する。
また、アクティブフィルタ50の出力電流には有効電流成分が殆んど含まれない。そのため、インバータ回路の直流側には、直流負荷/直流電源は不要であり、直流側には平滑コンデンサ5のみが接続されている。この平滑コンデンサ5の両端電圧は、分圧抵抗53の中点電圧として検出され、直流電圧(Ed)として制御装置8へ入力される。
In other words, the active filter 50 shown in FIG. 6 is a device having a function of outputting a compensation current that cancels a harmonic component contained in an input current flowing from the AC power supply 1 to the load 52, and is connected in parallel with the AC power supply 1. ing. The active filter 50 has a circuit configuration substantially similar to that of the power conversion device 10 of FIG. Therefore, the redundant description of the active filter 50 is omitted.
Further, the output current of the active filter 50 contains almost no effective current component. Therefore, no DC load / DC power supply is required on the DC side of the inverter circuit, and only the smoothing capacitor 5 is connected to the DC side. The voltage across the smoothing capacitor 5 is detected as the midpoint voltage of the voltage dividing resistor 53 and input to the control device 8 as a DC voltage (Ed).

この第2実施形態でも、第1実施形態と同様に、分圧抵抗回路6と一対の差動アンプ7を用いて交流電圧信号(V,V,V)を検出する。検出された交流電圧信号は、制御装置8に入力されて、第1実施形態と同様に、制御装置8の内部で電源電圧、位相、周波数、相順を算出して、PWM制御及び電源異常の保護処理が行われる。
第2実施形態に係るアクティブフィルタ50によれば、安価な分圧抵抗回路6と一対の差動アンプ7で交流電圧を検出して、交流電源系統に流れる高調波電流の抑制を行うため、アクティブフィルタのコスト低減及び信頼性向上を両立させることができる。
Also in the second embodiment, the AC voltage signals (V U , V V , V W ) are detected using the voltage dividing resistor circuit 6 and the pair of differential amplifiers 7 as in the first embodiment. The detected AC voltage signal is input to the control device 8, and similarly to the first embodiment, the power supply voltage, phase, frequency, and phase sequence are calculated inside the control device 8, and PWM control and power supply abnormality are detected. Protection processing is performed.
According to the active filter 50 according to the second embodiment, since the AC voltage is detected by the inexpensive voltage dividing resistor circuit 6 and the pair of differential amplifiers 7 and the harmonic current flowing in the AC power supply system is suppressed, the active filter 50 is active. Both cost reduction and reliability improvement of the filter can be achieved.

《第3実施形態》
(モータ駆動装置)
第3実施形態では、第2実施形態に係るアクティブフィルタ50を備えたモータ駆動装置について説明する。図7は、本発明の第3実施形態に係るアクティブフィルタを備えたモータ駆動装置の構成図である。空気調和機や冷凍機などの冷凍装置200は、空気温度を調和する装置であり、室外機210と室内機211とを冷媒配管206を介して接続して構成されている。
<< Third Embodiment >>
(Motor drive device)
In the third embodiment, a motor driving device including the active filter 50 according to the second embodiment will be described. FIG. 7 is a configuration diagram of a motor drive device including an active filter according to the third embodiment of the present invention. The refrigeration apparatus 200 such as an air conditioner or a refrigerator is an apparatus that harmonizes the air temperature, and is configured by connecting an outdoor unit 210 and an indoor unit 211 via a refrigerant pipe 206.

室内機211は、冷媒と空気間の熱交換を行う室内熱交換器201と、この室内熱交換器201に空気を送風する室内ファン203とを備える。
室外機210は、冷媒と空気間の熱交換を行う室外熱交換器202と、この室外熱交換器202に空気を送風する室外ファン204と、冷媒を圧縮して循環させる圧縮機205とを備える。
圧縮機205は、その内部に、圧縮機構部(図示せず)と圧縮機用モータ207とを備える。
The indoor unit 211 includes an indoor heat exchanger 201 that performs heat exchange between the refrigerant and air, and an indoor fan 203 that blows air to the indoor heat exchanger 201.
The outdoor unit 210 includes an outdoor heat exchanger 202 that performs heat exchange between the refrigerant and the air, an outdoor fan 204 that blows air to the outdoor heat exchanger 202, and a compressor 205 that compresses and circulates the refrigerant. .
The compressor 205 includes a compression mechanism unit (not shown) and a compressor motor 207 therein.

圧縮機用モータ207は、モータ駆動装置100によって駆動される。モータ駆動装置100は、図7に示すように、アクティブフィルタ50及びモータ駆動回路101を備えて構成されている。アクティブフィルタ50は、図6に示す第2実施形態に係るアクティブフィルタ50と共通の回路構成であり、かつ、交流電源1に並列接続された構成となっている。このアクティブフィルタ50は、電流センサ51を介して、負荷(モータ駆動回路101)に流れる交流電流(I,I)を検出し、この交流電流に含まれる高調波を抑制(相殺)するための補償電流を発生させることにより、交流電源系統に流れる電流の高調波成分を抑制するように動作する。 The compressor motor 207 is driven by the motor driving device 100. As shown in FIG. 7, the motor drive device 100 includes an active filter 50 and a motor drive circuit 101. The active filter 50 has the same circuit configuration as that of the active filter 50 according to the second embodiment shown in FIG. 6 and is connected in parallel to the AC power source 1. The active filter 50 detects an alternating current (I U , I V ) flowing through the load (motor drive circuit 101) via the current sensor 51, and suppresses (cancels) harmonics included in the alternating current. Is generated so as to suppress harmonic components of the current flowing in the AC power supply system.

モータ駆動回路101は、交流/直流変換を行う整流回路102、及び直流/交流変換を行うインバータ103を備えて構成される。モータ駆動回路101は、圧縮機用モータ207を駆動するための電源手段として機能する。   The motor drive circuit 101 includes a rectifier circuit 102 that performs AC / DC conversion and an inverter 103 that performs DC / AC conversion. The motor drive circuit 101 functions as power supply means for driving the compressor motor 207.

第3実施形態に係るモータ駆動装置100によれば、第2実施形態に係るアクティブフィルタ50を採用することにより、モータ駆動装置100に流れる交流電流の高調波成分を電源高調波規制値以下に抑えることができる。また、アクティブフィルタ50は、モータ駆動装置100への電力供給を行うことがないため、小型かつ低コストで実現することができる。
また、第3実施形態に係るモータ駆動装置100を備える冷凍装置200によれば、第2実施形態に係るアクティブフィルタ50を採用することにより、冷凍装置200に流れる交流電流の高調波成分を電源高調波規制値以下に抑えることができる。また、アクティブフィルタ50は、冷凍装置200への電力供給を行うことがないため、小型かつ低コストで実現することができる。
According to the motor drive device 100 according to the third embodiment, by adopting the active filter 50 according to the second embodiment, the harmonic component of the alternating current flowing through the motor drive device 100 is suppressed below the power supply harmonic regulation value. be able to. Further, since the active filter 50 does not supply power to the motor driving device 100, the active filter 50 can be realized in a small size and at low cost.
In addition, according to the refrigeration apparatus 200 including the motor driving apparatus 100 according to the third embodiment, by adopting the active filter 50 according to the second embodiment, the harmonic component of the alternating current flowing through the refrigeration apparatus 200 is converted to the power harmonic. It can be suppressed below the wave regulation value. Further, since the active filter 50 does not supply power to the refrigeration apparatus 200, it can be realized in a small size and at low cost.

〔その他の実施形態〕
以上説明した本発明に係る電力変換装置、アクティブフィルタ、及びこのアクティブフィルタを備えたモータ駆動装置、並びに冷凍装置の各実施形態は、本発明の具現化の例を示したものである。したがって、これらによって本発明の技術的範囲が限定的に解釈されることがあってはならない。本発明はその要旨又はその主要な特徴から逸脱することなく、様々な形態で実施することができるからである。
[Other Embodiments]
Each of the embodiments of the power conversion device, the active filter, the motor drive device including the active filter, and the refrigeration device according to the present invention described above is an example of realization of the present invention. Therefore, the technical scope of the present invention should not be limitedly interpreted by these. This is because the present invention can be implemented in various forms without departing from the gist or main features thereof.

本発明に係る電力変換装置は、高調波電流対策を施した蓄電装置、無停電電源装置、太陽光発電装置、及び風力発電装置などに広く利用することができる。また、本発明に係るアクティブフィルタは、既設の交流電源で駆動されている各種機器(モータ駆動装置や冷凍装置など)に取り付けて高調波電流対策を行うことができる。   The power conversion device according to the present invention can be widely used for power storage devices, uninterruptible power supply devices, solar power generation devices, wind power generation devices, and the like that have taken harmonic current countermeasures. In addition, the active filter according to the present invention can be attached to various devices (such as a motor driving device and a refrigeration device) driven by an existing AC power source to take measures against harmonic current.

1 交流電源
2 ノイズフィルタ
3 リアクトル
4 インバータ回路
5 平滑コンデンサ
6 分圧抵抗回路(電圧検出手段)
7 差動アンプ(差分電圧演算手段)
8 制御装置(制御手段)
9 直流負荷/直流電源
10 電力変換装置
11 電流検出部
13 電源情報演算部
14 3相/2軸変換部
15 電圧制御部
16 2軸/3相変換部
17 PWM制御部
20 A/D変換部
21 位相演算部
22 相電圧演算部
23 電源異常検出・記録部
24 周波数演算部
30 振幅演算部
31 不平衡演算部
32 異常判定部
33 バッファメモリ
34 不揮発性メモリ
40 U相電圧波形(Vu)
41 U相に対応する分圧抵抗回路の中点電圧波形
42 V相に対応する分圧抵抗回路の中点電圧波形
43 UV間電圧信号波形(Euv)
44 VW間電圧信号波形(Evw)
45 演算された電源位相波形(θs)
50 アクティブフィルタ
51 電流センサ
52 負荷
53 分圧抵抗
101 モータ駆動装置(モータ駆動基板)
102 整流回路
103 インバータ
200 冷凍装置
201 室内熱交換器
202 室外熱交換器
203 室内ファン
204 室外ファン
205 圧縮機
206 配管
207 圧縮機用モータ
210 室外機
211 室内機
DESCRIPTION OF SYMBOLS 1 AC power supply 2 Noise filter 3 Reactor 4 Inverter circuit 5 Smoothing capacitor 6 Voltage dividing resistor circuit (voltage detection means)
7 Differential amplifier (difference voltage calculation means)
8 Control device (control means)
DESCRIPTION OF SYMBOLS 9 DC load / DC power supply 10 Power converter 11 Current detection part 13 Power supply information calculating part 14 3 phase / 2 axis conversion part 15 Voltage control part 16 2 axis / 3 phase conversion part 17 PWM control part 20 A / D conversion part 21 Phase calculation unit 22 Phase voltage calculation unit 23 Power supply abnormality detection / recording unit 24 Frequency calculation unit 30 Amplitude calculation unit 31 Unbalance calculation unit 32 Abnormality determination unit 33 Buffer memory 34 Non-volatile memory 40 U phase voltage waveform (Vu)
41 Midpoint voltage waveform of voltage dividing resistor circuit corresponding to U phase 42 Midpoint voltage waveform of voltage dividing resistor circuit corresponding to V phase 43 Voltage signal waveform between UV (Euv)
44 VW voltage signal waveform (Evw)
45 Calculated power phase waveform (θs)
50 Active Filter 51 Current Sensor 52 Load 53 Voltage Dividing Resistor 101 Motor Drive Device (Motor Drive Board)
DESCRIPTION OF SYMBOLS 102 Rectifier circuit 103 Inverter 200 Refrigeration apparatus 201 Indoor heat exchanger 202 Outdoor heat exchanger 203 Indoor fan 204 Outdoor fan 205 Compressor 206 Piping 207 Motor for compressor 210 Outdoor unit 211 Indoor unit

Claims (9)

多相交流の交流電源に接続され、交流/直流変換モードと直流/交流変換モードとを有するインバータ回路と、
前記交流電源の各相の入力端子と前記インバータ回路の直流側の接地端子との間に接続され、該交流電源の各相の電圧を検出する電圧検出手段と、
前記電圧検出手段で検出した任意の二相の検出電圧の差分を、該任意の二相の線間電圧として求める差分電圧演算手段と、
前記差分電圧演算手段で求めた任意の二相の線間電圧を用いて補正された制御信号に基づいて、前記インバータ回路を制御する制御手段と、
を備えることを特徴とする電力変換装置。
An inverter circuit connected to a polyphase AC power source and having an AC / DC conversion mode and a DC / AC conversion mode;
Voltage detection means connected between the input terminal of each phase of the AC power supply and a ground terminal on the DC side of the inverter circuit, and detects the voltage of each phase of the AC power supply;
A differential voltage calculation means for obtaining a difference between the detection voltages of any two phases detected by the voltage detection means as the line voltage of the arbitrary two phases;
Control means for controlling the inverter circuit based on a control signal corrected using an arbitrary two-phase line voltage obtained by the differential voltage calculation means;
A power conversion device comprising:
前記電圧検出手段は、前記交流電源の各相の入力端子と前記インバータ回路の直流側の接地端子との間に接続される分圧抵抗回路であり、
この分圧抵抗回路は、各相の分圧抵抗の比によって各相の検出電圧を検出することを特徴とする請求項1に記載の電力変換装置。
The voltage detection means is a voltage dividing resistor circuit connected between an input terminal of each phase of the AC power supply and a ground terminal on the DC side of the inverter circuit,
The power converter according to claim 1, wherein the voltage dividing resistor circuit detects a detection voltage of each phase based on a ratio of the voltage dividing resistors of each phase.
前記差分電圧演算手段は差動アンプであり、
この差動アンプは、前記分圧抵抗回路の任意の二相の各々の分圧抵抗比で案分した電圧を任意の二相の検出電圧として入力し、入力された任意の二相の検出電圧の差分から任意の二相の線間電圧を求めることを特徴とする請求項2に記載の電力変換装置。
The differential voltage calculation means is a differential amplifier,
In this differential amplifier, the voltage divided by the voltage dividing resistance ratio of each of the arbitrary two phases of the voltage dividing resistor circuit is input as an arbitrary two-phase detection voltage, and the input of the arbitrary two-phase detection voltage The power converter according to claim 2, wherein an arbitrary two-phase line voltage is obtained from the difference between the two.
前記制御手段は電源情報演算部を備え、
この電源情報演算部は、前記差分電圧演算手段で求めた任意の二相の線間電圧から、前記交流電源の周波数、位相、相順、及び各相電圧を含む交流電源情報を算出し、
前記制御手段は、この交流電源情報に基づいて、前記インバータ回路の電圧及び電流の少なくとも一方の制御を行うことを特徴とする請求項1ないし請求項3のいずれか1項に記載の電力変換装置。
The control means includes a power information calculation unit,
This power supply information calculation unit calculates the AC power supply information including the frequency, phase, phase order, and each phase voltage of the AC power supply from the line voltage of any two phases obtained by the differential voltage calculation means,
4. The power converter according to claim 1, wherein the control unit controls at least one of a voltage and a current of the inverter circuit based on the AC power supply information. 5. .
前記電源情報演算部は電源異常検出・記録部を備え、
この電源異常検出・記録部は、前記差分電圧演算手段で求めた任意の二相の線間電圧から、前記交流電源の欠相、交流電圧の急変動、及び三相不平衡を含む交流電源異常情報を検知し、
前記制御手段は、この交流電源異常情報に基づいて前記制御信号の出力を停止することにより、前記インバータ回路を保護することを特徴とする請求項4に記載の電力変換装置。
The power information calculation unit includes a power abnormality detection / recording unit,
This power supply abnormality detection / recording unit detects an AC power supply abnormality including a phase loss of the AC power supply, a sudden change in the AC voltage, and a three-phase imbalance from any two-phase line voltage obtained by the differential voltage calculation means. Detect information,
5. The power conversion apparatus according to claim 4, wherein the control unit protects the inverter circuit by stopping output of the control signal based on the AC power supply abnormality information.
前記電源異常検出・記録部は、前記交流電源異常情報を検知した時点前後の交流電源の周波数、位相、及び電圧を含む交流電源変化情報を不揮発性メモリに記憶する機能を有することを特徴とする請求項5に記載の電力変換装置。   The power supply abnormality detection / recording unit has a function of storing, in a nonvolatile memory, AC power supply change information including the frequency, phase, and voltage of the AC power supply before and after the time when the AC power supply abnormality information is detected. The power conversion device according to claim 5. 請求項1ないし請求項6のいずれか1項に記載の電力変換装置と共通の構成を備え、
負荷へ電力を供給する交流電源に並列に接続され、この交流電源に流れる高調波電流を抑制するための補償電流を発生する機能を有することを特徴とするアクティブフィルタ。
A power converter according to any one of claims 1 to 6 has a common configuration,
An active filter which is connected in parallel to an AC power supply for supplying power to a load and has a function of generating a compensation current for suppressing a harmonic current flowing in the AC power supply.
交流電源から受電し、交流/直流変換を行う整流回路及び直流/交流変換を行うインバータを備えてモータを駆動させるモータ駆動回路と、
前記モータ駆動回路に並列接続され、該モータ駆動回路の入力電流に含まれる高調波を抑制するための補償電流を発生するアクティブフィルタと、を備え、
前記アクティブフィルタは、請求項7に記載のアクティブフィルタであることを特徴とするモータ駆動装置。
A motor drive circuit for receiving a power from an AC power source and driving the motor with a rectifier circuit for AC / DC conversion and an inverter for DC / AC conversion;
An active filter that is connected in parallel to the motor drive circuit and generates a compensation current for suppressing harmonics included in the input current of the motor drive circuit,
The motor drive device according to claim 7, wherein the active filter is the active filter according to claim 7.
冷媒を圧縮する圧縮機構部、及び当該圧縮機構部を駆動する圧縮機用モータを備える圧縮機に用いられるモータ駆動装置であって、
前記圧縮機用モータは、前記モータ駆動装置により駆動され、
前記モータ駆動装置は、請求項8に記載のモータ駆動装置であることを特徴とするモータ駆動装置。
A motor driving device used in a compressor including a compression mechanism unit that compresses a refrigerant, and a compressor motor that drives the compression mechanism unit,
The compressor motor is driven by the motor driving device,
The motor drive device according to claim 8, wherein the motor drive device is a motor drive device according to claim 8.
JP2015035756A 2015-02-25 2015-02-25 Power conversion device, active filter, and motor drive device Active JP6453108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015035756A JP6453108B2 (en) 2015-02-25 2015-02-25 Power conversion device, active filter, and motor drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015035756A JP6453108B2 (en) 2015-02-25 2015-02-25 Power conversion device, active filter, and motor drive device

Publications (2)

Publication Number Publication Date
JP2016158432A true JP2016158432A (en) 2016-09-01
JP6453108B2 JP6453108B2 (en) 2019-01-16

Family

ID=56826892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015035756A Active JP6453108B2 (en) 2015-02-25 2015-02-25 Power conversion device, active filter, and motor drive device

Country Status (1)

Country Link
JP (1) JP6453108B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018109859A (en) * 2017-01-04 2018-07-12 日立ジョンソンコントロールズ空調株式会社 Control device, power conversion equipment, motor driving device and refrigerator using the same
WO2021240642A1 (en) * 2020-05-26 2021-12-02 三菱電機株式会社 Harmonic suppression device and air conditioning system

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0191690A (en) * 1987-09-30 1989-04-11 Toshiba Corp Driving device for brushless motor
JPH09163752A (en) * 1995-12-11 1997-06-20 Fuji Electric Co Ltd Pwm controlled self-excited rectifier
JPH10155276A (en) * 1996-11-20 1998-06-09 Hitachi Ltd Power conversion equipment
JP2006317425A (en) * 2005-04-12 2006-11-24 Fuji Electric Systems Co Ltd Alternating current voltage detection system for power conversion circuit
WO2008129623A1 (en) * 2007-04-10 2008-10-30 Mitsubishi Electric Corporation Power supply regenerative converter
JP2009257870A (en) * 2008-04-15 2009-11-05 Nakajima Denki Seisakusho:Kk Method for detecting phase voltage of three-phase distribution line, zero-phase voltage, line voltage, phase voltage higher harmonic wave of three-phase distribution line, zero-phase voltage higher harmonic wave, and line voltage higher harmonic wave and voltage detecting apparatus used for detection in the method
JP2011092005A (en) * 2004-10-04 2011-05-06 Daikin Industries Ltd Method for protecting pwm rectifier circuit and apparatus therefor
JP2012016102A (en) * 2010-06-30 2012-01-19 Hitachi Automotive Systems Ltd Power conversion system and power conversion device
JP2012050177A (en) * 2010-08-24 2012-03-08 Mitsubishi Electric Corp Harmonic suppressor
JP2012151993A (en) * 2011-01-19 2012-08-09 Hitachi Industrial Equipment Systems Co Ltd Electric power conversion system and rotary machine drive system using the same
JP2012175834A (en) * 2011-02-22 2012-09-10 Kyosan Electric Mfg Co Ltd Power factor control method for three-phase converter, reactive power control method for three-phase converter, and controller for three-phase converter
JP5119222B2 (en) * 2009-08-31 2013-01-16 株式会社日立産機システム Converter device, motor driving module, and refrigeration device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0191690A (en) * 1987-09-30 1989-04-11 Toshiba Corp Driving device for brushless motor
JPH09163752A (en) * 1995-12-11 1997-06-20 Fuji Electric Co Ltd Pwm controlled self-excited rectifier
JPH10155276A (en) * 1996-11-20 1998-06-09 Hitachi Ltd Power conversion equipment
JP2011092005A (en) * 2004-10-04 2011-05-06 Daikin Industries Ltd Method for protecting pwm rectifier circuit and apparatus therefor
JP2006317425A (en) * 2005-04-12 2006-11-24 Fuji Electric Systems Co Ltd Alternating current voltage detection system for power conversion circuit
WO2008129623A1 (en) * 2007-04-10 2008-10-30 Mitsubishi Electric Corporation Power supply regenerative converter
JP2009257870A (en) * 2008-04-15 2009-11-05 Nakajima Denki Seisakusho:Kk Method for detecting phase voltage of three-phase distribution line, zero-phase voltage, line voltage, phase voltage higher harmonic wave of three-phase distribution line, zero-phase voltage higher harmonic wave, and line voltage higher harmonic wave and voltage detecting apparatus used for detection in the method
JP5119222B2 (en) * 2009-08-31 2013-01-16 株式会社日立産機システム Converter device, motor driving module, and refrigeration device
JP2012016102A (en) * 2010-06-30 2012-01-19 Hitachi Automotive Systems Ltd Power conversion system and power conversion device
JP2012050177A (en) * 2010-08-24 2012-03-08 Mitsubishi Electric Corp Harmonic suppressor
JP2012151993A (en) * 2011-01-19 2012-08-09 Hitachi Industrial Equipment Systems Co Ltd Electric power conversion system and rotary machine drive system using the same
JP2012175834A (en) * 2011-02-22 2012-09-10 Kyosan Electric Mfg Co Ltd Power factor control method for three-phase converter, reactive power control method for three-phase converter, and controller for three-phase converter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018109859A (en) * 2017-01-04 2018-07-12 日立ジョンソンコントロールズ空調株式会社 Control device, power conversion equipment, motor driving device and refrigerator using the same
WO2021240642A1 (en) * 2020-05-26 2021-12-02 三菱電機株式会社 Harmonic suppression device and air conditioning system
JPWO2021240642A1 (en) * 2020-05-26 2021-12-02

Also Published As

Publication number Publication date
JP6453108B2 (en) 2019-01-16

Similar Documents

Publication Publication Date Title
JP4433099B1 (en) Power converter
US9825518B2 (en) System and method for over-current protection
US8971067B2 (en) Output current distortion compensating apparatus in inverter
JP6368664B2 (en) Active filter, motor driving apparatus using the same, and refrigeration apparatus
JP6410829B2 (en) Power conversion device, motor driving device including the same, blower and compressor, and air conditioner, refrigerator and refrigerator including at least one of them
JP5063379B2 (en) POWER CONVERTER, POWER CONVERTER MODULE, AIR CONDITIONER AND REFRIGERATOR
TWI705647B (en) Convertor and motor control device
EP3422551A1 (en) Power conversion device, motor drive device, and refrigerator using same
EP2706652B1 (en) Regenerative inverter device and inverter device using power cell unit
JP6399239B2 (en) Power converter
US9762138B2 (en) Power conversion device
JP5511700B2 (en) Inverter device, fan drive device, compressor drive device, and air conditioner
JP6453108B2 (en) Power conversion device, active filter, and motor drive device
JP5888074B2 (en) Power converter
US11811353B2 (en) Load driving device, refrigeration cycle applicable apparatus, and air conditioner
JP6925527B2 (en) Motor drive device, motor drive device control device, motor drive device control method, and air conditioner
JP5078925B2 (en) Electric motor drive device and equipment
JPWO2014167719A1 (en) Power conversion apparatus, motor drive apparatus including the same, blower including the same, compressor, air conditioner including them, refrigerator, and refrigerator
WO2023105689A1 (en) Power conversion device, electric motor drive device, and refrigeration cycle application device
WO2019244228A1 (en) Electric power converter, motor drive device and refrigeration device
JP6729249B2 (en) Power converter controller
JP2020198782A (en) Load drive, refrigeration cycle applicable device, and air conditioner
JP2019193544A (en) Pulse pattern generator
JP2013258869A (en) Single-phase/three-phase converter and control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170619

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181212

R150 Certificate of patent or registration of utility model

Ref document number: 6453108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150