JP2009257870A - Method for detecting phase voltage of three-phase distribution line, zero-phase voltage, line voltage, phase voltage higher harmonic wave of three-phase distribution line, zero-phase voltage higher harmonic wave, and line voltage higher harmonic wave and voltage detecting apparatus used for detection in the method - Google Patents
Method for detecting phase voltage of three-phase distribution line, zero-phase voltage, line voltage, phase voltage higher harmonic wave of three-phase distribution line, zero-phase voltage higher harmonic wave, and line voltage higher harmonic wave and voltage detecting apparatus used for detection in the method Download PDFInfo
- Publication number
- JP2009257870A JP2009257870A JP2008105567A JP2008105567A JP2009257870A JP 2009257870 A JP2009257870 A JP 2009257870A JP 2008105567 A JP2008105567 A JP 2008105567A JP 2008105567 A JP2008105567 A JP 2008105567A JP 2009257870 A JP2009257870 A JP 2009257870A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- voltage
- capacitor
- distribution line
- detected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Measurement Of Current Or Voltage (AREA)
Abstract
Description
本発明は三相配電線の相電圧、零相電圧、線間電圧、相電圧高調波、零相電圧高調波、線間電圧高調波の検出方法とそれら検出に使用される電圧検出装置に関するものである。 The present invention relates to a method for detecting a phase voltage, a zero phase voltage, a line voltage, a phase voltage harmonic, a zero phase voltage harmonic, and a line voltage harmonic of a three-phase distribution line, and a voltage detection device used for the detection. is there.
三相配電線の相電圧、零相電圧、線間電圧の測定に計器用変成器が使用されている。しかしそれは大型、重量であるため扱いにくい。この課題解決のため、静電容量分圧器の作用を利用した比較的軽量なコンデンサ形変圧器が使用されている。 Instrument transformers are used to measure the phase voltage, zero-phase voltage, and line voltage of three-phase distribution lines. However, it is difficult to handle because it is large and heavy. In order to solve this problem, a relatively lightweight capacitor-type transformer utilizing the action of a capacitance voltage divider is used.
コンデンサ形変圧器を用いた従来の測定では、相電圧、零相電圧、線間電圧を簡易に計測しようとすると、検出電圧が周囲温度の変化による影響を受け易く、正確な計測ができない。このため簡易で、安価で、測定精度の高い検出方法と検出装置が求められている。また、近年、省エネルギーや環境保全の推進といった社会的ニーズにより、太陽光発電や風力発電などの自然エネルギーを利用した発電システムが急激に増加し、エネルギーの利用コスト低減や安定利用といった消費者ニーズの高まりによりコジェネレーションや廃棄物発電なども着実に増加している。さらに、最近では燃料電池発電等新しい発電技術も開発されてきており、今後この分散型電源は小規模なものを中心に益々増加していくものと予想される。一方、このような小規模分散型電源は、独立して運転されることはまれであり、通常配電系統に連係して運転される。このため、連係された配電系統では供給電圧の規格値逸脱や系統事故時の過負荷現象などの新たな問題の発生が懸念される。これに伴って配電系統では線路の高調波および電圧不平衡などの諸問題が発生し、これらを測定する精度の高い小型軽量で安価なセンサーのニーズがより一層高まっている。例えば現行電圧計測等には電磁形計器用変成器等があるが、形状が大きく重量も重い。一方電磁形とは全く原理・構造を異にし、高電圧回路と大地間の静電容量分圧を利用したコンデンサ形PTがあるが、温度による特性の変化が大きく高精度のものが得にくいなどの欠点がある。本件出願の発明は、これら課題を解決することができるものである。 In conventional measurement using a capacitor-type transformer, if the phase voltage, zero phase voltage, and line voltage are to be measured easily, the detected voltage is easily affected by changes in the ambient temperature, and accurate measurement cannot be performed. Therefore, there is a need for a detection method and a detection apparatus that are simple, inexpensive, and have high measurement accuracy. In recent years, due to social needs such as energy conservation and environmental conservation, power generation systems using natural energy such as solar power generation and wind power generation have increased rapidly, and consumer needs such as energy use cost reduction and stable use have been increasing. Cogeneration and waste power generation are steadily increasing due to the rise. Furthermore, recently, new power generation technologies such as fuel cell power generation have been developed, and it is expected that this distributed power source will increase more and more, especially in small-scale ones. On the other hand, such a small-scale distributed power source is rarely operated independently, and is normally operated in conjunction with a power distribution system. For this reason, there are concerns about the occurrence of new problems such as deviation of the standard value of the supply voltage and overload phenomenon at the time of a system fault in the linked distribution system. Along with this, various problems such as line harmonics and voltage imbalance occur in the power distribution system, and the need for a small, lightweight, and inexpensive sensor with high accuracy for measuring these increases. For example, current voltage measurement has a transformer for an electromagnetic type instrument, but it is large in shape and heavy. On the other hand, there is a capacitor type PT that uses a capacitive voltage division between the high voltage circuit and the ground, which is completely different in principle and structure from the electromagnetic type. There are disadvantages. The invention of the present application can solve these problems.
本件出願の三相配電線の相電圧検出方法は、請求項1記載のように、三相配電線のR相、S相、T相の夫々と対地間に主コンデンサと分圧コンデンサを直列接続して、各相の対地間電圧を両コンデンサの静電容量差に基づいて分圧し、その分圧電圧を分圧抵抗と感温抵抗により検出する方法である。 The method for detecting the phase voltage of the three-phase distribution line of the present application includes a main capacitor and a voltage dividing capacitor connected in series between the R-phase, S-phase, and T-phase of the three-phase distribution line and the ground. In this method, the voltage to ground of each phase is divided based on the difference in capacitance between both capacitors, and the divided voltage is detected by a voltage dividing resistor and a temperature sensitive resistor.
本件出願の三相配電線の零相電圧検出方法は、請求項2記載のように、三相配電線のR相、S相、T相の夫々と対地間に主コンデンサと分圧コンデンサを直列接続して、各相の対地間電圧を両コンデンサの静電容量差に基づいて分圧し、その分圧電圧を分圧抵抗と感温抵抗により検出し、検出された各相の検出電圧(相電圧)を合成して三相配電線の零相電圧を検出する方法である。
The zero-phase voltage detection method for the three-phase distribution line of the present application is as described in
本件出願の三相配電線の線間電圧検出方法は、請求項3記載のように、三相配電線のR相、S相、T相の夫々と対地間に主コンデンサと分圧コンデンサを直列接続して、各相の対地間電圧を両コンデンサの静電容量差に基づいて分圧し、その分圧電圧を分圧抵抗と感温抵抗により検出し、検出されたR相とS相間の検出電圧(相電圧)の電圧差、S相とT相間の検出電圧(相電圧)の電圧差、R相とT相間の検出電圧(相電圧)の電圧差から、夫々の相間電圧を検出する方法である。 In the method for detecting the line voltage of the three-phase distribution line of the present application, a main capacitor and a voltage dividing capacitor are connected in series between the R-phase, S-phase, and T-phase of the three-phase distribution line and the ground. Then, the voltage to ground of each phase is divided based on the capacitance difference between the two capacitors, the divided voltage is detected by the voltage dividing resistance and the temperature sensitive resistance, and the detected voltage between the detected R phase and S phase ( This is a method for detecting each phase voltage from the voltage difference of the phase voltage), the voltage difference of the detection voltage (phase voltage) between the S phase and the T phase, and the voltage difference of the detection voltage (phase voltage) between the R phase and the T phase. .
本件出願の三相配電線の相電圧高調波検出方法は、請求項4記載のように、三相配電線のR相、S相、T相の夫々と対地間に主コンデンサと分圧コンデンサを直列接続して、各相の対地間高調波電圧を両コンデンサの静電容量差に基づいて分圧し、その高調波分圧電圧を分圧抵抗と感温抵抗により検出する方法である。 In the method for detecting phase voltage harmonics of a three-phase distribution line of the present application, a main capacitor and a voltage dividing capacitor are connected in series between the R-phase, S-phase, and T-phase of the three-phase distribution line and the ground. Then, it is a method of dividing the harmonic voltage to ground of each phase based on the capacitance difference between both capacitors and detecting the harmonic divided voltage by a voltage dividing resistor and a temperature sensitive resistor.
本件出願の三相配電線の零相電圧高調波検出方法は、請求項5記載のように、三相配電線のR相、S相、T相の夫々と対地間に主コンデンサと分圧コンデンサを直列接続して、各相の対地間電圧を両コンデンサの静電容量差に基づいて分圧し、その分圧電圧を分圧抵抗と感温抵抗により検出し、検出された各相の検出電圧(相電圧)高調波を合成して三相配電線の零相電圧高調波を検出する方法である。 The zero-phase voltage harmonic detection method for the three-phase distribution line of the present application includes a main capacitor and a voltage dividing capacitor in series between the R-phase, S-phase, and T-phase of the three-phase distribution line and the ground. Connected, voltage to ground of each phase is divided based on the capacitance difference of both capacitors, the divided voltage is detected by voltage dividing resistance and temperature sensitive resistance, and the detected voltage of each phase (phase This is a method for detecting zero-phase voltage harmonics of a three-phase distribution line by synthesizing voltage) harmonics.
本件出願の三相配電線の線間電圧高調波検出方法は、請求項6記載のように、三相配電線のR相、S相、T相の夫々と対地間に主コンデンサと分圧コンデンサを直列接続して、各相の対地間電圧を両コンデンサの静電容量差に基づいて分圧し、その分圧電圧を分圧抵抗と感温抵抗により検出し、検出されたR相とS相間の高調波検出電圧(相電圧)の電圧差、S相とT相間の高調波検出電圧(相電圧)の電圧差、R相とT相間の高調波検出電圧(相電圧)の電圧差から、夫々の線間電圧高調波を検出する方法である。 In the method for detecting line voltage harmonics in a three-phase distribution line of the present application, a main capacitor and a voltage dividing capacitor are connected in series between the R-phase, S-phase, and T-phase of the three-phase distribution line and the ground. Connected, and the voltage to ground of each phase is divided based on the capacitance difference between the two capacitors, the divided voltage is detected by the voltage dividing resistance and the temperature sensitive resistance, and the detected harmonics between the R phase and the S phase are detected. From the voltage difference of the wave detection voltage (phase voltage), the voltage difference of the harmonic detection voltage (phase voltage) between the S phase and the T phase, the voltage difference of the harmonic detection voltage (phase voltage) between the R phase and the T phase, This is a method of detecting line voltage harmonics.
本件出願の三相配電線の電圧検出装置は、請求項7記載のように、三相配電線の相電圧、零相電圧、線間電圧、相電圧高調波、零相電圧高調波、線間電圧高調波の検出に使用される電圧検出装置において、三相配電線のR相、S相、T相の夫々と対地間に直列接続される主コンデンサと分圧コンデンサと、分圧コンデンサに並列接続された分圧抵抗と感温抵抗を備えた装置である。 The voltage detection device for a three-phase distribution line according to the present application includes a phase voltage, a zero-phase voltage, a line voltage, a phase voltage harmonic, a zero-phase voltage harmonic, and a line voltage harmonic of the three-phase distribution line. In a voltage detection device used for wave detection, a main capacitor and a voltage dividing capacitor connected in series between the R phase, S phase, and T phase of the three-phase distribution line and the ground, and a voltage dividing capacitor connected in parallel It is a device with partial pressure resistance and temperature sensitive resistance.
本件出願の三相配電線の電圧検出装置は、請求項8記載のように、請求項7記載の三相配電線の電圧検出装置において、主コンデンサは容量の温度変化に反比例して増減しインピーダンスが比例して増減する特性のコンデンサ、感温抵抗は抵抗値が温度変化に比例して増減する抵抗とした装置である。 The voltage detection device for a three-phase distribution line according to the present application is the voltage detection device for a three-phase distribution line according to claim 7, in which the main capacitor increases and decreases in inverse proportion to the temperature change of the capacity and the impedance is proportional. Thus, a capacitor having a characteristic that increases or decreases and a temperature-sensitive resistor are devices in which the resistance value increases or decreases in proportion to a temperature change.
本件出願の三相配電線の電圧検出装置は、請求項4記載の三相配電線の電圧検出装置において、主コンデンサは容量の温度変化に反比例して増減しインピーダンスが比例して増減する特性のコンデンサ、感温抵抗は抵抗値が温度変化に比例して増減する抵抗とした装置である。
The voltage detection device for a three-phase distribution line of the present application is the voltage detection device for a three-phase distribution line according to
本発明の三相配電線の相電圧検出方法、零相電圧検出方法、線間電圧検出方法はいずれも、各相と対地間の電圧を主コンデンサと直列接続された分圧コンデンサの静電容量差に基づいて分圧し、分圧コンデンサによる分圧電圧を分圧抵抗と感温抵抗により検出するので、主コンデンサとして容量が温度変化に反比例して増減しインピーダンスが比例して増減する特性のコンデンサを、感温抵抗として抵抗値が温度変化に比例して増減する抵抗を使用することにより、周囲の温度が変化してもその影響を受けにくく、正確な電圧検出が可能となり、従来技術の課題を解決できるという効果がある。 The phase voltage detection method, zero-phase voltage detection method, and line voltage detection method of the three-phase distribution line of the present invention all have a capacitance difference between a voltage dividing capacitor connected in series with the main capacitor and the voltage between each phase and ground. The voltage divided by the voltage dividing capacitor is detected by the voltage dividing resistor and the temperature sensitive resistor, so the capacitor with the characteristic that the capacitance increases and decreases inversely with the temperature change and the impedance increases and decreases proportionally as the main capacitor. By using a resistor whose resistance value increases or decreases in proportion to the temperature change as a temperature-sensitive resistor, even if the ambient temperature changes, it is not easily affected, and accurate voltage detection is possible. There is an effect that it can be solved.
本発明の電圧検出装置は、前記コンデンサと感温抵抗の組み合わせで構成されるので、周囲の温度変化に対して出力のばらつきの小さな電圧検出装置となる。また、小型、軽量で、取り扱いが容易になり、従来技術の課題を解決できるという効果がある。 Since the voltage detection device of the present invention is composed of the combination of the capacitor and the temperature sensitive resistor, the voltage detection device has a small output variation with respect to the ambient temperature change. Moreover, it is small and lightweight, and it is easy to handle, and there is an effect that the problems of the prior art can be solved.
(コンデンサ形分圧電圧の原理)
コンデンサ形分圧電圧の原理を図1に基づいて説明する。図1のように直列接続された2個のコンデンサ(静電容量が各々C1、C2)に電圧を印加すると電流が流れ、コンデンサの両端の電圧と電流の関係は、
電流=2πf(周波数)×静電容量×電圧となり、
主コンデンサC1と分圧コンデンサC2には同じ電流が流れるので、
2πf×C1(V1−V2)=2πfC2×V2
これにより、
C1×V1=(C1+C2)×V2
となり一次電圧と二次電圧の間には
変圧比=V1/V2=(C1+C2)/C1が成り立つ。
(Principle of capacitor type divided voltage)
The principle of the capacitor-type divided voltage will be described with reference to FIG. When a voltage is applied to two capacitors connected in series as shown in FIG. 1 (capacitances are C 1 and C 2 , respectively), a current flows, and the relationship between the voltage across the capacitor and the current is:
Current = 2πf (frequency) × capacitance × voltage,
Since the same current flows through the main capacitor C 1 and the voltage dividing capacitor C 2 ,
2πf × C 1 (V 1 −V 2 ) = 2πfC 2 × V 2
This
C 1 × V 1 = (C 1 + C 2 ) × V 2
Thus, the transformation ratio = V 1 / V 2 = (C 1 + C 2 ) / C 1 holds between the primary voltage and the secondary voltage.
(電圧検出装置の原理説明)
図2に本発明のコンデンサ分圧による相電圧検出装置一相分の回路を示す。この電圧検出装置は三相配電線の一相と対地間に主コンデンサC1と分圧コンデンサC2を直列接続し、分圧コンデンサC2に分圧抵抗R1と感温抵抗R2を並列接続してある。この回路の端子1〜端子2間に交流電圧V1(AC2000V)を印加すると、この電圧は主コンデンサ(例えばセラミックコンデンサ)C1に電圧V2(1999.25V)、分圧コンデンサ(例えばフイルムコンデンサ)C2の両端に電圧V3(0.75V)に按分され、分圧抵抗R1と感温抵抗R2を介して端子3〜端子4には電圧V4(0.5V)が出力される。
(Description of the principle of the voltage detection device)
FIG. 2 shows a circuit for one phase of the phase voltage detection device using the capacitor voltage division of the present invention. In this voltage detector, a main capacitor C 1 and a voltage dividing capacitor C 2 are connected in series between one phase of the three-phase distribution line and the ground, and a voltage dividing resistor R 1 and a temperature sensitive resistor R 2 are connected in parallel to the voltage dividing capacitor C 2. It is. When an AC voltage V 1 (AC 2000 V) is applied between the
(相電圧検出装置と相電圧検出方法の実施形態)
図3に本発明のコンデンサ分圧による相電圧検出装置を示す。図3ではR相と対地間に主コンデンサC1と分圧コンデンサC2を直列接続し、分圧コンデンサC2に分圧抵抗R1と感温抵抗R2を並列接続し、S相と対地間に主コンデンサC3と分圧コンデンサC4を直列接続し、分圧コンデンサC4に分圧抵抗R3と感温抵抗R4を並列接続し、T相と対地間に主コンデンサC5と分圧コンデンサC6を直列接続し、分圧コンデンサC6に分圧抵抗R5と感温抵抗R6を並列接続してある。これら接続状態においてR、S、Tの各相の相電圧を検出するには、R相の対地間電圧を両コンデンサC1、C2の静電容量差に基づいて分圧し、分圧コンデンサC2の出力電圧を分圧抵抗R1、感温抵抗R2によりR相の出力電圧(相電圧)として検出する。S相の対地間電圧を両コンデンサC3、C4の静電容量差に基づいて分圧し、分圧コンデンサC4の出力電圧を分圧抵抗R3、感温抵抗R4によりS相の出力電圧(相電圧)として検出する。T相の対地間電圧を両コンデンサC5、C6の静電容量差に基づいて分圧し、分圧コンデンサC6の出力電圧を分圧抵抗R5、感温抵抗R6よりT相の出力電圧(相電圧)として検出する。
(Embodiments of phase voltage detection device and phase voltage detection method)
FIG. 3 shows a phase voltage detection apparatus using a capacitor voltage division according to the present invention. In FIG. 3, a main capacitor C 1 and a voltage dividing capacitor C 2 are connected in series between the R phase and the ground, and a voltage dividing resistor R 1 and a temperature sensitive resistor R 2 are connected in parallel to the voltage dividing capacitor C 2. A main capacitor C 3 and a voltage dividing capacitor C 4 are connected in series, a voltage dividing resistor R 3 and a temperature sensitive resistor R 4 are connected in parallel to the voltage dividing capacitor C 4 , and the main capacitor C 5 is connected between the T phase and the ground. A voltage dividing capacitor C 6 is connected in series, and a voltage dividing resistor R 5 and a temperature sensitive resistor R 6 are connected in parallel to the voltage dividing capacitor C 6 . In order to detect the phase voltages of the R, S, and T phases in these connection states, the R-to-ground voltage is divided based on the capacitance difference between the capacitors C 1 and C 2 , and the voltage dividing capacitor C 2 is detected as an R-phase output voltage (phase voltage) by the voltage dividing resistor R 1 and the temperature-sensitive resistor R 2 . The S-phase voltage to ground is divided based on the capacitance difference between the capacitors C 3 and C 4 , and the output voltage of the voltage dividing capacitor C 4 is output to the S-phase by the voltage dividing resistor R 3 and the temperature sensitive resistor R 4. Detect as voltage (phase voltage). The T-phase voltage to ground is divided based on the capacitance difference between the capacitors C 5 and C 6 , and the output voltage of the voltage dividing capacitor C 6 is output from the voltage dividing resistor R 5 and the temperature sensitive resistor R 6 to the T-phase. Detect as voltage (phase voltage).
(零相電圧検出装置と零相電圧検出方法の実施形態)
図4に本発明のコンデンサ分圧による零相電圧検出装置の回路を示す。図4ではR相と対地間に主コンデンサC7と分圧コンデンサC8を直列接続し、分圧コンデンサC8に分圧抵抗R7と感温抵抗R8を並列接続し、S相と対地間に主コンデンサC9と分圧コンデンサC10を直列接続し、分圧コンデンサC10に分圧抵抗R9と感温抵抗R10を並列接続し、T相と対地間に主コンデンサC11と分圧コンデンサC12を直列接続し、分圧コンデンサC12に分圧抵抗R11と感温抵抗R12を並列接続してある。これら接続状態において、R、S、Tの各相の零相電圧を検出するには、R相の対地間電圧を両コンデンサC7、C8の静電容量差に基づいて分圧し、分圧コンデンサC8の出力電圧を分圧抵抗R7、感温抵抗R8によりR相の出力電圧(相電圧)として検出し、S相の対地間電圧を両コンデンサC9、C10の静電容量差に基づいて分圧し、分圧コンデンサC10の出力電圧を分圧抵抗R9、感温抵抗R10によりS相の出力電圧(相電圧)として検出し、T相の対地間電圧を両コンデンサC11、C12の静電容量差に基づいて分圧し、分圧コンデンサC12の出力電圧を分圧抵抗R11、感温抵抗R12よりT相の出力電圧(相電圧)として検出する。このようにして検出した三相の相電圧を図4のように合成して三相配電線の零相電圧を検出する。
(Embodiments of zero-phase voltage detection device and zero-phase voltage detection method)
FIG. 4 shows a circuit of the zero-phase voltage detection device using the capacitor voltage division according to the present invention. In FIG. 4, a main capacitor C 7 and a voltage dividing capacitor C 8 are connected in series between the R phase and the ground, and a voltage dividing resistor R 7 and a temperature sensitive resistor R 8 are connected in parallel to the voltage dividing capacitor C 8. A main capacitor C 9 and a voltage dividing capacitor C 10 are connected in series, a voltage dividing resistor R 9 and a temperature sensitive resistor R 10 are connected in parallel to the voltage dividing capacitor C 10 , and the main capacitor C 11 is connected between the T phase and the ground. the divider capacitor C 12 connected in series, the voltage dividing capacitor C 12 binary resistors R 11 and the temperature sensitive resistor R 12 are connected in parallel. In order to detect the zero-phase voltage of each phase of R, S, and T in these connection states, the voltage between the R-phase grounds is divided based on the capacitance difference between the capacitors C 7 and C 8 , The output voltage of the capacitor C 8 is detected as the R-phase output voltage (phase voltage) by the voltage dividing resistor R 7 and the temperature-sensitive resistor R 8 , and the ground-to-ground voltage of the S phase is the capacitance of both capacitors C 9 and C 10. divided based on the difference, the divided output voltage dividing resistors R 9 of the capacitor C 10, detected as the output voltage of the S-phase (phase voltage) by the temperature sensitive resistive R 10, T-phase two capacitors to ground voltage of The voltage is divided based on the capacitance difference between C 11 and C 12 , and the output voltage of the voltage dividing capacitor C 12 is detected as a T-phase output voltage (phase voltage) from the voltage dividing resistor R 11 and the temperature sensitive resistor R 12 . The three-phase voltage detected in this way is combined as shown in FIG. 4 to detect the zero-phase voltage of the three-phase distribution line.
(線間電圧検出装置と線間電圧検出方法の実施形態)
図5に本発明のコンデンサ分圧による線間電圧検出装置の回路を示す。図5ではR相と対地間に主コンデンサC13と分圧コンデンサC14を直列接続し、分圧コンデンサC14に分圧抵抗R13と感温抵抗R14を並列接続し、S相と対地間に主コンデンサC15と分圧コンデンサC16を直列接続し、分圧コンデンサC16に分圧抵抗R15と感温抵抗R16を並列接続し、T相と対地間に主コンデンサC17と分圧コンデンサC18を直列接続し、分圧コンデンサC18に分圧抵抗R17と感温抵抗R18を並列接続してある。これら接続状態においてR相とS相間、S相とT相間、R相とT相間の電圧を検出するには、R相の対地間電圧を両コンデンサC13、C14の静電容量差に基づいて分圧し、分圧コンデンサC14の出力電圧を分圧抵抗R13、感温抵抗R14によりR相の出力電圧(相電圧)として検出し、S相の対地間電圧を両コンデンサC15、C16の静電容量差に基づいて分圧し、分圧コンデンサC16の出力電圧を分圧抵抗R15、感温抵抗R16によりS相の出力電圧(相電圧)として検出し、T相の対地間電圧を両コンデンサC17、C18の静電容量差に基づいて分圧し、分圧コンデンサC18の出力電圧を分圧抵抗R17、感温抵抗R18よりT相の出力電圧(相電圧)として検出する。このようにして検出した三相の相電圧からR−S間の線間電圧、S−T間の線間電圧、R−T間の線間電圧を図5のようにして検出する。
(Embodiment of Line Voltage Detection Device and Line Voltage Detection Method)
FIG. 5 shows a circuit of the line voltage detecting device using the capacitor voltage division according to the present invention. In FIG. 5, a main capacitor C 13 and a voltage dividing capacitor C 14 are connected in series between the R phase and the ground, and a voltage dividing resistor R 13 and a temperature sensitive resistor R 14 are connected in parallel to the voltage dividing capacitor C 14. the main capacitor C 15 and voltage dividing capacitor C 16 connected in series between, minute pressure capacitor C 16 binary resistors R 15 and the temperature sensitive resistor R 16 connected in parallel, the main capacitor C 17 between T phase and ground A voltage dividing capacitor C 18 is connected in series, and a voltage dividing resistor R 17 and a temperature sensitive resistor R 18 are connected in parallel to the voltage dividing capacitor C 18 . To detect the voltage between the R phase and the S phase, between the S phase and the T phase, and between the R phase and the T phase in these connection states, the voltage between the R phase and the ground is determined based on the capacitance difference between the capacitors C 13 and C 14. pressure Te partial, partial pressure dividing resistor R 13 to the output voltage of the capacitor C 14, detected as the output voltage of the R-phase (phase voltage) by the temperature-sensitive resistor R 14, ground voltage both capacitor C 15 of the S-phase, divided based on the capacitance difference C 16, detected as a divided voltage dividing resistor R 15 to the output voltage of the capacitor C 16, S-phase of the output voltage by the temperature sensitive resistor R 16 (phase voltage) of the T-phase The voltage to ground is divided based on the capacitance difference between the two capacitors C 17 and C 18 , and the output voltage of the voltage dividing capacitor C 18 is output from the voltage dividing resistor R 17 and the temperature sensitive resistor R 18 to the T-phase output voltage (phase Voltage). From the three-phase phase voltage thus detected, the line voltage between R and S, the line voltage between S and T, and the line voltage between R and T are detected as shown in FIG.
本発明では図3〜図5における主コンデンサC1、C3、C5、C7、C9、C11、C13、C15、C17の一例としてセラミックコンデンサを、分圧コンデンサC2、C4、C6、C8、C10、C12、C14、C16、C18の一例としてフイルムコンデンサを使用することができる。それらコンデンサの温度変化特性を図6に示す。図6においてa線がセラミックコンデンサの温度変化特性を、b線がフイルムコンデンサの温度変化特性を示す。セラミックコンデンサは温度が高くなると容量が小さくなり、インピーダンスは大きくなる。温度が低くなると容量が大きくなりインピーダンスは小さくなる。 The main capacitor C 1 in FIGS. 3 to 5 in the present invention, C 3, C 5, C 7, C 9, C 11, C 13, a ceramic capacitor as an example of a C 15, C 17, dividing capacitors C 2, A film capacitor can be used as an example of C 4 , C 6 , C 8 , C 10 , C 12 , C 14 , C 16 , C 18 . The temperature change characteristics of these capacitors are shown in FIG. In FIG. 6, the a line indicates the temperature change characteristic of the ceramic capacitor, and the b line indicates the temperature change characteristic of the film capacitor. As the temperature of the ceramic capacitor increases, the capacitance decreases and the impedance increases. As the temperature decreases, the capacitance increases and the impedance decreases.
本発明では前記分圧抵抗R1、R3、R5、R7、R9、R11、R13、R15、R17の一例としてカーボン抵抗を、感温抵抗R2、R4、R6、R8、R10、R12、R14、R16、R18の一例としてサーミスタを使用することができる。それら抵抗の温度変化特性を図7に示す。図7においてa線がカーボン抵抗の温度変化特性を、b線が感温抵抗の温度変化特性を示す。感温抵抗(サーミスタ)は温度が高くなると抵抗値が高くなり、温度が低くなると抵抗値は低くなる。 In the present invention, as an example of the voltage dividing resistors R 1 , R 3 , R 5 , R 7 , R 9 , R 11 , R 13 , R 15 , R 17 , carbon resistance is used, and temperature sensitive resistors R 2 , R 4 , R 17 are used. A thermistor can be used as an example of 6 , R 8 , R 10 , R 12 , R 14 , R 16 , R 18 . The temperature change characteristics of these resistors are shown in FIG. In FIG. 7, the a line indicates the temperature change characteristic of the carbon resistance, and the b line indicates the temperature change characteristic of the temperature sensitive resistance. The resistance value of the temperature sensitive resistor (thermistor) increases as the temperature increases, and decreases as the temperature decreases.
(試験例)
本発明の電圧検出方法(高圧取込部の電圧取込計測方式としてのコンデンサ分圧方式)の試験例の仕様を表1に示す。
(Test example)
Table 1 shows the specifications of a test example of the voltage detection method of the present invention (capacitor voltage dividing method as a voltage acquisition measurement method of the high-voltage acquisition unit).
(温度特性試験)
表1の仕様の下に、図8の恒温槽に主コンデンサ(C0)と分圧コンデンサ(C1)、固定抵抗(R1)、感温抵抗(R2)を入れ、恒温槽内の温度を−40℃〜+60℃に変化させて、V0=2000Vのときの出力電圧(V2)、出力電圧(V3)を測定した。
図8の緒元は次のとおりである。
C0:250pF
C1:0.655μF
R1:5kΩ 100ppm、固定抵抗
R2:5.1kΩ 2700ppm×2、直列接続、感温抵抗
V0:入力電圧(高圧換算値)
V1:入力電圧(低圧測定値)
V2:出力電圧(温度補償)
V3:コンデンサ出力電圧
T1:110V/6600V
T2:6600V/110V
(Temperature characteristics test)
Under the specifications in Table 1, the main capacitor (C 0 ), the voltage dividing capacitor (C 1 ), the fixed resistor (R 1 ), and the temperature sensitive resistor (R 2 ) are placed in the thermostat shown in FIG. The temperature was changed from −40 ° C. to + 60 ° C., and the output voltage (V 2 ) and output voltage (V 3 ) when V 0 = 2000V were measured.
The origin of FIG. 8 is as follows.
C 0 : 250 pF
C 1 : 0.655 μF
R 1 : 5
V 1 : Input voltage (low voltage measurement value)
V 2 : Output voltage (temperature compensation)
V 3 : Capacitor output voltage T 1 : 110V / 6600V
T 2 : 6600V / 110V
(試験方法)
この試験では前記温度範囲において、+20℃で90分放置→0℃で70分放置→−20℃で70分放置→−40℃で75分放置→+40℃で80分放置→+60℃で60分放置と設定し、夫々の設定温度になってから上記時間放置後に測定した。
(Test method)
In this test, in the above temperature range, left at + 20 ° C. for 90 minutes → 0 ° C. for 70 minutes → −20 ° C. for 70 minutes → −40 ° C. for 75 minutes → + 40 ° C. for 80 minutes → + 60 ° C. for 60 minutes The measurement was performed after being left for the above time after reaching the respective set temperatures.
(試験結果)
測定結果は表2〜表8のとおりであった。この結果をグラフ化すると図9のようになる。これら結果より、周囲温度−40℃〜+60℃に変化したとき、出力電圧V3は周囲温度によって変化するが、出力電圧V2は周囲温度による変化が少ないことがわかる。従来の場合、誤差は約±5%であるが、本発明での誤差は約1%程度である。即ち、本発明によれば、周囲温度が変化してもコンデンサ分圧の欠点である出力電圧の誤差を大幅に改良した精度の高い出力電圧の測定ができることが裏付けられた。
(Test results)
The measurement results were as shown in Tables 2 to 8. FIG. 9 is a graph showing the result. From these results, it can be seen that when the ambient temperature changes from −40 ° C. to + 60 ° C., the output voltage V3 varies depending on the ambient temperature, but the output voltage V2 varies little due to the ambient temperature. In the conventional case, the error is about ± 5%, but the error in the present invention is about 1%. That is, according to the present invention, it has been proved that even when the ambient temperature changes, it is possible to measure the output voltage with high accuracy by greatly improving the output voltage error, which is a drawback of the capacitor voltage division.
(温度試験結果)
前記したセラミックコンデンサ、フイルムコンデンサ、カーボン抵抗、感温抵抗は、あくまでも、本発明で使用可能なものの一例であり、本発明の目的を達成可能であれば、それら以外のものを使用可能であることはもちろんである。
(Temperature test result)
The ceramic capacitor, the film capacitor, the carbon resistor, and the temperature-sensitive resistor described above are merely examples that can be used in the present invention, and other capacitors can be used as long as the object of the present invention can be achieved. Of course.
(周波数変化温度特性試験)
表1の仕様の下に、図10の恒温槽に主コンデンサ(C0)と分圧コンデンサ(C1)、固定抵抗(R1)、感温抵抗(R2)を入れ、恒温槽内の温度を−30℃〜+40℃に変化させて、V1=100Vのときの出力電圧(V2)を測定した。
図10の緒元は次のとおりである。
C0:250pF
C1:0.655μF
C2:0.01μF
R1:1.6kΩ 100ppm、固定抵抗
R2:5kΩ 2700ppm×2、直列接続、感温抵抗
V1:入力電圧 100V
V2:出力電圧 33.3mV
入出力比dB=20Log(V2÷(V1×1000))
(Frequency change temperature characteristics test)
Under the specifications in Table 1, the main capacitor (C 0 ), the voltage dividing capacitor (C 1 ), the fixed resistor (R 1 ), and the temperature sensitive resistor (R 2 ) are placed in the thermostat shown in FIG. The output voltage (V 2 ) when V 1 = 100 V was measured while changing the temperature from −30 ° C. to + 40 ° C.
The origin of FIG. 10 is as follows.
C 0 : 250 pF
C 1 : 0.655 μF
C 2 : 0.01 μF
R 1 : 1.6 kΩ 100 ppm, fixed resistance R 2 : 5 kΩ 2700 ppm × 2, series connection, temperature sensitive resistance V 1 : input voltage 100V
V 2 : Output voltage 33.3 mV
Input / output ratio dB = 20 Log (V 2 ÷ (V 1 × 1000))
(試験方法)
この試験では前記温度範囲において、+20℃で90分放置→−30℃で70分放置→+40℃で60分放置と設定し、夫々の設定温度になってから上記時間放置後に測定した。
(Test method)
In this test, in the above temperature range, it was set to stand at + 20 ° C. for 90 minutes → -30 ° C. for 70 minutes → + 40 ° C. for 60 minutes.
(試験結果)
測定結果は表9のとおりであった。この結果をグラフ化すると図11のようになる。これら結果より、周囲温度−30℃〜+40℃に変化したとき、入出力比dBは周囲温度による変化が少ないことがわかる。従来の場合、変動幅は3dB以下であるが、本発明での変動幅は1dB以下である。即ち、本発明によれば、周囲温度が変化してもコンデンサ分圧の欠点である変動幅のバラツキを大幅に改良した精度の高い周波数特性の測定ができることが裏付けられた。
The measurement results are shown in Table 9. The result is graphed as shown in FIG. From these results, it can be seen that when the ambient temperature is changed from −30 ° C. to + 40 ° C., the input / output ratio dB is less changed by the ambient temperature. In the conventional case, the fluctuation range is 3 dB or less, but the fluctuation range in the present invention is 1 dB or less. That is, according to the present invention, it was confirmed that even if the ambient temperature changes, it is possible to measure the frequency characteristics with high accuracy by greatly improving the variation of the fluctuation range, which is a drawback of the capacitor partial pressure.
本発明の三相配電線の相電圧高調波検出方法、三相配電線の零相電圧高調波検出方法、三相配電線の線間電圧高調波検出方法は、前記三相配電線の相電圧検出方法、三相配電線の零相電圧検出方法、三相配電線の線間電圧検出方法の夫々の方法で検出した分圧電圧の波形を、波形観測装置、例えば、データロガで分析することにより測定することができる。 The three-phase distribution line phase voltage harmonic detection method, the three-phase distribution line zero-phase voltage harmonic detection method, the three-phase distribution line voltage harmonic detection method, the three-phase distribution line phase voltage detection method, The waveform of the divided voltage detected by the zero-phase voltage detection method of the phase distribution line and the line voltage detection method of the three-phase distribution line can be measured by analyzing with a waveform observation device, for example, a data logger.
C1、C3、C5、C7、C9、C11、C13、C15、C17:主コンデンサ
C2、C4、C6、C8、C10、C12、C14、C16、C18:分圧コンデンサ
R1、R3、R5、R7、R9、R11、R13、R15、R17:分圧抵抗
R2、R4、R6、R8、R10、R12、R14、R16、R18:感温抵抗
C 1, C 3, C 5 , C 7, C 9, C 11, C 13, C 15, C 17: main capacitor C 2, C 4, C 6 , C 8,
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008105567A JP2009257870A (en) | 2008-04-15 | 2008-04-15 | Method for detecting phase voltage of three-phase distribution line, zero-phase voltage, line voltage, phase voltage higher harmonic wave of three-phase distribution line, zero-phase voltage higher harmonic wave, and line voltage higher harmonic wave and voltage detecting apparatus used for detection in the method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008105567A JP2009257870A (en) | 2008-04-15 | 2008-04-15 | Method for detecting phase voltage of three-phase distribution line, zero-phase voltage, line voltage, phase voltage higher harmonic wave of three-phase distribution line, zero-phase voltage higher harmonic wave, and line voltage higher harmonic wave and voltage detecting apparatus used for detection in the method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009257870A true JP2009257870A (en) | 2009-11-05 |
Family
ID=41385484
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008105567A Pending JP2009257870A (en) | 2008-04-15 | 2008-04-15 | Method for detecting phase voltage of three-phase distribution line, zero-phase voltage, line voltage, phase voltage higher harmonic wave of three-phase distribution line, zero-phase voltage higher harmonic wave, and line voltage higher harmonic wave and voltage detecting apparatus used for detection in the method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009257870A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103995189A (en) * | 2014-06-04 | 2014-08-20 | 国家电网公司 | Three-phase capacitor bank unbalanced voltage circuit checking method |
KR20150037136A (en) * | 2013-09-30 | 2015-04-08 | 한국전력공사 | Apparatus and method for analyzing line constant of underground transmission line |
JP2016158432A (en) * | 2015-02-25 | 2016-09-01 | ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド | Power conversion device, active filter and motor drive device |
JP2017502455A (en) * | 2013-11-15 | 2017-01-19 | マシイネンフアブリーク・ラインハウゼン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング | Method and equipment for monitoring capacitor bushing for three-phase AC power supply |
CN107402340A (en) * | 2017-07-28 | 2017-11-28 | 南京南瑞继保电气有限公司 | A kind of single-phase grounded malfunction in grounded system of low current method of discrimination based on energy model |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0331768A (en) * | 1989-06-29 | 1991-02-12 | Yaskawa Electric Mfg Co Ltd | Voltage detecting device |
JPH04145374A (en) * | 1990-10-05 | 1992-05-19 | Energy Support Corp | Voltage to ground detecting circuit |
JPH11160366A (en) * | 1997-11-25 | 1999-06-18 | Chubu Electric Power Co Inc | Method for measuring higher harmonic voltage |
-
2008
- 2008-04-15 JP JP2008105567A patent/JP2009257870A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0331768A (en) * | 1989-06-29 | 1991-02-12 | Yaskawa Electric Mfg Co Ltd | Voltage detecting device |
JPH04145374A (en) * | 1990-10-05 | 1992-05-19 | Energy Support Corp | Voltage to ground detecting circuit |
JPH11160366A (en) * | 1997-11-25 | 1999-06-18 | Chubu Electric Power Co Inc | Method for measuring higher harmonic voltage |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150037136A (en) * | 2013-09-30 | 2015-04-08 | 한국전력공사 | Apparatus and method for analyzing line constant of underground transmission line |
KR102050711B1 (en) | 2013-09-30 | 2019-12-03 | 한국전력공사 | Apparatus and method for analyzing line constant of underground transmission line |
JP2017502455A (en) * | 2013-11-15 | 2017-01-19 | マシイネンフアブリーク・ラインハウゼン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング | Method and equipment for monitoring capacitor bushing for three-phase AC power supply |
CN103995189A (en) * | 2014-06-04 | 2014-08-20 | 国家电网公司 | Three-phase capacitor bank unbalanced voltage circuit checking method |
JP2016158432A (en) * | 2015-02-25 | 2016-09-01 | ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド | Power conversion device, active filter and motor drive device |
CN107402340A (en) * | 2017-07-28 | 2017-11-28 | 南京南瑞继保电气有限公司 | A kind of single-phase grounded malfunction in grounded system of low current method of discrimination based on energy model |
CN107402340B (en) * | 2017-07-28 | 2020-01-10 | 南京南瑞继保电气有限公司 | Energy model-based single-phase earth fault judgment method for small current grounding system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017016361A1 (en) | Online monitoring method for resistive leakage current of metal-oxide-varistor lightning arrester or surge protection device | |
CN102520257B (en) | Alternating current (AC) impedance spectroscopy automatic testing device of positive temperature coefficient (PTC) thermistor | |
US11125784B2 (en) | Correcting for a gain error resulting from the position of a pole of zero in a transfer function of a system | |
CN105958621B (en) | One kind being used for capacitor group Bridge differential current protection out-of-balance current leveling method | |
JP2009257870A (en) | Method for detecting phase voltage of three-phase distribution line, zero-phase voltage, line voltage, phase voltage higher harmonic wave of three-phase distribution line, zero-phase voltage higher harmonic wave, and line voltage higher harmonic wave and voltage detecting apparatus used for detection in the method | |
Amaripadath et al. | Power quality disturbances on smart grids: Overview and grid measurement configurations | |
CN108089143B (en) | Detection circuit and method for voltage dividing circuit parameters and electric energy metering chip | |
JP6284986B2 (en) | Power loss measurement system and power loss measurement method for power loss measurement system | |
Kaczmarek | Development and application of the differential voltage to single-ended voltage converter to determine the composite error of voltage transformers and dividers for transformation of sinusoidal and distorted voltages | |
Guimaraes et al. | Smart energy monitoring system with ADE7758 IC | |
CN211086549U (en) | Grounding and phase error detection circuit of alternating current charging equipment | |
JP2014044140A (en) | Method and apparatus for measuring insulation resistance | |
CN109900984A (en) | Monitoring method, system and the device of surge protector based on current in resistance property | |
Alhasnawi et al. | Automated Power Factor Correction for Smart Home | |
CN107144758B (en) | Method for testing influence of thermal effect on short-circuit resistance of transformer | |
CN106199285B (en) | Capacitance characteristic measuring equipment and method under any alternating current carrier | |
CN106483385B (en) | A kind of dielectric loss measurement system and measurement method based on punching mutual inductor | |
CN118275783B (en) | Dielectric loss angle measurement correction method, device, storage medium and computer equipment | |
Moore et al. | A current comparator bridge for power measurement | |
CN111208468A (en) | Harmonic performance tester for electronic voltage transformer | |
US11841386B2 (en) | Apparatus for and method of correcting for a gain error resulting from the position of a pole or zero in a transfer function and to a current measurement device including such an apparatus | |
Zhang et al. | Simulation Study of Capacitor Voltage Transformer based on Overvoltage Measurement Technology | |
CN204228921U (en) | A kind of passive portable non electrical quantity directly jumps relay tester | |
CN204009035U (en) | The signal verification device of capacitive apparatus testing instrument for electrified | |
US2741741A (en) | Device for testing or measuring capacitance or inductance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100430 |
|
A131 | Notification of reasons for refusal |
Effective date: 20100511 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100712 |
|
A521 | Written amendment |
Effective date: 20100712 Free format text: JAPANESE INTERMEDIATE CODE: A821 |
|
A02 | Decision of refusal |
Effective date: 20110607 Free format text: JAPANESE INTERMEDIATE CODE: A02 |