JP2016157710A - Method of manufacturing electronic device, electronic device, and electronic component - Google Patents

Method of manufacturing electronic device, electronic device, and electronic component Download PDF

Info

Publication number
JP2016157710A
JP2016157710A JP2015032450A JP2015032450A JP2016157710A JP 2016157710 A JP2016157710 A JP 2016157710A JP 2015032450 A JP2015032450 A JP 2015032450A JP 2015032450 A JP2015032450 A JP 2015032450A JP 2016157710 A JP2016157710 A JP 2016157710A
Authority
JP
Japan
Prior art keywords
electrode
electronic component
oxide
metal
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015032450A
Other languages
Japanese (ja)
Other versions
JP6485103B2 (en
Inventor
泰治 酒井
Taiji Sakai
泰治 酒井
今泉 延弘
Nobuhiro Imaizumi
延弘 今泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2015032450A priority Critical patent/JP6485103B2/en
Publication of JP2016157710A publication Critical patent/JP2016157710A/en
Application granted granted Critical
Publication of JP6485103B2 publication Critical patent/JP6485103B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Abstract

PROBLEM TO BE SOLVED: To achieve an electronic device that can suppress a load at the time when electrodes of electronic components are directly bonded with each other and that is excellent in bonding reliability.SOLUTION: Firstly, an outer face 111 of an electrode 110 for which a metal is used, of an electronic component 100, and an outer face 211 of an electrode 210 for which a metal is used, of an electronic component 200 are contacted with each other. For example, on both the outer face 111 and the outer face 211 to be contacted with each other, a branch-like oxide 112 and an oxide 212 of the respective metals used for the electrode 110 and the electrode 210 are provided, respectively. In such a state where the outer face 211 and the outer face 111 are contacted with each other, reduction of the branch-like oxide 112 and the oxide 212 and application of load are performed to directly bond the electrode 110 and the electrode 210 with each other by solid-phase diffusion bonding.SELECTED DRAWING: Figure 5

Description

本発明は、電子装置の製造方法、電子装置及び電子部品に関する。   The present invention relates to an electronic device manufacturing method, an electronic device, and an electronic component.

電子部品間を電気的に接続する技術として、銅(Cu)等が用いられた互いの金属電極同士を、半田を用いて接合する技術が知られている。このほか、半田を用いず、互いの金属電極同士を直接接合する技術も知られている。例えば、接合する両金属電極の表面を平坦化し、それらを対向、接触させて、加熱しながら荷重を印加することで、金属電極同士を直接接合(固相拡散接合)する手法がある。   As a technique for electrically connecting electronic components, a technique for joining metal electrodes using copper (Cu) or the like using solder is known. In addition, a technique for directly joining metal electrodes to each other without using solder is also known. For example, there is a technique in which metal electrodes are directly bonded (solid phase diffusion bonding) by flattening the surfaces of both metal electrodes to be bonded, facing and contacting each other, and applying a load while heating.

特開2012−204523号公報JP 2012-204523 A

上記のように平坦化した金属電極同士を接触させて直接接合する手法では、金属電極同士を面接触させてそれらを十分な強度で接合するために、一定以上の荷重を印加することを要する。しかし、平坦化した金属電極同士を面接触させるために高い荷重を印加すると、金属電極が過剰に潰れて側方に広がり、例えば隣接する金属電極がある場合、隣接するその金属電極との間でショートが発生するといった問題が生じる恐れがある。また、金属電極から電子部品内部の回路に荷重が加わり、回路が損傷する或いは損傷し易くなる恐れもある。   In the technique of bringing the metal electrodes flattened as described above into contact with each other and directly joining them, it is necessary to apply a certain load or more in order to bring the metal electrodes into surface contact and join them with sufficient strength. However, when a high load is applied to bring the planarized metal electrodes into surface contact with each other, the metal electrodes are excessively crushed and spread sideways. For example, when there are adjacent metal electrodes, the metal electrodes are adjacent to each other. There is a risk that a short circuit may occur. In addition, a load is applied to the circuit inside the electronic component from the metal electrode, and the circuit may be damaged or easily damaged.

本発明の一観点によれば、第1電子部品の、第1金属が用いられ第1外面に前記第1金属の枝状の第1酸化物が設けられた第1電極の前記第1外面と、第2電子部品の、第2金属が用いられた第2電極の第2外面とを接触させる工程と、前記第2外面と接触する前記第1外面の前記第1酸化物を還元する工程と、前記第1外面と前記第2外面とが接触する前記第1電極と前記第2電極とに、一方を他方に押し付ける荷重を印加する工程とを含む電子装置の製造方法が提供される。   According to one aspect of the present invention, the first outer surface of the first electrode of the first electrode, in which the first metal is used and the first outer surface is provided with the branch-shaped first oxide of the first metal. A step of bringing the second electronic component into contact with a second outer surface of the second electrode using the second metal, and a step of reducing the first oxide on the first outer surface in contact with the second outer surface; There is provided a method for manufacturing an electronic device, including a step of applying a load pressing one against the other to the first electrode and the second electrode in contact with the first outer surface and the second outer surface.

また、本発明の一観点によれば、第1金属が用いられた第1電極を有する第1電子部品と、第2金属が用いられた第2電極を有する第2電子部品とを含み、前記第1電極は、前記第2電極と直接接合され、前記第1電極の、前記第2電極との接合面に設けられた枝状の第1結晶粒と、前記第2電極とが、金属接合されている電子装置が提供される。   According to another aspect of the present invention, there is provided a first electronic component having a first electrode using a first metal, and a second electronic component having a second electrode using a second metal, The first electrode is directly bonded to the second electrode, and the branch-shaped first crystal grains provided on the bonding surface of the first electrode with the second electrode and the second electrode are metal-bonded. An electronic device is provided.

また、本発明の一観点によれば、上記のような電子装置の製造方法、電子装置に用いることのできる電子部品が提供される。   In addition, according to one aspect of the present invention, there are provided a method for manufacturing an electronic device as described above and an electronic component that can be used in the electronic device.

開示の技術によれば、電子部品間の電極同士を直接接合する際の荷重を抑えて接合信頼性及び品質に優れる電子装置を実現することが可能になる。   According to the disclosed technology, it is possible to realize an electronic device that is superior in bonding reliability and quality by suppressing a load when directly bonding electrodes between electronic components.

電極接合方法の一例の説明図である。It is explanatory drawing of an example of the electrode joining method. 電極接合方法の別例の説明図である。It is explanatory drawing of another example of the electrode joining method. 電極を直接接合する接合プロセスの一例を示す図である。It is a figure which shows an example of the joining process which joins an electrode directly. 電極を直接接合する際に生じ得る状況の説明図である。It is explanatory drawing of the condition which may arise when joining an electrode directly. 第1の実施の形態に係る接合プロセスの説明図(その1)である。It is explanatory drawing (the 1) of the joining process which concerns on 1st Embodiment. 第1の実施の形態に係る接合プロセスの説明図(その2)である。It is explanatory drawing (the 2) of the joining process which concerns on 1st Embodiment. 第1の実施の形態に係る接合プロセスの説明図(その3)である。It is explanatory drawing (the 3) of the joining process which concerns on 1st Embodiment. 第1の実施の形態に係る接合プロセスの説明図(その4)である。It is explanatory drawing (the 4) of the joining process which concerns on 1st Embodiment. 第1の実施の形態に係る電子装置の接合部の別例を示す図である。It is a figure which shows another example of the junction part of the electronic device which concerns on 1st Embodiment. 第2の実施の形態に係る接合プロセスの説明図(その1)である。It is explanatory drawing (the 1) of the joining process which concerns on 2nd Embodiment. 第2の実施の形態に係る接合プロセスの説明図(その2)である。It is explanatory drawing (the 2) of the joining process which concerns on 2nd Embodiment. 第2の実施の形態に係る接合プロセスの説明図(その3)である。It is explanatory drawing (the 3) of the joining process which concerns on 2nd Embodiment. 第3の実施の形態に係る接合プロセスの説明図(その1)である。It is explanatory drawing (the 1) of the joining process which concerns on 3rd Embodiment. 第3の実施の形態に係る接合プロセスの説明図(その2)である。It is explanatory drawing (the 2) of the joining process which concerns on 3rd Embodiment. 第3の実施の形態に係る接合プロセスの説明図(その3)である。It is explanatory drawing (the 3) of the joining process which concerns on 3rd Embodiment. 第4の実施の形態に係る接合プロセスの説明図(その1)である。It is explanatory drawing (the 1) of the joining process which concerns on 4th Embodiment. 第4の実施の形態に係る接合プロセスの説明図(その2)である。It is explanatory drawing (the 2) of the joining process which concerns on 4th Embodiment. 第4の実施の形態に係る接合プロセスの説明図(その3)である。It is explanatory drawing (the 3) of the joining process which concerns on 4th Embodiment. 第4の実施の形態に係る接合プロセスの説明図(その4)である。It is explanatory drawing (the 4) of the joining process which concerns on 4th Embodiment. 第5の実施の形態に係る電子装置の一例を示す図である。It is a figure which shows an example of the electronic device which concerns on 5th Embodiment.

はじめに、電極同士の接合技術について説明する。
図1は電極接合方法の一例の説明図、図2は電極接合方法の別例の説明図である。
まず図1について述べる。
First, a technique for joining electrodes will be described.
FIG. 1 is an explanatory view of an example of an electrode bonding method, and FIG. 2 is an explanatory view of another example of the electrode bonding method.
First, FIG. 1 will be described.

図1(A)には、本体部(基板)13a上に柱状の電極11aが設けられた電子部品10aと、本体部(基板)23a上に平面状の電極21aが設けられた電子部品20aとの接合工程の要部断面を模式的に図示している。また、図1(B)には、本体部(基板)13b上に柱状の電極11bが設けられた電子部品10bと、本体部(基板)23b上に柱状の電極21bが設けられた電子部品20bとの接合工程の要部断面を模式的に図示している。   1A, an electronic component 10a in which a columnar electrode 11a is provided on a main body (substrate) 13a, and an electronic component 20a in which a planar electrode 21a is provided on a main body (substrate) 23a. The cross section of the principal part of the joining process is schematically shown. 1B shows an electronic component 10b in which a columnar electrode 11b is provided on a main body (substrate) 13b, and an electronic component 20b in which a columnar electrode 21b is provided on a main body (substrate) 23b. The cross section of the principal part of the joining process is schematically shown.

電子部品10a、電子部品20a、電子部品10b及び電子部品20bは、例えば、半導体素子(半導体チップ)、半導体素子を備える半導体装置(半導体パッケージ)、回路基板等である。電子部品10aの電極11a、電子部品20aの電極21a、電子部品10bの電極11b、及び電子部品20bの電極21bには、銅等の金属が用いられる。柱状の電極11a、電極11b及び電極21bは、ピラー電極、ポスト電極、或いは単にピラー、ポスト等とも称される。柱状の電極11a上及び電極11b上にはそれぞれ、半田30a及び半田30bが設けられている。   The electronic component 10a, the electronic component 20a, the electronic component 10b, and the electronic component 20b are, for example, a semiconductor element (semiconductor chip), a semiconductor device (semiconductor package) including the semiconductor element, a circuit board, and the like. A metal such as copper is used for the electrode 11a of the electronic component 10a, the electrode 21a of the electronic component 20a, the electrode 11b of the electronic component 10b, and the electrode 21b of the electronic component 20b. The columnar electrodes 11a, 11b, and 21b are also referred to as pillar electrodes, post electrodes, or simply pillars, posts, and the like. Solder 30a and solder 30b are provided on the columnar electrode 11a and the electrode 11b, respectively.

尚、図1(A)及び図1(B)には電極として、電子部品10a側の3つの電極11aとそれに対応する電子部品20a側の3つの電極21a、並びに、電子部品10b側の3つの電極11bとそれに対応する電子部品20b側の3つの電極21bを例示している。電子部品10a、電子部品20a、電子部品10b及び電子部品20bの電極の個数は、この例に限定されるものではない。   In FIGS. 1A and 1B, three electrodes 11a on the electronic component 10a side, three electrodes 21a on the electronic component 20a side corresponding thereto, and three electrodes on the electronic component 10b side are shown as electrodes. The electrode 11b and three electrodes 21b on the electronic component 20b side corresponding to the electrode 11b are illustrated. The number of electrodes of the electronic component 10a, the electronic component 20a, the electronic component 10b, and the electronic component 20b is not limited to this example.

図1(A)の例では、電子部品10aの柱状の電極11a上に設けられた半田30aが、電子部品20aの平面状の電極21aに接合されることによって、電子部品10aと電子部品20aとが電気的に接続される。図1(B)の例では、電子部品10bの柱状の電極11b上に設けられた半田30bが、電子部品20bの柱状の電極21bに接合されることによって、電子部品10bと電子部品20bとが電気的に接続される。   In the example of FIG. 1A, the solder 30a provided on the columnar electrode 11a of the electronic component 10a is joined to the planar electrode 21a of the electronic component 20a, whereby the electronic component 10a, the electronic component 20a, Are electrically connected. In the example of FIG. 1B, the solder 30b provided on the columnar electrode 11b of the electronic component 10b is joined to the columnar electrode 21b of the electronic component 20b, whereby the electronic component 10b and the electronic component 20b are joined. Electrically connected.

図1(A)及び図1(B)に示すような柱状の電極11a、電極11b、電極21bは、微細化、狭ピッチ化、多ピン化が可能であり、例えば、高集積化、高速処理が求められる電子部品や電子装置に好適である。   The columnar electrodes 11a, 11b, and 21b as shown in FIGS. 1A and 1B can be miniaturized, narrow pitched, and multi-pinned. For example, high integration and high speed processing are possible. It is suitable for electronic parts and electronic devices that require

但し、このような柱状の電極11a、電極11b及び電極21bを用いることによる接合部の微細化は、接合部1箇所あたりの電流密度の増加を引き起こす場合がある。接合部の電流密度の増加は、接合部に存在する半田30a及び半田30bの成分が電流によって移動するエレクトロマイグレーションを招く可能性がある。図1(A)及び図1(B)のように半田30a及び半田30bが用いられた接合部において、半田成分のエレクトロマイグレーションを発生させない限界電流密度は、104kA/cm2程度である。エレクトロマイグレーションは、接合部の抵抗上昇や強度低下、強度低下による破断等を引き起こす恐れがある。また、狭ピッチ化が進むと、接合時に電極11aと電極21a、電極11bと電極21bを近付けた際、溶融状態の半田30a、半田30bが側方に流出し、それが狭ピッチで隣接する別の接合部に達してショートが発生するといった問題も起こり得る。 However, miniaturization of the joint portion by using such columnar electrodes 11a, 11b, and 21b may cause an increase in current density per joint portion. An increase in the current density of the joint may cause electromigration in which the components of the solder 30a and the solder 30b existing in the joint are moved by the current. As shown in FIGS. 1A and 1B, the limit current density at which the electromigration of the solder component does not occur is about 10 4 kA / cm 2 in the joint portion where the solder 30a and the solder 30b are used. Electromigration may cause an increase in resistance, a decrease in strength, a break due to a decrease in strength, or the like. Further, when the pitch is reduced, when the electrodes 11a and 21a and the electrodes 11b and 21b are brought closer to each other at the time of joining, the molten solder 30a and solder 30b flow out to the side, and they are adjacent to each other at a narrow pitch. There may be a problem that a short circuit occurs due to reaching the junction.

これに対し、図2に示すように、電子部品10cの本体部(基板)13c上に設けられた柱状の電極11cと、電子部品20cの本体部(基板)23c上に設けられた電極21cとを、上記のような半田を用いず、直接接合する手法が提案されている。   On the other hand, as shown in FIG. 2, a columnar electrode 11c provided on the main body (substrate) 13c of the electronic component 10c, and an electrode 21c provided on the main body (substrate) 23c of the electronic component 20c. There has been proposed a method of directly joining the above without using the solder as described above.

尚、図2に示す電子部品10c及び電子部品20cは、上記図1(A)及び図1(B)の例と同様に、例えば、半導体素子、半導体装置、回路基板等である。電極11c及び電極21cには、銅等の金属が用いられる。電極21cは、柱状でも、柱状以外の形状でもよい。ここでは電極として、電子部品10c側の3つの電極11cとそれに対応する電子部品20c側の3つの電極21cを例示するが、電極の個数はこの例に限定されるものではない。   Note that the electronic component 10c and the electronic component 20c shown in FIG. 2 are, for example, a semiconductor element, a semiconductor device, a circuit board, and the like, as in the example of FIGS. 1A and 1B. A metal such as copper is used for the electrode 11c and the electrode 21c. The electrode 21c may have a columnar shape or a shape other than the columnar shape. Here, three electrodes 11c on the electronic component 10c side and three electrodes 21c on the electronic component 20c side corresponding thereto are illustrated as electrodes, but the number of electrodes is not limited to this example.

図2に示すように、電子部品10cの電極11cと電子部品20cの電極21cとを直接接合することで、それらの間に半田を介在させる場合に生じ得るエレクトロマイグレーションやショートの発生を抑えることができる。電極11cと電極21cとを直接接合した接合部では、その限界電流密度が106kA/cm2程度となる。 As shown in FIG. 2, by directly joining the electrode 11c of the electronic component 10c and the electrode 21c of the electronic component 20c, it is possible to suppress the occurrence of electromigration and short circuit that may occur when solder is interposed therebetween. it can. In the joint portion where the electrode 11c and the electrode 21c are directly joined, the limiting current density is about 10 6 kA / cm 2 .

このような電極11cと電極21cとの直接接合では、接合界面において銅等の金属原子同士を如何にコンタクトさせるかが重要になってくる。
図3は電極を直接接合する接合プロセスの一例を示す図である。図3(A)〜図3(D)には、対向する一対の電極同士を接合する接合プロセスの各工程の要部断面を模式的に図示している。また、図4は電極を直接接合する際に生じ得る状況の説明図である。図4(A)〜図4(C)には、各状況の要部断面を模式的に図示している。
In such direct bonding between the electrode 11c and the electrode 21c, it is important how metal atoms such as copper are brought into contact with each other at the bonding interface.
FIG. 3 is a diagram illustrating an example of a bonding process for directly bonding electrodes. FIGS. 3A to 3D schematically show a cross section of a main part of each step of a bonding process for bonding a pair of opposed electrodes. Moreover, FIG. 4 is explanatory drawing of the condition which may arise when joining an electrode directly. 4 (A) to 4 (C) schematically show a cross section of the main part in each situation.

これまでの接合プロセスでは、まず、図3(A)に示すように、直接接合する電極11cと電極21cとを接触させ易くするために、柱状の電極11cを平坦化する。対応する電極21cが予め平坦でなければ、電極21cも平坦化する。そして、図3(B)に示すように、電極11c及び電極21cの表面(外面)の自然酸化膜をアルゴン(Ar)イオンビーム、或いは塩酸、クエン酸等で除去し、対向させる。その後、図3(C)に示すように、電極11cと電極21cとの位置合わせを行って接触させ、図3(D)に示すように、加熱しながら荷重を印加する。例えば、電子部品10cの電極11cを電子部品20cの電極21cに押し付けるような荷重を印加する。これにより、接触する電極11cと電極21cとの間の金属原子を相互拡散させ、電極11cと電極21cとを固相拡散接合で直接接合する。   In the conventional bonding process, first, as shown in FIG. 3A, the columnar electrode 11c is flattened so that the electrode 11c and the electrode 21c to be directly bonded can be easily brought into contact with each other. If the corresponding electrode 21c is not flat in advance, the electrode 21c is also flattened. Then, as shown in FIG. 3B, the natural oxide films on the surfaces (outer surfaces) of the electrode 11c and the electrode 21c are removed with an argon (Ar) ion beam, hydrochloric acid, citric acid, or the like, and face each other. Thereafter, as shown in FIG. 3C, the electrodes 11c and 21c are aligned and brought into contact with each other, and a load is applied while heating as shown in FIG. 3D. For example, a load that presses the electrode 11c of the electronic component 10c against the electrode 21c of the electronic component 20c is applied. Thereby, metal atoms between the electrode 11c and the electrode 21c that are in contact with each other are interdiffused, and the electrode 11c and the electrode 21c are directly bonded by solid phase diffusion bonding.

このような接合プロセスにおいて、図3(D)のような荷重の印加時には、接合する面(外面)が平坦な電極11c及び電極21cのうちの少なくとも一方、例えばこの例では電極11cが圧縮変形する程度の荷重を印加し、電極11cと電極21cとを確実に接触(面接触)させる。   In such a joining process, when a load as shown in FIG. 3D is applied, at least one of the electrode 11c and the electrode 21c whose surfaces to be joined (outer surfaces) are flat, for example, the electrode 11c in this example, is compressed and deformed. A certain amount of load is applied to ensure contact (surface contact) between the electrode 11c and the electrode 21c.

しかし、この例のように電極11cを圧縮変形させるのには比較的高い荷重が必要になる場合がある。更に、電子部品10c及び電子部品20cには、それぞれ複数の電極11c及び複数の電極21c、例えば数十、数百、数千といった規模の電極11c及び電極21cが設けられ得る。こういった規模の電極11cと電極21cとを確実に接触させるために各電極11cが圧縮変形する程度の荷重を印加しようとすると、全ての電極11cを圧縮変形させるのに高い荷重が必要になる場合がある。   However, a relatively high load may be required to compress and deform the electrode 11c as in this example. Furthermore, the electronic component 10c and the electronic component 20c may be provided with a plurality of electrodes 11c and a plurality of electrodes 21c, for example, electrodes 11c and electrodes 21c having a scale of several tens, hundreds, thousands, for example. In order to apply a load that compresses and deforms each electrode 11c in order to ensure contact between the electrode 11c and the electrode 21c of such a scale, a high load is required to compress and deform all the electrodes 11c. There is a case.

接合時の荷重が高いと、一部又は全部の電極11cが、図4(A)に示すように過剰に潰れて側方に広がり、それが、隣接する電極11cと電極21cの接合部にまで達してしまうと、隣接する接合部間でショート40cが発生する恐れがある。   When the load at the time of joining is high, a part or all of the electrodes 11c are excessively crushed and spread to the side as shown in FIG. 4 (A), until the joining part between the adjacent electrode 11c and the electrode 21c. If it reaches, there is a possibility that a short 40c may occur between adjacent joints.

また、接合時の高い荷重により、図4(B)に示すように、電子部品10c側の電極11cの下層に設けられる回路12cの損傷41c、又は電子部品20c側の電極21cの下層に設けられる回路22cの損傷42cが発生する恐れがある。或いは、接合後の外力や応力によって損傷41cや損傷42cが発生し易い状態になる恐れがある。   Further, due to a high load at the time of joining, as shown in FIG. 4 (B), the damage is caused to 41c of the circuit 12c provided in the lower layer of the electrode 11c on the electronic component 10c side or the lower layer of the electrode 21c on the electronic component 20c side. There is a risk of damage 42c of the circuit 22c. Or there exists a possibility that it may be in the state which damage 41c and damage 42c are easy to generate | occur | produce by the external force and stress after joining.

このような損傷41cや損傷42cを回避するため、接合時に印加可能な最大荷重に制約が設けられる場合がある。しかし、そのような制約の範囲では、電極11cや電極21cの高さばらつき、電子部品10cや電子部品20cの反り等に起因して、複数ある電極11cの全てを十分に圧縮変形させることができないことがある。その場合、図4(C)に示すように、電極11cと電極21cとが固相拡散接合で接合された比較的接合強度が高い接合部43cが形成される一方で、電極11cと電極21cとの接合強度が比較的弱い接合部44cも形成される恐れがある。接合時に印加可能な最大荷重の制約から、十分な強度で電極21cと接合することのできる電極11cの数に限界が生じることがある。   In order to avoid such damage 41c and damage 42c, there may be a restriction on the maximum load that can be applied during bonding. However, within the range of such restrictions, not all of the plurality of electrodes 11c can be sufficiently compressed and deformed due to variations in height of the electrodes 11c and 21c, warpage of the electronic components 10c and 20c, and the like. Sometimes. In this case, as shown in FIG. 4C, the electrode 11c and the electrode 21c are bonded by solid phase diffusion bonding, and a bonding portion 43c having a relatively high bonding strength is formed. On the other hand, There is also a possibility that the joint portion 44c having a relatively weak joint strength may be formed. There may be a limit to the number of electrodes 11c that can be bonded to the electrode 21c with sufficient strength due to restrictions on the maximum load that can be applied during bonding.

このように、接合する外面が平坦な電極11cと電極21cとを接合する際の荷重が高いと、ショート40cが発生したり、回路12cの損傷41cや回路22cの損傷42cが発生したりする恐れがある。一方、低い荷重では、接合する外面が平坦な電極11cと電極21cとを確実に接触させて、十分な接合強度の接合部を形成することができない恐れがある。   Thus, if the load when joining the electrode 11c and the electrode 21c with flat outer surfaces to be joined is high, the short 40c may occur, or the circuit 41c may be damaged 41c or the circuit 22c may be damaged 42c. There is. On the other hand, with a low load, there is a possibility that the electrode 11c and the electrode 21c whose outer surfaces to be joined are brought into contact with each other with certainty and a joined portion having sufficient joining strength cannot be formed.

また、図3には、電極11cと電極21cとを、互いに接合する外面の自然酸化膜を除去したうえで(図3(B))、位置合わせを行って接触させ(図3(C))、加熱しながら荷重を印加し(図3(D))、直接接合するプロセスを例示している。しかし、外面の自然酸化膜を除去した後、電極11cと電極21cとを接合する前に、電極11c、電極21cが大気に曝されると、それらの外面が再酸化されてしまうことがある。外面が再酸化されているような電極11cと電極21cとでは、十分な接合強度の接合部を形成することができない恐れがある。   Also, in FIG. 3, the electrode 11c and the electrode 21c are brought into contact with each other after alignment (FIG. 3 (B)) after removing the natural oxide film on the outer surface to be bonded to each other (FIG. 3 (C)). FIG. 3 illustrates a process of applying a load while heating (FIG. 3D) and directly joining. However, if the electrode 11c and the electrode 21c are exposed to the atmosphere after removing the natural oxide film on the outer surface and before joining the electrode 11c and the electrode 21c, the outer surface may be reoxidized. The electrode 11c and the electrode 21c whose outer surfaces are re-oxidized may not be able to form a bonded portion with sufficient bonding strength.

以上のような点に鑑み、ここでは以下の実施の形態に示すような手法を用い、電極同士を直接接合する。
まず、第1の実施の形態について説明する。
In view of the above points, the electrodes are directly bonded to each other by using a technique as shown in the following embodiment.
First, the first embodiment will be described.

図5〜図8は第1の実施の形態に係る接合プロセスの説明図である。図5(A)は第1の実施の形態に係る電子部品の準備及び配置工程の一例の要部断面模式図、図5(B)は図5(A)のX1部の拡大断面模式図である。図6(A)は第1の実施の形態に係る電極接触工程の一例の要部断面模式図、図6(B)は図6(A)のX2部の拡大断面模式図である。図7(A)は第1の実施の形態に係る還元及び荷重印加工程の一例の要部断面模式図、図7(B)は図7(A)のX3部の拡大断面模式図である。図8(A)は第1の実施の形態に係る接合プロセスで得られる電子装置の一例の要部断面模式図、図8(B)は図8(A)のX4部の拡大断面模式図である。   5-8 is explanatory drawing of the joining process based on 1st Embodiment. FIG. 5A is a schematic cross-sectional view of an essential part of an example of the preparation and arrangement steps of the electronic component according to the first embodiment, and FIG. 5B is an enlarged schematic cross-sectional view of a portion X1 in FIG. is there. 6A is a schematic cross-sectional view of an essential part of an example of an electrode contact process according to the first embodiment, and FIG. 6B is an enlarged schematic cross-sectional view of a portion X2 in FIG. 6A. FIG. 7A is a schematic cross-sectional view of an essential part of an example of the reduction and load application process according to the first embodiment, and FIG. 7B is an enlarged schematic cross-sectional view of a portion X3 in FIG. 8A is a schematic cross-sectional view of an essential part of an example of an electronic device obtained by the bonding process according to the first embodiment, and FIG. 8B is an enlarged schematic cross-sectional view of a portion X4 in FIG. 8A. is there.

まず、図5(A)に示すような、本体部(基板)130上に柱状の電極110が設けられた電子部品100、及び本体部(基板)230上に柱状の電極210が設けられた電子部品200を準備する。電子部品100及び電子部品200は、例えば、半導体素子、半導体装置、回路基板等である。   First, as shown in FIG. 5A, an electronic component 100 in which a columnar electrode 110 is provided on a main body (substrate) 130, and an electronic in which a columnar electrode 210 is provided on a main body (substrate) 230. A part 200 is prepared. The electronic component 100 and the electronic component 200 are, for example, a semiconductor element, a semiconductor device, a circuit board, and the like.

電子部品100の本体部130には、電極110に電気的に接続された回路131が含まれ、電子部品200の本体部230には、電極210に電気的に接続された回路231が含まれている。電子部品100には、その本体部130から突出するように柱状の電極110が設けられ、電子部品200には、その本体部230から突出するように柱状の電極210が設けられている。電子部品100の電極110及び電子部品200の電極210には、金属、例えば、銅、ニッケル(Ni)、アルミニウム(Al)、亜鉛(Zn)、チタン(Ti)、これらのうちの少なくとも1種を含む合金等が用いられる。図5(A)には一例として、電子部品100側の3つの電極110とそれに対応する電子部品200側の3つの電極210を例示するが、電極110及び電極210の個数は、この例に限定されるものではない。   The main body 130 of the electronic component 100 includes a circuit 131 that is electrically connected to the electrode 110, and the main body 230 of the electronic component 200 includes a circuit 231 that is electrically connected to the electrode 210. Yes. The electronic component 100 is provided with a columnar electrode 110 so as to protrude from the main body 130, and the electronic component 200 is provided with a columnar electrode 210 so as to protrude from the main body 230. The electrode 110 of the electronic component 100 and the electrode 210 of the electronic component 200 are made of metal, for example, copper, nickel (Ni), aluminum (Al), zinc (Zn), titanium (Ti), or at least one of these. Including alloys are used. FIG. 5A illustrates, as an example, three electrodes 110 on the electronic component 100 side and corresponding three electrodes 210 on the electronic component 200 side, but the number of electrodes 110 and electrodes 210 is limited to this example. Is not to be done.

電子部品100の電極110の外面111(電子部品200の電極210と接合される面)には、図5(B)に示すような酸化物112が形成されている。酸化物112は、電極110に用いられている金属の酸化物である。例えば、銅が用いられた電極110の外面111には、酸化物112として酸化銅が形成される。   An oxide 112 as shown in FIG. 5B is formed on the outer surface 111 of the electrode 110 of the electronic component 100 (the surface bonded to the electrode 210 of the electronic component 200). The oxide 112 is an oxide of a metal used for the electrode 110. For example, copper oxide is formed as the oxide 112 on the outer surface 111 of the electrode 110 using copper.

本体部130上に例えばめっき法を用いて形成された柱状の電極に対し、所定の薬液を用いた湿式処理を行うことで、酸化物112が外面111に形成された柱状の電極110を得ることができる。   A columnar electrode 110 in which an oxide 112 is formed on the outer surface 111 is obtained by performing wet processing using a predetermined chemical solution on a columnar electrode formed on the main body 130 using, for example, a plating method. Can do.

湿式処理には、亜塩素酸ナトリウムと水酸化ナトリウムの混合液、水酸化ナトリウムや水酸化カリウム等のアルカリ溶液等を用いることができる。例えば、めっき形成後の柱状の電極を所定の薬液に浸漬し、或いは薬液に浸漬した電極に通電する(陽極酸化)。めっき形成後の柱状の電極は、その外面が薬液で浸食されると共に、その浸食された外面が酸化される。これにより、図5(B)に示すような、酸化物112が外面111に形成された電極110が得られる。所定の薬液を用いた湿式処理によれば、めっき形成後に大気中で電極外面に自然に形成される自然酸化膜と比較して、良好な形状制御性、再現性で、電極110の外面111に酸化物112を形成することができる。   For the wet treatment, a mixed solution of sodium chlorite and sodium hydroxide, an alkaline solution such as sodium hydroxide or potassium hydroxide, or the like can be used. For example, the columnar electrode after plating is immersed in a predetermined chemical solution, or the electrode immersed in the chemical solution is energized (anodic oxidation). The columnar electrode after plating is eroded by the chemical solution on the outer surface, and the eroded outer surface is oxidized. As a result, an electrode 110 in which an oxide 112 is formed on the outer surface 111 as shown in FIG. 5B is obtained. According to the wet treatment using a predetermined chemical solution, the outer surface 111 of the electrode 110 is formed with good shape controllability and reproducibility compared with a natural oxide film that is naturally formed on the outer surface of the electrode in the atmosphere after plating. An oxide 112 can be formed.

このような湿式処理により、図5(B)に示すように、電極110には、少なくとも表面に枝状の酸化物112を含む突起113群が林立した外面111が形成される。図5(B)には、突起113の表面に枝状の酸化物112が形成された形態を例示するが、突起113の表面だけでなく、突起113の全体が酸化物112となっていてもよい。所定の薬液を用いた湿式処理では、少なくとも突起113の表面に、数nm〜数十nmのレベルで枝状となった酸化物112が形成される。酸化物112の厚みは、100nm〜200nm程度とすることができる。   By such wet processing, as shown in FIG. 5B, the electrode 110 is formed with an outer surface 111 in which protrusions 113 including the branch-like oxide 112 are formed on at least the surface. FIG. 5B illustrates a mode in which the branch-like oxide 112 is formed on the surface of the protrusion 113, but not only the surface of the protrusion 113 but also the entire protrusion 113 may be the oxide 112. Good. In a wet process using a predetermined chemical solution, an oxide 112 that is branched at a level of several nanometers to several tens of nanometers is formed at least on the surface of the protrusion 113. The thickness of the oxide 112 can be about 100 nm to 200 nm.

突起113の高さ、酸化物112の厚みは、湿式処理の条件、例えば、用いる薬液の種類、薬液の濃度、薬液の温度、薬液への浸漬時間によって、また通電する場合は更に電流密度等の通電条件によって、制御することができる。   The height of the protrusion 113 and the thickness of the oxide 112 depend on the conditions of the wet process, for example, the type of chemical used, the concentration of the chemical, the temperature of the chemical, the immersion time in the chemical, and the current density when energized. It can be controlled according to the energization conditions.

上記のような電子部品100と接合する電子部品200の電極210の外面211(電子部品100の電極110と接合される面)にも同様に、図5(B)に示すような酸化物212が形成されている。酸化物212は、電極210に用いられている金属の酸化物である。   Similarly, the outer surface 211 of the electrode 210 of the electronic component 200 to be bonded to the electronic component 100 as described above (the surface to be bonded to the electrode 110 of the electronic component 100) also has an oxide 212 as shown in FIG. Is formed. The oxide 212 is a metal oxide used for the electrode 210.

本体部230上に例えばめっき法を用いて形成された電極に対し、上記のような亜塩素酸ナトリウム、水酸化ナトリウム等の所定の薬液を用いた湿式処理を行うことで、図5(B)に示すような、酸化物212が外面211に形成された電極210が得られる。湿式処理により、電極210には、少なくとも表面に枝状の酸化物212を含む突起213群が林立した外面211が形成される。図5(B)には、突起213の表面に枝状の酸化物212が形成された形態を例示するが、突起213の表面だけでなく、突起213の全体が酸化物212となっていてもよい。所定の薬液を用いた湿式処理により、少なくとも突起213の表面に、数nm〜数十nmのレベルで枝状となった酸化物212が、100nm〜200nm程度の厚みで形成される。   By performing a wet process using a predetermined chemical solution such as sodium chlorite or sodium hydroxide on the electrode formed on the main body 230 using, for example, a plating method, FIG. As a result, an electrode 210 in which an oxide 212 is formed on the outer surface 211 is obtained. By wet processing, an outer surface 211 in which protrusions 213 including at least a branch-like oxide 212 are formed on the surface of the electrode 210 is formed. FIG. 5B illustrates a mode in which the branch-like oxide 212 is formed on the surface of the protrusion 213, but not only the surface of the protrusion 213 but also the entire protrusion 213 may be the oxide 212. Good. By wet processing using a predetermined chemical solution, an oxide 212 having a branch shape at a level of several nanometers to several tens of nanometers is formed at a thickness of about 100 nm to 200 nm on at least the surface of the protrusion 213.

所定の薬液を用いた湿式処理によれば、自然酸化膜と比較して、良好な形状制御性、再現性で、電極210の外面211に酸化物212を形成することができる。突起213の高さ、酸化物212の厚みは、湿式処理の条件、例えば、用いる薬液の種類、薬液の濃度、薬液の温度、薬液への浸漬時間によって、また通電する場合は更に電流密度等の通電条件によって、制御することができる。   According to the wet process using a predetermined chemical solution, the oxide 212 can be formed on the outer surface 211 of the electrode 210 with better shape controllability and reproducibility than the natural oxide film. The height of the protrusion 213 and the thickness of the oxide 212 depend on the conditions of the wet process, for example, the type of chemical used, the concentration of the chemical, the temperature of the chemical, the immersion time in the chemical, It can be controlled according to the energization conditions.

上記のような電子部品100及び電子部品200を準備し、図5(A)及び図5(B)に示すように、電子部品100と電子部品200とを、互いの電極110と電極210とが対向するように位置合わせを行って、配置する。例えば、フリップチップボンダーを用いて、電子部品100と電子部品200とを、位置合わせを行って対向配置する。電子部品100と電子部品200とを、位置合わせを行って対向させることで、図5(B)に示すように、電極110と電極210の、枝状の酸化物112が形成された外面111と、枝状の酸化物212が形成された外面211とが対向する。   The electronic component 100 and the electronic component 200 as described above are prepared. As shown in FIGS. 5A and 5B, the electronic component 100 and the electronic component 200 are connected to each other with the electrode 110 and the electrode 210. Position them so that they face each other. For example, using a flip chip bonder, the electronic component 100 and the electronic component 200 are aligned and arranged to face each other. By aligning the electronic component 100 and the electronic component 200 so as to face each other, as shown in FIG. 5B, the outer surface 111 of the electrode 110 and the electrode 210 on which the branch oxide 112 is formed, The outer surface 211 on which the branch-like oxide 212 is formed opposes.

次いで、対向させた電子部品100と電子部品200とを近付け、図6(A)及び図6(B)に示すように、電極110の、枝状の酸化物112が形成されている外面111と、電極210の、枝状の酸化物212が形成されている外面211とを、接触させ、仮付けする。その際は、電極110及び電極210に超音波を印加したり、電極110及び電極210をスクラブ動作させたりして、外面111と外面211とを接触させ、仮付けする。外面111の枝状の酸化物112と、外面211の枝状の酸化物212とは、一方が他方の隙間に入り込むようにして、接触、仮付けされ得る。外面111の枝状の酸化物112と、外面211の枝状の酸化物212とは、接触、仮付け時に加わる力によって変形し得る。   Next, the electronic component 100 and the electronic component 200 opposed to each other are brought close to each other, and as shown in FIGS. 6A and 6B, the outer surface 111 of the electrode 110 on which the branch oxide 112 is formed, The outer surface 211 of the electrode 210 on which the branch-like oxide 212 is formed is brought into contact with and temporarily attached. At that time, ultrasonic waves are applied to the electrodes 110 and 210, or the electrodes 110 and 210 are scrubbed so that the outer surface 111 and the outer surface 211 are brought into contact with each other and temporarily attached. The branch-like oxide 112 on the outer surface 111 and the branch-like oxide 212 on the outer surface 211 can be contacted and temporarily attached so that one enters the other gap. The branch-like oxide 112 on the outer surface 111 and the branch-like oxide 212 on the outer surface 211 can be deformed by a force applied during contact and temporary attachment.

接触、仮付け後は、図7(A)及び図7(B)に示すように、電子部品100及び電子部品200を、還元性ガスを含む100℃以上の雰囲気に曝すと共に、一方を他方側に、例えば電子部品100を電子部品200側に押し付けるように、荷重を印加する。   After contact and temporary attachment, as shown in FIGS. 7A and 7B, the electronic component 100 and the electronic component 200 are exposed to an atmosphere containing a reducing gas at 100 ° C. or higher, and one is on the other side. For example, a load is applied so as to press the electronic component 100 against the electronic component 200 side.

ここで、還元性ガスには、蟻酸、酢酸、クエン酸等の有機酸類、或いはアルコール類、水素プラズマ等を用いることができる。
電子部品100に印加する荷重は、例えば、電子部品100あたり数MPa程度と、平坦な電極同士を面接触させるような場合(図2及び図3)に比べて、比較的低い荷重とすることができる。電子部品100に荷重を印加することで、その電極110の外面111の枝状構造と、電子部品200の電極210の外面111の枝状構造とが塑性変形する。例えば、互いの枝状構造が押し潰される。また、電子部品100に荷重を印加することで、接合過程の電子部品100と電子部品200との位置ずれを抑えることができる。
Here, organic acids such as formic acid, acetic acid and citric acid, alcohols, hydrogen plasma and the like can be used as the reducing gas.
The load applied to the electronic component 100 is, for example, about several MPa per electronic component 100, and may be a relatively low load compared to a case where flat electrodes are in surface contact (FIGS. 2 and 3). it can. By applying a load to the electronic component 100, the branch structure of the outer surface 111 of the electrode 110 and the branch structure of the outer surface 111 of the electrode 210 of the electronic component 200 are plastically deformed. For example, the branch structures of each other are crushed. Further, by applying a load to the electronic component 100, it is possible to suppress the positional deviation between the electronic component 100 and the electronic component 200 in the joining process.

還元性ガスを含む雰囲気に電子部品100及び電子部品200を曝すと、図7(B)に示すように、接触する枝状の酸化物112及び酸化物212が、それらの隙間に入り込んだ還元性ガスによって、それぞれ金属114及び金属214に還元される。例えば、枝状の酸化物112及び酸化物212が酸化銅(Cu2O)であり、還元性ガスに蟻酸(HCOOH)を用いた場合には、次のような式(1)及び式(2)によって、酸化銅が銅に還元される。 When the electronic component 100 and the electronic component 200 are exposed to an atmosphere containing a reducing gas, as shown in FIG. 7B, the branching oxide 112 and the oxide 212 that are in contact with each other enter the gap therebetween. The gas is reduced to metal 114 and metal 214, respectively. For example, when the branch oxide 112 and the oxide 212 are copper oxide (Cu 2 O) and formic acid (HCOOH) is used as the reducing gas, the following equations (1) and (2) ) Reduces copper oxide to copper.

Cu2O+2HCOOH→2Cu(HCOO)+H2・・・(1)
2Cu(HCOO)→2Cu+H2+2CO2・・・(2)
式(1)のように酸化銅と蟻酸との反応によって蟻酸銅が形成され、形成された蟻酸銅が式(2)のように熱分解(分解温度120℃〜150℃)することによって銅が形成される。
Cu 2 O + 2HCOOH → 2Cu (HCOO) + H 2 (1)
2Cu (HCOO) → 2Cu + H 2 + 2CO 2 (2)
Copper formate is formed by the reaction of copper oxide and formic acid as in formula (1), and the formed copper formate is thermally decomposed (decomposition temperature 120 ° C. to 150 ° C.) as in formula (2). It is formed.

還元性ガスを含む雰囲気中で、電子部品100に荷重が印加され、電子部品100が電子部品200側に押し付けられる。電子部品100の電極110の外面111及び電子部品200の電極210の外面211は、枝状構造となっているため、単位体積あたりの表面積が大きく、且つ、比較的弱い力でも塑性変形し易い。そのため、平坦な電極同士を面接触させるような場合(図2及び図3)に比べて、電子部品100に印加する荷重が比較的低くても、電極110の外面111と電極210の外面211とを、比較的大きな接触面積で接触させることができる。   A load is applied to the electronic component 100 in an atmosphere containing a reducing gas, and the electronic component 100 is pressed against the electronic component 200 side. Since the outer surface 111 of the electrode 110 of the electronic component 100 and the outer surface 211 of the electrode 210 of the electronic component 200 have a branch structure, they have a large surface area per unit volume and are easily plastically deformed even with a relatively weak force. Therefore, the outer surface 111 of the electrode 110 and the outer surface 211 of the electrode 210 can be compared with each other even when the load applied to the electronic component 100 is relatively low compared to the case where the flat electrodes are brought into surface contact (FIGS. 2 and 3). Can be brought into contact with a relatively large contact area.

外面111及び外面211の枝状の酸化物112及び酸化物212は、荷重の印加に伴って比較的大面積で接触していく過程で、上記のように還元性ガスを含む雰囲気中でそれぞれ金属114及び金属214に還元される。還元によって生成した金属114と金属214との間では、それらの融点よりも十分低く、且つ、還元性ガスで枝状の酸化物112及び酸化物212が還元される程度の比較的低い温度で、焼結現象が起こる。   The branch-like oxide 112 and the oxide 212 on the outer surface 111 and the outer surface 211 are each made of metal in an atmosphere containing a reducing gas as described above in the process of contact with a relatively large area as a load is applied. 114 and metal 214. Between the metal 114 and the metal 214 produced by the reduction, which is sufficiently lower than their melting points and at a relatively low temperature at which the branching oxide 112 and the oxide 212 are reduced with the reducing gas, A sintering phenomenon occurs.

このように、枝状の酸化物112及び酸化物212を還元しながら電子部品100に荷重を印加することで、電極110と電極210が比較的大面積で金属114と金属214で接触した状態を得て、接触する金属114と金属214との間で焼結を生じさせる。これにより、電極110と電極210との間の金属接合が進展し、図8(A)及び図8(B)に示すように、電極110と電極210とが固相拡散接合で直接接合される。このようにして、電子部品100と電子部品200とが、直接接合された電極110と電極210によって電気的に接続された電子装置1が得られる。   In this way, by applying a load to the electronic component 100 while reducing the branch oxides 112 and 212, the electrode 110 and the electrode 210 are in a relatively large area and are in contact with the metal 114 and the metal 214. As a result, sintering occurs between the metal 114 and the metal 214 in contact. As a result, metal bonding between the electrode 110 and the electrode 210 progresses, and as shown in FIGS. 8A and 8B, the electrode 110 and the electrode 210 are directly bonded by solid phase diffusion bonding. . In this way, the electronic device 1 in which the electronic component 100 and the electronic component 200 are electrically connected by the electrode 110 and the electrode 210 that are directly joined to each other is obtained.

ここで、上記図7(A)及び図7(B)並びに図8(A)及び図8(B)のような還元と荷重印加においては、例えば、次のように固相拡散接合が進展する。
即ち、上記図7(A)及び図7(B)に示す還元雰囲気での加熱により、電極110の枝状の酸化物112が還元されると共に外面111付近の結晶粒が成長し、また、電極210の枝状の酸化物212が還元されると共に外面211付近の結晶粒が成長する。一方、上記図7(A)及び図7(B)に示す荷重の印加では、電極110の枝状の酸化物112と電極210の枝状の酸化物212とが、塑性変形を伴いながら絡み合うように接合される。この接合と共に、上記のような枝状の酸化物112及び枝状の酸化物212の還元と、還元後の金属114及び金属214の結晶粒成長が進展する。その結果、外面111及び外面211の枝状の部位に、1つ又は複数の結晶粒が含まれる金属組織が形成される。外面111付近及び外面211付近の結晶粒は、再結晶によって複数の結晶粒が一体化してできた比較的大きな結晶粒が部分的に含まれ得るものの、全体的には比較的微細な結晶粒となる。絡み合うように接合された枝状の酸化物112及び枝状の酸化物212から、このような結晶粒の金属組織が形成されることで、電極110と電極210の接合界面には、互いの枝状の結晶粒が絡み合ったような状態の金属組織が形成される。
Here, in the reduction and load application as shown in FIGS. 7A and 7B and FIGS. 8A and 8B, for example, solid phase diffusion bonding proceeds as follows. .
That is, by heating in the reducing atmosphere shown in FIGS. 7A and 7B, the branch oxide 112 of the electrode 110 is reduced and crystal grains near the outer surface 111 grow, and the electrode The branch-like oxide 212 of 210 is reduced, and crystal grains near the outer surface 211 grow. On the other hand, when the loads shown in FIGS. 7A and 7B are applied, the branch oxide 112 of the electrode 110 and the branch oxide 212 of the electrode 210 are intertwined with plastic deformation. To be joined. Along with this bonding, the reduction of the branch oxide 112 and the branch oxide 212 and the growth of crystal grains of the metal 114 and the metal 214 after the reduction progress. As a result, a metal structure including one or a plurality of crystal grains is formed in the branch portions of the outer surface 111 and the outer surface 211. Although the crystal grains near the outer surface 111 and the outer surface 211 may partially include relatively large crystal grains formed by integrating a plurality of crystal grains by recrystallization, the crystal grains are relatively fine as a whole. Become. By forming such a metal structure of crystal grains from the branch oxide 112 and the branch oxide 212 joined so as to be intertwined with each other, the junction interface between the electrode 110 and the electrode 210 has a mutual branch. A metal structure is formed in which the crystal grains are intertwined.

上記図8(A)及び図8(B)に示すように加熱(還元)と荷重印加が更に進行すると、互いに絡み合ったような状態の電極110側の結晶粒と電極210側の結晶粒との間で、金属接合が進展する。これにより、電極110と電極210とが固相拡散接合され、電極110と電極210の接合界面には、電極110側の結晶粒と電極210側の結晶粒とが絡み合ったような状態の金属組織が形成される。   As shown in FIGS. 8A and 8B, when heating (reduction) and load application further progress, the crystal grains on the electrode 110 side and the crystal grains on the electrode 210 side that are intertwined with each other In between, metal bonding progresses. Thereby, the electrode 110 and the electrode 210 are solid-phase diffusion bonded, and the metal structure in a state where the crystal grains on the electrode 110 side and the crystal grains on the electrode 210 side are entangled with each other at the interface between the electrode 110 and the electrode 210. Is formed.

尚、電極110と電極210の接合後には、明確な互いの外面111及び外面211が消失して1つの接合界面が形成され、更にその接合界面も消失し得るが、上記図8(A)及び図8(B)では説明の便宜上、接合界面付近の様子を模式的に図示している。   In addition, after joining the electrode 110 and the electrode 210, the clear mutual outer surface 111 and outer surface 211 disappear and one joining interface is formed, and the joining interface can also disappear, but the above FIG. FIG. 8B schematically shows the vicinity of the bonding interface for convenience of explanation.

還元によって得られる接合界面の電極110及び電極210の各結晶粒は、それぞれ電極110及び電極210の母材金属の結晶粒と、金属接合によって連続した構造となる。電極110と電極210の接合部は、接合界面の結晶粒のほか、接合界面と母材の結晶粒が金属接合で繋がる金属組織となり、高い接合強度と電気伝導性を有する。   Each crystal grain of the electrode 110 and the electrode 210 at the bonding interface obtained by reduction has a continuous structure with the metal crystal grain of the base metal of the electrode 110 and the electrode 210, respectively. The joint between the electrode 110 and the electrode 210 has a metal structure in which the joint interface and the crystal grains of the base material are connected by metal joining in addition to the crystal grains at the joint interface, and has high joint strength and electrical conductivity.

また、電極110と電極210の接合界面は、互いの結晶粒が絡み合ったような状態となっていることで、接合界面と平行又は略平行なせん断方向の外力や応力に対して高い強度を有する。   In addition, the bonding interface between the electrode 110 and the electrode 210 is in a state in which the crystal grains are entangled with each other, and thus has high strength against external forces and stresses in a shear direction parallel or substantially parallel to the bonding interface. .

図5〜図8に示すような手法によれば、金属を用いた電極110と電極210とが直接接合された接合信頼性に優れる接合部を、比較的低い荷重で実現することができる。それにより、電子部品100の電極110と電子部品200の電極210との間の接合信頼性に優れる電子装置1を実現することができる。   According to the method as shown in FIG. 5 to FIG. 8, it is possible to realize a bonded portion with excellent bonding reliability obtained by directly bonding the electrode 110 and the electrode 210 using metal with a relatively low load. Thereby, it is possible to realize the electronic device 1 having excellent bonding reliability between the electrode 110 of the electronic component 100 and the electrode 210 of the electronic component 200.

電子装置1では、電極110と電極210との接合に半田を用いないため、半田成分のエレクトロマイグレーションに起因した接合部の抵抗上昇や強度低下、強度低下による破断等を回避することができる。更に、荷重を印加した時の半田の側方への流出、それによる隣接接合部とのショートを回避することができる。また、電子部品100と電子部品200の接合時に印加する荷重を低く抑えるため、電極110や電極210の過剰な圧縮変形、電極110に繋がる回路131や電極210に繋がる回路231の荷重による損傷を抑えることができる。図5〜図8に示すような手法によれば、接合信頼性に優れ、且つ、品質に優れる電子装置1を実現することができる。   In the electronic device 1, since solder is not used for joining the electrode 110 and the electrode 210, it is possible to avoid an increase in resistance, a decrease in strength, a breakage due to a decrease in strength, and the like due to electromigration of the solder component. Furthermore, it is possible to avoid the outflow of the solder to the side when a load is applied, and a short circuit with the adjacent joint portion. In addition, in order to suppress the load applied when the electronic component 100 and the electronic component 200 are joined together, the excessive compressive deformation of the electrode 110 and the electrode 210 and the damage due to the load of the circuit 131 connected to the electrode 110 and the circuit 231 connected to the electrode 210 are suppressed. be able to. According to the methods shown in FIGS. 5 to 8, it is possible to realize the electronic device 1 that is excellent in bonding reliability and quality.

また、電子装置1では、電極110と電極210とを接合する際、還元しながら固相拡散接合で接合するため、必ずしも接合前に外面111の酸化物112や外面211の酸化物212を除去しておくことを要しない。更に、接合前の環境が電極110の外面111や電極210の外面211に及ぼす影響、即ち、大気中に曝すことによる電極110や電極210の再酸化を考慮することが不要になり、電子部品100や電子部品200の管理コストの低減を図ることができる。   Further, in the electronic device 1, since the electrodes 110 and 210 are bonded by solid phase diffusion bonding while reducing, the oxide 112 on the outer surface 111 and the oxide 212 on the outer surface 211 are not necessarily removed before bonding. It is not necessary to keep it. Furthermore, it becomes unnecessary to consider the influence of the environment before joining on the outer surface 111 of the electrode 110 and the outer surface 211 of the electrode 210, that is, reoxidation of the electrode 110 and the electrode 210 due to exposure to the atmosphere. In addition, the management cost of the electronic component 200 can be reduced.

尚、図5〜図8の接合プロセスの説明では、接合する電極110及び電極210をそれぞれ、本体部130から突出する柱状の電極、及び本体部230から突出する柱状の電極とした。このほか、電極110と電極210のうち一方は、本体部(130又は230)から突出しないように設けられた電極であってもよい。このような突出しない電極の外面に枝状の酸化物(112又は212)を形成し、図5〜図8に示すような手順の接合プロセスを実施しても、上記のような接合信頼性及び品質に優れる電子装置を得ることができる。   In the description of the bonding process in FIGS. 5 to 8, the electrode 110 and the electrode 210 to be bonded are respectively a columnar electrode protruding from the main body 130 and a columnar electrode protruding from the main body 230. In addition, one of the electrode 110 and the electrode 210 may be an electrode provided so as not to protrude from the main body (130 or 230). Even if a branch-like oxide (112 or 212) is formed on the outer surface of such a non-projecting electrode and the joining process according to the procedure shown in FIGS. An electronic device having excellent quality can be obtained.

また、図5〜図8の接合プロセスの説明では、主に、銅を用いた電極110と電極210の接合を例示したが、電極110及び電極210に、ニッケル、アルミニウム、亜鉛、チタン、これらのうちの少なくとも1種を含む合金等を用いても、上記同様の構造、効果を得ることができる。電極110及び電極210には、同種の金属を用いることができるほか、異種の金属を用いることもできる。   In the description of the bonding process in FIGS. 5 to 8, mainly the bonding of the electrode 110 and the electrode 210 using copper is exemplified, but the electrode 110 and the electrode 210 may be formed of nickel, aluminum, zinc, titanium, and the like. Even when an alloy containing at least one of them is used, the same structure and effects as described above can be obtained. For the electrode 110 and the electrode 210, the same kind of metal can be used, or different kinds of metals can be used.

また、電子部品100と電子部品200との接合によって得られる電子装置1は、図8(B)に示したような電極110と電極210との接合部のほか、次の図9に示すような接合部を有していてもよい。   In addition, the electronic device 1 obtained by bonding the electronic component 100 and the electronic component 200 has a bonding portion between the electrode 110 and the electrode 210 as shown in FIG. You may have a junction.

図9は第1の実施の形態に係る電子装置の接合部の別例を示す図である。図9(A)及び図9(B)にはそれぞれ、接合部の別例の要部断面を模式的に図示している。
上記のように、電子部品100と電子部品200の接合プロセスでは、電極110及び電極210の枝状の酸化物112及び酸化物212を接触させ(図5及び図6)、それらを還元しながら電子部品100に荷重を印加する(図7)。そして、還元によって得られる金属114と金属214との間で焼結、原子拡散、金属接合を進展させて、電極110と電極210とを固相拡散接合で直接接合する。
FIG. 9 is a diagram illustrating another example of the joint portion of the electronic device according to the first embodiment. FIG. 9A and FIG. 9B each schematically show a cross section of a main part of another example of the joint.
As described above, in the joining process of the electronic component 100 and the electronic component 200, the branched oxides 112 and 212 of the electrode 110 and the electrode 210 are brought into contact with each other (FIGS. 5 and 6), and the electrons are reduced while reducing them. A load is applied to the component 100 (FIG. 7). Then, sintering, atomic diffusion, and metal bonding are advanced between the metal 114 and the metal 214 obtained by reduction, and the electrode 110 and the electrode 210 are directly bonded by solid phase diffusion bonding.

このような接合プロセスにおいて、接触前の電極110及び電極210の表面形状や、接触後に印加する荷重によっては、接合後の電極110と電極210との間に、図9(A)のような隙間310や、図9(B)に示すような未還元の酸化物320が残存し得る。このように電極110と電極210との接合部内に部分的に隙間310や酸化物320が残存する場合であっても、他の部分での固相拡散接合により、接合信頼性の高い電子装置1を実現することができる。   In such a joining process, depending on the surface shapes of the electrode 110 and the electrode 210 before contact and the load applied after the contact, a gap as shown in FIG. 9A is formed between the electrode 110 and the electrode 210 after joining. 310 or an unreduced oxide 320 as shown in FIG. 9B may remain. Thus, even when the gap 310 or the oxide 320 partially remains in the joint between the electrode 110 and the electrode 210, the electronic device 1 with high joint reliability can be obtained by solid-phase diffusion bonding in other portions. Can be realized.

次に、第2の実施の形態について説明する。
図10〜図12は第2の実施の形態に係る接合プロセスの説明図である。図10(A)は第2の実施の形態に係る電子部品の準備及び配置工程の一例の要部断面模式図、図10(B)は図10(A)のX5部の拡大断面模式図である。図11(A)は第2の実施の形態に係る電極接触工程の一例の要部断面模式図、図11(B)は図11(A)のX6部の拡大断面模式図である。図12(A)は第2の実施の形態に係る還元及び荷重印加工程の一例の要部断面模式図、図12(B)は図12(A)のX7部の拡大断面模式図である。
Next, a second embodiment will be described.
10-12 is explanatory drawing of the joining process based on 2nd Embodiment. FIG. 10A is a schematic cross-sectional view of an essential part of an example of preparation and arrangement steps of an electronic component according to the second embodiment, and FIG. 10B is an enlarged schematic cross-sectional view of a portion X5 in FIG. is there. FIG. 11A is a schematic cross-sectional view of an essential part of an example of an electrode contact process according to the second embodiment, and FIG. 11B is an enlarged schematic cross-sectional view of a portion X6 in FIG. FIG. 12A is a schematic cross-sectional view of an essential part of an example of the reduction and load application process according to the second embodiment, and FIG. 12B is an enlarged schematic cross-sectional view of a portion X7 in FIG.

第2の実施の形態に係る接合プロセスにおいても、まず、上記第1の実施の形態と同様に、電極110の外面111に枝状の酸化物112が形成された電子部品100と、電極210の外面211に枝状の酸化物212が形成された電子部品200とを準備する。そして、準備した電子部品100と電子部品200とを、互いの電極110と電極210とが対向するように位置合わせを行って、配置する。その際、第2の実施の形態では、図10(A)及び図10(B)に示すように、対向させる電極110と電極210との間に樹脂400を介在させる。   Also in the bonding process according to the second embodiment, first, as in the first embodiment, the electronic component 100 in which the branch-like oxide 112 is formed on the outer surface 111 of the electrode 110, and the electrode 210. An electronic component 200 having a branch-like oxide 212 formed on the outer surface 211 is prepared. Then, the prepared electronic component 100 and electronic component 200 are aligned and positioned so that the electrodes 110 and 210 are opposed to each other. At that time, in the second embodiment, as shown in FIGS. 10A and 10B, the resin 400 is interposed between the electrode 110 and the electrode 210 which are opposed to each other.

樹脂400には、例えば、接着性を有し、後述する還元工程で用いられる還元性ガスが浸透する材料が用いられる。このほか、樹脂400には、それ自体が還元性を有するフラックスのような材料を用いたり、そのような還元性を有する材料を成分として含有するものを用いたりすることもできる。樹脂400は、例えば、電極110と電極210の少なくとも一方に、塗布、ディスペンス、浸漬等の手法を用いて、予め設けておくことができる。   For the resin 400, for example, a material having adhesiveness and penetrating a reducing gas used in a reduction process described later is used. In addition, the resin 400 may be made of a material such as a flux that itself has a reducing property, or may contain a material having such a reducing property as a component. For example, the resin 400 can be provided in advance on at least one of the electrode 110 and the electrode 210 using a technique such as coating, dispensing, or dipping.

このように電極110と電極210との間に樹脂400を介在させ、図11(A)及び図11(B)に示すように、電子部品100と電子部品200とを近付け、電極110と電極210との接触、仮付けを行う。   In this way, the resin 400 is interposed between the electrode 110 and the electrode 210, and as shown in FIGS. 11A and 11B, the electronic component 100 and the electronic component 200 are brought close to each other, and the electrode 110 and the electrode 210 are brought close to each other. Contact with and tack.

その際は、電子部品100と電子部品200とを近付けることで、電極110と電極210とが、間の樹脂400を押し出しながら接近していく。そして、枝状の酸化物112が形成されている外面111と、枝状の酸化物212が形成されている外面211とが、一方が他方の隙間に入り込むようにして接触する。枝状の酸化物112及び酸化物212は、接触時に加わる力によって変形し得る。電極110と電極210とは、外面111と外面211との接触に伴って周囲に押し出された樹脂400や、外面111と外面211との接触後の隙間に残存する樹脂400によって、仮付けされる。   At that time, by bringing the electronic component 100 and the electronic component 200 close to each other, the electrode 110 and the electrode 210 approach each other while extruding the resin 400 therebetween. The outer surface 111 on which the branch-like oxide 112 is formed and the outer surface 211 on which the branch-like oxide 212 is formed are in contact with each other so that one enters the other gap. The branch-like oxide 112 and the oxide 212 can be deformed by a force applied upon contact. The electrode 110 and the electrode 210 are temporarily attached by the resin 400 extruded to the periphery with the contact between the outer surface 111 and the outer surface 211, or the resin 400 remaining in the gap after the contact between the outer surface 111 and the outer surface 211. .

尚、外面111と外面211とを接触させる際には、電極110及び電極210に超音波を印加したり、電極110及び電極210をスクラブ動作させたりしてもよい。
接触、仮付け後、図12(A)及び図12(B)に示すように、電子部品100及び電子部品200を、例えば、還元性ガス(蟻酸等)を含む100℃以上の雰囲気に曝すと共に、電子部品100に比較的低い荷重(数MPa程度)を印加する。還元性ガスは、樹脂400を浸透し、枝状の酸化物112及び酸化物212に達するとそれらを還元する。これにより、外面111及び外面211に、金属114及び金属214が生成される。また、還元性を有する樹脂400を用いる場合には、不活性ガス雰囲気中や大気中で加熱しながら、荷重を印加することができる。
Note that when the outer surface 111 and the outer surface 211 are brought into contact with each other, an ultrasonic wave may be applied to the electrode 110 and the electrode 210, or the electrode 110 and the electrode 210 may be scrubbed.
After the contact and temporary attachment, as shown in FIGS. 12A and 12B, the electronic component 100 and the electronic component 200 are exposed to an atmosphere of, for example, 100 ° C. or more containing a reducing gas (formic acid or the like). A relatively low load (about several MPa) is applied to the electronic component 100. The reducing gas penetrates the resin 400 and reduces the branching oxide 112 and the oxide 212 when they reach the branching oxide 112 and the oxide 212. As a result, the metal 114 and the metal 214 are generated on the outer surface 111 and the outer surface 211. Moreover, when using the resin 400 which has reducibility, a load can be applied, heating in inert gas atmosphere or air | atmosphere.

上記のような還元中の荷重印加により、外面111及び外面211の枝状構造が塑性変形し、外面111と外面211とが、比較的大きな接触面積で接触するようになる。荷重によってこのように外面111と外面211とが接触していく過程で、酸化物112及び酸化物212が、それぞれ金属114及び金属214に還元される。   By applying the load during reduction as described above, the branch structures of the outer surface 111 and the outer surface 211 are plastically deformed, and the outer surface 111 and the outer surface 211 come into contact with each other with a relatively large contact area. In the process in which the outer surface 111 and the outer surface 211 are in contact with each other by the load, the oxide 112 and the oxide 212 are reduced to the metal 114 and the metal 214, respectively.

還元と荷重印加に伴い、酸化物112及び酸化物212の枝状構造に起因して比較的大きな接触面積で生成される金属114と金属214との間で、焼結、原子拡散、金属接合が進展し、電極110と電極210とが直接接合された電子装置が得られる。   With reduction and load application, sintering, atomic diffusion, and metal bonding occur between the metal 114 and the metal 214 generated with a relatively large contact area due to the branch structure of the oxide 112 and the oxide 212. It progresses and the electronic device with which the electrode 110 and the electrode 210 were directly joined is obtained.

尚、接合に際して電極110と電極210との間に介在させた樹脂400は、接合後も電極110と電極210との間に残存していてもよいし、或いは、接合後には接合過程の熱による蒸発(揮発)によって消失していてもよい。   The resin 400 interposed between the electrode 110 and the electrode 210 at the time of joining may remain between the electrode 110 and the electrode 210 even after joining, or after joining, due to the heat of the joining process. It may disappear by evaporation (volatilization).

図10〜図12に示すような接合プロセスを用いても、接合信頼性に優れ、且つ、品質に優れる電子装置を実現することができる。
また、電極110と電極210を、還元しながら固相拡散接合で接合することで、接合前の還元工程の削減、電子部品100や電子部品200の管理コストの低減を図ることができる。
Even if a bonding process as shown in FIGS. 10 to 12 is used, an electronic device having excellent bonding reliability and quality can be realized.
In addition, by joining the electrode 110 and the electrode 210 by solid phase diffusion bonding while reducing, it is possible to reduce the reduction process before bonding and to reduce the management cost of the electronic component 100 or the electronic component 200.

次に、第3の実施の形態について説明する。
図13〜図15は第3の実施の形態に係る接合プロセスの説明図である。図13(A)は第3の実施の形態に係る電子部品の準備及び配置工程の一例の要部断面模式図、図13(B)は図13(A)のX8部の拡大断面模式図である。図14(A)は第3の実施の形態に係る電極接触工程の一例の要部断面模式図、図14(B)は図14(A)のX9部の拡大断面模式図である。図15(A)は第3の実施の形態に係る還元及び荷重印加工程の一例の要部断面模式図、図15(B)は図15(A)のX10部の拡大断面模式図である。
Next, a third embodiment will be described.
13-15 is explanatory drawing of the joining process based on 3rd Embodiment. FIG. 13A is a schematic cross-sectional view of an essential part of an example of the preparation and arrangement steps of an electronic component according to the third embodiment, and FIG. 13B is an enlarged schematic cross-sectional view of a portion X8 in FIG. is there. FIG. 14A is a schematic cross-sectional view of an essential part of an example of an electrode contact process according to the third embodiment, and FIG. 14B is an enlarged schematic cross-sectional view of a portion X9 in FIG. FIG. 15A is a schematic cross-sectional view of an essential part of an example of the reduction and load application process according to the third embodiment, and FIG. 15B is an enlarged schematic cross-sectional view of a portion X10 in FIG.

第3の実施の形態に係る接合プロセスにおいても、まず、上記第1の実施の形態と同様に、電極110の外面111に枝状の酸化物112が形成された電子部品100と、電極210の外面211に枝状の酸化物212が形成された電子部品200とを準備する。そして、準備した電子部品100と電子部品200とを、互いの電極110と電極210とが対向するように位置合わせを行って、配置する。その際、第3の実施の形態では、図13(A)及び図13(B)に示すように、対向させる電極110と電極210との間にカーボンペースト500を介在させる。   Also in the bonding process according to the third embodiment, first, as in the first embodiment, the electronic component 100 in which the branch-like oxide 112 is formed on the outer surface 111 of the electrode 110, and the electrode 210. An electronic component 200 having a branch-like oxide 212 formed on the outer surface 211 is prepared. Then, the prepared electronic component 100 and electronic component 200 are aligned and positioned so that the electrodes 110 and 210 are opposed to each other. At that time, in the third embodiment, as shown in FIGS. 13A and 13B, the carbon paste 500 is interposed between the electrode 110 and the electrode 210 which are opposed to each other.

カーボンペースト500は、樹脂中にフィラーとしてカーボンを含有させた樹脂組成物である。カーボンペースト500の樹脂には、エポキシ、ポリイミド等の各種樹脂材料を用いることができる。カーボンペースト500の樹脂には、フラックスのような還元性を有する材料を用いたり、そのような還元性を有する材料を成分として含有させたりすることもできる。カーボンペースト500のカーボンには、球状やフレーク状といった各種形状のカーボン粒子(粉末)を用いることができる。カーボンペースト500は、例えば、電極110と電極210の少なくとも一方に、塗布、ディスペンス、浸漬等の手法を用いて、予め設けておくことができる。   The carbon paste 500 is a resin composition in which carbon is contained as a filler in a resin. As the resin of the carbon paste 500, various resin materials such as epoxy and polyimide can be used. For the resin of the carbon paste 500, a reducing material such as flux can be used, or such a reducing material can be contained as a component. As carbon of the carbon paste 500, carbon particles (powder) having various shapes such as a spherical shape and a flake shape can be used. The carbon paste 500 can be provided in advance on at least one of the electrode 110 and the electrode 210 using a technique such as coating, dispensing, or dipping.

このように電極110と電極210との間にカーボンペースト500を介在させ、図14(A)及び図14(B)に示すように、電子部品100と電子部品200とを近付け、電極110と電極210の接触、仮付けを行う。   In this way, the carbon paste 500 is interposed between the electrode 110 and the electrode 210, and as shown in FIGS. 14A and 14B, the electronic component 100 and the electronic component 200 are brought close to each other, and the electrode 110 and the electrode 210 is contacted and temporarily attached.

その際は、電子部品100と電子部品200とを近付けることで、電極110と電極210とが、間のカーボンペースト500を押し出しながら接近していく。そして、枝状の酸化物112が形成されている外面111と、枝状の酸化物212が形成されている外面211とが、一方が他方の隙間に入り込むようにして接触する。枝状の酸化物112及び酸化物212は、接触時に加わる力によって変形し得る。電極110と電極210とは、外面111と外面211との接触に伴って周囲に押し出されたカーボンペースト500や、外面111と外面211との接触後の隙間に残存するカーボンペースト500によって、仮付けされる。   At that time, by bringing the electronic component 100 and the electronic component 200 close to each other, the electrode 110 and the electrode 210 approach each other while extruding the carbon paste 500 therebetween. The outer surface 111 on which the branch-like oxide 112 is formed and the outer surface 211 on which the branch-like oxide 212 is formed are in contact with each other so that one enters the other gap. The branch-like oxide 112 and the oxide 212 can be deformed by a force applied upon contact. The electrode 110 and the electrode 210 are temporarily attached by the carbon paste 500 extruded to the periphery with the contact between the outer surface 111 and the outer surface 211, or the carbon paste 500 remaining in the gap after the contact between the outer surface 111 and the outer surface 211. Is done.

尚、外面111と外面211とを接触させる際には、電極110及び電極210に超音波を印加したり、電極110及び電極210をスクラブ動作させたりしてもよい。
接触、仮付け後、図15(A)及び図15(B)に示すように、電子部品100及び電子部品200を、例えば、不活性ガス雰囲気中や大気中で加熱しながら、電子部品100に比較的低い荷重(数MPa程度)を印加する。
Note that when the outer surface 111 and the outer surface 211 are brought into contact with each other, an ultrasonic wave may be applied to the electrode 110 and the electrode 210, or the electrode 110 and the electrode 210 may be scrubbed.
After contact and temporary attachment, as shown in FIGS. 15A and 15B, the electronic component 100 and the electronic component 200 are heated on the electronic component 100 while being heated, for example, in an inert gas atmosphere or in the atmosphere. A relatively low load (about several MPa) is applied.

この第3の実施の形態では、電極110と電極210との間やその周囲に存在しているカーボンペースト500中のカーボン(C)が還元剤として機能し、枝状の酸化物112及び酸化物212をそれぞれ金属114及び金属214に還元する。例えば、枝状の酸化物112及び酸化物212が酸化銅(Cu2O)である場合には、次のような式(3)によって、酸化銅が銅に還元される。 In the third embodiment, carbon (C) in the carbon paste 500 existing between and around the electrodes 110 and 210 functions as a reducing agent, and the branch oxides 112 and oxides. 212 is reduced to metal 114 and metal 214, respectively. For example, when the branched oxide 112 and the oxide 212 are copper oxide (Cu 2 O), the copper oxide is reduced to copper by the following formula (3).

2Cu2O+C→4Cu+CO2・・・(3)
式(3)のように、酸化銅とカーボンとの反応によって銅が形成される。電極110と電極210との間に介在させるカーボンペースト500が還元性を有するため、不活性ガス雰囲気中や大気中で加熱しながら、電子部品100に荷重を印加することができる。大気中で加熱が完結する場合には、真空装置が必要ないなど、装置構成を簡便にすることができる。
2Cu 2 O + C → 4Cu + CO 2 (3)
As shown in formula (3), copper is formed by the reaction between copper oxide and carbon. Since the carbon paste 500 interposed between the electrode 110 and the electrode 210 has a reducing property, a load can be applied to the electronic component 100 while heating in an inert gas atmosphere or in the air. When heating is completed in the atmosphere, the apparatus configuration can be simplified, for example, no vacuum apparatus is required.

尚、このようにカーボンペースト500を用いる場合であっても、還元性ガス(蟻酸等)を含む100℃以上の雰囲気に曝し、電子部品100に荷重を印加するようにしてもよい。これにより、未還元の酸化物112及び酸化物212を減らすことができる、或いは、酸化物112及び酸化物212の還元をより短時間で行うことができる、といった効果を得ることができる。   Even when the carbon paste 500 is used as described above, the load may be applied to the electronic component 100 by exposure to an atmosphere of 100 ° C. or higher containing a reducing gas (formic acid or the like). Thereby, the unreduced oxide 112 and the oxide 212 can be reduced, or the effect that the reduction of the oxide 112 and the oxide 212 can be performed in a shorter time can be obtained.

上記のような還元中の荷重印加により、外面111及び外面211の枝状構造が塑性変形し、外面111と外面211とが、比較的大きな接触面積で接触するようになる。荷重によってこのように外面111と外面211とが接触していく過程で、酸化物112及び酸化物212が、それぞれ金属114及び金属214に還元される。   By applying the load during reduction as described above, the branch structures of the outer surface 111 and the outer surface 211 are plastically deformed, and the outer surface 111 and the outer surface 211 come into contact with each other with a relatively large contact area. In the process in which the outer surface 111 and the outer surface 211 are in contact with each other by the load, the oxide 112 and the oxide 212 are reduced to the metal 114 and the metal 214, respectively.

還元と荷重印加に伴い、酸化物112及び酸化物212の枝状構造に起因して比較的大きな接触面積で生成される金属114と金属214との間で、焼結、原子拡散、金属接合が進展し、電極110と電極210とが直接接合された電子装置が得られる。   With reduction and load application, sintering, atomic diffusion, and metal bonding occur between the metal 114 and the metal 214 generated with a relatively large contact area due to the branch structure of the oxide 112 and the oxide 212. It progresses and the electronic device with which the electrode 110 and the electrode 210 were directly joined is obtained.

尚、接合に際して電極110と電極210との間に介在させたカーボンペースト500の樹脂は、接合後も電極110と電極210との間に残存していてもよいし、或いは、接合後には接合過程の熱による蒸発によって消失していてもよい。また、接合後の電極110と電極210との間には、カーボンペースト500のカーボンが残存し得るが、カーボンは導電性を有するため、電極110と電極210との電気的な接続への影響は抑えることができる。   Note that the resin of the carbon paste 500 interposed between the electrode 110 and the electrode 210 at the time of bonding may remain between the electrode 110 and the electrode 210 even after the bonding, or a bonding process after the bonding. It may disappear by evaporation due to heat. In addition, carbon of the carbon paste 500 may remain between the electrode 110 and the electrode 210 after bonding. However, since carbon has conductivity, the influence on the electrical connection between the electrode 110 and the electrode 210 is not affected. Can be suppressed.

図13〜図15に示すような接合プロセスを用いても、接合信頼性に優れ、且つ、品質に優れる電子装置を実現することができる。
また、電極110と電極210を、還元しながら固相拡散接合で接合することで、接合前の還元工程の削減、電子部品100や電子部品200の管理コストの低減を図ることができる。
Even if a bonding process as shown in FIGS. 13 to 15 is used, an electronic device having excellent bonding reliability and quality can be realized.
In addition, by joining the electrode 110 and the electrode 210 by solid phase diffusion bonding while reducing, it is possible to reduce the reduction process before bonding and to reduce the management cost of the electronic component 100 or the electronic component 200.

次に、第4の実施の形態について説明する。
図16〜図19は第4の実施の形態に係る接合プロセスの説明図である。図16(A)は第4の実施の形態に係る電子部品の準備及び配置工程の一例の要部断面模式図、図16(B)は図16(A)のX11部の拡大断面模式図である。図17(A)は第4の実施の形態に係る電極接触工程の一例の要部断面模式図、図17(B)は図17(A)のX12部の拡大断面模式図である。図18(A)は第4の実施の形態に係る還元及び荷重印加工程の一例の要部断面模式図、図18(B)は図18(A)のX13部の拡大断面模式図である。図19(A)は第4の実施の形態に係る接合プロセスで得られる電子装置の一例の要部断面模式図、図19(B)は図19(A)のX14部の拡大断面模式図である。
Next, a fourth embodiment will be described.
16-19 is explanatory drawing of the joining process based on 4th Embodiment. FIG. 16A is a schematic cross-sectional view of an essential part of an example of the preparation and arrangement steps of an electronic component according to the fourth embodiment, and FIG. 16B is an enlarged schematic cross-sectional view of a portion X11 in FIG. is there. FIG. 17A is a schematic cross-sectional view of an essential part of an example of an electrode contact process according to the fourth embodiment, and FIG. 17B is an enlarged schematic cross-sectional view of a portion X12 in FIG. FIG. 18A is a schematic cross-sectional view of an essential part of an example of the reduction and load application process according to the fourth embodiment, and FIG. 18B is an enlarged schematic cross-sectional view of a portion X13 in FIG. FIG. 19A is a schematic cross-sectional view of an essential part of an example of an electronic device obtained by the bonding process according to the fourth embodiment, and FIG. 19B is an enlarged schematic cross-sectional view of a portion X14 in FIG. is there.

第4の実施の形態に係る接合プロセスでは、上記第1の実施の形態と同様に、図16(A)及び図16(B)に示すような、電極110の外面111に枝状の酸化物112が形成された電子部品100を準備する。第4の実施の形態に係る接合プロセスでは、このような電子部品100の接合相手部品として、図16(A)及び図16(B)に示すような、外面211aに枝状の酸化物が形成されていない電極210aを有する電子部品200aを準備する。   In the bonding process according to the fourth embodiment, as in the first embodiment, a branch oxide is formed on the outer surface 111 of the electrode 110 as shown in FIGS. 16A and 16B. The electronic component 100 in which 112 is formed is prepared. In the joining process according to the fourth embodiment, a branch-like oxide is formed on the outer surface 211a as shown in FIGS. 16A and 16B as a joining counterpart component of the electronic component 100. An electronic component 200a having an electrode 210a that has not been prepared is prepared.

ここで、電子部品200aは、例えば、半導体素子、半導体装置、回路基板等である。電子部品200aの電極210aは、ここでは本体部230aから突出するように設けられた柱状の電極を例示するが、本体部230aから突出しないように設けられた電極でもよい。電極210aには、銅、ニッケル、アルミニウム、亜鉛、チタン、これらのうちの少なくとも1種を含む合金等が用いられる。本体部230aには、電極210aに電気的に接続された回路231aが含まれる。電極210aの外面211aには、自然酸化膜(図示せず)が形成され得る。尚、電極210a及び電極110の個数は、図16(A)の例に限定されるものではない。   Here, the electronic component 200a is, for example, a semiconductor element, a semiconductor device, a circuit board, or the like. The electrode 210a of the electronic component 200a is a columnar electrode provided so as to protrude from the main body 230a here, but may be an electrode provided so as not to protrude from the main body 230a. For the electrode 210a, copper, nickel, aluminum, zinc, titanium, an alloy containing at least one of these, or the like is used. The main body 230a includes a circuit 231a that is electrically connected to the electrode 210a. A natural oxide film (not shown) may be formed on the outer surface 211a of the electrode 210a. Note that the number of the electrodes 210a and the electrodes 110 is not limited to the example of FIG.

準備した電子部品100と電子部品200aとを、図16(A)及び図16(B)に示すように、互いの電極110と電極210aとが対向するように位置合わせを行って、配置する。   As shown in FIGS. 16A and 16B, the prepared electronic component 100 and electronic component 200a are aligned and arranged so that the electrodes 110 and 210a face each other.

そして、図17(A)及び図17(B)に示すように、電子部品100と電子部品200aとを近付け、電極110の、枝状の酸化物112が形成されている外面111と、電極210aの、枝状の酸化物が形成されていない外面211aとを接触させる。枝状の酸化物112は、接触時に加わる力によって変形し得る。また、電極210aの外面211aは、接触時に加わる力によって、電極110の枝状の酸化物112で押されて変形し得る。   Then, as shown in FIGS. 17A and 17B, the electronic component 100 and the electronic component 200a are brought close to each other, the outer surface 111 of the electrode 110 on which the branch oxide 112 is formed, and the electrode 210a. The outer surface 211a on which the branch oxide is not formed is brought into contact. The branch oxide 112 can be deformed by a force applied upon contact. Further, the outer surface 211a of the electrode 210a can be deformed by being pushed by the branch-like oxide 112 of the electrode 110 by a force applied at the time of contact.

尚、外面111と外面211aとを接触させる際には、電極110及び電極210aに超音波を印加したり、電極110及び電極210aをスクラブ動作させたりしてもよい。また、電極110と電極210aとの間には、上記第2の実施の形態で述べたような樹脂(還元性を有する又は有しない樹脂)、上記第3の実施の形態で述べたようなカーボンペーストを介在させてもよい。   Note that when the outer surface 111 and the outer surface 211a are brought into contact with each other, ultrasonic waves may be applied to the electrode 110 and the electrode 210a, or the electrode 110 and the electrode 210a may be scrubbed. Further, between the electrode 110 and the electrode 210a, a resin (a resin having or not having a reducing property) as described in the second embodiment, and a carbon as described in the third embodiment. A paste may be interposed.

外面111と外面211aとの接触後は、図18(A)及び図18(B)に示すように、電子部品100及び電子部品200aを、例えば、還元性ガス(蟻酸等)を含む100℃以上の雰囲気に曝すと共に、電子部品100に比較的低い荷重(数MPa程度)を印加する。或いは、電極110と電極210aとの間に還元性を有する樹脂やカーボンペーストを介在させている場合には、不活性ガス雰囲気中や大気中で加熱しながら、比較的低い荷重を印加する。   After the contact between the outer surface 111 and the outer surface 211a, as shown in FIGS. 18A and 18B, the electronic component 100 and the electronic component 200a are, for example, 100 ° C. or higher containing a reducing gas (formic acid or the like). And a relatively low load (about several MPa) is applied to the electronic component 100. Alternatively, when a reducing resin or carbon paste is interposed between the electrode 110 and the electrode 210a, a relatively low load is applied while heating in an inert gas atmosphere or in the air.

上記のような還元中の荷重印加により、外面111が、その枝状構造の塑性変形を伴いながら(外面211側に押し潰されながら)、外面211aと接触していく。この接触の過程で、酸化物112が金属114に還元される。   By applying the load during reduction as described above, the outer surface 111 comes into contact with the outer surface 211a while being plastically deformed in its branch structure (while being crushed to the outer surface 211 side). In this contact process, the oxide 112 is reduced to the metal 114.

還元と荷重印加に伴い、外面111の枝状の酸化物112が金属114に還元され、また、外面211aに存在し得る自然酸化膜が還元されて、金属114と外面211aとの間で、焼結、原子拡散、金属接合が進展する。これにより、図19(A)及び図19(B)に示すような、電極110と電極210aとが直接接合された電子装置1aが得られる。   Along with the reduction and load application, the branch-like oxide 112 on the outer surface 111 is reduced to the metal 114, and the natural oxide film that may exist on the outer surface 211a is reduced, and the metal 114 and the outer surface 211a are sintered. Bonding, atomic diffusion, and metal bonding progress. Thereby, an electronic device 1a in which the electrode 110 and the electrode 210a are directly joined as shown in FIGS. 19A and 19B is obtained.

尚、接合に際して電極110と電極210aとの間に樹脂やカーボンペーストを介在させている場合、その樹脂や樹脂成分は、接合後も残存していてもよいし、或いは、接合後には接合過程の熱による蒸発によって消失していてもよい。また、接合後の電極110と電極210aとの間には、カーボンペーストのカーボンが残存していてもよい。   When a resin or carbon paste is interposed between the electrode 110 and the electrode 210a at the time of bonding, the resin or resin component may remain after the bonding, or after the bonding, It may disappear by evaporation due to heat. Further, carbon of the carbon paste may remain between the electrode 110 and the electrode 210a after bonding.

図16〜図19に示すような接合プロセスを用いても、金属を用いた電極110と電極210aとを固相拡散接合で接合した接合信頼性に優れる接合部を、比較的低い荷重で実現することができる。半田を用いず、このように比較的低い荷重で電極110と電極210aとを直接接合することができるため、半田成分のエレクトロマイグレーション、半田の流出や過剰な圧縮変形によるショート、回路131や回路231aの荷重による損傷を抑えることができる。図16〜図19に示すような接合プロセスによっても、接合信頼性に優れ、且つ、品質に優れる電子装置1aを実現することができる。   Even if a joining process as shown in FIGS. 16 to 19 is used, a joint having excellent joining reliability obtained by joining the metal electrode 110 and the electrode 210a by solid phase diffusion joining is realized with a relatively low load. be able to. Since the electrode 110 and the electrode 210a can be directly joined without using solder in such a relatively low load, the electromigration of the solder component, the short circuit due to the outflow of the solder or excessive compression deformation, the circuit 131 or the circuit 231a. Damage due to the load can be suppressed. Also by the joining process as shown in FIG. 16 to FIG. 19, it is possible to realize the electronic device 1 a which is excellent in bonding reliability and quality.

また、電極110と電極210aを、還元しながら固相拡散接合で接合することで、接合前の還元工程の削減、電子部品100や電子部品200aの管理コストの低減を図ることができる。   Further, by joining the electrode 110 and the electrode 210a by solid phase diffusion bonding while reducing, it is possible to reduce the reduction process before bonding and to reduce the management cost of the electronic component 100 or the electronic component 200a.

次に、第5の実施の形態について説明する。
上記第1〜第4の実施の形態に係る接合プロセスは、各種電子部品間の電極同士の直接接合に適用することができる。接合プロセスの適用例を、第5の実施の形態として説明する。
Next, a fifth embodiment will be described.
The joining process according to the first to fourth embodiments can be applied to direct joining of electrodes between various electronic components. An application example of the bonding process will be described as a fifth embodiment.

図20は第5の実施の形態に係る電子装置の一例を示す図である。図20には、第5の実施の形態に係る電子装置の一例の要部断面を模式的に図示している。
図20に示す電子装置600は、回路基板610、並びに、回路基板610に実装された半導体装置620及び半導体装置630を有している。
FIG. 20 is a diagram illustrating an example of an electronic apparatus according to the fifth embodiment. FIG. 20 schematically illustrates a cross-section of an essential part of an example of an electronic apparatus according to the fifth embodiment.
An electronic device 600 illustrated in FIG. 20 includes a circuit board 610, a semiconductor device 620 mounted on the circuit board 610, and a semiconductor device 630.

回路基板610は、例えば、プリント基板である。回路基板610は、その表面611及び裏面612にそれぞれ設けられた導体613及び導体614、並びに、導体613と導体614とを電気的に接続する内部の導体615を含んでいる。回路基板610の表面611側に半導体装置620及び半導体装置630が実装される。回路基板610の裏面612の導体614には、例えば、バンプ616が搭載される。   The circuit board 610 is, for example, a printed board. The circuit board 610 includes a conductor 613 and a conductor 614 provided on the front surface 611 and the back surface 612, respectively, and an internal conductor 615 that electrically connects the conductor 613 and the conductor 614. The semiconductor device 620 and the semiconductor device 630 are mounted on the surface 611 side of the circuit board 610. For example, bumps 616 are mounted on the conductor 614 on the back surface 612 of the circuit board 610.

半導体装置620は、例えば、演算等の所定の処理機能を有するロジックIC(Integrated Circuit)である。半導体装置620は、接合部620aで回路基板610と接合され、回路基板610と電気的に接続されている。   The semiconductor device 620 is, for example, a logic IC (Integrated Circuit) having a predetermined processing function such as calculation. The semiconductor device 620 is bonded to the circuit board 610 at the bonding portion 620 a and is electrically connected to the circuit board 610.

半導体装置630は、例えば、メモリ機能を有する複数(ここでは一例として4つ)の半導体チップ631が積層された所謂3次元メモリである。上下の半導体チップ631間が接合部631aで接合され、電気的に接続されている。半導体装置630は、最下層の半導体チップ631と回路基板610とが接合部631aで接合され、回路基板610と電気的に接続されている。尚、半導体チップ631間の電気的な接続は、TSV(Through Silicon Via)技術を用いた導体構造(図示せず)によって実現される。   The semiconductor device 630 is, for example, a so-called three-dimensional memory in which a plurality of (here, four as an example) semiconductor chips 631 having a memory function are stacked. The upper and lower semiconductor chips 631 are joined by a joining portion 631a and are electrically connected. In the semiconductor device 630, the lowermost semiconductor chip 631 and the circuit board 610 are joined by a joining portion 631a, and are electrically connected to the circuit board 610. The electrical connection between the semiconductor chips 631 is realized by a conductor structure (not shown) using TSV (Through Silicon Via) technology.

上記のような構成を有する電子装置600は、予め準備された半導体装置620及び半導体装置630を、回路基板610と接合することで、得ることができる。例えば、電子装置600を得る際の、半導体装置620と回路基板610との接合(接合部620a)、及び、半導体装置630と回路基板610との接合(接合部631a)に、上記第1〜第4の実施の形態で述べたような接合プロセスを適用する。また、半導体装置630を得る際の、その上下の半導体チップ631間の接合(接合部631a)に、上記第1〜第4の実施の形態で述べたような接合プロセスを適用する。   The electronic device 600 having the above-described configuration can be obtained by joining the semiconductor device 620 and the semiconductor device 630 prepared in advance to the circuit board 610. For example, when the electronic device 600 is obtained, the first to first bondings are performed between the semiconductor device 620 and the circuit board 610 (the bonding portion 620a) and between the semiconductor device 630 and the circuit board 610 (the bonding portion 631a). The joining process as described in the fourth embodiment is applied. Further, the bonding process as described in the first to fourth embodiments is applied to the bonding (bonding portion 631a) between the upper and lower semiconductor chips 631 when the semiconductor device 630 is obtained.

即ち、半導体装置620と回路基板610については、半導体装置620に予め設けられている電極と、回路基板610の導体613又はその上に設けられた電極とを、上記接合プロセスを用いて固相拡散接合で接合し、接合部620aを形成する。半導体装置630と回路基板610については、半導体装置630に予め設けられている電極と、回路基板610の導体613又はその上に設けられた電極とを、上記接合プロセスを用いて固相拡散接合で接合し、接合部631aを形成する。また、半導体装置630の上下の半導体チップ631については、上側の半導体チップ631に予め設けられている電極と、下側の半導体チップ631に予め設けられている電極とを、上記接合プロセスを用いて固相拡散接合で接合し、接合部631aを形成する。   That is, with respect to the semiconductor device 620 and the circuit board 610, solid-phase diffusion is performed by using an electrode provided in advance on the semiconductor device 620 and a conductor 613 on the circuit board 610 or an electrode provided thereon using the bonding process. Bonding is performed to form a bonding portion 620a. As for the semiconductor device 630 and the circuit board 610, the electrodes provided in advance in the semiconductor device 630 and the conductors 613 of the circuit board 610 or the electrodes provided thereon are formed by solid phase diffusion bonding using the above bonding process. Bonding is performed to form a bonding portion 631a. In addition, for the upper and lower semiconductor chips 631 of the semiconductor device 630, an electrode provided in advance on the upper semiconductor chip 631 and an electrode provided in advance on the lower semiconductor chip 631 are combined using the above bonding process. Bonding is performed by solid phase diffusion bonding to form a bonding portion 631a.

上記接合プロセスを用いることで、接合信頼性に優れ、且つ、品質に優れる電子装置600、半導体装置630を実現することができる。
以上説明した実施の形態に関し、更に以下の付記を開示する。
By using the above bonding process, it is possible to realize the electronic device 600 and the semiconductor device 630 that are excellent in bonding reliability and quality.
Regarding the embodiment described above, the following additional notes are further disclosed.

(付記1) 第1電子部品の、第1金属が用いられ第1外面に前記第1金属の枝状の第1酸化物が設けられた第1電極の前記第1外面と、第2電子部品の、第2金属が用いられた第2電極の第2外面とを接触させる工程と、
前記第2外面と接触する前記第1外面の前記第1酸化物を還元する工程と、
前記第1外面と前記第2外面とが接触する前記第1電極と前記第2電極とに、一方を他方に押し付ける荷重を印加する工程と
を含むことを特徴とする電子装置の製造方法。
(Supplementary note 1) The first outer surface of the first electrode of the first electronic component in which the first metal is used and the first outer surface is provided with the first metal branch-shaped first oxide, and the second electronic component Contacting the second outer surface of the second electrode using the second metal,
Reducing the first oxide of the first outer surface in contact with the second outer surface;
Applying a load pressing one against the other to the first electrode and the second electrode in contact with the first outer surface and the second outer surface. An electronic device manufacturing method comprising:

(付記2) 前記第2電極は、前記第2外面に前記第2金属の枝状の第2酸化物を有し、
前記第1外面と前記第2外面とを接触させる工程は、枝状の前記第1酸化物と前記第2酸化物とをかみ合わせる工程を含み、
前記第1酸化物を還元する工程は、前記第1酸化物と共に前記第2酸化物を還元する工程を含むことを特徴とする付記1に記載の電子装置の製造方法。
(Supplementary Note 2) The second electrode has a branch-like second oxide of the second metal on the second outer surface,
The step of bringing the first outer surface and the second outer surface into contact includes a step of engaging the branch-shaped first oxide and the second oxide,
The electronic device manufacturing method according to claim 1, wherein the step of reducing the first oxide includes a step of reducing the second oxide together with the first oxide.

(付記3) 前記第1外面と前記第2外面とを接触させる工程は、前記第1外面と前記第2外面との隙間に樹脂を介在させて接触させる工程を含むことを特徴とする付記1又は2に記載の電子装置の製造方法。   (Appendix 3) The step of bringing the first outer surface and the second outer surface into contact includes a step of bringing a resin into contact with a gap between the first outer surface and the second outer surface. Or the manufacturing method of the electronic device of 2.

(付記4) 前記第1酸化物を還元する工程は、還元性ガスを用いて前記第1酸化物を還元する工程を含むことを特徴とする付記1乃至3のいずれかに記載の電子装置の製造方法。   (Supplementary Note 4) The electronic device according to any one of supplementary notes 1 to 3, wherein the step of reducing the first oxide includes a step of reducing the first oxide using a reducing gas. Production method.

(付記5) 前記第1外面と前記第2外面とを接触させる工程は、前記第1外面と前記第2外面との隙間にカーボンペーストを介在させて接触させる工程を含むことを特徴とする付記1又は2に記載の電子装置の製造方法。   (Supplementary Note 5) The step of bringing the first outer surface and the second outer surface into contact includes a step of bringing a carbon paste into contact with a gap between the first outer surface and the second outer surface. A method for manufacturing the electronic device according to 1 or 2.

(付記6) 前記第1酸化物を還元する工程は、前記第1電極、前記カーボンペースト及び前記第2電極を大気中で加熱する工程を含むことを特徴とする付記5に記載の電子装置の製造方法。   (Supplementary note 6) The electronic device according to supplementary note 5, wherein the step of reducing the first oxide includes a step of heating the first electrode, the carbon paste, and the second electrode in the atmosphere. Production method.

(付記7) 前記第1外面と前記第2外面とを接触させる工程前に、前記第1電子部品の所定部位に設けられた前記第1金属を湿式処理することによって、前記第1外面に前記第1酸化物が設けられた前記第1電極を形成する工程を含むことを特徴とする付記1乃至6のいずれかに記載の電子装置の製造方法。   (Appendix 7) Prior to the step of bringing the first outer surface and the second outer surface into contact with each other, the first metal provided in a predetermined portion of the first electronic component is wet-treated to thereby form the first outer surface on the first outer surface. The method for manufacturing an electronic device according to any one of appendices 1 to 6, further comprising a step of forming the first electrode provided with the first oxide.

(付記8) 前記荷重を印加する工程は、前記第1外面に設けられて前記第2外面と接触し、還元される前記第1酸化物を、前記第2外面側に押し潰す工程を含むことを特徴とする付記1乃至7のいずれかに記載の電子装置の製造方法。   (Supplementary Note 8) The step of applying the load includes a step of crushing the first oxide that is provided on the first outer surface, contacts the second outer surface, and is reduced to the second outer surface side. A method for manufacturing an electronic device according to any one of appendices 1 to 7, wherein:

(付記9) 第1金属が用いられた第1電極を有する第1電子部品と、
第2金属が用いられた第2電極を有する第2電子部品と
を含み、
前記第1電極は、前記第2電極と直接接合され、
前記第1電極の、前記第2電極との接合面に設けられた枝状の第1結晶粒と、前記第2電極とが、金属接合されていることを特徴とする電子装置。
(Supplementary Note 9) a first electronic component having a first electrode in which a first metal is used;
A second electronic component having a second electrode in which a second metal is used,
The first electrode is directly joined to the second electrode;
An electronic device, wherein the branch-shaped first crystal grains provided on the bonding surface of the first electrode with the second electrode are metal-bonded to the second electrode.

(付記10) 前記第1電極の枝状の前記第1結晶粒と、前記第2電極の枝状の第2結晶粒とが、絡み合った状態で、金属接合されていることを特徴とする付記9に記載の電子装置。   (Supplementary note 10) The supplementary note, wherein the branch-like first crystal grains of the first electrode and the branch-like second crystal grains of the second electrode are metal-bonded in an intertwined state. 9. The electronic device according to 9.

(付記11) 前記第1結晶粒は、前記第1電極の母材の第3結晶粒と連続していることを特徴とする付記9又は10に記載の電子装置。
(付記12) 基板と、
前記基板上に設けられ、金属が用いられた電極と、
前記電極の外面に設けられた、前記金属の枝状の酸化物と
を含むことを特徴とする電子部品。
(Additional remark 11) The said 1st crystal grain is continuing the 3rd crystal grain of the base material of the said 1st electrode, The electronic device of Additional remark 9 or 10 characterized by the above-mentioned.
(Supplementary Note 12) a substrate;
An electrode provided on the substrate and made of metal;
An electronic component comprising: the metal branch-like oxide provided on an outer surface of the electrode.

1,1a,600 電子装置
10a,10b,10c,20a,20b,20c,100,200,200a 電子部品
11a,11b,11c,21a,21b,21c,110,210,210a 電極
12c,22c,131,231,231a 回路
13a,13b,13c,23a,23b,23c,130,230,230a 本体部
30a,30b 半田
40c ショート
41c,42c 損傷
43c,44c,620a,631a 接合部
111,211,211a 外面
112,212,320 酸化物
113,213 突起
114,214 金属
310 隙間
400 樹脂
500 カーボンペースト
610 回路基板
611 表面
612 裏面
613,614,615 導体
616 バンプ
620,630 半導体装置
631 半導体チップ
1, 1a, 600 Electronic device 10a, 10b, 10c, 20a, 20b, 20c, 100, 200, 200a Electronic component 11a, 11b, 11c, 21a, 21b, 21c, 110, 210, 210a Electrode 12c, 22c, 131, 231, 231a Circuits 13a, 13b, 13c, 23a, 23b, 23c, 130, 230, 230a Main body 30a, 30b Solder 40c Short 41c, 42c Damage 43c, 44c, 620a, 631a Joint 111, 211, 211a Outer surface 112, 212, 320 Oxide 113, 213 Protrusion 114, 214 Metal 310 Gap 400 Resin 500 Carbon paste 610 Circuit board 611 Front surface 612 Back surface 613, 614, 615 Conductor 616 Bump 620, 630 Semiconductor device 631 Semiconductor chip Flop

Claims (6)

第1電子部品の、第1金属が用いられ第1外面に前記第1金属の枝状の第1酸化物が設けられた第1電極の前記第1外面と、第2電子部品の、第2金属が用いられた第2電極の第2外面とを接触させる工程と、
前記第2外面と接触する前記第1外面の前記第1酸化物を還元する工程と、
前記第1外面と前記第2外面とが接触する前記第1電極と前記第2電極とに、一方を他方に押し付ける荷重を印加する工程と
を含むことを特徴とする電子装置の製造方法。
The first outer surface of the first electrode of the first electronic component in which the first metal is used and the first outer surface is provided with the first metal branch-shaped first oxide, and the second electronic component, Contacting the second outer surface of the second electrode made of metal;
Reducing the first oxide of the first outer surface in contact with the second outer surface;
Applying a load pressing one against the other to the first electrode and the second electrode in contact with the first outer surface and the second outer surface. An electronic device manufacturing method comprising:
前記第2電極は、前記第2外面に前記第2金属の枝状の第2酸化物を有し、
前記第1外面と前記第2外面とを接触させる工程は、枝状の前記第1酸化物と前記第2酸化物とをかみ合わせる工程を含み、
前記第1酸化物を還元する工程は、前記第1酸化物と共に前記第2酸化物を還元する工程を含むことを特徴とする請求項1に記載の電子装置の製造方法。
The second electrode has a branch-shaped second oxide of the second metal on the second outer surface,
The step of bringing the first outer surface and the second outer surface into contact includes a step of engaging the branch-shaped first oxide and the second oxide,
2. The method of manufacturing an electronic device according to claim 1, wherein the step of reducing the first oxide includes a step of reducing the second oxide together with the first oxide.
前記第1外面と前記第2外面とを接触させる工程は、前記第1外面と前記第2外面との隙間に樹脂を介在させて接触させる工程を含むことを特徴とする請求項1又は2に記載の電子装置の製造方法。   3. The step of bringing the first outer surface and the second outer surface into contact includes a step of bringing a resin into contact with a gap between the first outer surface and the second outer surface. The manufacturing method of the electronic device of description. 前記第1外面と前記第2外面とを接触させる工程は、前記第1外面と前記第2外面との隙間にカーボンペーストを介在させて接触させる工程を含むことを特徴とする請求項1又は2に記載の電子装置の製造方法。   3. The step of bringing the first outer surface and the second outer surface into contact includes a step of bringing a carbon paste into contact with a gap between the first outer surface and the second outer surface. The manufacturing method of the electronic device as described in 1 .. 第1金属が用いられた第1電極を有する第1電子部品と、
第2金属が用いられた第2電極を有する第2電子部品と
を含み、
前記第1電極は、前記第2電極と直接接合され、
前記第1電極の、前記第2電極との接合面に設けられた枝状の第1結晶粒と、前記第2電極とが、金属接合されていることを特徴とする電子装置。
A first electronic component having a first electrode using a first metal;
A second electronic component having a second electrode in which a second metal is used,
The first electrode is directly joined to the second electrode;
An electronic device, wherein the branch-shaped first crystal grains provided on the bonding surface of the first electrode with the second electrode are metal-bonded to the second electrode.
基板と、
前記基板上に設けられ、金属が用いられた電極と、
前記電極の外面に設けられた、前記金属の枝状の酸化物と
を含むことを特徴とする電子部品。
A substrate,
An electrode provided on the substrate and made of metal;
An electronic component comprising: the metal branch-like oxide provided on an outer surface of the electrode.
JP2015032450A 2015-02-23 2015-02-23 Electronic device manufacturing method, electronic device, and electronic component Expired - Fee Related JP6485103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015032450A JP6485103B2 (en) 2015-02-23 2015-02-23 Electronic device manufacturing method, electronic device, and electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015032450A JP6485103B2 (en) 2015-02-23 2015-02-23 Electronic device manufacturing method, electronic device, and electronic component

Publications (2)

Publication Number Publication Date
JP2016157710A true JP2016157710A (en) 2016-09-01
JP6485103B2 JP6485103B2 (en) 2019-03-20

Family

ID=56826627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015032450A Expired - Fee Related JP6485103B2 (en) 2015-02-23 2015-02-23 Electronic device manufacturing method, electronic device, and electronic component

Country Status (1)

Country Link
JP (1) JP6485103B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185843A (en) * 1999-12-24 2001-07-06 Denso Corp Metal bonding method
JP2009049081A (en) * 2007-08-15 2009-03-05 Nikon Corp Bonding apparatus
JP2010040763A (en) * 2008-08-05 2010-02-18 Tanaka Electronics Ind Co Ltd Aluminum ribbon for ultrasonic bonding
JP2011014863A (en) * 2009-06-03 2011-01-20 Mitsubishi Electric Corp Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185843A (en) * 1999-12-24 2001-07-06 Denso Corp Metal bonding method
JP2009049081A (en) * 2007-08-15 2009-03-05 Nikon Corp Bonding apparatus
JP2010040763A (en) * 2008-08-05 2010-02-18 Tanaka Electronics Ind Co Ltd Aluminum ribbon for ultrasonic bonding
JP2011014863A (en) * 2009-06-03 2011-01-20 Mitsubishi Electric Corp Semiconductor device

Also Published As

Publication number Publication date
JP6485103B2 (en) 2019-03-20

Similar Documents

Publication Publication Date Title
JP5093235B2 (en) Electronic component device and manufacturing method thereof
TWI538762B (en) Stud bump and package structure thereof and method of forming the same
JP5378078B2 (en) Manufacturing method of semiconductor device
EP3104400B1 (en) Manufacturing method of electronic component module
US8928141B2 (en) Method for fabricating two substrates connected by at least one mechanical and electrically conductive connection and structure obtained
JP4901933B2 (en) Manufacturing method of semiconductor device
JP6029222B1 (en) Metal particles, paste, molded body, and laminate
JP2009158593A (en) Bump structure and method of manufacturing the same
JP6255949B2 (en) Bonding method and semiconductor device manufacturing method
JP2014199852A (en) Bonding method, and method of manufacturing semiconductor module
US8939348B2 (en) Metal bonded structure and metal bonding method
JP5035134B2 (en) Electronic component mounting apparatus and manufacturing method thereof
WO2015029152A1 (en) Semiconductor device
JP2012038790A (en) Electronic member and electronic component and manufacturing method thereof
JP6485103B2 (en) Electronic device manufacturing method, electronic device, and electronic component
KR101929750B1 (en) Bonding paste for high temperature applications and bonding method using the in situ formation of fine Ag bumps
TW201225209A (en) Semiconductor device and method of confining conductive bump material with solder mask patch
US20130140067A1 (en) Wafer or circuit board and joining structure of wafer or circuit board
JP2010123817A (en) Wire bonding method, electronic apparatus, and method of manufacturing the same
TW200939431A (en) Ball grid array assembly and solder pad
Tomita et al. Cu bump interconnections in 20 μm-pitch at low temperature utilizing electroless tin-plating on 3D stacked LSI
JP2021027117A (en) Semiconductor device
JP2014183100A (en) Method for joining electronic components and electronic device
TW201836103A (en) Method for producing semiconductor chip
JP2011014757A (en) Multilayer semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181024

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181211

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20181218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190204

R150 Certificate of patent or registration of utility model

Ref document number: 6485103

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees