JP2016156696A - Particle detection device - Google Patents

Particle detection device Download PDF

Info

Publication number
JP2016156696A
JP2016156696A JP2015034476A JP2015034476A JP2016156696A JP 2016156696 A JP2016156696 A JP 2016156696A JP 2015034476 A JP2015034476 A JP 2015034476A JP 2015034476 A JP2015034476 A JP 2015034476A JP 2016156696 A JP2016156696 A JP 2016156696A
Authority
JP
Japan
Prior art keywords
photomultiplier tube
light
particle
photomultiplier
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015034476A
Other languages
Japanese (ja)
Inventor
雅 古谷
Masa Furuya
雅 古谷
太輔 小原
Tasuke Obara
太輔 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2015034476A priority Critical patent/JP2016156696A/en
Publication of JP2016156696A publication Critical patent/JP2016156696A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a particle detection device which achieves easy sensitivity adjustment of a photomultiplier tube.SOLUTION: A particle detection device includes: an inspection light source 10 for emitting inspection light; a photomultiplier tube 20 for detecting reaction light generated at a particle contained in a liquid irradiated with the inspection light; a correcting light source 30 for emitting calibration light which corrects an amplification voltage of the photomultiplier tube 20; and a correction section 301 for correcting the amplification voltage of the photomultiplier tube 20 on the basis of an output value of the photomultiplier tube 20 which has received the calibration light.SELECTED DRAWING: Figure 1

Description

本発明は検出技術に関し、粒子検出装置に関する。   The present invention relates to a detection technique, and relates to a particle detection apparatus.

バイオクリーンルーム等のクリーンルームにおいては、粒子検出装置を用いて、飛散している微生物粒子や非微生物粒子が検出され、記録される(例えば、特許文献1及び非特許文献1参照。)。粒子の検出結果から、クリーンルームの空調機器の劣化具合を把握可能である。また、クリーンルームで製造された製品に、参考資料として、クリーンルーム内の粒子の検出記録が添付されることもある。   In a clean room such as a bio clean room, scattered microbial particles and non-microbial particles are detected and recorded using a particle detector (see, for example, Patent Document 1 and Non-Patent Document 1). From the particle detection result, it is possible to grasp the deterioration of the air conditioner in the clean room. In addition, a detection record of particles in the clean room may be attached to a product manufactured in the clean room as a reference material.

光学式の粒子検出装置は、例えば、クリーンルーム中の気体を吸引し、吸引した気体に光を照射する。気体に微生物粒子や非微生物粒子が含まれていると、光を照射された粒子が蛍光を発したり、粒子において散乱光が生じたりする。そのため、蛍光や散乱光を検出することにより、気体に含まれる微生物粒子や非微生物粒子の数や大きさ等を検出することが可能となる。   The optical particle detection device, for example, sucks a gas in a clean room and irradiates the sucked gas with light. If the gas contains microbial particles or non-microbial particles, the particles irradiated with light emit fluorescence or scattered light is generated in the particles. Therefore, by detecting fluorescence or scattered light, it is possible to detect the number and size of microbial particles and non-microbial particles contained in the gas.

また、クリーンルーム以外でも、流体中の粒子を正確に検出する技術が望まれている(例えば、特許文献2参照。)。例えば、エアロゾル中の粒子を正確に検出する技術、プラント配管内の粒子を正確に検出する技術、及び容器中の流体中の粒子を正確に検出する技術が望まれている。   In addition to a clean room, a technique for accurately detecting particles in a fluid is desired (for example, see Patent Document 2). For example, a technique for accurately detecting particles in aerosol, a technique for accurately detecting particles in plant piping, and a technique for accurately detecting particles in a fluid in a container are desired.

粒子が発する蛍光の強度は、粒子の種類によって異なる場合がある。また、粒子で生じる散乱光の強度も、粒子の種類によって異なる場合がある。そのため、蛍光の強度及び散乱光の強度に基づいて、粒子が生物粒子であるか、あるいは非生物粒子であるかを判別する方法が提案されている(例えば、特許文献3参照。)。   The intensity of the fluorescence emitted by the particles may vary depending on the type of particles. In addition, the intensity of scattered light generated by the particles may vary depending on the type of particles. Therefore, a method for discriminating whether a particle is a biological particle or a non-biological particle based on the intensity of fluorescence and the intensity of scattered light has been proposed (see, for example, Patent Document 3).

粒子検出装置において、粒子で生じた蛍光及び散乱光を検出するために、光電子増倍管が用いられる場合がある。光電子増倍管は、感度調整が必要となる場合がある(例えば、特許文献4、5参照。)。   In the particle detector, a photomultiplier tube may be used to detect fluorescence and scattered light generated in the particle. The photomultiplier tube may require sensitivity adjustment (see, for example, Patent Documents 4 and 5).

特開2011−83214号公報JP 2011-83214 A 特開平8−29331号公報JP-A-8-29331 米国特許出願公開第2013/0077087号明細書US Patent Application Publication No. 2013/0077087 特開2010−175415号公報JP 2010-175415 A 特許第5140697号公報Japanese Patent No. 5140697

長谷川倫男他,「気中微生物リアルタイム検出技術とその応用」,株式会社山武,azbil Technical Review 2009年12月号,p.2-7,2009年Hasegawa, M. et al., “Real-time microorganism detection technology in the air and its application”, Yamatake Corporation, azbil Technical Review December 2009, p.2-7, 2009

従来、光電子増倍管の感度調整をする際には、フローセルに特別な試薬を注入したり、フローセルを切り替えたりする装置、あるいは光電子増倍管の増幅電圧を変化させて最適地を探索する装置があるが、従来の装置における光電子増倍管の感度調整方法は煩雑である。これに対し、本発明は、光電子増倍管の感度調整が容易な粒子検出装置を提供することを目的の一つとする。   Conventionally, when adjusting the sensitivity of a photomultiplier tube, a device that injects a special reagent into the flow cell or switches the flow cell, or a device that searches the optimum location by changing the amplification voltage of the photomultiplier tube However, the method of adjusting the sensitivity of the photomultiplier tube in the conventional apparatus is complicated. On the other hand, an object of the present invention is to provide a particle detection device in which the sensitivity of a photomultiplier tube can be easily adjusted.

本発明の態様は、(a)検査光を発する検査光源と、(b)検査光を照射された流体に含まれていた粒子で生じた反応光を検出する光電子増倍管と、(c)光電子増倍管の増幅電圧を補正するための較正光を発する補正用光源と、(d)較正光を受光した光電子増倍管の出力値に基づき、光電子増倍管の増幅電圧を補正する補正部と、を備える、粒子検出装置である。   Aspects of the present invention include (a) an inspection light source that emits inspection light, (b) a photomultiplier tube that detects reaction light generated in particles contained in the fluid irradiated with the inspection light, and (c) A correction light source that emits calibration light for correcting the amplification voltage of the photomultiplier tube, and (d) correction for correcting the amplification voltage of the photomultiplier tube based on the output value of the photomultiplier tube that has received the calibration light. A particle detecting device.

上記の粒子検出装置において、較正光の波長帯域が、反応光の波長帯域と重なっていてもよい。   In the above particle detector, the wavelength band of the calibration light may overlap with the wavelength band of the reaction light.

上記の粒子検出装置において、補正部が、輝度が一定な較正光を受光した光電子増倍管の出力値に基づき、光電子増倍管の出力値が所定の値になるよう、光電子増倍管の増幅電圧を補正してもよい。また、補正部が、較正光を受光した光電子増倍管の出力値と、予め取得された光電子増倍管の増幅電圧の対数と光電子増倍管の出力の対数との比と、基づき、光電子増倍管の増幅電圧を補正してもよい。上記の粒子検出装置が、予め取得された光電子増倍管の増幅電圧の対数と光電子増倍管の出力の対数との比を保存する情報記憶装置をさらに備えていてもよい。   In the above particle detection apparatus, the correction unit is configured so that the output value of the photomultiplier tube becomes a predetermined value based on the output value of the photomultiplier tube receiving calibration light having a constant luminance. The amplified voltage may be corrected. In addition, the correction unit is based on the output value of the photomultiplier tube that has received the calibration light, and the ratio of the logarithm of the amplification voltage of the photomultiplier tube acquired in advance and the logarithm of the output of the photomultiplier tube. The amplification voltage of the multiplier may be corrected. The particle detection apparatus may further include an information storage device that stores a ratio of a logarithm of the amplification voltage of the photomultiplier tube acquired previously and a logarithm of the output of the photomultiplier tube.

上記の粒子検出装置が、それぞれ波長帯域が異なる反応光を検出する複数の光電子増倍管を備えていてもよい。また、上記の粒子検出装置が、それぞれ波長帯域が異なる較正光を発する複数の補正用光源を備えていてもよい。この場合、補正部が、較正光を受光した複数の光電子増倍管のそれぞれの出力値に基づき、複数の光電子増倍管のそれぞれの増幅電圧を補正してもよい。また、補正部が、輝度が一定な較正光を受光した複数の光電子増倍管のそれぞれの出力値に基づき、複数の光電子増倍管のそれぞれの出力値が所定の値になるよう、複数の光電子増倍管のそれぞれの増幅電圧を補正してもよい。さらに、補正部が、較正光を受光した複数の光電子増倍管のそれぞれの出力値と、複数の光電子増倍管のそれぞれについて予め取得された光電子増倍管の増幅電圧の対数と光電子増倍管の出力の対数との比と、基づき、複数の光電子増倍管のそれぞれの増幅電圧を補正してもよい。上記の粒子検出装置が、複数の光電子増倍管のそれぞれについて予め取得された光電子増倍管の増幅電圧の対数と光電子増倍管の出力の対数との比を保存する情報記憶装置をさらに備えていてもよい。   Said particle | grain detection apparatus may be provided with the several photomultiplier tube which detects the reaction light from which a wavelength range differs, respectively. In addition, the particle detection apparatus may include a plurality of correction light sources that emit calibration light having different wavelength bands. In this case, the correction unit may correct the amplification voltages of the plurality of photomultiplier tubes based on the output values of the plurality of photomultiplier tubes that have received the calibration light. Further, based on the output values of the plurality of photomultiplier tubes that have received the calibration light having a constant luminance, the correction unit is configured so that the output values of the plurality of photomultiplier tubes have predetermined values. You may correct | amend each amplification voltage of a photomultiplier tube. Further, the correction unit outputs the respective output values of the plurality of photomultiplier tubes that have received the calibration light, the logarithm of the amplification voltage of the photomultiplier tube acquired in advance for each of the plurality of photomultiplier tubes, and the photomultiplier. Based on the ratio to the logarithm of the output of the tube, the amplification voltage of each of the plurality of photomultiplier tubes may be corrected. The particle detection apparatus further includes an information storage device that stores a ratio of a logarithm of the amplification voltage of the photomultiplier tube acquired in advance for each of the plurality of photomultiplier tubes and a logarithm of the output of the photomultiplier tube. It may be.

上記の粒子検出装置が、補正用光源の点灯消灯回路をさらに含んでいてもよい。上記の粒子検出装置において、補正用光源が発光ダイオードを含んでいてもよい。反応光が蛍光であってもよいし、散乱光であってもよいし、蛍光及び散乱光の両方であってもよい。   The particle detection apparatus may further include a correction light source on / off circuit. In the above particle detector, the correction light source may include a light emitting diode. The reaction light may be fluorescence, scattered light, or both fluorescence and scattered light.

本発明によれば、光電子増倍管の感度調整が容易な粒子検出装置を提供可能である。   ADVANTAGE OF THE INVENTION According to this invention, the particle | grain detection apparatus with which the sensitivity adjustment of a photomultiplier tube is easy can be provided.

本発明の第1の実施の形態に係る粒子検出装置の模式図である。It is a schematic diagram of the particle | grain detection apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る光電子増倍管の増幅電圧の対数と出力電流の対数との関係を示す模式的なグラフである。It is a typical graph which shows the relationship between the logarithm of the amplification voltage of the photomultiplier tube which concerns on the 1st Embodiment of this invention, and the logarithm of output current. 本発明の第1の実施の形態に係る光電子増倍管の増幅電圧の補正方法を説明するための模式的なグラフである。It is a typical graph for demonstrating the correction method of the amplification voltage of the photomultiplier tube which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態の変形例に係る粒子検出装置の模式図である。It is a schematic diagram of the particle | grain detection apparatus which concerns on the modification of the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る粒子検出装置の模式図である。It is a schematic diagram of the particle | grain detection apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る温度と補正係数との関係を示すグラフである。It is a graph which shows the relationship between the temperature which concerns on the 2nd Embodiment of this invention, and a correction coefficient. 本発明の第3の実施の形態に係る粒子検出装置の模式図である。It is a schematic diagram of the particle | grain detection apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施の形態に係る粒子検出装置の模式図である。It is a schematic diagram of the particle | grain detection apparatus which concerns on the 4th Embodiment of this invention.

以下に本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号で表している。但し、図面は模式的なものである。したがって、具体的な寸法等は以下の説明を照らし合わせて判断するべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。   Embodiments of the present invention will be described below. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, the drawings are schematic. Therefore, specific dimensions and the like should be determined in light of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

(第1の実施の形態)
本発明の第1の実施の形態に係る粒子検出装置は、図1に示すように、検査光を発する検査光源10と、検査光を照射された流体に含まれていた粒子で生じた反応光を検出する光電子増倍管20と、光電子増倍管20の増幅電圧を補正するための較正光を発する補正用光源30と、較正光を受光した光電子増倍管20の出力値に基づき、光電子増倍管20の増幅電圧を補正する補正部301と、を備える。ここで、流体とは、例えば液体又は気体である。また、反応光とは、蛍光及び散乱光の少なくとも一方をいう。なお、蛍光は、自家蛍光を含む。
(First embodiment)
As shown in FIG. 1, the particle detection apparatus according to the first embodiment of the present invention includes an inspection light source 10 that emits inspection light and reaction light generated by particles contained in the fluid irradiated with the inspection light. Based on the output value of the photomultiplier tube 20 that detects the photomultiplier tube 20, the correction light source 30 that emits calibration light for correcting the amplification voltage of the photomultiplier tube 20, and the photomultiplier tube 20 that has received the calibration light. And a correction unit 301 that corrects the amplified voltage of the multiplier tube 20. Here, the fluid is, for example, a liquid or a gas. Moreover, reaction light means at least one of fluorescence and scattered light. The fluorescence includes autofluorescence.

検査光を照射される流体は、例えば、検査領域としての透明なフローセル100の貫通孔101内を流れる。フローセル100は、例えば、石英ガラスからなる。   The fluid irradiated with the inspection light flows, for example, in the through hole 101 of the transparent flow cell 100 as the inspection region. The flow cell 100 is made of, for example, quartz glass.

検査光源10は、例えば、フローセル100内部を流れる蛍光性粒子を検出するための励起光を検査光として発する。検査光源10としては、発光ダイオード(LED)及びレーザが使用可能である。検査光の波長は、例えば250ないし550nmである。検査光は、可視光であっても、紫外光であってもよい。検査光が可視光である場合、検査光の波長は、例えば400ないし550nmの範囲内であり、例えば405nmである。検査光が紫外光である場合、検査光の波長は、例えば300ないし380nmの範囲内であり、例えば340nmである。ただし、検査光の波長は、これらに限定されない。   The inspection light source 10 emits, for example, excitation light for detecting fluorescent particles flowing inside the flow cell 100 as inspection light. As the inspection light source 10, a light emitting diode (LED) and a laser can be used. The wavelength of the inspection light is, for example, 250 to 550 nm. The inspection light may be visible light or ultraviolet light. When the inspection light is visible light, the wavelength of the inspection light is, for example, in the range of 400 to 550 nm, for example, 405 nm. When the inspection light is ultraviolet light, the wavelength of the inspection light is, for example, in the range of 300 to 380 nm, for example, 340 nm. However, the wavelength of the inspection light is not limited to these.

フローセル100を流れる流体に含まれる粒子は、例えば、微生物等を含む生体物質、化学物質、ごみ、ちり、及び埃等のダスト等である。微生物の例としては細菌及び真菌が含まれる。細菌の例としては、グラム陰性菌及びグラム陽性菌が挙げられる。グラム陰性菌の例としては、大腸菌が挙げられる。グラム陽性菌の例としては、表皮ブドウ球菌、枯草菌、マイクロコッカス、及びコリネバクテリウムが挙げられる。真菌の例としては、黒カビ等のアスペルギルスが挙げられる。ただし、微生物はこれらに限定されない。   The particles contained in the fluid flowing through the flow cell 100 are, for example, biological substances including microorganisms, chemical substances, dust, dust, and dust such as dust. Examples of microorganisms include bacteria and fungi. Examples of bacteria include gram negative bacteria and gram positive bacteria. Examples of gram-negative bacteria include E. coli. Examples of Gram positive bacteria include Staphylococcus epidermidis, Bacillus subtilis, Micrococcus, and Corynebacterium. Examples of fungi include Aspergillus such as black mold. However, the microorganism is not limited to these.

流体に、微生物等の蛍光性粒子が含まれていると、粒子は励起光を照射されて蛍光を発する。例えば、微生物に含まれるリボフラビン(riboflavin)、フラビンヌクレオチド(FMN)、フラビンアデニンジヌクレオチド(FAD)、ニコチンアミドアデニンジヌクレオチドリン酸(NAD(P)H)、ピリドキサミン(pyridoxamine)、ピリドキサールリン酸(pyridoxal−5’−phosphate)、ピリドキシン(pyridoxine)、トリプトファン(tryptophan)、チロシン(tyrosine)、及びフェニルアラニン(phenylalanine)等が、蛍光を発する。非生物蛍光性粒子も、励起光を照射されて蛍光を発する。粒子が発する蛍光の波長及び強度は、粒子の種類に依存する傾向にある。   If the fluid contains fluorescent particles such as microorganisms, the particles emit fluorescence when irradiated with excitation light. For example, riboflavin, flavin nucleotide (FMN), flavin adenine dinucleotide (FAD), nicotinamide adenine dinucleotide phosphate (NAD (P) H), pyridoxamine, pyridoxal phosphate (pyridoxal) contained in microorganisms -5'-phosphate, pyridoxine, tryptophan, tyrosine, phenylalanine, and the like emit fluorescence. Non-biofluorescent particles also emit fluorescence when irradiated with excitation light. The wavelength and intensity of the fluorescence emitted by the particles tend to depend on the type of particles.

また、励起光を照射された蛍光性粒子及び非蛍光性粒子において、例えばミー散乱による散乱光が生じる。粒子で生じる散乱光の強度は、粒子の粒径に依存する傾向にある。生物粒子の粒径は、微生物の種類毎に異なる。非生物粒子の粒径も、種類毎に異なる。そのため、粒子で生じた蛍光の波長及び強度、並びに散乱光の強度から、流体に含まれる被測定粒子の種類を特定することが可能である。光を照射された粒子において生じた反応光としての蛍光及び散乱光は、粒子から全方位的に発せられる。   Further, scattered light due to Mie scattering, for example, is generated in the fluorescent particles and non-fluorescent particles irradiated with the excitation light. The intensity of scattered light generated in the particles tends to depend on the particle size of the particles. The particle size of the biological particles varies depending on the type of microorganism. The particle size of non-biological particles also varies from type to type. Therefore, it is possible to specify the type of particles to be measured contained in the fluid from the wavelength and intensity of fluorescence generated in the particles and the intensity of scattered light. Fluorescence and scattered light as reaction light generated in the particles irradiated with light are emitted from the particles in all directions.

光電子増倍管(PMT:Photomultiplier Tube)20は、フローセル100の貫通孔101内部で生じた反応光を受光する。光電子増倍管20が検出可能な光の波長帯域は、粒子検出装置が検出対象とする粒子で生じる蛍光や散乱光等の反応光の波長帯域と重なるよう設定される。光電子増倍管20は、例えば、受光した反応光を電子に変換する光電面としての陰極、陰極から放出された電子を二次電子放出によって増倍する電子増倍部、及び増倍された電子を集め、出力電流を出力する陽極を備える。陽極には、電流電圧変換回路が接続されてもよい。   A photomultiplier tube (PMT: Photomultiplier Tube) 20 receives reaction light generated inside the through hole 101 of the flow cell 100. The wavelength band of light that can be detected by the photomultiplier tube 20 is set so as to overlap with the wavelength band of reaction light such as fluorescence or scattered light generated by particles that are detected by the particle detector. The photomultiplier tube 20 includes, for example, a cathode as a photocathode that converts received reaction light into electrons, an electron multiplier that multiplies electrons emitted from the cathode by secondary electron emission, and multiplied electrons. And an anode for outputting an output current. A current-voltage conversion circuit may be connected to the anode.

光電子増倍管20の電子増倍部は、複数のダイノードと呼ばれる電極を備える。第1のダイノードに電子が入射すると、第1のダイノードは二次電子を放出する。二次電子は第2のダイノードに入射し、第2のダイノードは二次電子を放出する。以後、最後のダイノードまで、二次電子の入射と放出が繰り返されて、電子流が増幅される。   The electron multiplier section of the photomultiplier tube 20 includes a plurality of electrodes called dynodes. When electrons enter the first dynode, the first dynode emits secondary electrons. Secondary electrons are incident on the second dynode, and the second dynode emits secondary electrons. Thereafter, up to the last dynode, incident and emission of secondary electrons are repeated, and the electron current is amplified.

光電子増倍管20の陰極と陽極の間の印加電圧を、増幅電圧という。光電子増倍管20がn個のダイノードを有し、ダイノード間電圧をEとすると、光電子増倍管20の増幅電圧Vは下記(1)式で与えられる。
V=(n+1)E (1)
The applied voltage between the cathode and the anode of the photomultiplier tube 20 is called an amplification voltage. When the photomultiplier tube 20 has n dynodes and the voltage between the dynodes is E, the amplified voltage V of the photomultiplier tube 20 is given by the following equation (1).
V = (n + 1) E (1)

光電子増倍管20の感度は、例えば、陰極に入射した光の光強度に対する、陽極の出力電流で定義される。光電子増倍管20の感度は、光電子増倍管20の経時劣化に伴い、変化する場合がある。光電子増倍管20の経時劣化は、増幅電圧と、陰極に入射した光の積算光量等に依存する。光電子増倍管20の感度は、増幅電圧Vを増減して補正することによって、調整することが可能である。また、反応光を光電子増倍管20に導く光学素子の特性も、経時劣化に伴い、変化する場合がある。   The sensitivity of the photomultiplier tube 20 is defined by the output current of the anode with respect to the light intensity of light incident on the cathode, for example. The sensitivity of the photomultiplier tube 20 may change as the photomultiplier tube 20 deteriorates with time. The deterioration with time of the photomultiplier tube 20 depends on the amplification voltage, the integrated light quantity of light incident on the cathode, and the like. The sensitivity of the photomultiplier tube 20 can be adjusted by correcting the amplified voltage V by increasing or decreasing it. In addition, the characteristics of the optical element that guides the reaction light to the photomultiplier tube 20 may also change with time.

光電子増倍管20に一定の光強度の光を照射した場合、図2に示すように、光電子増倍管20の出力電流の対数は、光電子増倍管20の増幅電圧の対数にほぼ比例する。そのため、光電子増倍管20に一定の光強度の光を照射した場合における、光電子増倍管20の増幅電圧の対数と、光電子増倍管20の出力電流の対数と、の関係は、一次関数等の線形関数に近似することが可能である。   When the photomultiplier tube 20 is irradiated with light having a constant light intensity, the logarithm of the output current of the photomultiplier tube 20 is substantially proportional to the logarithm of the amplified voltage of the photomultiplier tube 20 as shown in FIG. . Therefore, the relationship between the logarithm of the amplification voltage of the photomultiplier tube 20 and the logarithm of the output current of the photomultiplier tube 20 when the photomultiplier tube 20 is irradiated with light having a constant light intensity is a linear function. It is possible to approximate a linear function such as

光電子増倍管20の感度調整を適切な間隔で実行していれば、光電子増倍管20の増幅電圧の対数と、光電子増倍管20の出力電流の対数と、の比は、光電子増倍管20の個体毎に、ほぼ一定であるとみなすことが可能である。また、光電子増倍管20の増幅電圧の対数と、光電子増倍管20の出力電流の対数と、の比は、光電子増倍管20の感度が劣化しても、ほぼ一定とみなすことが可能である。   If the sensitivity adjustment of the photomultiplier tube 20 is executed at an appropriate interval, the ratio of the logarithm of the amplified voltage of the photomultiplier tube 20 and the logarithm of the output current of the photomultiplier tube 20 is the photomultiplier. Each individual tube 20 can be considered to be substantially constant. Further, the ratio of the logarithm of the amplification voltage of the photomultiplier tube 20 and the logarithm of the output current of the photomultiplier tube 20 can be regarded as almost constant even if the sensitivity of the photomultiplier tube 20 is deteriorated. It is.

図1に示す粒子検出装置の光学系に含まれる補正用光源30は、輝度(光強度)が一定な較正光を発する。較正光の波長帯域は、粒子検出装置が検出対象とする粒子で生じる蛍光や散乱光等の反応光の波長帯域と重なるよう設定される。そのため、較正光の波長帯域は、光電子増倍管20が検出する光の波長帯域と重なる。補正用光源30としては、例えば発光ダイオードが使用可能である。補正用光源30が発した較正光は、例えば波長選択的反射鏡40を介して光電子増倍管20に導かれる。波長選択的反射鏡40としては、ダイクロイックミラー、干渉膜フィルタ、及び光学フィルタ等が使用可能である。   The correction light source 30 included in the optical system of the particle detector shown in FIG. 1 emits calibration light having a constant luminance (light intensity). The wavelength band of the calibration light is set so as to overlap with the wavelength band of the reaction light such as fluorescence or scattered light generated in the particles to be detected by the particle detection device. Therefore, the wavelength band of the calibration light overlaps with the wavelength band of the light detected by the photomultiplier tube 20. For example, a light emitting diode can be used as the correction light source 30. The calibration light emitted from the correction light source 30 is guided to the photomultiplier tube 20 via, for example, the wavelength selective reflector 40. As the wavelength selective reflecting mirror 40, a dichroic mirror, an interference film filter, an optical filter, or the like can be used.

第1の実施の形態に係る粒子検出装置を製造する際、補正用光源30を組み込んだ後、所定の光強度の較正光が光電子増倍管20の陰極に入射するよう、補正用光源30の電源回路等を調整し、粒子検出装置の個体差をなくしてもよい。   When manufacturing the particle detection apparatus according to the first embodiment, after the correction light source 30 is incorporated, the correction light source 30 is adjusted so that calibration light having a predetermined light intensity is incident on the cathode of the photomultiplier tube 20. A power supply circuit or the like may be adjusted to eliminate individual differences in the particle detection device.

第1の実施の形態に係る粒子検出装置は、補正用光源30を点灯及び消灯させる点灯消灯回路をさらに含みうる。補正用光源30は、光電子増倍管20の増幅電圧を補正する時のみに点灯される。そのため、粒子検出装置を運用していると、検査光源10の累積発光時間と比較して、補正用光源30の累積発光時間は非常に短くなる。したがって、補正用光源30の劣化は、検査光源10の劣化と比較して、著しく遅くなるため、補正用光源30が発する較正光の輝度は、一定とみなしうる。   The particle detection apparatus according to the first embodiment may further include a lighting / extinguishing circuit that turns on and off the correction light source 30. The correction light source 30 is turned on only when the amplification voltage of the photomultiplier tube 20 is corrected. Therefore, when the particle detection apparatus is operated, the cumulative light emission time of the correction light source 30 is very short compared to the cumulative light emission time of the inspection light source 10. Therefore, since the deterioration of the correction light source 30 is significantly slower than the deterioration of the inspection light source 10, the luminance of the calibration light emitted from the correction light source 30 can be regarded as constant.

補正部301は、例えば、中央演算処理装置(CPU)300に含まれる。補正部301は、輝度が一定な較正光を受光した光電子増倍管20の出力電流の値に基づき、光電子増倍管20の出力電流の値が所定の値になるよう、光電子増倍管20の増幅電圧を補正する。輝度が一定な較正光を受光した光電子増倍管20の出力電流の値は、例えば一定時間における平均値であってもよい。出力電流の所定の値は、好ましくは一定の値である。   The correction unit 301 is included in a central processing unit (CPU) 300, for example. The correction unit 301 is based on the value of the output current of the photomultiplier tube 20 that has received calibration light having a constant luminance, so that the value of the output current of the photomultiplier tube 20 becomes a predetermined value. Correct the amplified voltage. The value of the output current of the photomultiplier tube 20 that has received calibration light having a constant luminance may be, for example, an average value for a predetermined time. The predetermined value of the output current is preferably a constant value.

光電子増倍管20の増幅電圧を補正する際、補正部301は、例えばソフトウェア制御により検査光源10を消灯し、補正用光源30を点灯する。   When correcting the amplification voltage of the photomultiplier tube 20, the correction unit 301 turns off the inspection light source 10 and turns on the correction light source 30, for example, by software control.

光電子増倍管20について、予め取得された、増幅電圧の対数logVと出力電流の対数logOとの比の定数がAである場合、光電子増倍管20の増幅電圧Vと出力Oの関係は、下記(2)式で与えられる。
logO=A×logV+C (2)
ここで、Cは定数である。
When the constant of the ratio between the logarithm logV of the amplification voltage and the logarithm logO of the output current obtained in advance for the photomultiplier tube 20 is A, the relationship between the amplification voltage V and the output O of the photomultiplier tube 20 is It is given by the following equation (2).
logO = A × logV + C (2)
Here, C is a constant.

図3に示すように、例えば1回目の補正時において、輝度が一定の較正光を光電子増倍管20に照射した時の光電子増倍管20の増幅電圧の値がV1、出力電流の値がO1であった場合、上記(2)式の定数Cの値C1は、下記(3)式で与えられる。
1=logO1−A×logV1 (3)
As shown in FIG. 3, for example, at the time of the first correction, the value of the amplification voltage of the photomultiplier tube 20 when the photomultiplier tube 20 is irradiated with calibration light having a constant luminance is V 1 , and the value of the output current. Is O 1 , the value C 1 of the constant C in the above equation (2) is given by the following equation (3).
C 1 = logO 1 -A × logV 1 (3)

輝度が一定の較正光を光電子増倍管20に照射した時の光電子増倍管20の出力電流の値を所定のターゲット値OTにしたい場合、補正部301は、光電子増倍管20の増幅電圧Vの値を下記(4)式で与えられるV2にする。
2=10^{(logOT―C1)/A}
=10^{(logOT―logO1+A×logV1)/A} (4)
If you want the value of the output current of the photomultiplier tube 20 when the brightness is irradiated with constant calibration light photomultiplier tube 20 to a predetermined target value O T, the correction unit 301, the amplification of the photomultiplier 20 The value of the voltage V is set to V 2 given by the following equation (4).
V 2 = 10 ^ {(log O T −C 1 ) / A}
= 10 ^ {(log O T -log O 1 + A × log V 1 ) / A} (4)

例えば、光電子増倍管20の増幅電圧の値をV2にして粒子検出装置をある期間運用した後、例えば2回目の補正時において、輝度が一定の較正光を光電子増倍管20に照射した時の光電子増倍管20の出力電流の値がO2になった場合、上記(2)式の定数Cの値C2は、下記(5)式で与えられる。
2=logO2−A×logV2 (5)
For example, after the value of the amplified voltage of the photomultiplier tube 20 was period operation is a particle detector in the V 2, for example, at the time of the second correction, luminance is irradiated with constant calibration light photomultiplier tube 20 When the value of the output current of the photomultiplier tube 20 at that time becomes O 2 , the value C 2 of the constant C in the above equation (2) is given by the following equation (5).
C 2 = logO 2 -A × logV 2 (5)

この場合、補正部301は、光電子増倍管20の増幅電圧Vの値を下記(6)式で与えられるV3にして、輝度が一定の較正光を光電子増倍管20に照射した時の光電子増倍管20の出力電流の値が所定のターゲット値OTになるようにする。
3=10^{(logOT―C2)/A}
=10^{(logOT―logO2+A×logV2)/A} (6)
In this case, the correction unit 301, and the value of the amplified voltage V of the photomultiplier 20 to V 3 given by the following equation (6), when the brightness is irradiated with constant calibration light photomultiplier tube 20 the value of the output current of the photomultiplier tube 20 is set to be a predetermined target value O T.
V 3 = 10 ^ {(log O T -C 2 ) / A}
= 10 ^ {(log O T -log O 2 + A × log V 2 ) / A} (6)

さらに例えば、光電子増倍管20の増幅電圧の値をV3にして粒子検出装置をある期間運用した後、例えば3回目の補正時において、輝度が一定の較正光を光電子増倍管20に照射した時の光電子増倍管20の出力電流の値がO3になった場合、上記(2)式の定数Cの値C3は、下記(7)式で与えられる。
3=logO3−A×logV3 (7)
Further, for example, after the particle detector is operated for a certain period with the amplification voltage value of the photomultiplier tube 20 set to V 3 , for example, at the time of the third correction, the photomultiplier tube 20 is irradiated with calibration light having a constant luminance. When the value of the output current of the photomultiplier tube 20 at this time becomes O 3 , the value C 3 of the constant C in the above equation (2) is given by the following equation (7).
C 3 = logO 3 −A × log V 3 (7)

この場合、補正部301は、光電子増倍管20の増幅電圧Vの値を下記(8)式で与えられるV4にして、輝度が一定の較正光を光電子増倍管20に照射した時の光電子増倍管20の出力電流の値が所定のターゲット値OTになるようにする。
4=10^{(logOT―C3)/A}
=10^{(logOT―logO3+A×logV3)/A} (8)
In this case, the correction unit 301 sets the value of the amplified voltage V of the photomultiplier tube 20 to V 4 given by the following equation (8), and irradiates the photomultiplier tube 20 with calibration light having a constant luminance. the value of the output current of the photomultiplier tube 20 is set to be a predetermined target value O T.
V 4 = 10 ^ {(log O T -C 3 ) / A}
= 10 ^ {(log O T -log O 3 + A × log V 3 ) / A} (8)

このように、図1に示す補正部301は、較正光を受光した時点における光電子増倍管20の増幅電圧Vの値、輝度が一定の較正光を光電子増倍管20に照射した時の光電子増倍管20の出力電流Oの値、及び予め取得された光電子増倍管20の増幅電圧Vの対数に対する光電子増倍管20の出力電流Oの対数の比の定数Aと、基づき、輝度が一定の較正光を光電子増倍管20に照射した時の光電子増倍管20の出力電流Oの値がターゲット値OTになるよう、光電子増倍管20の増幅電圧Vの値を補正する。 As described above, the correction unit 301 shown in FIG. 1 performs photoelectrons when the photomultiplier tube 20 is irradiated with calibration light having a constant value and brightness of the amplified voltage V of the photomultiplier tube 20 when the calibration light is received. Based on the value of the output current O of the multiplier tube 20 and the constant A of the ratio of the logarithm of the output current O of the photomultiplier tube 20 to the logarithm of the amplification voltage V of the photomultiplier tube 20 obtained in advance, the luminance is the value of the output current O of the photomultiplier 20 when irradiated with predetermined calibration light photomultiplier tube 20 so that the target value O T, corrects the value of the amplified voltage V of the photomultiplier tube 20.

なお、補正部301は、光電子増倍管20の出力電流の値から変換された出力電圧の値に基づき、光電子増倍管20の増幅電圧の値を補正してもよい。   The correction unit 301 may correct the value of the amplified voltage of the photomultiplier tube 20 based on the value of the output voltage converted from the value of the output current of the photomultiplier tube 20.

光電子増倍管20の増幅電圧の補正が終了した際、補正部301は、例えばソフトウェア制御により補正用光源30を消灯し、検査光源10を点灯する。   When the correction of the amplification voltage of the photomultiplier tube 20 is completed, the correction unit 301 turns off the correction light source 30 and turns on the inspection light source 10 by software control, for example.

なお、補正された光電子増倍管20の増幅電圧Vの値が、許容範囲を超えた場合は、補正部301は、光電子増倍管20に異常が生じた旨、警告を発してもよい。   When the corrected value of the amplified voltage V of the photomultiplier tube 20 exceeds the allowable range, the correction unit 301 may issue a warning that an abnormality has occurred in the photomultiplier tube 20.

CPU300には、情報記憶装置401が接続されている。情報記憶装置401は、補正部301が利用する、予め取得された、光電子増倍管20の増幅電圧Vの対数と光電子増倍管20の出力電流Oの対数との比の定数Aを保存する。なお、補正部301が、光電子増倍管20の出力電圧の値に基づき、光電子増倍管20の増幅電圧の値を補正する場合は、情報記憶装置401は、予め取得された、光電子増倍管20の増幅電圧の対数と光電子増倍管20の出力電圧の対数との比の定数を保存する。   An information storage device 401 is connected to the CPU 300. The information storage device 401 stores a constant A, which is used in advance by the correction unit 301 and is a ratio A between the logarithm of the amplified voltage V of the photomultiplier tube 20 and the logarithm of the output current O of the photomultiplier tube 20. . When the correction unit 301 corrects the value of the amplified voltage of the photomultiplier tube 20 based on the value of the output voltage of the photomultiplier tube 20, the information storage device 401 stores the photomultiplier obtained in advance. The constant of the ratio between the logarithm of the amplification voltage of the tube 20 and the logarithm of the output voltage of the photomultiplier tube 20 is stored.

上述したように、粒子が発する蛍光の強度は、粒子の種類によって異なる場合がある。また、粒子で生じる散乱光の強度は、粒子の径に依存する。そのため、粒子で生じた蛍光や散乱光等の反応光の強度から、粒子の種類を特定可能である。しかし、光電子増倍管20の感度、及び反応光を光電子増倍管20に導く光学素子の特性等が経時劣化すると、反応光の強度を正確に検出できなくなり、反応光の強度に基づいて粒子の種類を正確に特定することが困難になる場合がある。   As described above, the intensity of the fluorescence emitted by the particle may vary depending on the type of particle. Further, the intensity of scattered light generated by the particles depends on the diameter of the particles. Therefore, the type of particle can be specified from the intensity of reaction light such as fluorescence or scattered light generated in the particle. However, if the sensitivity of the photomultiplier tube 20 and the characteristics of the optical element that guides the reaction light to the photomultiplier tube 20 deteriorate over time, the intensity of the reaction light cannot be detected accurately, and the particles based on the intensity of the reaction light. It may be difficult to accurately identify the type of the item.

これに対し、第1の実施の形態に係る粒子検出装置によれば、光電子増倍管20の感度を補正することが可能であるため、粒子の種類を正確に特定することが可能である。また、反応光を光電子増倍管20に導く光学素子の特性等が経時劣化した場合も、光電子増倍管20に入射される較正光が光学素子を透過していれば、光電子増倍管20の感度補正が、光学素子の経時劣化をも補うこととなる。なお、較正光を光電子増倍管20に直接入射して、光学素子の経時劣化の影響を除いて、光電子増倍管20の感度補正を行ってもよい。   On the other hand, according to the particle detector according to the first embodiment, it is possible to correct the sensitivity of the photomultiplier tube 20, and therefore it is possible to accurately specify the type of particle. Even when the characteristics of the optical element that guides the reaction light to the photomultiplier tube 20 deteriorate over time, the photomultiplier tube 20 can be used if the calibration light incident on the photomultiplier tube 20 is transmitted through the optical element. This sensitivity correction also compensates for deterioration with time of the optical element. The calibration light may be directly incident on the photomultiplier tube 20 to correct the sensitivity of the photomultiplier tube 20 by removing the influence of deterioration of the optical element over time.

また、従来の光電子増倍管の感度調整方法においては、較正光の輝度や、光電子増倍管の増幅電圧等の設定を変更しながら、光電子増倍管の出力を複数回計測して、最適な増幅電圧を探求している。これに対し、第1の実施の形態に係る粒子検出装置によれば、光電子増倍管20の増幅電圧を補正する際、輝度が一定の較正光を光電子増倍管20に照射した時の光電子増倍管20の出力電流Oの値を1回計測すれば、計算により、光電子増倍管20の出力電流Oの値が所定のターゲット値OTになるような増幅電圧Vの値を算出可能である。そのため、短時間で光電子増倍管20の増幅電圧を補正し、感度を調整することが可能である。したがって、粒子検出装置を連続運転中であっても、短時間のみ検査光源10を消灯し、光電子増倍管20の増幅電圧の補正を終了した後、ただちに検査光源10を点灯して、粒子の検出を再開することが可能である。 In the conventional photomultiplier tube sensitivity adjustment method, the output of the photomultiplier tube is measured several times while changing the settings of the brightness of the calibration light and the amplification voltage of the photomultiplier tube. Looking for a new amplified voltage. On the other hand, according to the particle detector according to the first embodiment, when correcting the amplification voltage of the photomultiplier tube 20, the photoelectron when the photomultiplier tube 20 is irradiated with calibration light having a constant luminance. if the value of one measurement of the output current O of intensifier 20, by calculation, the value of the output current O of the photomultiplier tube 20 can calculate the value of the amplified voltage V such that the predetermined target value O T It is. Therefore, it is possible to correct the amplified voltage of the photomultiplier tube 20 and adjust the sensitivity in a short time. Therefore, even during the continuous operation of the particle detector, the inspection light source 10 is turned off only for a short time, and after the correction of the amplification voltage of the photomultiplier tube 20 is completed, the inspection light source 10 is turned on immediately, Detection can be resumed.

第1の実施の形態に係る粒子検出装置において、励起光の強度や、フローセル100を流れる流体の種類によっては、例えば1日から数週間程度で光電子増倍管20の感度が低下する場合もあり得る。これに対し、第1の実施の形態に係る粒子検出装置は、光電子増倍管20の感度調整が容易であり、短時間で行うことが可能である。そのため、光電子増倍管20の感度調整を頻繁に行っても、粒子検出の停止時間を短時間にすることが可能となる。また、第1の実施の形態に係る粒子検出装置は、装置の立ち上げ毎、粒子の計測を開始する毎、前回の感度調整から一定時間経過する毎、あるいは所定の時刻毎に、光電子増倍管20の感度調整を行ってもよい。   In the particle detection apparatus according to the first embodiment, the sensitivity of the photomultiplier tube 20 may decrease in about one day to several weeks depending on the intensity of excitation light and the type of fluid flowing through the flow cell 100, for example. obtain. On the other hand, the particle detector according to the first embodiment can easily adjust the sensitivity of the photomultiplier tube 20 and can be performed in a short time. Therefore, even when the sensitivity of the photomultiplier tube 20 is frequently adjusted, the particle detection stop time can be shortened. In addition, the particle detection device according to the first embodiment is provided with a photomultiplier every time the device is started up, every time measurement of particles is started, every time a fixed time elapses from the previous sensitivity adjustment, or every predetermined time. The sensitivity of the tube 20 may be adjusted.

(第1の実施の形態の変形例)
図4に示すように、補正用光源30が発した較正光を、波長選択的反射鏡40を介して、検査領域としてのフローセル100の貫通孔101に照射してもよい。フローセル100の外壁及び内壁等で反射により散乱した較正光は、レンズ200で集光されて、光電子増倍管20に導かれる。図4に示す構成によれば、光電子増倍管20の感度補正が、フローセル100の経時劣化をも補うこととなる。
(Modification of the first embodiment)
As shown in FIG. 4, the calibration light emitted from the correction light source 30 may be applied to the through-hole 101 of the flow cell 100 as the inspection region via the wavelength selective reflection mirror 40. Calibration light scattered by reflection on the outer wall and inner wall of the flow cell 100 is collected by the lens 200 and guided to the photomultiplier tube 20. According to the configuration shown in FIG. 4, the sensitivity correction of the photomultiplier tube 20 compensates for the deterioration of the flow cell 100 over time.

(第2の実施の形態)
第2の実施の形態に係る粒子検出装置は、図5に示すように、補正用光源30の雰囲気温度を測定する温度計測器50をさらに備える。補正用光源30が発光ダイオードである場合、補正用光源30が発する較正光の光強度は、図6補正用光源30の雰囲気温度が上昇するほど、低下する傾向にある。
(Second Embodiment)
The particle | grain detection apparatus which concerns on 2nd Embodiment is further provided with the temperature measuring device 50 which measures the atmospheric temperature of the light source 30 for correction | amendment, as shown in FIG. When the correction light source 30 is a light emitting diode, the light intensity of the calibration light emitted from the correction light source 30 tends to decrease as the ambient temperature of the correction light source 30 in FIG. 6 increases.

補正用光源30の雰囲気温度Tにおける光電子増倍管20の出力電流OAと、補正用光源30の雰囲気温度Tの影響を補正した光電子増倍管20の出力電流OCと、の関係は、下記(9)式で与えられる。
C=OA/M (9)
ここで、Mは補正係数であり、下記(10)式で与えられる。
M=−B×T+D (10)
ここで、B、Dは定数であり、補正用光源30及び光電子増倍管20の特性等に基づき、予め取得可能である。温度Tと、補正係数Mと、の関係を示す例を図6に示す。
The relationship between the output current O A of the photomultiplier tube 20 at the ambient temperature T of the correction light source 30 and the output current O C of the photomultiplier tube 20 corrected for the influence of the ambient temperature T of the correction light source 30 is It is given by the following equation (9).
O C = O A / M (9)
Here, M is a correction coefficient and is given by the following equation (10).
M = −B × T + D (10)
Here, B and D are constants, and can be acquired in advance based on the characteristics of the correction light source 30 and the photomultiplier tube 20. An example showing the relationship between the temperature T and the correction coefficient M is shown in FIG.

第2の実施の形態において、図5に示す補正部301は、温度計測器50が計測した補正用光源30の雰囲気温度の計測値TDに基づいて、光電子増倍管20の出力電流OAの値を補正し、補正された光電子増倍管20の出力電流OCの値に基づいて、光電子増倍管20の増幅電圧Vの値を補正する。 In the second embodiment, the correction unit 301 shown in FIG. 5 outputs the output current O A of the photomultiplier tube 20 based on the measured value T D of the ambient temperature of the correction light source 30 measured by the temperature measuring instrument 50. And the value of the amplified voltage V of the photomultiplier tube 20 is corrected based on the corrected value of the output current O C of the photomultiplier tube 20.

例えば、補正部301は、温度計測器50が計測した補正用光源30の雰囲気温度の計測値TDを(10)式に代入し、当該温度における補正係数MDを算出する。さらに、補正部301は、光電子増倍管20の出力電流OAの値を補正係数MDで割って、光電子増倍管20の出力電流OAの値を補正する。補正部301は、補正された光電子増倍管20の出力電流OCの値を用いて、光電子増倍管20の増幅電圧Vの値を補正する。 For example, the correction unit 301 substitutes the measured value T D of the ambient temperature of the correction light source 30 measured by the temperature measuring instrument 50 into the equation (10), and calculates the correction coefficient M D at the temperature. Further, the correction unit 301, by dividing the value of the output current O A photomultiplier tube 20 by the correction factor M D, corrects the value of the output current O A photomultiplier tube 20. The correction unit 301 corrects the value of the amplification voltage V of the photomultiplier tube 20 using the corrected value of the output current O C of the photomultiplier tube 20.

例えば1回目の補正時、上記(4)式は下記(11)式で置き換えられる。
2
=10^{(logOT―log(O1/MD)+A×logV1)/A} (11)
例えば2回目の補正時、上記(6)式は下記(12)式で置き換えられる。
3
=10^{(logOT―log(O2/MD)+A×logV2)/A} (12)
例えば3回目の補正時、上記(8)式は下記(13)式で置き換えられる。
4
=10^{(logOT―log(O3/MD)+A×logV3)/A} (13)
For example, in the first correction, the above equation (4) is replaced by the following equation (11).
V 2
= 10 ^ {(log O T -log (O 1 / M D ) + A × log V 1 ) / A} (11)
For example, in the second correction, the above equation (6) is replaced with the following equation (12).
V 3
= 10 ^ {(log O T -log (O 2 / M D ) + A × log V 2 ) / A} (12)
For example, in the third correction, the above equation (8) is replaced by the following equation (13).
V 4
= 10 ^ {(log O T -log (O 3 / M D ) + A × log V 3 ) / A} (13)

第2の実施の形態において、情報記憶装置401は、上記(10)式のような、補正用光源30の雰囲気温度Tと、補正係数Mと、の関係をさらに保存する。第2の実施の形態に係る粒子検出装置のその他の構成要素は、第1の実施の形態と同様である。第2の実施の形態に係る粒子検出装置によれば、補正用光源30の雰囲気温度が変動しても、光電子増倍管20の増幅電圧Vを正確に補正することが可能となる。   In the second embodiment, the information storage device 401 further stores the relationship between the atmospheric temperature T of the correction light source 30 and the correction coefficient M as in the above equation (10). Other components of the particle detection apparatus according to the second embodiment are the same as those of the first embodiment. According to the particle detector according to the second embodiment, it is possible to accurately correct the amplified voltage V of the photomultiplier tube 20 even if the ambient temperature of the correction light source 30 fluctuates.

(第3の実施の形態)
第3の実施の形態に係る粒子検出装置は、図7に示すように、補正用光源30が発した較正光の一部を反射するハーフミラー60と、ハーフミラー60で反射された較正光を受光するフォトデテクター70と、フォトデテクター70が受光した較正光の光強度に基づき、補正用光源30への電流供給を調整して、較正光の光強度が一定になるようフィードバック制御するフィードバック回路80を備える。なお、ハーフミラー60の代わりに、較正光の一部を反射可能なガラスウィンドウを使用してもよい。あるいは、ハーフミラー60等を用いずに、光学系周囲の壁面等により反射散乱された較正光が進行する位置にフォトデテクター70を配置し、較正光の光強度を測定してもよい。
(Third embodiment)
As shown in FIG. 7, the particle detection apparatus according to the third embodiment includes a half mirror 60 that reflects a part of calibration light emitted from the correction light source 30, and calibration light reflected by the half mirror 60. The photo detector 70 that receives light, and a feedback circuit 80 that performs feedback control so that the light intensity of the calibration light is constant by adjusting the current supply to the correction light source 30 based on the light intensity of the calibration light received by the photo detector 70. Is provided. Instead of the half mirror 60, a glass window capable of reflecting a part of the calibration light may be used. Alternatively, without using the half mirror 60 or the like, the photodetector 70 may be arranged at a position where the calibration light reflected and scattered by the wall surface around the optical system travels, and the light intensity of the calibration light may be measured.

第3の実施の形態に係る粒子検出装置のその他の構成要素は、第1又は第2の実施の形態と同様である。第3の実施の形態に係る粒子検出装置によれば、仮に補正用光源30が発した較正光の光強度が変動しても、較正光の光強度は一定になるよう、フィードバック回路80によってただちに補正される。そのため、第3の実施の形態に係る粒子検出装置によっても、光電子増倍管20の増幅電圧Vを正確に補正することが可能となる。また、フィードバック回路80による較正光の補正と、第2の実施の形態で説明した、補正用光源30の雰囲気温度の計測値TDに基づく、光電子増倍管20の出力電流Oの値の補正と、を組み合わせることにより、さらに高い精度で光電子増倍管20の増幅電圧Vを補正することが可能となる。 Other components of the particle detection apparatus according to the third embodiment are the same as those in the first or second embodiment. According to the particle detector according to the third embodiment, even if the light intensity of the calibration light emitted from the correction light source 30 fluctuates, the feedback circuit 80 immediately causes the light intensity of the calibration light to be constant. It is corrected. Therefore, the amplified voltage V of the photomultiplier tube 20 can be accurately corrected also by the particle detector according to the third embodiment. Further, the correction of the calibration light by the feedback circuit 80 and the correction of the value of the output current O of the photomultiplier tube 20 based on the measured value T D of the ambient temperature of the light source 30 for correction described in the second embodiment. , The amplified voltage V of the photomultiplier tube 20 can be corrected with higher accuracy.

さらには、フォトデテクター70の出力についても、温度補正をすることにより、よりさらに高い精度で光電子増倍管20の増幅電圧Vを補正することが可能となる。   Further, the temperature of the output of the photodetector 70 can be corrected to correct the amplified voltage V of the photomultiplier tube 20 with higher accuracy.

(第4の実施の形態)
第4の実施の形態に係る粒子検出装置は、図8に示すように、それぞれ波長帯域が異なる反応光を検出する複数の光電子増倍管20A、20B、20Cと、それぞれ波長帯域が異なる較正光を発する複数の補正用光源30A、30B、30Cと、を備える。また、第4の実施の形態に係る粒子検出装置は、フローセル100内で生じた反応光の進行方向に配置された波長選択的反射鏡90A、90Bをさらに備える。
(Fourth embodiment)
As shown in FIG. 8, the particle detection apparatus according to the fourth embodiment includes a plurality of photomultiplier tubes 20A, 20B, and 20C that detect reaction light having different wavelength bands, and calibration light having different wavelength bands. A plurality of correction light sources 30A, 30B, and 30C. The particle detection apparatus according to the fourth embodiment further includes wavelength selective reflectors 90A and 90B arranged in the traveling direction of the reaction light generated in the flow cell 100.

波長選択的反射鏡90Aは、例えば、波長選択的に、検査光と同じ波長を有する散乱光を反射し、検査光より波長が長い蛍光を透過させる。波長選択的反射鏡90Aで反射された散乱光の焦点に、散乱光を検出するための光電子増倍管20Aが配置される。波長選択的反射鏡90Bは、例えば、波長選択的に、第1の波長帯域の蛍光を反射し、第2の波長帯域の蛍光を透過させる。波長選択的反射鏡90Bで反射された第1の波長帯域の蛍光の焦点に、第1の波長帯域の蛍光を検出するための光電子増倍管20Bが配置される。波長選択的反射鏡90Bで透過した第2の波長帯域の蛍光の焦点に、第2の波長帯域の蛍光を検出するための光電子増倍管20Cが配置される。   For example, the wavelength-selective reflecting mirror 90A reflects scattered light having the same wavelength as the inspection light and transmits fluorescence having a wavelength longer than that of the inspection light. A photomultiplier tube 20A for detecting scattered light is disposed at the focal point of the scattered light reflected by the wavelength selective reflecting mirror 90A. For example, the wavelength selective reflecting mirror 90B reflects the fluorescence in the first wavelength band and transmits the fluorescence in the second wavelength band in a wavelength selective manner. A photomultiplier tube 20B for detecting the fluorescence in the first wavelength band is disposed at the focal point of the fluorescence in the first wavelength band reflected by the wavelength selective reflection mirror 90B. A photomultiplier tube 20C for detecting the fluorescence in the second wavelength band is disposed at the focal point of the fluorescence in the second wavelength band transmitted through the wavelength selective reflection mirror 90B.

波長選択的反射鏡90A、90Bとしては、ダイクロイックミラー、干渉膜フィルタ、及び光学フィルタ等が使用可能である。波長選択的反射鏡90A、90Bは、分光光学系の少なくとも一部をなしている。   As the wavelength selective reflecting mirrors 90A and 90B, a dichroic mirror, an interference film filter, an optical filter, and the like can be used. The wavelength selective reflecting mirrors 90A and 90B constitute at least a part of the spectroscopic optical system.

例えば、補正用光源30Aが発する較正光の波長帯域は、光電子増倍管20Aが検出する散乱光の波長帯域と重なる。補正用光源30Bが発する較正光の波長帯域は、光電子増倍管20Bが検出する第1の波長帯域の蛍光の波長帯域と重なる。補正用光源30Cが発する較正光の波長帯域は、光電子増倍管20Cが検出する第2の波長帯域の蛍光の波長帯域と重なる。   For example, the wavelength band of calibration light emitted from the correction light source 30A overlaps with the wavelength band of scattered light detected by the photomultiplier tube 20A. The wavelength band of the calibration light emitted from the correction light source 30B overlaps the fluorescence wavelength band of the first wavelength band detected by the photomultiplier tube 20B. The wavelength band of calibration light emitted from the correction light source 30C overlaps with the fluorescence wavelength band of the second wavelength band detected by the photomultiplier tube 20C.

補正用光源30Aが発した較正光は、波長選択的反射鏡40Aを経て、波長選択的反射鏡90Aで反射され、光電子増倍管20Aに到達する。補正用光源30Bが発した較正光は、波長選択的反射鏡40B、40Aを経て、波長選択的反射鏡90Bで反射され、光電子増倍管20Bに到達する。補正用光源30Cが発した較正光は、波長選択的反射鏡40C、40Aを経て、波長選択的反射鏡90Bを透過し、光電子増倍管20Cに到達する。   The calibration light emitted from the correction light source 30A passes through the wavelength selective reflector 40A, is reflected by the wavelength selective reflector 90A, and reaches the photomultiplier tube 20A. The calibration light emitted from the correction light source 30B passes through the wavelength selective reflectors 40B and 40A, is reflected by the wavelength selective reflector 90B, and reaches the photomultiplier tube 20B. The calibration light emitted from the correction light source 30C passes through the wavelength selective reflectors 40C and 40A, passes through the wavelength selective reflector 90B, and reaches the photomultiplier tube 20C.

光電子増倍管20Aの増幅電圧を補正する際、補正部301は、例えばソフトウェア制御により検査光源10、補正用光源30B、30Cを消灯し、補正用光源30Aを点灯する。光電子増倍管20Bの増幅電圧を補正する際、補正部301は、例えばソフトウェア制御により検査光源10、補正用光源30A、30Cを消灯し、補正用光源30Bを点灯する。光電子増倍管20Cの増幅電圧を補正する際、補正部301は、例えばソフトウェア制御により検査光源10、補正用光源30A、30Bを消灯し、補正用光源30Cを点灯する。   When correcting the amplification voltage of the photomultiplier tube 20A, the correction unit 301 turns off the inspection light source 10 and the correction light sources 30B and 30C and turns on the correction light source 30A, for example, by software control. When correcting the amplification voltage of the photomultiplier tube 20B, the correction unit 301 turns off the inspection light source 10 and the correction light sources 30A and 30C and turns on the correction light source 30B by software control, for example. When correcting the amplification voltage of the photomultiplier tube 20C, the correction unit 301 turns off the inspection light source 10 and the correction light sources 30A and 30B and turns on the correction light source 30C by software control, for example.

第4の実施の形態において、補正部301は、輝度が一定な較正光を受光した複数の光電子増倍管20A、20B、20Cのそれぞれの出力値と、複数の光電子増倍管20A、20B、20Cのそれぞれについて予め取得された光電子増倍管の増幅電圧の対数と光電子増倍管の出力の対数との比と、基づき、複数の光電子増倍管20A、20B、20Cのそれぞれの出力値が所定の値になるよう、複数の光電子増倍管20A、20B、20Cのそれぞれの増幅電圧を補正する。   In 4th Embodiment, the correction | amendment part 301 receives each output value of several photomultiplier tubes 20A, 20B, 20C which received the calibration light with constant brightness | luminance, and several photomultiplier tubes 20A, 20B, Based on the ratio of the logarithm of the amplification voltage of the photomultiplier tube acquired in advance for each of 20C and the logarithm of the output of the photomultiplier tube, the output values of the photomultiplier tubes 20A, 20B, and 20C are The amplification voltages of the plurality of photomultiplier tubes 20A, 20B, and 20C are corrected so as to have a predetermined value.

複数の光電子増倍管20A、20B、20Cのそれぞれの増幅電圧を補正する具体的な方法は、第1の実施の形態と同様である。   A specific method for correcting the amplified voltages of the plurality of photomultiplier tubes 20A, 20B, and 20C is the same as that in the first embodiment.

第4の実施の形態において、情報記憶装置401は、光電子増倍管20Aについて予め取得された増幅電圧の対数と出力の対数との比と、光電子増倍管20Bについて予め取得された増幅電圧の対数と出力の対数との比と、光電子増倍管20Cについて予め取得された増幅電圧の対数と出力の対数との比と、を保存する。   In the fourth embodiment, the information storage device 401 uses the ratio of the logarithm of the amplification voltage acquired in advance for the photomultiplier tube 20A and the logarithm of the output, and the amplification voltage acquired in advance for the photomultiplier tube 20B. The ratio of the logarithm and the logarithm of the output and the ratio of the logarithm of the amplification voltage and the logarithm of the output acquired in advance for the photomultiplier tube 20C are stored.

第4の実施の形態に係る粒子検出装置のその他の構成要素は、第1ないし第3の実施の形態のいずれかに係る粒子検出装置と同様である。複数の光電子増倍管20A、20B、20Cのそれぞれの感度の変動が異なる場合があるが、第4の実施の形態に係る粒子検出装置によれば、複数の光電子増倍管20A、20B、20Cのそれぞれの感度を正確に調整することが可能となる。なお、光電子増倍管の数は3つに限定されない。   Other components of the particle detection device according to the fourth embodiment are the same as those of the particle detection device according to any of the first to third embodiments. In some cases, the sensitivity fluctuations of the plurality of photomultiplier tubes 20A, 20B, and 20C may be different, but according to the particle detection device according to the fourth embodiment, the plurality of photomultiplier tubes 20A, 20B, and 20C. It is possible to accurately adjust the sensitivity of each. Note that the number of photomultiplier tubes is not limited to three.

(その他の実施の形態)
上記のように本発明を実施の形態によって記載したが、この開示の一部をなす記述及び図面はこの発明を限定するものであると理解するべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかになるはずである。例えば、粒子検出装置は、粒子が発する蛍光のみを検出対象としてもよいし、粒子で生じた散乱光のみを検出対象としてもよい。また、例えば、第1の実施の形態の上記式(2)ないし式(8)において、輝度が一定の較正光を光電子増倍管20に照射する際の光電子増倍管20の増幅電圧Vの値が、前回の補正時において設定された値である例を示したが、輝度が一定の較正光を光電子増倍管20に照射する際の光電子増倍管20の増幅電圧Vの値は、予め定めた一定値であってもよい。ただし、輝度が一定の較正光を光電子増倍管20に照射する際の光電子増倍管20の増幅電圧Vの値が、前回の補正時において設定された値であるほうが、補正の前後における光電子増倍管20の増幅電圧Vの値の差が小さくなる傾向にある。このように、本発明はここでは記載していない様々な実施の形態等を包含するということを理解すべきである。
(Other embodiments)
Although the present invention has been described by the embodiments as described above, it should not be understood that the description and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques should be apparent to those skilled in the art. For example, the particle detection device may use only the fluorescence emitted by the particles as the detection target, or may use only the scattered light generated by the particles as the detection target. Further, for example, in the above formulas (2) to (8) of the first embodiment, the amplification voltage V of the photomultiplier tube 20 when the photomultiplier tube 20 is irradiated with calibration light having a constant luminance is set. An example is shown in which the value is a value set at the time of the previous correction, but the value of the amplification voltage V of the photomultiplier tube 20 when the photomultiplier tube 20 is irradiated with calibration light having a constant luminance is: It may be a predetermined constant value. However, if the value of the amplification voltage V of the photomultiplier tube 20 when the photomultiplier tube 20 is irradiated with calibration light having a constant luminance is the value set at the time of the previous correction, the photoelectrons before and after the correction The difference in the value of the amplified voltage V of the multiplier 20 tends to be small. Thus, it should be understood that the present invention includes various embodiments and the like not described herein.

10 検査光源
20、20A、20B、20C 光電子増倍管
30、30A、30B、30C 補正用光源
40、40A、40B、40C、90A、90B 波長選択的反射鏡
50 温度計測器
60 ハーフミラー
70 フォトデテクター
80 フィードバック回路
100 フローセル
101 貫通孔
300 中央演算処理装置
301 補正部
401 情報記憶装置
10 Inspection light source 20, 20A, 20B, 20C Photomultiplier tube 30, 30A, 30B, 30C Correction light source 40, 40A, 40B, 40C, 90A, 90B Wavelength selective reflecting mirror 50 Temperature measuring device 60 Half mirror 70 Photo detector 80 Feedback Circuit 100 Flow Cell 101 Through-hole 300 Central Processing Unit 301 Correction Unit 401 Information Storage Device

Claims (16)

検査光を発する検査光源と、
前記検査光を照射された流体に含まれていた粒子で生じた反応光を検出する光電子増倍管と、
前記光電子増倍管の増幅電圧を補正するための較正光を発する補正用光源と、
前記較正光を受光した前記光電子増倍管の出力値に基づき、前記光電子増倍管の増幅電圧を補正する補正部と、
を備える、粒子検出装置。
An inspection light source that emits inspection light; and
A photomultiplier tube for detecting reaction light generated by particles contained in the fluid irradiated with the inspection light;
A correction light source that emits calibration light for correcting the amplification voltage of the photomultiplier;
Based on the output value of the photomultiplier tube that has received the calibration light, a correction unit that corrects the amplified voltage of the photomultiplier tube;
A particle detector.
前記較正光の波長帯域が、前記反応光の波長帯域と重なる、請求項1に記載の粒子検出装置。   The particle detection apparatus according to claim 1, wherein a wavelength band of the calibration light overlaps with a wavelength band of the reaction light. 前記補正部が、輝度が一定な前記較正光を受光した前記光電子増倍管の出力値に基づき、前記光電子増倍管の出力値が所定の値になるよう、前記光電子増倍管の増幅電圧を補正する、請求項1又は2に記載の粒子検出装置。   Based on the output value of the photomultiplier tube that has received the calibration light having a constant brightness, the correction unit amplifies the amplified voltage of the photomultiplier tube so that the output value of the photomultiplier tube becomes a predetermined value. The particle | grain detection apparatus of Claim 1 or 2 which correct | amends. 前記補正部が、前記較正光を受光した前記光電子増倍管の出力値と、予め取得された前記光電子増倍管の増幅電圧の対数と前記光電子増倍管の出力の対数との比と、基づき、前記光電子増倍管の増幅電圧を補正する、請求項1ないし3のいずれか1項に記載の粒子検出装置。   The correction unit, the output value of the photomultiplier tube that has received the calibration light, the ratio of the logarithm of the amplification voltage of the photomultiplier tube acquired in advance and the logarithm of the output of the photomultiplier tube, The particle detector according to any one of claims 1 to 3, wherein an amplification voltage of the photomultiplier tube is corrected on the basis thereof. 予め取得された前記光電子増倍管の増幅電圧の対数と前記光電子増倍管の出力の対数との前記比を保存する情報記憶装置を更に備える、請求項4に記載の粒子検出装置。   The particle detection device according to claim 4, further comprising an information storage device that stores the ratio between a logarithm of the amplification voltage of the photomultiplier tube acquired in advance and a logarithm of the output of the photomultiplier tube. それぞれ波長帯域が異なる前記反応光を検出する複数の前記光電子増倍管を備える、請求項1又は2に記載の粒子検出装置。   The particle | grain detection apparatus of Claim 1 or 2 provided with the said several photomultiplier tube which detects the said reaction light from which a wavelength range differs, respectively. それぞれ波長帯域が異なる前記較正光を発する複数の前記補正用光源を備える、請求項6に記載の粒子検出装置。   The particle | grain detection apparatus of Claim 6 provided with the said some light source for correction | amendment which emits the said calibration light from which a wavelength range differs, respectively. 前記補正部が、前記較正光を受光した前記複数の光電子増倍管のそれぞれの出力値に基づき、前記複数の光電子増倍管のそれぞれの増幅電圧を補正する、請求項6又は7に記載の粒子検出装置。   8. The correction unit according to claim 6, wherein the correction unit corrects amplification voltages of the plurality of photomultiplier tubes based on output values of the plurality of photomultiplier tubes that have received the calibration light. Particle detector. 前記補正部が、輝度が一定な前記較正光を受光した前記複数の光電子増倍管のそれぞれの出力値に基づき、前記複数の光電子増倍管のそれぞれの出力値が所定の値になるよう、前記複数の光電子増倍管のそれぞれの増幅電圧を補正する、請求項6ないし8のいずれか1項に記載の粒子検出装置。   Based on the output values of the plurality of photomultiplier tubes that have received the calibration light having a constant luminance, the correction unit, so that the output values of the plurality of photomultiplier tubes become a predetermined value, The particle detection apparatus according to claim 6, wherein the amplification voltage of each of the plurality of photomultiplier tubes is corrected. 前記補正部が、前記較正光を受光した前記複数の光電子増倍管のそれぞれの出力値と、前記複数の光電子増倍管のそれぞれについて予め取得された前記光電子増倍管の増幅電圧の対数と前記光電子増倍管の出力の対数との比と、基づき、前記複数の光電子増倍管のそれぞれの増幅電圧を補正する、請求項6ないし9のいずれか1項に記載の粒子検出装置。   The correction unit outputs the output value of each of the plurality of photomultiplier tubes that have received the calibration light, and the logarithm of the amplification voltage of the photomultiplier tube acquired in advance for each of the plurality of photomultiplier tubes. 10. The particle detector according to claim 6, wherein the amplification voltage of each of the plurality of photomultiplier tubes is corrected based on a ratio to a logarithm of the output of the photomultiplier tube. 前記複数の光電子増倍管のそれぞれについて予め取得された前記光電子増倍管の増幅電圧の対数と前記光電子増倍管の出力の対数との前記比を保存する情報記憶装置を更に備える、請求項10に記載の粒子検出装置。   The information storage device further stores the ratio of the logarithm of the amplification voltage of the photomultiplier tube acquired in advance for each of the plurality of photomultiplier tubes and the logarithm of the output of the photomultiplier tube. 10. The particle detection apparatus according to 10. 前記補正用光源の点灯消灯回路を更に含む、請求項1ないし11のいずれか1項に記載の粒子検出装置。   The particle detection apparatus according to claim 1, further comprising a light-on / off circuit for the correction light source. 前記補正用光源が発光ダイオードを含む、請求項1ないし12のいずれか1項に記載の粒子検出装置。   The particle | grain detection apparatus of any one of Claim 1 thru | or 12 in which the said light source for a correction | amendment contains a light emitting diode. 前記反応光が蛍光である、請求項1ないし13のいずれか1項に記載の粒子検出装置。   The particle | grain detection apparatus of any one of Claim 1 thru | or 13 whose said reaction light is fluorescence. 前記反応光が散乱光である、請求項1ないし13のいずれか1項に記載の粒子検出装置。   The particle detection apparatus according to claim 1, wherein the reaction light is scattered light. 前記反応光が蛍光及び散乱光である、請求項1ないし13のいずれか1項に記載の粒子検出装置。   The particle | grain detection apparatus of any one of Claim 1 thru | or 13 whose said reaction light is fluorescence and scattered light.
JP2015034476A 2015-02-24 2015-02-24 Particle detection device Pending JP2016156696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015034476A JP2016156696A (en) 2015-02-24 2015-02-24 Particle detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015034476A JP2016156696A (en) 2015-02-24 2015-02-24 Particle detection device

Publications (1)

Publication Number Publication Date
JP2016156696A true JP2016156696A (en) 2016-09-01

Family

ID=56825654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015034476A Pending JP2016156696A (en) 2015-02-24 2015-02-24 Particle detection device

Country Status (1)

Country Link
JP (1) JP2016156696A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044251A1 (en) * 2017-08-29 2019-03-07 パナソニックIpマネジメント株式会社 Particle detection system and particle detection method

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS501787A (en) * 1973-05-04 1975-01-09
JPS62228137A (en) * 1986-03-28 1987-10-07 Shimadzu Corp Apparatus for measuring intensity distribution of laser diffraction beam
JPS63246641A (en) * 1987-04-01 1988-10-13 Ajinomoto Co Inc Fluorescence analyser
JPH03120445A (en) * 1989-10-04 1991-05-22 Hitachi Ltd Automatic fluorescence intensity measuring instrument
JPH03262931A (en) * 1990-03-13 1991-11-22 Aloka Co Ltd Light source unit for calibrating sensitivity of photomultiplier tube
JPH04259845A (en) * 1991-02-15 1992-09-16 Matsushita Electric Works Ltd Detecting apparatus for floating fine particle
JPH0650894A (en) * 1992-08-03 1994-02-25 Aloka Co Ltd Optical sample measuring apparatus
US6016192A (en) * 1995-11-22 2000-01-18 Dynex Technologies, Inc. External calibration system for a photo multiplier tube
JP2001174394A (en) * 1999-12-21 2001-06-29 Nikkiso Co Ltd Particle size distribution measuring device
JP2001330551A (en) * 2000-05-24 2001-11-30 Shimadzu Corp Particle measuring instrument
JP2004205508A (en) * 2002-12-20 2004-07-22 Becton Dickinson & Co Fluorescent analysis apparatus and fluorescent analysis method
JP2004340804A (en) * 2003-05-16 2004-12-02 Nippon Soken Inc Particle concentration detector
JP2006013171A (en) * 2004-06-25 2006-01-12 Matsushita Electric Works Ltd Light irradiation device
JP2006226698A (en) * 2005-02-15 2006-08-31 Mitsui Eng & Shipbuild Co Ltd Fluorescence detector using laser beam modulated in intensity
JP2007508526A (en) * 2003-08-13 2007-04-05 ルミネックス・コーポレーション Method for controlling one or more parameters of a flow cytometer type measurement system
WO2010087108A1 (en) * 2009-01-30 2010-08-05 株式会社 日立ハイテクノロジーズ Automatic analysis apparatus
JP2012093987A (en) * 2010-10-27 2012-05-17 Toshiba Corp Light detection device and paper sheet processing apparatus with light detection device
JP2013190211A (en) * 2012-03-12 2013-09-26 Dkk Toa Corp Fluorometric analysis apparatus

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS501787A (en) * 1973-05-04 1975-01-09
JPS62228137A (en) * 1986-03-28 1987-10-07 Shimadzu Corp Apparatus for measuring intensity distribution of laser diffraction beam
JPS63246641A (en) * 1987-04-01 1988-10-13 Ajinomoto Co Inc Fluorescence analyser
JPH03120445A (en) * 1989-10-04 1991-05-22 Hitachi Ltd Automatic fluorescence intensity measuring instrument
JPH03262931A (en) * 1990-03-13 1991-11-22 Aloka Co Ltd Light source unit for calibrating sensitivity of photomultiplier tube
JPH04259845A (en) * 1991-02-15 1992-09-16 Matsushita Electric Works Ltd Detecting apparatus for floating fine particle
JPH0650894A (en) * 1992-08-03 1994-02-25 Aloka Co Ltd Optical sample measuring apparatus
US6016192A (en) * 1995-11-22 2000-01-18 Dynex Technologies, Inc. External calibration system for a photo multiplier tube
JP2001174394A (en) * 1999-12-21 2001-06-29 Nikkiso Co Ltd Particle size distribution measuring device
JP2001330551A (en) * 2000-05-24 2001-11-30 Shimadzu Corp Particle measuring instrument
JP2004205508A (en) * 2002-12-20 2004-07-22 Becton Dickinson & Co Fluorescent analysis apparatus and fluorescent analysis method
JP2004340804A (en) * 2003-05-16 2004-12-02 Nippon Soken Inc Particle concentration detector
JP2007508526A (en) * 2003-08-13 2007-04-05 ルミネックス・コーポレーション Method for controlling one or more parameters of a flow cytometer type measurement system
JP2006013171A (en) * 2004-06-25 2006-01-12 Matsushita Electric Works Ltd Light irradiation device
JP2006226698A (en) * 2005-02-15 2006-08-31 Mitsui Eng & Shipbuild Co Ltd Fluorescence detector using laser beam modulated in intensity
WO2010087108A1 (en) * 2009-01-30 2010-08-05 株式会社 日立ハイテクノロジーズ Automatic analysis apparatus
JP2012093987A (en) * 2010-10-27 2012-05-17 Toshiba Corp Light detection device and paper sheet processing apparatus with light detection device
JP2013190211A (en) * 2012-03-12 2013-09-26 Dkk Toa Corp Fluorometric analysis apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044251A1 (en) * 2017-08-29 2019-03-07 パナソニックIpマネジメント株式会社 Particle detection system and particle detection method
JPWO2019044251A1 (en) * 2017-08-29 2020-02-27 パナソニックIpマネジメント株式会社 Particle detection system and particle detection method

Similar Documents

Publication Publication Date Title
US9581494B2 (en) Method and device for analyzing small particles in gas
US7781221B2 (en) System and method of compensating for system delay in analyte analyzation
JP2018513364A5 (en)
JP2016156696A (en) Particle detection device
JP2005250130A (en) Illuminator for fluorescent observation
JP2021145976A (en) Ultraviolet lamp
JP6178228B2 (en) Particle detection apparatus and particle detection method
TWI645445B (en) Bias-variant photomultiplier tube, optical system including the same, and method for biasing photomultiplier tube
US20130105708A1 (en) Narrow band fluorophore exciter
JP2015114102A (en) Particle detecting apparatus, and particle detecting method
JP6401606B2 (en) Fluorescent glass dosimeter reader
JP2017219488A (en) Particle detector and method of controlling particle detector
US9958372B2 (en) Particle detection apparatus and particle detection method
JP2007064832A (en) Fluororescent reference member and fluorescence inspection device
JP2018152232A5 (en)
JP6316574B2 (en) Particle detection apparatus and particle detection method
US20210231573A1 (en) Calibration device for an optical detector and setting device for setting calibration points for the calibration device
JP2017015654A (en) Distance measuring device and control method of the same
JP2011058984A (en) Device and method for inspecting foreign matter and program
JPH034129A (en) Photometric device for counting light quantum
JP6316573B2 (en) Particle detection apparatus and particle detection method
KR20230073705A (en) Optical ionization gas sensor electrode and gas detection divice having the same
JP2007101465A (en) Luminous energy monitor, and light source device using the same
JP2017219484A (en) Particle detector, and inspection method of particle detector
JP2010048645A (en) Concentration measuring instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191029