JP2002083851A - Quality evaluation method of semiconductor substrate and its quality evaluation apparatus - Google Patents

Quality evaluation method of semiconductor substrate and its quality evaluation apparatus

Info

Publication number
JP2002083851A
JP2002083851A JP2000272622A JP2000272622A JP2002083851A JP 2002083851 A JP2002083851 A JP 2002083851A JP 2000272622 A JP2000272622 A JP 2000272622A JP 2000272622 A JP2000272622 A JP 2000272622A JP 2002083851 A JP2002083851 A JP 2002083851A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
light
chopper
excitation light
photoluminescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000272622A
Other languages
Japanese (ja)
Other versions
JP3687509B2 (en
Inventor
Takeshi Hasegawa
健 長谷川
Teruzo Ito
輝三 伊藤
Hiroyuki Shiraki
弘幸 白木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Silicon Corp
Original Assignee
Mitsubishi Materials Silicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Silicon Corp filed Critical Mitsubishi Materials Silicon Corp
Priority to JP2000272622A priority Critical patent/JP3687509B2/en
Priority to US09/815,208 priority patent/US6534774B2/en
Priority to DE10115264A priority patent/DE10115264B4/en
Priority to TW090107279A priority patent/TW541431B/en
Priority to CNB011120967A priority patent/CN1165077C/en
Priority to KR10-2001-0016795A priority patent/KR100393866B1/en
Priority to CNB2004100038274A priority patent/CN1271697C/en
Publication of JP2002083851A publication Critical patent/JP2002083851A/en
Priority to US10/299,148 priority patent/US6693286B2/en
Application granted granted Critical
Publication of JP3687509B2 publication Critical patent/JP3687509B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately evaluate impurity, defects, etc., in a semiconductor substrate by detecting quantitatively the life time of a semiconductor substrate whose life time is long. SOLUTION: A first chopper 21 between a laser device 14 and a semiconductor substrate 11 makes an excitation light 13 turn on and off at a prescribed frequency. A second chopper 22 between the first chopper and the semiconductor substrate makes the excitation light turn on and off at a variable frequency higher than that of the first chopper. A photoluminescence light 16 which is generated by the semiconductor substrate when irradiation of the excitation light to the semiconductor substrate is turned on and off is introduced in a spectroscope 17. A controller 23 detects an attenuation time constant T of the photoluminescence light from the change of mean intensity of the photoluminescence light at the time when the on-off frequency of the excitation light is increased gradually by controlling the second chopper, and calculates the life time of the semiconductor substrate from a formula τ=T/C (where C is a constant).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体基板の品
質、即ち半導体基板内に存在する不純物や欠陥等を定量
的に評価する方法及び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for quantitatively evaluating the quality of a semiconductor substrate, that is, impurities and defects existing in the semiconductor substrate.

【0002】[0002]

【従来の技術】従来、この種の評価方法として、化合物
半導体である発光素子用エピタキシャルウェーハに励起
光を照射し、このウェーハの活性層にキャリアが励起さ
れることにより生ずるフォトルミネッセンス光を検出
し、このフォトルミネッセンス光の強度の時間変化が一
定値となるときのフォトルミネッセンス光の強度の変化
速度から非発光ライフタイムを導出する発光素子用エピ
タキシャルウェーハの評価方法が開示されている(特開
2000−101145号)。このように構成された発
光素子用エピタキシャルウェーハの評価方法では、非発
光ライフタイムが励起キャリア密度とは独立した物性値
であるため、励起キャリア密度の大きな高輝度LEDに
対しても、発光効率との良い相関関係が成立つ。この結
果、励起キャリア密度に依存することなく、活性層にお
ける非発光ライフタイムを正確かつ容易に測定できるの
で、高い発光効率を有するエピタキシャルウェーハを確
実に選別でき、エピタキシャルウェーハの製造歩留りを
向上できるようになっている。
2. Description of the Related Art Conventionally, as an evaluation method of this kind, an excitation light is irradiated on an epitaxial wafer for a light emitting device which is a compound semiconductor, and photoluminescence light generated by excitation of carriers in an active layer of the wafer is detected. A method for evaluating an epitaxial wafer for a light-emitting element, which derives a non-light-emitting lifetime from a rate of change in the intensity of photoluminescence light when the time-dependent change in intensity of the photoluminescence light is constant (Japanese Patent Laid-Open No. 2000-2000) No. 101145). In the method for evaluating the epitaxial wafer for a light-emitting element configured as described above, the non-light-emitting lifetime is a property value independent of the excited carrier density. Good correlation holds. As a result, the non-light-emitting lifetime in the active layer can be accurately and easily measured without depending on the excited carrier density, so that an epitaxial wafer having high luminous efficiency can be reliably selected and the production yield of the epitaxial wafer can be improved. It has become.

【0003】一方、p型クラッド層及びn型クラッド層
より小さいバンドギャップを有する半導体層がp型クラ
ッド層及びn型クラッド層により挟まれ、p型クラッド
層とn型クラッド層の間に順方向のバイアス電圧を印加
しながら半導体層にパルス光を照射することにより得ら
れるフォトルミネッセンス光に基づいて、そのフォトル
ミネッセンス光の減衰時定数を測定する半導体装置の評
価方法が開示されている(特開平10−135291
号)。この評価方法では、上記フォトルミネッセンス光
の減衰時定数がその発光強度から励起光を照射せずかつ
バイアス電圧を印加したときの発光強度を減算して算出
される。このように構成された半導体装置の評価方法
は、pn接合を有する半導体装置、特にLEDや化合物
半導体レーザなどの発光素子に適し、励起光を照射した
ときのフォトルミネッセンス光の強度から、励起光を照
射せずかつpn接合に対して順方向にバイアス電圧を印
加して半導体層のエネルギバンドの傾きの影響を低減し
た状態でフォトルミネッセンス光の強度を減算すること
により、発光素子のフォトルミネッセンス光の減衰時定
数を求める。この結果、励起強度が変化してもエネルギ
バンドの傾きが殆ど変わらずかつフォトルミネッセンス
光の減衰時定数がばらつかず、減衰時定数をより正確に
測定することができるので、発光素子の検査工程の精度
を向上でき、不良要因を早期に検出できるようになって
いる。
On the other hand, a semiconductor layer having a band gap smaller than the p-type cladding layer and the n-type cladding layer is sandwiched between the p-type cladding layer and the n-type cladding layer, and a forward direction is provided between the p-type cladding layer and the n-type cladding layer. A method for evaluating a semiconductor device in which the decay time constant of photoluminescence light is measured based on photoluminescence light obtained by irradiating a semiconductor layer with pulsed light while applying a bias voltage (Japanese Unexamined Patent Application, First Publication No. H10-260,1992). 10-135291
issue). In this evaluation method, the decay time constant of the photoluminescence light is calculated by subtracting the light emission intensity when the excitation light is not irradiated and the bias voltage is applied from the light emission intensity. The method for evaluating a semiconductor device configured in this manner is suitable for a semiconductor device having a pn junction, particularly a light emitting element such as an LED or a compound semiconductor laser, and the excitation light is irradiated from the intensity of the photoluminescence light when irradiated with the excitation light. By applying a bias voltage in the forward direction to the pn junction without irradiation and reducing the effect of the tilt of the energy band of the semiconductor layer, the intensity of the photoluminescence light is subtracted, so that the photoluminescence light of the light emitting element is reduced. Find the decay time constant. As a result, even if the excitation intensity changes, the slope of the energy band hardly changes and the decay time constant of the photoluminescence light does not vary, so that the decay time constant can be measured more accurately. Accuracy can be improved, and defective factors can be detected early.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記従来の特
開2000−101145号公報に示された発光素子用
エピタキシャルウェーハの評価方法では、発光素子に用
いられるエピタキシャルウェーハ(化合物半導体)のラ
イフタイムは十分に小さいため(ナノ秒単位)、励起光
の照射領域で発光していると考えられるけれども、ライ
フタイムの長い(マイクロ秒単位)間接遷移型のシリコ
ン基板等の半導体基板では、励起光を照射することによ
り半導体基板内に励起されたキャリアの拡散を考慮しな
ければ、正確なライフタイムを測定できない不具合があ
った。また、上記従来の特開平10−135291号公
報に示された半導体装置の評価方法では、測定対象が減
衰時定数の短いダブルヘテロ構造を有する化合物半導体
であるため、pn接合に対して順方向にバイアス電圧を
印加して半導体層のエネルギバンドの傾きの影響を低減
することにより、減衰時定数を比較的正確に求めること
ができるけれども、ライフタイムの長い間接遷移型のシ
リコン基板等の半導体基板では、半導体基板内に励起さ
れたキャリアの拡散を考慮しなければ、正確に減衰時定
数を測定できない問題点があった。本発明の目的は、半
導体基板を破壊せずかつ半導体基板に接触せずに、ライ
フタイムの長い半導体基板のライフタイムを定量的に求
めることにより、半導体基板内の不純物や欠陥等を正確
に評価できる、半導体基板の品質評価方法及びその品質
評価装置を提供することにある。
However, in the above-described conventional method for evaluating an epitaxial wafer for a light emitting device disclosed in Japanese Patent Application Laid-Open No. 2000-101145, the lifetime of an epitaxial wafer (compound semiconductor) used for a light emitting device is limited. Although it is considered that light is emitted in the excitation light irradiation region because it is sufficiently small (in nanoseconds), excitation light is applied to a semiconductor substrate such as an indirect transition type silicon substrate having a long lifetime (microseconds). Therefore, unless the diffusion of the excited carriers in the semiconductor substrate is taken into account, there is a problem that the accurate lifetime cannot be measured. In the conventional method of evaluating a semiconductor device disclosed in Japanese Patent Application Laid-Open No. Hei 10-135291, since the object to be measured is a compound semiconductor having a double hetero structure having a short attenuation time constant, the semiconductor device is measured in a forward direction with respect to the pn junction. By applying a bias voltage to reduce the effect of the tilt of the energy band of the semiconductor layer, the decay time constant can be obtained relatively accurately. However, in the case of a semiconductor substrate such as an indirect transition type silicon substrate having a long life time, Unless the diffusion of the excited carriers in the semiconductor substrate is taken into account, there is a problem that the decay time constant cannot be measured accurately. An object of the present invention is to accurately evaluate impurities, defects, and the like in a semiconductor substrate by quantitatively determining a lifetime of a semiconductor substrate having a long lifetime without destroying and contacting the semiconductor substrate. It is an object of the present invention to provide a semiconductor substrate quality evaluation method and a quality evaluation device therefor.

【0005】[0005]

【課題を解決するための手段】本発明者らは、フォトル
ミネッセンス法による半導体基板のライフタイムの測定
において、半導体基板としてポリッシュドシリコン基板
のようにライフタイムの長い(数十μ秒〜数百μ秒)基
板を用いると、通常用いられる励起光の断続周波数(数
十Hz〜数百Hz)でも半導体基板の発するフォトルミ
ネッセンス光の減衰が励起光の断続に追従できず、励起
光の断続周波数を低い周波数から高い周波数に次第に上
げていくと、上記フォトルミネッセンス光が変動幅の大
きい断続的な発光から変動幅の小さい発光に変化してい
くと考えた。このフォトルミネッセンス光の断続周波数
依存性は各半導体基板のフォトルミネッセンス光の減衰
時定数の違いにより異なると予想した。換言すれば、フ
ォトルミネッセンス光の断続的な発光から連続的な発光
に変化する際の励起光の断続周波数の違いにより、フォ
トルミネッセンス光の減衰時定数を求めることが可能で
あることを見出した。そこで、フォトルミネッセンス光
の過渡応答について考察し、フォトルミネッセンス光の
減衰時定数からライフタイムを導出するという本発明を
なすに至った。
In measuring the lifetime of a semiconductor substrate by the photoluminescence method, the present inventors have found that a semiconductor substrate having a long lifetime (several tens of microseconds to several hundreds) is used as a polished silicon substrate. μs) When a substrate is used, the attenuation of the photoluminescence light emitted from the semiconductor substrate cannot follow the intermittent frequency of the excitation light even at the commonly used intermittent frequency of the excitation light (several tens Hz to several hundreds of Hz), and the intermittent frequency of the excitation light It was considered that when the frequency was gradually increased from a low frequency to a high frequency, the photoluminescence light changed from intermittent light emission having a large fluctuation width to light emission having a small fluctuation width. The intermittent frequency dependence of the photoluminescence light was expected to be different due to the difference in the photoluminescence light decay time constant of each semiconductor substrate. In other words, it has been found that the decay time constant of the photoluminescence light can be obtained from the difference in the intermittent frequency of the excitation light when the photoluminescence light changes from intermittent light emission to continuous light emission. Then, the present inventors have considered the transient response of the photoluminescence light and derived the lifetime from the decay time constant of the photoluminescence light.

【0006】請求項1に係る発明は、図1に示すよう
に、励起光13を半導体基板11の表面に断続的に照射
し、励起光13の半導体基板11への照射の断続時に半
導体基板11が発するフォトルミネッセンス光16の強
度を電気信号に変換し、励起光13の断続周波数を次第
に増大させて上記電気信号に変換されたフォトルミネッ
センス光16の平均強度の変化からフォトルミネッセン
ス光16の減衰時定数Tを求め、半導体基板11の品質
評価の指標であるライフタイムτを式τ=T/C(但
し、Cは定数である。)から算出する半導体基板の品質
評価方法である。この請求項1に記載された半導体基板
の品質評価方法では、半導体基板11を破壊せずかつ半
導体基板11に接触せずに、半導体基板11のライフタ
イムτを定量的に求めることができ、この求められたラ
イフタイムτは半導体基板11内の不純物や欠陥を定量
的に正確に表した値となる。またこの品質評価方法はラ
イフタイムτの長い半導体基板11のライフタイムτを
求めるのに好適である。
According to the first aspect of the present invention, as shown in FIG. 1, the surface of a semiconductor substrate 11 is irradiated with excitation light 13 intermittently. When the photoluminescence light 16 is attenuated by converting the intensity of the photoluminescence light 16 emitted from the photoluminescence light 16 into an electric signal and gradually increasing the intermittent frequency of the excitation light 13 to change the average intensity of the photoluminescence light 16 converted into the electric signal. This is a semiconductor substrate quality evaluation method in which a constant T is obtained, and a lifetime τ, which is an index of quality evaluation of the semiconductor substrate 11, is calculated from the equation τ = T / C (where C is a constant). According to the method for evaluating the quality of a semiconductor substrate according to the first aspect, the lifetime τ of the semiconductor substrate 11 can be quantitatively determined without breaking the semiconductor substrate 11 and without contacting the semiconductor substrate 11. The obtained lifetime τ is a value that quantitatively and accurately represents impurities and defects in the semiconductor substrate 11. This quality evaluation method is suitable for obtaining the lifetime τ of the semiconductor substrate 11 having a long lifetime τ.

【0007】請求項3に係る発明は、図1に示すよう
に、励起光13を半導体基板11の表面に照射するレー
ザ装置14と、レーザ装置と半導体基板11との間に設
けられ半導体基板に照射される励起光13を所定の周波
数で断続させかつこの所定の周波数でパルス信号を発す
る第1チョッパ21と、第1チョッパと半導体基板11
との間に設けられ励起光13を第1チョッパ21より高
い周波数でその周波数を変化させて断続可能な第2チョ
ッパ22と、励起光13の半導体基板11への照射の断
続時に半導体基板の発するフォトルミネッセンス光16
が導入される分光器17と、分光器に導入されたフォト
ルミネッセンス光16の強度を電気信号に変換する光検
出器18と、光検出器により変換された電気信号と第1
チョッパ21の発したパルス信号とを取込んで増幅する
ロックイン増幅器19と、ロックイン増幅器で増幅され
た電気信号及びパルス信号を読取るとともに第2チョッ
パ22を制御して励起光13の断続周波数を変更するコ
ントローラ23とを備えた半導体基板の品質評価装置で
あって、コントローラ23が第2チョッパ22を制御し
て励起光13の断続周波数を次第に増大させたときの上
記電気信号に変換されたフォトルミネッセンス光16の
平均強度の変化からフォトルミネッセンス光16の減衰
時定数Tを求め、かつ半導体基板11の評価基準である
ライフタイムτを式τ=T/C(但し、Cは定数であ
る。)から算出するように構成されたことを特徴とす
る。この請求項3に記載された半導体基板の品質評価装
置では、請求項1と同様に、半導体基板11を破壊せず
かつ半導体基板11に接触せずに、半導体基板11のラ
イフタイムτを定量的に求めることができ、この求めら
れたライフタイムτは半導体基板11内の不純物や欠陥
を定量的に正確に表した値となる。またこの品質評価装
置12はライフタイムτの長い半導体基板11のライフ
タイムτを求めるのに好適である。
According to a third aspect of the present invention, as shown in FIG. 1, a laser device 14 for irradiating a surface of a semiconductor substrate 11 with excitation light 13 and a semiconductor device provided between the laser device and the semiconductor substrate 11 are provided. A first chopper 21 for interrupting the irradiated excitation light 13 at a predetermined frequency and generating a pulse signal at the predetermined frequency; a first chopper and the semiconductor substrate 11
And a second chopper 22 capable of changing the frequency of the excitation light 13 at a frequency higher than that of the first chopper 21 and intermittently, and emitting the excitation light 13 to the semiconductor substrate 11 when the semiconductor substrate 11 is intermittently emitted. Photoluminescence light 16
, A photodetector 18 that converts the intensity of the photoluminescence light 16 introduced into the spectrometer into an electric signal, an electric signal converted by the photodetector,
A lock-in amplifier 19 that takes in and amplifies the pulse signal generated by the chopper 21 and reads an electric signal and a pulse signal amplified by the lock-in amplifier and controls the second chopper 22 to reduce the intermittent frequency of the pump light 13. A quality evaluation device for a semiconductor substrate, comprising: a controller that controls the second chopper to gradually increase the intermittent frequency of the pumping light; The decay time constant T of the photoluminescence light 16 is obtained from the change in the average intensity of the luminescence light 16, and the lifetime τ, which is the evaluation criterion of the semiconductor substrate 11, is expressed by the formula τ = T / C (where C is a constant). Is calculated from the following. In the semiconductor substrate quality evaluation apparatus according to the third aspect, similarly to the first aspect, the lifetime τ of the semiconductor substrate 11 is quantitatively determined without breaking the semiconductor substrate 11 and without contacting the semiconductor substrate 11. The obtained lifetime τ is a value that quantitatively and accurately represents impurities and defects in the semiconductor substrate 11. The quality evaluation device 12 is suitable for obtaining the lifetime τ of the semiconductor substrate 11 having a long lifetime τ.

【0008】[0008]

【発明の実施の形態】次に本発明の実施の形態を図面に
基づいて説明する。図1に示すように、半導体基板11
の品質評価装置12は励起光13を半導体基板11の表
面に照射するレーザ装置14と、このレーザ装置と半導
体基板11との間に設けられた第1チョッパ21と、こ
の第1チョッパと半導体基板11との間に設けられた第
2チョッパ22と、励起光13の半導体基板11への照
射が遮断されたときに半導体基板11の発するフォトル
ミネッセンス光16が導入される分光器17と、この分
光器に導入されたフォトルミネッセンス光16の強度を
電気信号に変換する光検出器18と、光検出器により変
換された電気信号を取込んで増幅するロックイン増幅器
19と、ロックイン増幅器で増幅された電気信号を読取
るコントローラ23とを備える。半導体基板11として
はライフタイムτの長いポリッシュドシリコン基板やエ
ピタキシャル基板等が挙げられ、レーザ装置14として
はアルゴンイオンレーザなどのガスレーザや、YAGな
どの固体レーザや、AlGaAsなどの半導体レーザ等
が挙げられる。
Embodiments of the present invention will now be described with reference to the drawings. As shown in FIG.
The quality evaluation device 12 includes a laser device 14 for irradiating the surface of the semiconductor substrate 11 with excitation light 13, a first chopper 21 provided between the laser device and the semiconductor substrate 11, a first chopper 21 A spectroscope 17 into which the photoluminescence light 16 emitted from the semiconductor substrate 11 when the irradiation of the semiconductor substrate 11 with the excitation light 13 is cut off is provided. A photodetector 18 for converting the intensity of the photoluminescence light 16 introduced into the detector into an electric signal; a lock-in amplifier 19 for receiving and amplifying the electric signal converted by the photodetector; And a controller 23 for reading the electric signal. Examples of the semiconductor substrate 11 include a polished silicon substrate and an epitaxial substrate having a long lifetime τ, and examples of the laser device 14 include a gas laser such as an argon ion laser, a solid-state laser such as YAG, and a semiconductor laser such as AlGaAs. Can be

【0009】第1チョッパ21は第1軸21を中心に回
転しかつ第1軸を中心とする同一円周上に複数の第1小
孔21bが形成された不透明な第1円板21cと、第1
軸に固着された第1従動ギヤ21dと、第1従動ギヤに
噛合する第1駆動ギヤ21eと、第1駆動ギヤを駆動す
る第1モータ21fとを有する。第1モータ21fによ
り第1円板21cを所定の回転速度で回転させ、半導体
基板11に照射される励起光13を第1円板21cによ
り遮ったり或いは第1小孔21bを通過させることによ
り、励起光13を所定の周波数で断続可能に構成され
る。また第1チョッパ21には上記断続して半導体基板
11に照射される励起光13の断続周波数と同一の周波
数のパルス信号を発する発信器21gが設けられる。な
お、第1チョッパ21による励起光13の断続周波数は
0.5〜10Hz、好ましくは4〜6Hzの範囲内の所
定の周波数である。
The first chopper 21 rotates about the first axis 21 and has an opaque first disk 21c having a plurality of first small holes 21b formed on the same circumference around the first axis. First
It has a first driven gear 21d fixed to a shaft, a first drive gear 21e meshing with the first driven gear, and a first motor 21f for driving the first drive gear. The first motor 21f rotates the first disk 21c at a predetermined rotation speed, and the excitation light 13 applied to the semiconductor substrate 11 is blocked by the first disk 21c or passed through the first small hole 21b. The excitation light 13 is configured to be intermittent at a predetermined frequency. Further, the first chopper 21 is provided with a transmitter 21g that emits a pulse signal having the same frequency as the intermittent frequency of the excitation light 13 that is intermittently applied to the semiconductor substrate 11. The intermittent frequency of the excitation light 13 by the first chopper 21 is a predetermined frequency in the range of 0.5 to 10 Hz, preferably 4 to 6 Hz.

【0010】第2チョッパ22は第2軸22aを中心に
回転しかつ第2軸を中心とする同一円周上に複数の第2
小孔22bが形成された不透明な第2円板22cと、第
2軸に固着された第2従動ギヤ22dと、第2従動ギヤ
に噛合する第2駆動ギヤ22eと、第2駆動ギヤを駆動
する第2モータ22fとを有する。また第2円板22c
は第1円板21cより大径に形成され、第2小孔22b
は第1小孔21bより多く形成される。第2モータ22
fにより第2円板22cを回転速度を変えて回転させ、
半導体基板11に照射される励起光13を第2円板22
cにて遮ったり或いは第2小孔22bを通過させること
により、励起光13を第1チョッパ21より高い周波数
でかつその周波数を変化させて断続可能に構成される。
なお、第2チョッパ22による励起光13の断続周波数
は50〜4000Hzの範囲で変化可能に構成される。
第2チョッパ22による励起光13の断続周波数の変化
範囲を50〜4000Hzと第1チョッパ21による励
起光の断続周波数より高くしたのは、機械式チョッパで
は4000Hzが上限だからである。但し、原理的には
高周波チョッパを用いれば、より小さい減衰時定数を測
定可能である。
The second chopper 22 rotates about a second shaft 22a and a plurality of second choppers are arranged on the same circumference around the second shaft.
The opaque second disk 22c having the small hole 22b formed therein, the second driven gear 22d fixed to the second shaft, the second driving gear 22e meshing with the second driven gear, and the second driving gear are driven. And a second motor 22f. The second disk 22c
Is formed to have a larger diameter than the first disk 21c, and the second small holes 22b
Are formed more than the first small holes 21b. Second motor 22
f to rotate the second disk 22c by changing the rotation speed,
The excitation light 13 applied to the semiconductor substrate 11 is
The excitation light 13 is interrupted at a frequency higher than that of the first chopper 21 by changing the frequency by blocking or passing through the second small holes 22b at c.
In addition, the intermittent frequency of the excitation light 13 by the second chopper 22 is configured to be changeable in a range of 50 to 4000 Hz.
The change range of the intermittent frequency of the pumping light 13 by the second chopper 22 is set to 50 to 4000 Hz, which is higher than the intermittent frequency of the pumping light by the first chopper 21, because the upper limit of the mechanical chopper is 4000 Hz. However, in principle, if a high-frequency chopper is used, a smaller attenuation time constant can be measured.

【0011】また第2円板22cの第2小孔22bを通
過した励起光13は集光ミラー24で反射して半導体基
板11の表面に照射される。この集光ミラー24として
は凹面鏡や平面鏡などが用いられる。焦点距離が130
mm程度の集光ミラー24(凹面鏡)を用いた場合に
は、半導体基板11の励起領域のスポットサイズ(直
径)は約0.5mmとなり、焦点距離が無限大の集光ミ
ラー24(平面鏡)を用いた場合には、上記スポットサ
イズ(直径)は約1.5mmとなる。
The excitation light 13 that has passed through the second small holes 22b of the second disk 22c is reflected by the condenser mirror 24 and is irradiated on the surface of the semiconductor substrate 11. As the condenser mirror 24, a concave mirror, a plane mirror, or the like is used. Focal length 130
When a focusing mirror 24 (concave mirror) of about mm is used, the spot size (diameter) of the excitation region of the semiconductor substrate 11 is about 0.5 mm, and the focusing mirror 24 (plane mirror) having an infinite focal length is used. When used, the spot size (diameter) is about 1.5 mm.

【0012】分光器17は図示しないが半導体基板11
が発したフォトルミネッセンス光16を通過させる入口
側スリットと、入口側スリットを通過したフォトルミネ
ッセンス光16を分光させるグレーティングと、グレー
ティングで分光されたフォトルミネッセンス光16を通
過させる出口側スリットとを有する。グレーティングは
600本/mmのスリットを有することが好ましい。な
お、半導体基板11が発したフォトルミネッセンス光1
6は2枚の平行な石英レンズ26,27で集められた後
に分光器17に導入される。
Although the spectroscope 17 is not shown, the semiconductor substrate 11
Has an entrance-side slit for passing the photoluminescence light 16 emitted by the light-emitting device, a grating for dispersing the photoluminescence light 16 passing through the entrance-side slit, and an exit-side slit for passing the photoluminescence light 16 dispersed by the grating. The grating preferably has 600 slits / mm. Note that the photoluminescence light 1 emitted from the semiconductor substrate 11 is
6 is collected by two parallel quartz lenses 26 and 27 and then introduced into a spectroscope 17.

【0013】ロックイン増幅器19は光検出器18によ
り変換された電気信号とともに、第1チョッパ21に設
けられた発信器21gが発したパルス信号も取込んで増
幅するように構成される。またコントローラ23の制御
入力には上記ロックイン増幅器19で増幅された電気信
号及びパルス信号がそれぞれ入力され、コントローラ2
3の制御出力はレーザ装置14、第1モータ21、第2
モータ22及び表示器23(ディスプレイやモニタな
ど)に接続される。
The lock-in amplifier 19 is configured to take in and amplify a pulse signal generated by a transmitter 21g provided in the first chopper 21 together with the electric signal converted by the photodetector 18. The electrical signal and the pulse signal amplified by the lock-in amplifier 19 are input to the control input of the controller 23, respectively.
The control output of No. 3 is the laser device 14, the first motor 21,
It is connected to a motor 22 and a display 23 (display, monitor, etc.).

【0014】このように構成された品質評価装置12を
用いて半導体基板11の品質を評価する方法を説明す
る。先ずコントローラ23はレーザ装置14をオンした
後に、第1モータ21fを制御して第1円板21cを所
定の回転速度で回転させ、更に第2モータ22fを制御
して励起光13を断続的に半導体基板11の表面に照射
する。励起光13の断続的な半導体基板11への照射時
であって、励起光13の半導体基板11への照射が遮断
されたときに、半導体基板11の発するフォトルミネッ
センス光16は2枚の石英レンズ26,27を通って分
光器17で分光される。この分光されたフォトルミネッ
センス光16の強度は光検出器18にて電気信号に変換
され、この電気信号はロックイン増幅器19にて発信器
21gの発するパルス信号とともに増幅されてコントロ
ーラ23の制御入力に入力される。
A method for evaluating the quality of the semiconductor substrate 11 using the quality evaluation device 12 configured as described above will be described. First, after turning on the laser device 14, the controller 23 controls the first motor 21f to rotate the first disk 21c at a predetermined rotation speed, and further controls the second motor 22f to intermittently emit the excitation light 13. Irradiation is performed on the surface of the semiconductor substrate 11. When the semiconductor substrate 11 is irradiated with the excitation light 13 intermittently, and when the irradiation of the excitation light 13 to the semiconductor substrate 11 is interrupted, the photoluminescence light 16 emitted from the semiconductor substrate 11 emits two quartz lenses. The light is split by the spectroscope 17 through 26 and 27. The intensity of the split photoluminescence light 16 is converted into an electric signal by a photodetector 18, and the electric signal is amplified by a lock-in amplifier 19 together with a pulse signal generated by a transmitter 21 g and is supplied to a control input of a controller 23. Is entered.

【0015】次にコントローラ23は第2モータ22f
を制御して励起光13の上記断続周波数を次第に増大さ
せると、半導体基板11の発するフォトルミネッセンス
光16が励起光13の断続周期に追従できずに、変動幅
の大きい断続的な発光から変動幅の小さい発光に変化す
る。コントローラ23はこのフォトルミネッセンス光1
6の平均強度の変化(光検出器18にて電気信号に変換
され、ロックイン増幅器19にて増幅され、更にコント
ローラ23の制御入力に入力されたフォトルミネッセン
ス光16の平均強度の変化)からフォトルミネッセンス
光16の減衰時定数Tを求める。更にコントローラ23
は上記減衰時定数Tから、半導体基板11の評価基準で
あるライフタイムτを式(1) τ=T/C ……(1) から算出してその値を表示器28に表示する。このよう
にして求められたライフタイムτは半導体基板11内の
不純物や欠陥を定量的に正確に表した値となり、この半
導体基板11の品質評価方法及び装置はポリッシュドシ
リコン基板などのライフタイムτの長い半導体基板11
のライフタイムτを求めるのに好適である。
Next, the controller 23 controls the second motor 22f.
Is controlled to gradually increase the intermittent frequency of the pump light 13, the photoluminescence light 16 emitted from the semiconductor substrate 11 cannot follow the intermittent cycle of the pump light 13, so that Changes to a small light emission. The controller 23 controls the photoluminescence light 1
6 (a change in the average intensity of the photoluminescence light 16 converted into an electric signal by the photodetector 18, amplified by the lock-in amplifier 19, and further input to the control input of the controller 23). An attenuation time constant T of the luminescence light 16 is obtained. Furthermore, the controller 23
Calculates the lifetime τ, which is an evaluation criterion of the semiconductor substrate 11, from the above-mentioned decay time constant T from the equation (1) τ = T / C (1) and displays the value on the display 28. The lifetime τ obtained in this manner is a value that quantitatively and accurately represents impurities and defects in the semiconductor substrate 11, and the quality evaluation method and apparatus of the semiconductor substrate 11 are based on the lifetime τ of a polished silicon substrate or the like. Long semiconductor substrate 11
Is suitable for obtaining the lifetime τ of

【0016】なお、上記式(1)のCは、励起光13の
断続により半導体基板11から発せられるフォトルミネ
ッセンス光16の周波数応答を測定するとともにこの周
波数応答の解析解を導出した後に、上記周波数応答の測
定結果及び解析解のフィッティングにより減衰時定数T
を算出し、μ−PCD(microwave photoconductivedec
ay)法により半導体基板11のライフタイムτを測定
し、上記減衰時定数T及びライフタイムτの比較から求
められる。また上記Cは(0.45〜0.55)の範囲
内の所定値である。Cを(0.45〜0.55)の範囲
内の所定値に限定したのは、Cは理論的には0.5であ
るけれども、上記フォトルミネッセンス光16の周波数
応答の測定時や、μ−PCD法によるライフタイムτの
測定時に発生する実験的なエラーによりずれるためであ
る。
C in the above equation (1) is obtained by measuring the frequency response of the photoluminescence light 16 emitted from the semiconductor substrate 11 by the intermittent excitation light 13 and deriving an analytical solution of this frequency response. The decay time constant T is determined by the response measurement results and the analysis solution fitting.
Is calculated, and μ-PCD (microwave photoconductivedec
The lifetime τ of the semiconductor substrate 11 is measured by the ay) method, and is obtained by comparing the decay time constant T and the lifetime τ. C is a predetermined value in the range of (0.45 to 0.55). The reason why C is limited to a predetermined value in the range of (0.45 to 0.55) is that although C is theoretically 0.5, the C value is measured at the time of measuring the frequency response of the photoluminescence light 16 or at μ. The reason is that the deviation is caused by an experimental error generated when the lifetime τ is measured by the PCD method.

【0017】[0017]

【発明の効果】以上述べたように、本発明によれば、励
起光を半導体基板の表面に断続的に照射し、励起光の半
導体基板への照射の断続時に半導体基板が発するフォト
ルミネッセンス光の強度を電気信号に変換し、励起光の
断続周波数を次第に増大させて上記電気信号に変換され
たフォトルミネッセンス光の平均強度の変化からフォト
ルミネッセンス光の減衰時定数Tを求め、更に半導体基
板の品質評価の指標であるライフタイムτを式τ=T/
C(但し、Cは定数である。)から算出したので、半導
体基板を破壊せずかつ半導体基板に接触せずに、半導体
基板のライフタイムを定量的に求めることができるとと
もに、この求められたライフタイムは半導体基板内の不
純物や欠陥を定量的に正確に表した値となる。またこの
品質評価方法はライフタイムの長い半導体基板のライフ
タイムを求めるのに適する。
As described above, according to the present invention, the surface of the semiconductor substrate is intermittently irradiated with the excitation light, and the photoluminescence light emitted from the semiconductor substrate when the excitation light is intermittently applied to the semiconductor substrate. The intensity is converted into an electric signal, the intermittent frequency of the excitation light is gradually increased, and the decay time constant T of the photoluminescence light is obtained from the change in the average intensity of the photoluminescence light converted into the electric signal. The lifetime τ, which is an index of evaluation, is expressed by the formula τ = T /
Since C is calculated from C (where C is a constant), the lifetime of the semiconductor substrate can be quantitatively determined without breaking the semiconductor substrate and without contacting the semiconductor substrate, and the calculated lifetime is obtained. The lifetime is a value that quantitatively and accurately represents impurities and defects in the semiconductor substrate. This quality evaluation method is suitable for determining the lifetime of a semiconductor substrate having a long lifetime.

【0018】またレーザ装置及び半導体基板間の第1チ
ョッパが半導体基板に照射される励起光を所定の周波数
で断続させ、第1チョッパ及び半導体基板間の第2チョ
ッパが励起光を第1チョッパより高い可変周波数で断続
させ、コントローラが第2チョッパを制御して励起光の
断続周波数を次第に増大させたときの上記電気信号に変
換されたフォトルミネッセンス光の平均強度の変化から
フォトルミネッセンス光の減衰時定数Tを求め、かつ半
導体基板の評価基準であるライフタイムτを式τ=T/
C(但し、Cは定数である。)から算出するように構成
すれば、上記と同様に半導体基板を破壊せずかつ半導体
基板に接触せずに、半導体基板のライフタイムを定量的
に求めることができるとともに、この求められたライフ
タイムは半導体基板内の不純物や欠陥を定量的に正確に
表した値となる。更にこの品質評価装置はライフタイム
の長い半導体基板のライフタイムを求めるのに適する。
A first chopper between the laser device and the semiconductor substrate interrupts the excitation light applied to the semiconductor substrate at a predetermined frequency, and a second chopper between the first chopper and the semiconductor substrate transmits the excitation light from the first chopper. When the photoluminescence light is attenuated at a high variable frequency, the controller controls the second chopper to gradually increase the intermittent frequency of the excitation light, and the change in the average intensity of the photoluminescence light converted into the electric signal. A constant T is obtained, and a lifetime τ, which is an evaluation criterion of a semiconductor substrate, is calculated by an equation τ = T /
If it is configured to calculate from C (where C is a constant), it is possible to quantitatively determine the lifetime of the semiconductor substrate without destroying and contacting the semiconductor substrate as described above. The obtained lifetime is a value that quantitatively and accurately represents impurities and defects in the semiconductor substrate. Further, the quality evaluation apparatus is suitable for determining the lifetime of a semiconductor substrate having a long lifetime.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明実施形態の半導体基板の品質評価装置を
示す構成図。
FIG. 1 is a configuration diagram showing a semiconductor substrate quality evaluation apparatus according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11 半導体基板 12 品質評価装置 13 励起光 14 レーザ装置 16 フォトルミネッセンス光 17 分光器 18 光検出器 19 ロックイン増幅器 21 第1チョッパ 22 第2チョッパ 23 コントローラ Reference Signs List 11 semiconductor substrate 12 quality evaluation device 13 excitation light 14 laser device 16 photoluminescence light 17 spectroscope 18 photodetector 19 lock-in amplifier 21 first chopper 22 second chopper 23 controller

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成13年4月9日(2001.4.9)[Submission date] April 9, 2001 (2001.4.9)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0001[Correction target item name] 0001

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0001】[0001]

【発明の属する技術分野】本発明は、シリコンウェーハ
に代表される半導体基板の品質、即ち半導体基板内に存
在する不純物や欠陥等を定量的に評価する方法及び装置
に関するものである。
TECHNICAL FIELD The present invention relates to a silicon wafer
The present invention relates to a method and an apparatus for quantitatively evaluating the quality of a semiconductor substrate, that is, impurities, defects and the like existing in the semiconductor substrate.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0003[Correction target item name] 0003

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0003】一方、p型クラッド層及びn型クラッド層
より小さいバンドギャップを有する半導体層がp型クラ
ッド層及びn型クラッド層により挟まれ、p型クラッド
層とn型クラッド層の間に順方向のバイアス電圧を印加
しながら半導体層にパルス光を照射することにより得ら
れるフォトルミネッセンス光に基づいて、そのフォトル
ミネッセンス光の減衰時定数を測定する半導体装置の評
価方法が開示されている(特開平10−135291
号)。この評価方法では、上記フォトルミネッセンス光
の減衰時定数がその発光強度から励起光を照射せずか
つバイアス電圧を印加したときの発光強度を減算して算
出される。このように構成された半導体装置の評価方法
は、pn接合を有する半導体装置、特にLEDや化合物
半導体レーザなどの発光素子に適し、励起光を照射した
ときのフォトルミネッセンス光の強度から、励起光を照
射せずかつpn接合に対して順方向にバイアス電圧を印
加して半導体層のエネルギバンドの傾きの影響を低減し
た状態でフォトルミネッセンス光の強度を減算するこ
とにより、発光素子のフォトルミネッセンス光の減衰時
定数を求める。この結果、励起強度が変化してもエネル
ギバンドの傾きが殆ど変わらずかつフォトルミネッセン
ス光の減衰時定数がばらつかず、減衰時定数をより正確
に測定することができるので、発光素子の検査工程の精
度を向上でき、不良要因を早期に検出できるようになっ
ている。
On the other hand, a semiconductor layer having a band gap smaller than the p-type cladding layer and the n-type cladding layer is sandwiched between the p-type cladding layer and the n-type cladding layer, and a forward direction is provided between the p-type cladding layer and the n-type cladding layer. A method for evaluating a semiconductor device in which the decay time constant of photoluminescence light is measured based on photoluminescence light obtained by irradiating a semiconductor layer with pulsed light while applying a bias voltage (Japanese Unexamined Patent Application, First Publication No. H10-260,1992). 10-135291
issue). In this evaluation method, the decay time constant of the photoluminescence light from the light emitting intensity is calculated by subtracting the emission intensity at the time of applying a and bias voltage without irradiating the excitation light. The method for evaluating a semiconductor device configured in this manner is suitable for a semiconductor device having a pn junction, particularly a light emitting element such as an LED or a compound semiconductor laser, and the excitation light is irradiated from the intensity of the photoluminescence light when irradiated with the excitation light. By applying a bias voltage in the forward direction to the pn junction without irradiation and subtracting the intensity of the photoluminescence light in a state where the influence of the energy band inclination of the semiconductor layer is reduced, the photoluminescence light of the light emitting element is reduced. Obtain the decay time constant of As a result, even if the excitation intensity changes, the slope of the energy band hardly changes and the decay time constant of the photoluminescence light does not vary, so that the decay time constant can be measured more accurately. Accuracy can be improved, and defective factors can be detected early.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0008】[0008]

【発明の実施の形態】次に本発明の実施の形態を図面に
基づいて説明する。図1に示すように、半導体基板11
の品質評価装置12は励起光13を半導体基板11の表
面に照射するレーザ装置14と、このレーザ装置と半導
体基板11との間に設けられた第1チョッパ21と、こ
の第1チョッパと半導体基板11との間に設けられた第
2チョッパ22と、励起光13の半導体基板11への照
射が遮断されたときに半導体基板11の発するフォトル
ミネッセンス光16が導入される分光器17と、この分
光器に導入されたフォトルミネッセンス光16の強度を
電気信号に変換する光検出器18と、光検出器により変
換された電気信号を取込んで増幅するロックイン増幅器
19と、ロックイン増幅器で増幅された電気信号を読取
るコントローラ23とを備える。半導体基板11として
はライフタイムτの長いポリッシュドシリコンウェーハ
やエピタキシャルウェーハ等が挙げられ、レーザ装置1
4としてはアルゴンイオンレーザなどのガスレーザや、
YAGなどの固体レーザや、AlGaAsなどの半導体
レーザ等が挙げられる。
Embodiments of the present invention will now be described with reference to the drawings. As shown in FIG.
The quality evaluation device 12 includes a laser device 14 for irradiating the surface of the semiconductor substrate 11 with excitation light 13, a first chopper 21 provided between the laser device and the semiconductor substrate 11, a first chopper 21 A spectroscope 17 into which the photoluminescence light 16 emitted from the semiconductor substrate 11 when the irradiation of the semiconductor substrate 11 with the excitation light 13 is cut off is provided. A photodetector 18 for converting the intensity of the photoluminescence light 16 introduced into the detector into an electric signal; a lock-in amplifier 19 for receiving and amplifying the electric signal converted by the photodetector; And a controller 23 for reading the electric signal. Examples of the semiconductor substrate 11 include a polished silicon wafer and an epitaxial wafer having a long lifetime τ.
4 is a gas laser such as an argon ion laser,
Examples include a solid-state laser such as YAG and a semiconductor laser such as AlGaAs.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0009】第1チョッパ21は第1軸21を中心に
回転しかつ第1軸を中心とする同一円周上に複数の第1
小孔21bが形成された不透明な第1円板21cと、第
1軸に固着された第1従動ギヤ21dと、第1従動ギヤ
に噛合する第1駆動ギヤ21eと、第1駆動ギヤを駆動
する第1モータ21fとを有する。第1モータ21fに
より第1円板21cを所定の回転速度で回転させ、半導
体基板11に照射される励起光13を第1円板21cに
より遮ったり或いは第1小孔21bを通過させることに
より、励起光13を所定の周波数で断続可能に構成され
る。また第1チョッパ21には上記断続して半導体基板
11に照射される励起光13の断続周波数と同一の周波
数のパルス信号を発する発信器21gが設けられる。な
お、第1チョッパ21による励起光13の断続周波数は
0.5〜10Hz、好ましくは4〜6Hzの範囲内の所
定の周波数である。
The first chopper 21 rotates about a first shaft 21a and a plurality of first choppers are arranged on the same circumference around the first shaft.
Driving the first opaque first disk 21c in which the small hole 21b is formed, the first driven gear 21d fixed to the first shaft, the first driving gear 21e meshing with the first driven gear, and the first driving gear And a first motor 21f. The first motor 21f rotates the first disk 21c at a predetermined rotation speed, and the excitation light 13 applied to the semiconductor substrate 11 is blocked by the first disk 21c or passed through the first small hole 21b. The excitation light 13 is configured to be intermittent at a predetermined frequency. Further, the first chopper 21 is provided with a transmitter 21g that emits a pulse signal having the same frequency as the intermittent frequency of the excitation light 13 that is intermittently applied to the semiconductor substrate 11. The intermittent frequency of the excitation light 13 by the first chopper 21 is a predetermined frequency in the range of 0.5 to 10 Hz, preferably 4 to 6 Hz.

【手続補正5】[Procedure amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0010】第2チョッパ22は第2軸22aを中心に
回転しかつ第2軸を中心とする同一円周上に複数の第2
小孔22bが形成された不透明な第2円板22cと、第
2軸に固着された第2従動ギヤ22dと、第2従動ギヤ
に噛合する第2駆動ギヤ22eと、第2駆動ギヤを駆動
する第2モータ22fとを有する。また第2円板22c
は第1円板21cより大径に形成され、第2小孔22b
の数は第1小孔21bの数より多く形成される。第2モ
ータ22fにより第2円板22cを回転速度を変えて回
転させ、半導体基板11に照射される励起光13を第2
円板22cにて遮ったり或いは第2小孔22bを通過さ
せることにより、励起光13を第1チョッパ21より高
い周波数でかつその周波数を変化させて断続可能に構成
される。なお、第2チョッパ22による励起光13の断
続周波数は50〜4000Hzの範囲で変化可能に構成
される。第2チョッパ22による励起光13の断続周波
数の変化範囲を50〜4000Hzと第1チョッパ21
による励起光の断続周波数より高くしたのは、機械式チ
ョッパでは4000Hzが上限だからである。但し、原
理的には高周波チョッパを用いれば、より小さい減衰時
定数を測定可能である。
The second chopper 22 rotates about a second shaft 22a and a plurality of second choppers are arranged on the same circumference around the second shaft.
The opaque second disk 22c having the small hole 22b formed therein, the second driven gear 22d fixed to the second shaft, the second driving gear 22e meshing with the second driven gear, and the second driving gear are driven. And a second motor 22f. The second disk 22c
Is formed to have a larger diameter than the first disk 21c, and the second small holes 22b
The number of formed greater than the number of the first small holes 21b. The second disk 22c is rotated at a different rotation speed by the second motor 22f, and the excitation light 13 applied to the semiconductor substrate 11 is changed to the second rotation.
By blocking or passing through the second small hole 22b by the disk 22c, the excitation light 13 is configured to be intermittent at a higher frequency than the first chopper 21 and by changing the frequency. In addition, the intermittent frequency of the excitation light 13 by the second chopper 22 is configured to be changeable in a range of 50 to 4000 Hz. The change range of the intermittent frequency of the pump light 13 by the second chopper 22 is set to 50 to 4000 Hz and the first chopper 21
Is higher than the intermittent frequency of the excitation light due to the upper limit of 4000 Hz in the mechanical chopper. However, in principle, if a high-frequency chopper is used, a smaller attenuation time constant can be measured.

【手続補正6】[Procedure amendment 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0013】ロックイン増幅器19は光検出器18によ
り変換された電気信号とともに、第1チョッパ21に設
けられた発信器21gが発したパルス信号も取込んで増
幅するように構成される。またコントローラ23の制御
入力には上記ロックイン増幅器19で増幅された電気信
号及びパルス信号がそれぞれ入力され、コントローラ2
3の制御出力はレーザ装置14、第1モータ21、第
2モータ22及び表示器2(ディスプレイやモニタ
など)に接続される。
The lock-in amplifier 19 is configured to take in and amplify a pulse signal generated by a transmitter 21g provided in the first chopper 21 together with the electric signal converted by the photodetector 18. The electrical signal and the pulse signal amplified by the lock-in amplifier 19 are input to the control input of the controller 23, respectively.
Control output 3 the laser system 14, the first motor 21 f, are connected to the second motor 22 f and a display 2 8 (such as a display or monitor).

【手続補正7】[Procedure amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0014】このように構成された品質評価装置12を
用いて半導体基板11の品質を評価する方法を説明す
る。先ずコントローラ23はレーザ装置14をオンした
後に、第1モータ21fを制御して第1円板21cを所
定の回転速度で回転させ、更に第2モータ22fを制御
して第2円板22cを所定の回転速度で回転させ、励起
光13を断続的に半導体基板11の表面に照射する。励
起光13の半導体基板11への断続的な照射時であっ
て、励起光13の半導体基板11への照射が遮断された
ときに、半導体基板11の発するフォトルミネッセンス
光16は2枚の石英レンズ26,27を通って分光器1
7で分光される。この分光されたフォトルミネッセンス
光16の強度は光検出器18にて電気信号に変換され、
この電気信号はロックイン増幅器19により発信器21
gの発するパルス信号とともに増幅されてコントローラ
23の制御入力に入力される。
A method for evaluating the quality of the semiconductor substrate 11 using the quality evaluation device 12 configured as described above will be described. First, after turning on the laser device 14, the controller 23 controls the first motor 21f to rotate the first disk 21c at a predetermined rotation speed, and further controls the second motor 22f to rotate the second disk 22c to a predetermined speed. And the surface of the semiconductor substrate 11 is irradiated with the excitation light 13 intermittently. A time intermittent illumination of the semi-conductor substrate 11 of the excitation light 13, when the irradiation of the semiconductor substrate 11 of the excitation light 13 is interrupted, photoluminescence 16 two quartz emitted from the semiconductor substrate 11 Spectroscope 1 through lenses 26 and 27
It is split at 7. The intensity of the split photoluminescence light 16 is converted into an electric signal by a photodetector 18,
More transmitter 21 the electrical signal to the lock-in amplifier 19
The signal is amplified together with the pulse signal generated by g and input to the control input of the controller 23.

【手続補正8】[Procedure amendment 8]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Correction target item name] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0015】次にコントローラ23第2モータ22f
を制御して第2円板22cの回転速度を増大することに
より、励起光13の上記断続周波数を次第に増大させる
と、半導体基板11の発するフォトルミネッセンス光1
6が励起光13の断続周期に追従できずに、変動幅の大
きい断続的な発光から変動幅の小さい発光に変化する。
コントローラ23はこのフォトルミネッセンス光16の
平均強度の変化(光検出器18にて電気信号に変換さ
れ、ロックイン増幅器19にて増幅され、更にコントロ
ーラ23の制御入力に入力されたフォトルミネッセンス
光16の平均強度の変化)からフォトルミネッセンス光
16の減衰時定数Tを求める。更にコントローラ23は
上記減衰時定数Tから、半導体基板11の評価基準であ
るライフタイムτを式(1) τ=T/C ……(1) から算出してその値を表示器28に表示する。このよう
にして求められたライフタイムτは半導体基板11内の
不純物や欠陥を定量的に正確に表した値となり、この半
導体基板11の品質評価方法及び装置はポリッシュドシ
リコン基板などのライフタイムτの長い半導体基板11
のライフタイムτを求めるのに好適である。
[0015] Next, controller 23 is the second motor 22f
To increase the rotation speed of the second disk 22c.
Accordingly, when the above-mentioned intermittent frequency of the excitation light 13 is gradually increased, the photoluminescence light 1 emitted from the semiconductor substrate 11 is increased.
6 cannot follow the intermittent cycle of the excitation light 13 and changes from intermittent light emission having a large fluctuation width to light emission having a small fluctuation width.
The controller 23 changes the average intensity of the photoluminescence light 16 (converted into an electric signal by the photodetector 18, amplified by the lock-in amplifier 19, and further transmitted to the control input of the controller 23). The decay time constant T of the photoluminescence light 16 is determined from the average intensity change). Further, the controller 23 calculates a lifetime τ, which is an evaluation criterion of the semiconductor substrate 11, from the equation (1) τ = T / C (1) from the decay time constant T, and displays the value on the display 28. . The lifetime τ obtained in this manner is a value that quantitatively and accurately represents impurities and defects in the semiconductor substrate 11, and the quality evaluation method and apparatus of the semiconductor substrate 11 are based on the lifetime τ of a polished silicon substrate or the like. Long semiconductor substrate 11
Is suitable for obtaining the lifetime τ of

───────────────────────────────────────────────────── フロントページの続き (72)発明者 白木 弘幸 東京都千代田区大手町1丁目5番1号 三 菱マテリアルシリコン株式会社内 Fターム(参考) 2G043 AA03 CA05 EA01 FA03 HA12 JA01 KA08 KA09 LA01 NA01 2G051 AA65 AB02 AB06 BA10 BB03 BC03 CB01 CC07 CC09 CC15 4M106 AA01 AA10 BA05 CA09 CA18 CB11 CB19 DH12 DH32  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Hiroyuki Shiraki F-term (reference) in Mitsubishi Materials Silicon Co., Ltd. 1-5-1, Otemachi, Chiyoda-ku, Tokyo 2G043 AA03 CA05 EA01 FA03 HA12 JA01 KA08 KA09 LA01 NA01 2G051 AA65 AB02 AB06 BA10 BB03 BC03 CB01 CC07 CC09 CC15 4M106 AA01 AA10 BA05 CA09 CA18 CB11 CB19 DH12 DH32

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 励起光(13)を半導体基板(11)の表面に断
続的に照射し、 前記励起光(13)の前記半導体基板(11)への照射の断続時
に前記半導体基板が発するフォトルミネッセンス光(16)
の強度を電気信号に変換し、 前記励起光(13)の断続周波数を次第に増大させて前記電
気信号に変換されたフォトルミネッセンス光(16)の平均
強度の変化から前記フォトルミネッセンス光(16)の減衰
時定数(T)を求め、 前記半導体基板(11)の品質評価の指標であるライフタイ
ム(τ)を式(1)から算出する半導体基板の品質評価方
法。 τ=T/C ……(1) ここで、Cは定数である。
A semiconductor substrate (11) is irradiated with excitation light (13) intermittently, and the semiconductor substrate (11) emits light when the excitation light (13) is irradiated on the semiconductor substrate (11) intermittently. Luminescent light (16)
Of the photoluminescence light (16) from the change in the average intensity of the photoluminescence light (16) converted to the electric signal by gradually increasing the intermittent frequency of the excitation light (13). A method for evaluating the quality of a semiconductor substrate, comprising: determining a decay time constant (T); and calculating a lifetime (τ), which is an index of the quality evaluation of the semiconductor substrate (11), from Expression (1). τ = T / C (1) where C is a constant.
【請求項2】 式(1)のCが0.45〜0.55の範
囲内の所定値である請求項1記載の半導体基板の品質評
価方法。
2. The method according to claim 1, wherein C in the formula (1) is a predetermined value within a range of 0.45 to 0.55.
【請求項3】 励起光(13)を半導体基板(11)の表面に照
射するレーザ装置(14)と、 前記レーザ装置と前記半導体基板(11)との間に設けられ
前記半導体基板に照射される励起光(13)を所定の周波数
で断続させかつこの所定の周波数でパルス信号を発する
第1チョッパ(21)と、 前記第1チョッパと前記半導体基板(11)との間に設けら
れ前記励起光(13)を前記第1チョッパ(21)より高い周波
数でその周波数を変化させて断続可能な第2チョッパ(2
2)と、 前記励起光(13)の前記半導体基板(11)への照射の断続時
に前記半導体基板の発するフォトルミネッセンス光(16)
が導入される分光器(17)と、 前記分光器に導入された前記フォトルミネッセンス光(1
6)の強度を電気信号に変換する光検出器(18)と、 前記光検出器により変換された電気信号と前記第1チョ
ッパ(21)の発したパルス信号とを取込んで増幅するロッ
クイン増幅器(19)と、 前記ロックイン増幅器で増幅された前記電気信号及び前
記パルス信号を読取るとともに前記第2チョッパ(22)を
制御して前記励起光(13)の断続周波数を変更するコント
ローラ(23)とを備えた半導体基板の品質評価装置であっ
て、 前記コントローラ(23)が前記第2チョッパ(22)を制御し
て前記励起光(13)の断続周波数を次第に増大させたとき
の前記電気信号に変換されたフォトルミネッセンス光(1
6)の平均強度の変化から前記フォトルミネッセンス光(1
6)の減衰時定数(T)を求め、かつ前記半導体基板(11)の
評価基準であるライフタイム(τ)を式(1)から算出す
るように構成されたことを特徴とする半導体基板の品質
評価装置。 τ=T/C ……(1) ここで、Cは定数である。
3. A laser device (14) for irradiating the surface of the semiconductor substrate (11) with excitation light (13); and a laser device provided between the laser device and the semiconductor substrate (11) for irradiating the semiconductor substrate. A first chopper (21) for interrupting the pumping light (13) at a predetermined frequency and emitting a pulse signal at the predetermined frequency; and the pumping light provided between the first chopper and the semiconductor substrate (11). The second chopper (2) capable of changing the frequency of the light (13) at a higher frequency than the first chopper (21) and intermittently.
2), the photoluminescence light (16) emitted from the semiconductor substrate during the intermittent irradiation of the excitation light (13) to the semiconductor substrate (11)
And the photoluminescence light (1) introduced into the spectroscope.
6) a photodetector (18) for converting the intensity into an electric signal, and a lock-in for taking in and amplifying the electric signal converted by the photodetector and the pulse signal generated by the first chopper (21). An amplifier (19), a controller (23) that reads the electric signal and the pulse signal amplified by the lock-in amplifier and controls the second chopper (22) to change the intermittent frequency of the pump light (13). ), The controller (23) controlling the second chopper (22) to gradually increase the intermittent frequency of the excitation light (13), The photoluminescence light converted into a signal (1
6) From the change in the average intensity of the photoluminescence light (1
6) determining a decay time constant (T) of the semiconductor substrate (11) and calculating a lifetime (τ) which is an evaluation standard of the semiconductor substrate (11) from Expression (1). Quality evaluation device. τ = T / C (1) where C is a constant.
【請求項4】 式(1)のCが0.45〜0.55の範
囲内の所定値である請求項3記載の半導体基板の品質評
価装置。
4. The semiconductor substrate quality evaluation apparatus according to claim 3, wherein C in equation (1) is a predetermined value within a range of 0.45 to 0.55.
JP2000272622A 2000-09-08 2000-09-08 Quality evaluation method and quality evaluation apparatus for silicon substrate Expired - Fee Related JP3687509B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2000272622A JP3687509B2 (en) 2000-09-08 2000-09-08 Quality evaluation method and quality evaluation apparatus for silicon substrate
US09/815,208 US6534774B2 (en) 2000-09-08 2001-03-22 Method and apparatus for evaluating the quality of a semiconductor substrate
TW090107279A TW541431B (en) 2000-09-08 2001-03-28 Method and apparatus for evaluating the quality of a semiconductor substrate
DE10115264A DE10115264B4 (en) 2000-09-08 2001-03-28 Method and device for evaluating the quality of a semiconductor substrate
CNB011120967A CN1165077C (en) 2000-09-08 2001-03-30 Method and appts. for verifying quality of semiconductor substrate
KR10-2001-0016795A KR100393866B1 (en) 2000-09-08 2001-03-30 Method and apparatus for evaluating the quality of a semiconductor substrate
CNB2004100038274A CN1271697C (en) 2000-09-08 2001-03-30 Method for evaluatin quality of semiconductor substrate
US10/299,148 US6693286B2 (en) 2000-09-08 2002-11-19 Method for evaluating the quality of a semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000272622A JP3687509B2 (en) 2000-09-08 2000-09-08 Quality evaluation method and quality evaluation apparatus for silicon substrate

Publications (2)

Publication Number Publication Date
JP2002083851A true JP2002083851A (en) 2002-03-22
JP3687509B2 JP3687509B2 (en) 2005-08-24

Family

ID=18758706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000272622A Expired - Fee Related JP3687509B2 (en) 2000-09-08 2000-09-08 Quality evaluation method and quality evaluation apparatus for silicon substrate

Country Status (1)

Country Link
JP (1) JP3687509B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013026443A (en) * 2011-07-21 2013-02-04 Kobe Steel Ltd Ion implantation amount measurement device and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58206133A (en) * 1982-05-26 1983-12-01 Hitachi Ltd Measuring device for life of carrier
JPH0714893A (en) * 1993-06-21 1995-01-17 Sumitomo Metal Mining Co Ltd Measuring method for majority carrier life in semiconductor
JPH10148629A (en) * 1996-11-05 1998-06-02 Orbisphere Lab Neuchatel Sa Spectrometer and device therefor
JP2000101145A (en) * 1998-09-17 2000-04-07 Toshiba Corp Method and apparatus for evaluating epitaxial wafer for light emitting element, computer-readable recording medium and epitaxial wafer for light emitting element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58206133A (en) * 1982-05-26 1983-12-01 Hitachi Ltd Measuring device for life of carrier
JPH0714893A (en) * 1993-06-21 1995-01-17 Sumitomo Metal Mining Co Ltd Measuring method for majority carrier life in semiconductor
JPH10148629A (en) * 1996-11-05 1998-06-02 Orbisphere Lab Neuchatel Sa Spectrometer and device therefor
JP2000101145A (en) * 1998-09-17 2000-04-07 Toshiba Corp Method and apparatus for evaluating epitaxial wafer for light emitting element, computer-readable recording medium and epitaxial wafer for light emitting element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013026443A (en) * 2011-07-21 2013-02-04 Kobe Steel Ltd Ion implantation amount measurement device and method

Also Published As

Publication number Publication date
JP3687509B2 (en) 2005-08-24

Similar Documents

Publication Publication Date Title
KR100393866B1 (en) Method and apparatus for evaluating the quality of a semiconductor substrate
US5323008A (en) Fluorometer detection system
KR100495374B1 (en) Fluorescence, phosphorescence measuring apparatus
US20020145728A1 (en) Method and apparatus for a spectrally stable light source using white light LEDs
US7781221B2 (en) System and method of compensating for system delay in analyte analyzation
JPS63250835A (en) Inspection of epitaxial wafer
JP2002083851A (en) Quality evaluation method of semiconductor substrate and its quality evaluation apparatus
US5243401A (en) Fluorescent image densitometer of flying spot system
JP3661767B2 (en) Quality evaluation method of silicon wafer
JP5902883B2 (en) Spectrofluorometer
JP4880548B2 (en) Apparatus and method for evaluating crystallinity of silicon semiconductor thin film
KR0144376B1 (en) Etching byproduct monitoring method and its apparatus
JP2003083889A (en) Infrared analyzer
JP2009058273A (en) Crystallinity evaluation device of silicon semiconductor thin film
JPH05251537A (en) Wafer photoluminescence mapping apparatus
JPH08304172A (en) Polarization-independent optical detector
JPH07318426A (en) Temperature measuring device by raman scattering and method therefor
JPH05291624A (en) Method of inspecting epitaxial wafer for light emitting diode
JPH01299442A (en) Measuring device of luster
JP2007288135A (en) Method and device for evaluating crystallinity of silicon semiconductor thin film
JPH04332841A (en) Inspecting method of semiconductor light-emitting device
JP2006300857A (en) Regulating device of fluorescence detector, regulating method of fluorescence detector, and its manufacturing method
Guo et al. Photoluminescence spectrum measurement of GaAs photocathode material
JPH0933364A (en) Temperature measuring device
JPS59149029A (en) Evaluating device for compound semiconductor crystal substrate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050530

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3687509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees