JP2016153674A - Segment holder for rolling bearing, and roller bearing - Google Patents

Segment holder for rolling bearing, and roller bearing Download PDF

Info

Publication number
JP2016153674A
JP2016153674A JP2015031875A JP2015031875A JP2016153674A JP 2016153674 A JP2016153674 A JP 2016153674A JP 2015031875 A JP2015031875 A JP 2015031875A JP 2015031875 A JP2015031875 A JP 2015031875A JP 2016153674 A JP2016153674 A JP 2016153674A
Authority
JP
Japan
Prior art keywords
cage
segment
resin
rolling
expansion coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015031875A
Other languages
Japanese (ja)
Inventor
矢部 俊一
Shunichi Yabe
俊一 矢部
山口 晃
Akira Yamaguchi
晃 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2015031875A priority Critical patent/JP2016153674A/en
Publication of JP2016153674A publication Critical patent/JP2016153674A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/51Cages for rollers or needles formed of unconnected members
    • F16C33/513Cages for rollers or needles formed of unconnected members formed of arcuate segments for carrying one or more rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/20Thermal properties
    • F16C2202/22Coefficient of expansion

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent occurrence of collision noise of holder elements and damage of the holder elements, by more reducing gap fluctuation due to heat expansion of the whole holder.SOLUTION: A segment holder for a rolling bearing contains respective specific base resin, reinforced-fiber material and particulate inorganic filler in a specific amount. In the segment holder, a linear expansion coefficient in a direction parallel with the reinforced-fiber material at room temperature is 0.2×10to 1.2×10/°C, a linear expansion coefficient in a direction vertical thereto is 1.3×10to 4.0×10/°C, a tensile strength is 150 MPa or more, and a Charpy impact strength is 4.0 kJ/mor more.SELECTED DRAWING: Figure 2

Description

本発明は、保持器を保持するためのポケットが形成された保持器素子を複数、周方向に直列に連結して構成される転がり軸受用セグメント保持器に関し、より詳細にはその形成材料の改良に関する。また、本発明は、この転がり軸受用セグメント保持器を組み込んだころ軸受に関する。   The present invention relates to a segment cage for a rolling bearing constituted by connecting a plurality of cage elements in which pockets for holding the cage are formed in series in the circumferential direction, and more specifically, improvement of the forming material thereof. About. The present invention also relates to a roller bearing in which the segment cage for a rolling bearing is incorporated.

転がり軸受は、一般的に、外輪と、内輪と、外輪および内輪の間に配置される複数の転動体と、を備えており、転動体は保持器によって保持される。保持器としては、通常、単一部材から形成される一体型の保持器が使用されるが、風力発電機や鉄鋼設備、建設機械等に使用される大型の転がり軸受においては、組立や保守を容易にするため、複数の保持器素子を周方向に直列に連ねて円環状としたセグメント保持器が使用されることがある。   The rolling bearing generally includes an outer ring, an inner ring, and a plurality of rolling elements disposed between the outer ring and the inner ring, and the rolling elements are held by a cage. As a cage, an integrated cage formed of a single member is usually used. However, large-sized rolling bearings used in wind power generators, steel facilities, construction machinery, etc., require assembly and maintenance. In order to facilitate, a segment cage in which a plurality of cage elements are connected in series in the circumferential direction to form an annular shape may be used.

このセグメント保持器では、保持器素子が樹脂材料からなるため、軸受稼働時の発熱により保持器素子が熱膨張して寸法変化を生じ、隣接する保持器素子同士が膠着することがある。また、外輪や内輪は鋼材製であるため、鋼材と樹脂材料との熱膨張率差から、保持器素子間の隙間が変動して保持器素子同士が衝突して衝突音が発生したり、保持器素子が損傷することもある。このような問題を踏まえ、特許文献1では、線膨張係数を低下させる充填材を含有する樹脂材料製で、線膨張係数が、内輪や外輪を形成する鋼材の線膨張係数(1.12×10−5/℃程度)に近い1.3×10−5/℃〜1.7×10−5/℃にした保持器素子を提案している。 In this segment cage, since the cage element is made of a resin material, the cage element is thermally expanded due to heat generated during the operation of the bearing, causing a dimensional change, and adjacent cage elements may be stuck together. Also, because the outer ring and inner ring are made of steel, the gap between the cage elements fluctuates due to the difference in thermal expansion coefficient between the steel and the resin material, and the cage elements collide with each other to generate a collision sound or hold The device element may be damaged. In view of such a problem, in Patent Document 1, the linear expansion coefficient of the steel material that forms the inner ring and the outer ring (1.12 × 10 6) is made of a resin material containing a filler that reduces the linear expansion coefficient. have proposed a retainer element to 1.3 × 10 -5 /℃~1.7×10 -5 / ℃ close to about -5 / ° C.).

特許第4231082号公報Japanese Patent No. 4231082

特許文献1における充填材は炭素繊維やガラス繊維であり、線膨張係数はこれら繊維と平行な方向における値である。しかし、繊維と平行な方向における線膨張係数に対し、繊維と垂直な方向における線膨張係数は3〜5倍程度大きいため、保持器素子全体でみると内輪や外輪との線膨張係数差が大きいままであり、隙間変動の改善余地はかなり残っている。   The filler in Patent Document 1 is carbon fiber or glass fiber, and the linear expansion coefficient is a value in a direction parallel to these fibers. However, since the linear expansion coefficient in the direction perpendicular to the fiber is about 3 to 5 times larger than the linear expansion coefficient in the direction parallel to the fiber, the difference in the linear expansion coefficient between the inner ring and the outer ring is large in the cage element as a whole. There remains considerable room for improvement in gap fluctuation.

そこで本発明は、保持器全体としての熱膨張による隙間変動をより少なくして、保持器素子同士の衝突音の発生や、保持器素子の破損を防ぐことを目的とする。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to reduce the gap fluctuation due to the thermal expansion of the entire cage, thereby preventing the occurrence of collision noise between the cage elements and the breakage of the cage elements.

本発明の上記目的は、下記の構成により達成される。
(1)樹脂材料からなり、転動体を保持するためのポケットが形成された保持器素子を複数、周方向端面同士を当接させて周方向に連ねて一つの保持器を形成する転がり軸受用セグメント保持器において、
前記樹脂材料が、
a)芳香族ポリアミド樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂から選ばれるベース樹脂
b)エポキシ基またはアミノ基を有するシランカップリング剤で表面処理されたガラス繊維、ポリアミド系またはエポキシ系のサイジング剤で表面処理された炭素繊維から選ばれる少なくとも一種の強化繊維材
c)エポキシ基またはアミノ基を有するシランカップリング剤で表面処理された炭酸カルシウムからなる粒子状無機充填材
を含有し、前記強化繊維材の含有量が樹脂材料全量の25〜40質量%、前記粒子状無機充填材の含有量が樹脂材料全量の20〜35質量%であるとともに、以下の物性を有することを特徴とする転がり軸受用セグメント保持器。
・常温での線膨張係数(強化繊維材と平行方向)が0.2×10−5/℃〜1.2×10−5/℃(ISO11359−2)
・常温での線膨張係数(強化繊維材と垂直方向)が1.3×10−5/℃〜4.0×10−5/℃(ISO11359−2)
・引張強度(MPa、ISO527−1,2)が150以上
・シャルピー衝撃強さ(kJ/m、ISO179−1)が4.0以上
(2)上記(1)記載の転がり軸受用セグメント保持器において、
前記保持器素子が、軸方向に平行に配置された一対の側板部と、前記一対の側板部を軸方向に接続する複数の柱部とを有し、前記側板部と前記柱部とで前記ポケットを形成するとともに、前記側板部の径方向外側端面と径方向内側端面とが互いに平行な平面で、周方向に連ねて配置することにより形成される保持器全体が多角筒形状または多角錐筒形状となり、
前記保持器素子の周方向寸法の設計値と、常温での測定値との差が0.075%以下であり、かつ、
前記保持器素子のポケット内面ところ転道面との間に、該保持器素子が径方向に変位可能な隙間が形成されていることを特徴とする転がり軸受用セグメント保持器。
(3)上記(1)または(2)記載の転がり軸受用セグメント保持器を有することを特徴とする円筒ころ軸受。
The above object of the present invention can be achieved by the following constitution.
(1) For rolling bearings that are made of a resin material and have a plurality of cage elements formed with pockets for holding rolling elements, in which circumferential end surfaces are brought into contact with each other to form a cage in the circumferential direction. In the segment cage,
The resin material is
a) Base resin selected from aromatic polyamide resin, polyphenylene sulfide resin, and polyetheretherketone resin b) Glass fiber surface-treated with a silane coupling agent having an epoxy group or amino group, polyamide or epoxy sizing agent At least one type of reinforcing fiber material selected from carbon fibers surface-treated in step c) containing a particulate inorganic filler made of calcium carbonate surface-treated with a silane coupling agent having an epoxy group or amino group, A rolling bearing characterized in that the content of the material is 25 to 40% by mass of the total amount of the resin material, the content of the particulate inorganic filler is 20 to 35% by mass of the total amount of the resin material, and has the following physical properties: Segment cage.
· Linear expansion coefficient at room temperature (reinforcing fiber material parallel direction) is 0.2 × 10 -5 /℃~1.2×10 -5 / ℃ (ISO11359-2)
· Linear expansion coefficient at room temperature (reinforcing fiber material and the vertical direction) is 1.3 × 10 -5 /℃~4.0×10 -5 / ℃ (ISO11359-2)
-Tensile strength (MPa, ISO527-1, 2) is 150 or more
・ Charpy impact strength (kJ / m 2 , ISO179-1) is 4.0 or more
(2) In the rolling bearing segment cage as described in (1) above,
The cage element has a pair of side plate portions arranged in parallel in the axial direction, and a plurality of column portions that connect the pair of side plate portions in the axial direction, and the side plate portion and the column portion The entire cage is formed by forming a pocket, and the radially outer end surface and the radially inner end surface of the side plate portion are parallel to each other and arranged in the circumferential direction. Shape
The difference between the design value of the circumferential dimension of the cage element and the measured value at room temperature is 0.075% or less, and
A rolling cage segment cage, wherein a gap is formed between the inner surface of the pocket and the rolling surface of the cage element so that the cage element can be displaced in the radial direction.
(3) A cylindrical roller bearing comprising the rolling bearing segment cage according to (1) or (2).

本発明によれば、熱膨張による保持器全体としての隙間変動をより減少させて保持器素子同士の衝突音や、保持器素子の損傷をより確実に防止できる。   According to the present invention, it is possible to more reliably prevent the collision noise between the cage elements and the damage to the cage elements by further reducing the gap variation of the cage as a whole due to thermal expansion.

セグメント保持器の一例を示す模式図である。It is a schematic diagram which shows an example of a segment holder | retainer. 図1に示すセグメント保持器を構成する保持器素子の斜視図である。It is a perspective view of the holder | retainer element which comprises the segment holder | retainer shown in FIG. 保持器素子の他の例を示す斜視図である。It is a perspective view which shows the other example of a holder | retainer element. 図3の保持器素子の周方向断面図である。FIG. 4 is a circumferential sectional view of the cage element of FIG. 3. 図3の保持器素子の側面図である。FIG. 4 is a side view of the cage element of FIG. 3. 図3の保持器素子の平面図である。FIG. 4 is a plan view of the cage element of FIG. 3. 図3の保持器素子の周方向断面図であり、案内部ところとの間の径方向隙間を説明するための図である。FIG. 4 is a circumferential cross-sectional view of the cage element of FIG. 3 for explaining a radial gap between the guide portion and the cage portion. 図3の保持器素子の周方向断面図であり、案内部の形状を説明するための図である。FIG. 4 is a circumferential sectional view of the cage element of FIG. 3 for explaining the shape of a guide portion. 図3の保持器素子からなるセグメント保持器を示す上面図である。It is a top view which shows the segment holder | retainer which consists of a holder | retainer element of FIG. 保持器素子の更に他の例を示す斜視図である。It is a perspective view which shows the further another example of a holder | retainer element. 図10の保持器素子の側面図である。FIG. 11 is a side view of the cage element of FIG. 10. 図10の保持器素子の平面図である。FIG. 11 is a plan view of the cage element of FIG. 10. 図10の要部拡大図である。It is a principal part enlarged view of FIG. 実施例において、線膨張係数の測定に用いた短冊状試験片を示す模式図である。In an Example, it is a schematic diagram which shows the strip-shaped test piece used for the measurement of a linear expansion coefficient.

以下、本発明の転がり軸受用セグメント保持器(以下、単に「セグメント保持器」と呼ぶ。)について、図面を参照して詳細に説明する。尚、ここでは、ころ軸受用のセグメント保持器について説明する。   Hereinafter, the segment cage for rolling bearings of the present invention (hereinafter, simply referred to as “segment cage”) will be described in detail with reference to the drawings. Here, a segment cage for roller bearings will be described.

本発明において、後述される特定の樹脂材料で形成される保持器素子で構成される限り、セグメント保持器の形状や構造には制限はなく、例えば図1に示すセグメント保持器20を例示することができる。即ち、図1に示すセグメント保持器20は、円弧状に形成された保持器素子21を複数、周方向に直列に連ねることにより、全体として円筒状または円錐筒状の一つの保持器を形成する。個々の保持器素子21は、図2に示すように、それぞれが円弧状である1対の側板部2、2と、側板部2、2を結合する複数の柱部1、1とを備える。これら両側板部2、2の内側面と円周方向に隣り合う柱部1、1の円周方向側面とにより囲まれる部分により、ころ(図4参照:符号7)を転動自在に保持するためのポケット3、3を形成している。ポケット3、3の内面のうち、柱部1、1の円周方向側面が、各ころの転動面を案内するための案内面となる。また、各柱部1には、軸方向中間部において径方向内側に開口して周方向に貫通する油溝4が形成されている。更に、柱部1の側面1cの径方向外側近傍には、軸方向に並んで設けられた一対の突起部5、5が形成されており、ころが径方向外側に脱落することを防止している。また、柱部1の径方向内側近傍に、軸方向両端に設けられた一対の案内部6、6が形成されており、ころ7が径方向内側に脱落することを防止している。そして、複数の保持器素子21を、それぞれの周方向端面1a同士を当接させて周方向に連ねることにより、図1に示すセグメント保持器20を形成する。   In the present invention, as long as it is composed of a cage element formed of a specific resin material described later, there is no limitation on the shape and structure of the segment cage. For example, the segment cage 20 shown in FIG. Can do. That is, the segment retainer 20 shown in FIG. 1 forms a single cylindrical or conical retainer as a whole by connecting a plurality of retainer elements 21 formed in an arc shape in series in the circumferential direction. . As shown in FIG. 2, each cage element 21 includes a pair of side plate portions 2 and 2 each having an arc shape, and a plurality of column portions 1 and 1 that couple the side plate portions 2 and 2. The roller (see FIG. 4: reference numeral 7) is rotatably held by a portion surrounded by the inner side surfaces of the both side plate portions 2 and 2 and the circumferential side surfaces of the column portions 1 and 1 adjacent in the circumferential direction. Pockets 3 and 3 are formed. Of the inner surfaces of the pockets 3 and 3, the circumferential side surfaces of the column portions 1 and 1 serve as guide surfaces for guiding the rolling surfaces of the rollers. Each column portion 1 is formed with an oil groove 4 that opens radially inward in the axially intermediate portion and penetrates in the circumferential direction. Further, a pair of protrusions 5 and 5 provided in the axial direction are formed in the vicinity of the radially outer side of the side surface 1c of the column part 1 to prevent the rollers from falling off radially outward. Yes. Further, a pair of guide portions 6 and 6 provided at both axial ends are formed in the vicinity of the radially inner side of the column portion 1 to prevent the rollers 7 from dropping off radially inward. And the segment holder | retainer 20 shown in FIG. 1 is formed by making the circumferential direction end surface 1a contact | abut each of the several holder | retainer elements 21 in the circumferential direction.

本発明では、保持器素子21を樹脂材料で形成する。樹脂材料において、高強度で、低吸水性であることから、ベース樹脂として芳香族ポリアミド樹脂(例えば、ポリアミド9Tや変性ポリアミド6T等)、ポリフェニレンサルファイド樹脂またはポリエーテルエーテルケトン樹脂を用いる。中でも、より低吸水性であるポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂が好ましい。   In the present invention, the cage element 21 is formed of a resin material. Since the resin material has high strength and low water absorption, an aromatic polyamide resin (for example, polyamide 9T or modified polyamide 6T), polyphenylene sulfide resin, or polyether ether ketone resin is used as the base resin. Of these, polyphenylene sulfide resins and polyether ether ketone resins having lower water absorption are preferable.

また、樹脂材料には、補強目的に加え、熱膨張を抑えるために、エポキシ基またはアミノ基を有するシランカップリング剤で表面処理されたガラス繊維、ポリアミド系またはエポキシ系のサイジング剤で表面処理された炭素繊維から選ばれる少なくとも一種の強化繊維材と、エポキシ基またはアミノ基を有するシランカップリング剤で表面処理された炭酸カルシウムからなる粒子状無機充填材とが配合される。また、粒子状無機充填としては、同様の表面処理が施されたタルクを用いることもできる。強化繊維のガラス繊維及び炭素繊維は、補強効果が高いことに加えて、熱膨張を抑える効果にも優れる。   In addition to reinforcing purposes, the resin material is surface-treated with glass fiber surface-treated with a silane coupling agent having an epoxy group or amino group, or with a polyamide or epoxy sizing agent in order to suppress thermal expansion. At least one type of reinforcing fiber material selected from carbon fibers and a particulate inorganic filler made of calcium carbonate surface-treated with a silane coupling agent having an epoxy group or an amino group are blended. Moreover, as the particulate inorganic filling, talc having the same surface treatment can be used. The glass fiber and carbon fiber of the reinforcing fiber are excellent in the effect of suppressing thermal expansion in addition to having a high reinforcing effect.

また、粒子状無機充填材は、熱膨張の方向異方性を低減する効果がある。上記したように、補強繊維材を含有する樹脂材料では、繊維と平行な方向での線膨張係数に対して繊維と垂直な方向での線膨張係数が3〜5倍程度高いため、粒子状無機充填材を配合してこのような熱膨張の方向異方性を低減する。具体的には、補強繊維と平行方向での線膨張係数を、常温(5〜35℃)で、0.2×10−5/℃〜1.2×10−5/℃(ISO11359−2)とし、強化繊維材と垂直方向での線膨張係数を1.3×10−5/℃〜4.0×10−5/℃(ISO11359−2)とする。強化繊維材と水平方向の線膨張係数及び垂直方向の線膨張係数ともに小さい方が好ましく、特に垂直方向の線膨張係数を1.3×10−5/℃〜3.0×10−5/℃にすることが好ましい。 Further, the particulate inorganic filler has an effect of reducing the directional anisotropy of thermal expansion. As described above, in the resin material containing the reinforcing fiber material, the linear expansion coefficient in the direction perpendicular to the fiber is about 3 to 5 times higher than the linear expansion coefficient in the direction parallel to the fiber. A filler is blended to reduce the directional anisotropy of such thermal expansion. Specifically, the linear expansion coefficient of the reinforcing fibers and parallel, at room temperature (5~35 ℃), 0.2 × 10 -5 /℃~1.2×10 -5 / ℃ (ISO11359-2) and then, the linear expansion coefficient of the reinforcing fiber material and perpendicular direction 1.3 × 10 -5 /℃~4.0×10 -5 / ℃ (ISO11359-2). It is preferably small linear both expansion coefficient of the reinforcing fabric and horizontal linear expansion coefficient and the vertical direction, in particular vertical linear expansion coefficient 1.3 × 10 -5 /℃~3.0×10 -5 / ℃ It is preferable to make it.

上記の線膨張係数を満足し、十分な補強効果を得るために、強化繊維材の含有量を、樹脂材料全量の25〜40質量%とする。強化繊維材の含有量が25質量%未満の場合は、一定以上の強度の達成が困難であると共に、平行方向の線膨張係数が大きくなり、好ましくない。強化繊維材の含有量が40質量%を超える場合は、強度向上及び線膨張係数低下を図れるものの、粒子状無機充填材を一定量以上混入させることが困難となり、好ましくない。好ましくは、強化繊維材の含有量を30〜35質量%とする。   In order to satisfy the above linear expansion coefficient and obtain a sufficient reinforcing effect, the content of the reinforcing fiber material is set to 25 to 40% by mass of the total amount of the resin material. When the content of the reinforcing fiber material is less than 25% by mass, it is difficult to achieve a certain strength or more, and the linear expansion coefficient in the parallel direction increases, which is not preferable. When the content of the reinforcing fiber material exceeds 40% by mass, although it is possible to improve the strength and decrease the linear expansion coefficient, it is difficult to mix the particulate inorganic filler more than a certain amount, which is not preferable. Preferably, the content of the reinforcing fiber material is 30 to 35% by mass.

一方、粒子状無機充填材の含有量は、樹脂材料全量に対して20〜35質量%である。粒子状無機充填材の含有量が20質量%未満の場合は、線膨張係数の方向異方性を低下させる効果が十分でなく、好ましくない。粒子状無機充填材の含有量が35質量%を超える場合は、線膨張係数の方向異方性の低下効果は十分なものの、強度低下を招くため好ましくない。好ましくは、粒子状無機充填材の含有量を20〜30質量%とする。   On the other hand, the content of the particulate inorganic filler is 20 to 35 mass% with respect to the total amount of the resin material. When the content of the particulate inorganic filler is less than 20% by mass, the effect of reducing the directional anisotropy of the linear expansion coefficient is not sufficient, which is not preferable. When the content of the particulate inorganic filler exceeds 35% by mass, the effect of reducing the directional anisotropy of the linear expansion coefficient is sufficient, but this is not preferable because the strength is reduced. Preferably, the content of the particulate inorganic filler is 20 to 30% by mass.

また、強化繊維材と粒子状無機充填材の合計含有量は、樹脂材料全量の50〜70質量%であり、50質量%未満では上記した強化繊維材及び粒子状無機充填材の効果が十分に得られず、70質量%を超えると成形性が悪化する。好ましくは、強化繊維材と粒子状無機充填材との合計含有量を50〜60質量%とする。   Further, the total content of the reinforcing fiber material and the particulate inorganic filler is 50 to 70% by mass of the total amount of the resin material, and if it is less than 50% by mass, the effects of the reinforcing fiber material and the particulate inorganic filler are sufficiently obtained. If it exceeds 70% by mass, the moldability deteriorates. Preferably, the total content of the reinforcing fiber material and the particulate inorganic filler is 50 to 60% by mass.

尚、強化繊維材の平均繊維径は5〜15μmが好ましく、粒子状無機充填材の粒径は1〜10μmが好ましい。強化繊維材及び粒子状無機充填材のそれぞれの表面処理剤は、何れも公知のもので構わない。   The average fiber diameter of the reinforcing fiber material is preferably 5 to 15 μm, and the particle diameter of the particulate inorganic filler is preferably 1 to 10 μm. Each of the surface treatment agents for the reinforcing fiber material and the particulate inorganic filler may be a known one.

尚、樹脂材料は、必要に応じて、その他の材料を含有していてもよい。   The resin material may contain other materials as required.

保持器素子21は、上記した特定組成の樹脂材料からなるが、機械的強度として下記を満足する。これにより、良好な保持性能を維持できる。
・引張強度(MPa,ISO527−1,2)が150以上、好ましくは155以上
・シャルピー衝撃強さ(kJ/m、ISO179−1)が4.0以上、好ましくは5.5以上
The cage element 21 is made of the resin material having the specific composition described above, and satisfies the following mechanical strength. Thereby, a favorable holding performance can be maintained.
-Tensile strength (MPa, ISO527-1, 2) is 150 or more, preferably 155 or more
-Charpy impact strength (kJ / m 2 , ISO 179-1) is 4.0 or more, preferably 5.5 or more

ところで、図2に示した保持器素子21は、図1に示すセグメント保持器20を形成するために、側板部2、2の径方向外側端面2a及び径方向内側端面2bが共に円弧状であるため、特殊形状の金型を必要とする。   By the way, in the cage element 21 shown in FIG. 2, both the radially outer end surface 2a and the radially inner end surface 2b of the side plate portions 2 and 2 are arcuate in order to form the segment cage 20 shown in FIG. Therefore, a specially shaped mold is required.

そこで、図3〜8に示す保持器素子21のように、側板部2の径方向外側端面2a及び径方向内側端面2bを互いに平行な平面、即ち図4に示すように、周方向側面視で平行な直線状とする。また、図5に示すように、保持器素子21の周方向端面1a、1aを、保持器分割数に応じて、径方向外側から内側へ向かって所定の傾斜角度Cをなすように形成する。また、図6に示すように、保持器素子21の周方向端面1a、1aを、保持器分割数や保持器20の形状に応じて、軸方向一方側から他方側へ向かって所定の傾斜角度Dをなすように形成する。   Therefore, like the cage element 21 shown in FIGS. 3 to 8, the radially outer end surface 2a and the radially inner end surface 2b of the side plate portion 2 are parallel to each other, that is, as shown in FIG. Parallel straight lines. Further, as shown in FIG. 5, the circumferential end faces 1a and 1a of the cage element 21 are formed so as to form a predetermined inclination angle C from the radially outer side to the inner side in accordance with the cage division number. In addition, as shown in FIG. 6, the circumferential end faces 1 a and 1 a of the cage element 21 have a predetermined inclination angle from one axial direction to the other depending on the number of cage divisions and the shape of the cage 20. D is formed.

尚、図4に示すように、柱部1、1において周方向に向かい合う突起部5、5の間幅Aと、ころ7の径dとの関係は、A<dを満たすことが好ましい。また、柱部1、1において周方向に向かい合う案内部6、6の間幅Bと、ころ7の径dとの関係は、B<dを満たすことが好ましい。これにより、ころ7が脱落することなく、ポケット3内に確実に保持される。   In addition, as shown in FIG. 4, it is preferable that the relationship between the width A between the protrusions 5 and 5 facing in the circumferential direction in the column portions 1 and 1 and the diameter d of the roller 7 satisfies A <d. Moreover, it is preferable that the relationship between the width B between the guide portions 6 and 6 facing in the circumferential direction in the column portions 1 and 1 and the diameter d of the roller 7 satisfies B <d. Thereby, the roller 7 is reliably held in the pocket 3 without falling off.

また、柱部1の突起部5及び案内部6は、ころ7の転動面に沿うような形状に形成される。即ち、図示される保持器素子21では3つのポケット3が形成されているが、中央に配置された1つの中央ポケット3aと、中央ポケット3aの周方向両側に配置された2つの端部ポケット3bと、において突起部5および案内部6の形状を変更する。具体的には、図7及び図8に示すように、中央ポケット3aにおいては、ころ7の転動を妨害しないように、径方向内側に向かって短く形成された突起部5a、5aが設けられている。また、中央ポケット3aにおける案内部6の案内面6a、6aは、ころ7よりも大きい円すい台形8に沿った曲率半径によって、円すい台形8に沿った形状に形成されている。これに対し、端部ポケット3bにおいては、ころ7の脱落を防止するように径方向内側に向かって長く形成された中央側の突起部5bと、ころ7の転動を妨害しないように径方向内側に向かって短く形成された端部側の突起部5b’と、が設けられている。また、端部ポケット3bにおける案内部6の中央側の案内面6b及び端部側の案内面6b’は、円すい台形8に沿った曲率半径を有すると共に、転がり軸受の回転軸を中心として中央ポケット3aから所定の幅だけ回転させた円すい台形8に沿った形状に形成されている。このように、突起部5a、5b、5b’および案内面6a、6b、6b’が、軸受の外輪軌道面70と内輪軌道面80との間に配置されたころ7の転動面に沿うような形状に形成されることによって、ころ7を確実に案内することが可能になる。   Further, the protrusion 5 and the guide 6 of the column part 1 are formed in a shape along the rolling surface of the roller 7. That is, in the illustrated cage element 21, three pockets 3 are formed, but one central pocket 3a disposed at the center and two end pockets 3b disposed on both sides in the circumferential direction of the central pocket 3a. Then, the shapes of the protrusion 5 and the guide 6 are changed. Specifically, as shown in FIGS. 7 and 8, the central pocket 3 a is provided with projections 5 a and 5 a that are formed short toward the inside in the radial direction so as not to disturb the rolling of the rollers 7. ing. Further, the guide surfaces 6 a and 6 a of the guide portion 6 in the central pocket 3 a are formed in a shape along the conical trapezoid 8 by a radius of curvature along the conical trapezoid 8 larger than the rollers 7. On the other hand, in the end pocket 3b, the protrusion 5b on the central side that is formed long inward in the radial direction so as to prevent the roller 7 from falling off, and the radial direction so as not to disturb the rolling of the roller 7. And an end-side protruding portion 5b ′ that is formed shorter toward the inside. Further, the guide surface 6b on the center side of the guide portion 6 and the guide surface 6b 'on the end portion side in the end pocket 3b have a radius of curvature along the truncated cone 8 and are centered around the rotation axis of the rolling bearing. It is formed in a shape along a truncated cone 8 rotated by a predetermined width from 3a. Thus, the protrusions 5a, 5b, 5b ′ and the guide surfaces 6a, 6b, 6b ′ are arranged along the rolling surface of the roller 7 disposed between the outer ring raceway surface 70 and the inner ring raceway surface 80 of the bearing. The roller 7 can be reliably guided by being formed into a simple shape.

また、図7に示すように、ポケット3には、案内部6ところ7の転動面との間に、保持器素子21が径方向に変位可能な隙間eを設けることが好ましい。これにより、温度上昇や吸水等により保持器素子21が周方向に膨張した場合でも、保持器素子21が隙間eの範囲内で外径方向に変位することができるので、隣り合う保持器素子21、21同士の干渉を軽減することができ、ポケット3の歪みや保持器素子21の破損を防止することが可能になる。   In addition, as shown in FIG. 7, it is preferable to provide a gap e in the pocket 3 between the guide portion 6 and the rolling surface of the 7 so that the cage element 21 can be displaced in the radial direction. As a result, even when the cage element 21 expands in the circumferential direction due to a temperature rise, water absorption, or the like, the cage element 21 can be displaced in the outer diameter direction within the range of the gap e. , 21 can be reduced, and distortion of the pocket 3 and breakage of the cage element 21 can be prevented.

そして、図9に示すように、複数の保持器素子21、21を、周方向端面同士を周方向に突き合わせて直列に連ねることにより、略多角すい台筒形状のセグメント保持器20を構成する。   Then, as shown in FIG. 9, a plurality of cage elements 21, 21 are connected in series with their circumferential end faces butting in the circumferential direction, thereby forming a segment holder 20 having a substantially polygonal truncated cone shape.

ここで、各保持器素子21が隙間なく連なるためには、各保持器素子21が同一形状であるとすると、その周方向寸法Hは、セグメント保持器20が使用される転がり軸受の内輪及び外輪の各寸法、ころ7のころ寸法及び数、ポケット3ところ7との隙間、セグメント保持器20の厚さ、保持器素子21の数により幾何学的に決定される。尚、このように幾何学的に決定された保持器素子21の周方向寸法Hを「設計値」と呼ぶ。そして、この設計値に対して、実際の保持器素子21の常温での周方向寸法が、絶対値で0.075%以下であることが好ましい。これにより、複数の保持器素子21、21をほぼ隙間無く周方向に連ねることができる。   Here, in order for the cage elements 21 to be connected without gaps, assuming that the cage elements 21 have the same shape, the circumferential dimension H thereof is the inner and outer rings of the rolling bearing in which the segment cage 20 is used. , The roller size and number of the rollers 7, the gap between the pockets 3 and 7, the thickness of the segment cage 20, and the number of cage elements 21 are determined geometrically. The circumferential dimension H of the cage element 21 thus determined geometrically is referred to as “design value”. And with respect to this design value, it is preferable that the circumferential dimension of the actual cage element 21 at room temperature is 0.075% or less in absolute value. Thereby, the several retainer element 21 and 21 can be continued in the circumferential direction without a clearance gap substantially.

また、保持器素子21はその他にも種々変更可能であり、例えば図10に示すように、
周方向端面1aから周方向に突出する突出部9を備えるようにしてもよい。周方向端面1aは、図11に示すように、保持器素子21の数に応じて、径方向外側から内側へ向かって所定の傾斜角度Fをなすように形成されている。また、図12に示すように、突出部9の周方向端面9a、9aは、保持器素子21の数やセグメント保持器20の形状に応じて、軸方向一方側から他方側へ向かって所定の傾斜角度Gをなすように形成されている。更に、突出部9は、周方向端面9aから、保持器素子21の周方向端面1aへと連続して傾斜する軸方向内側端面9bを有する。この軸方向内側端面9bは、図13に示すように、側板部2の軸方向内側端面2cよりも軸方向内側に位置するように形成される、
In addition, the cage element 21 can be variously modified, for example, as shown in FIG.
You may make it provide the protrusion part 9 which protrudes in the circumferential direction from the circumferential direction end surface 1a. As shown in FIG. 11, the circumferential end surface 1 a is formed so as to form a predetermined inclination angle F from the radially outer side to the inner side in accordance with the number of cage elements 21. Further, as shown in FIG. 12, the circumferential end surfaces 9 a and 9 a of the projecting portion 9 have a predetermined direction from one side in the axial direction to the other depending on the number of cage elements 21 and the shape of the segment cage 20. An inclination angle G is formed. Furthermore, the protrusion part 9 has the axial direction inner side end surface 9b which inclines continuously from the circumferential direction end surface 9a to the circumferential direction end surface 1a of the retainer element 21. As shown in FIG. 13, the axially inner end surface 9 b is formed so as to be positioned on the axially inner side with respect to the axially inner end surface 2 c of the side plate portion 2.

このように突出部9を有する保持器素子21では、セグメント保持器20を形成した際に、隣り合う保持器素子21、21の衝突荷重を突出部9で受けることができる。そのため、隣り合う保持器素子21、21同士が衝突したときに、柱部1の変形によりポケット3の隅部に生じ得る応力を突出部9で緩和させることができる。   As described above, in the cage element 21 having the protruding portion 9, the collision load of the adjacent cage elements 21 and 21 can be received by the protruding portion 9 when the segment cage 20 is formed. Therefore, when the adjacent cage elements 21, 21 collide with each other, the stress that may be generated at the corners of the pocket 3 due to the deformation of the column part 1 can be relieved by the protruding part 9.

尚、上記した保持器素子21は、ベース樹脂、強化繊維材及び粒子状無機充填材、更に必要に応じて各種添加剤を含有する樹脂組成物を射出成形して製造可能であり、生産性にも優れる。   The cage element 21 described above can be manufactured by injection molding a resin composition containing a base resin, a reinforcing fiber material, a particulate inorganic filler, and various additives as required. Also excellent.

また、本発明は、上記のセグメント保持器20によりころを保持したころ軸受に関する。上記したように保持器素子21が熱膨張による衝突を発生し難く、耐久性に優れるため、それを組み込んだころ軸受もまた耐久性に優れたものとなる。   The present invention also relates to a roller bearing in which the roller is held by the segment holder 20 described above. As described above, since the cage element 21 hardly causes a collision due to thermal expansion and is excellent in durability, the roller bearing incorporating the retainer element 21 is also excellent in durability.

以下に実施例を挙げて本発明を更に説明するが、本発明はこれにより何ら制限されるものではない。   The present invention will be further described below with reference to examples, but the present invention is not limited thereto.

(実施例1〜3、比較例1〜3)
表1に示す組成にて樹脂組成物を調製し、射出成形して棒状成形体を作製した。そして、ゲートの位置から判断して、棒状成形体を切削加工して短冊状試験片を作製した。即ち、ゲートからの射出方向に沿って強化繊維材が配向すると見做し、図14に模式的に示すように、短冊状試験片Sの長辺S1を強化繊維材100と平行な方向とし、短辺S2を強化繊維材100と垂直な方向となるように、短冊状試験片Sを加工した。
(Examples 1-3, Comparative Examples 1-3)
A resin composition was prepared with the composition shown in Table 1, and injection molded to produce a rod-shaped molded body. Then, judging from the position of the gate, the rod-shaped molded body was cut to produce a strip-shaped test piece. That is, assuming that the reinforcing fiber material is oriented along the injection direction from the gate, as schematically shown in FIG. 14, the long side S1 of the strip-shaped test piece S is set in a direction parallel to the reinforcing fiber material 100, The strip-shaped test piece S was processed so that the short side S2 was in a direction perpendicular to the reinforcing fiber material 100.

そして、この短冊状試験片Sの長辺S1に沿った線膨張係数(強化繊維材と平行な方向における線膨張係数)と、短辺S2に沿った線膨張係数(強化繊維材と垂直な方向における線膨張係数)とを測定した。測定結果を表1に併記する。   And the linear expansion coefficient (linear expansion coefficient in a direction parallel to the reinforcing fiber material) along the long side S1 of this strip-shaped test piece S and the linear expansion coefficient (direction perpendicular to the reinforcing fiber material) along the short side S2 Linear expansion coefficient). The measurement results are also shown in Table 1.

また、同じ樹脂組成物を射出成形して引張試験用試験片及びシャルピー衝撃試験用試験片を作製し、引張試験についてはISO527−1,2に従い、シャルピー衝撃試験についてはISO179−1に従って引張強度及びシャルピー衝撃強さを測定した。測定結果を表1に併記する。   In addition, the same resin composition was injection-molded to prepare a test piece for tensile test and a test piece for Charpy impact test. The tensile test was performed according to ISO527-1, 2 for the tensile test and the tensile strength and test according to ISO179-1 for the Charpy impact test. Charpy impact strength was measured. The measurement results are also shown in Table 1.

更に、同じ樹脂組成物を射出成形して図3に示す構造の保持器素子とし、これを周方向に連ねてセグメント保持器を作製した。尚、常温での周方向寸法と設計値との差を0.07%とした。そして、セグメント保持器をころ軸受に組み込み、雰囲気温度を50℃または80℃にて1000時間回転させた後、セグメント保持器を観察して保持器素子の亀裂の有無などの損傷状態から耐久性を評価した。結果を表1に併記する。   Furthermore, the same resin composition was injection-molded to form a cage element having the structure shown in FIG. 3, and this was connected in the circumferential direction to produce a segment cage. The difference between the circumferential dimension at normal temperature and the design value was 0.07%. Then, after incorporating the segment cage into the roller bearing and rotating the ambient temperature at 50 ° C. or 80 ° C. for 1000 hours, the segment cage is observed, and the durability from the damaged state such as the presence or absence of cracks in the cage element is increased. evaluated. The results are also shown in Table 1.

Figure 2016153674
Figure 2016153674

表1に示すように、ベース樹脂、強化繊維及び粒子状無機充填材を含有し、強化繊維材と平行方向及び垂直方向ともに本発明で規定する範囲である実施例では、引張強度が150MPa以上で、シャルピー衝撃強さが4.0kJ/m以上である。また、耐久性に関しても、50℃、80℃ともに亀裂が発生していない。 As shown in Table 1, in the examples containing the base resin, the reinforcing fiber and the particulate inorganic filler, and in the range defined by the present invention in both the parallel direction and the vertical direction, the tensile strength is 150 MPa or more. The Charpy impact strength is 4.0 kJ / m 2 or more. Moreover, regarding durability, neither 50 degreeC nor 80 degreeC has cracked.

これに対し比較例1.2では、樹脂材料が粒子状無機充填材を含まず、強化繊維材と平行方向及び垂直方向ともに本発明で規定する線膨張係数よりも大きくなっている。また、50℃での耐久性は問題ないものの、より過酷な80℃では保持器素子に亀裂が発生しており、耐久性に劣っている。   On the other hand, in Comparative Example 1.2, the resin material does not include the particulate inorganic filler, and is larger than the linear expansion coefficient defined in the present invention in both the parallel and vertical directions with respect to the reinforcing fiber material. Further, although durability at 50 ° C. is not a problem, the cage element is cracked at 80 ° C., which is more severe, and the durability is inferior.

また、比較例3では、粒子状無機充填材の含有量が実施例よりも多くなっており、線膨張係数が強化繊維材と平行方向及び垂直方向ともに実施例よりも低く、特に垂直方向の線膨張係数の低下が顕著である。このことから、粒子状無機充填材が熱膨張の低減に効果があることがわかる。しかし、80℃での耐久性が実施例よりも劣っており、これは粒子状無機充填材の含有量が本発明で規定する範囲の上限を超えて過多であることが原因している。即ち、粒子状無機充填材は、熱膨張の方向異方性の低減には効果があるものの、規定量よりも過多になると強度低下をもたらし、耐久性を低下させて好ましくない。   Further, in Comparative Example 3, the content of the particulate inorganic filler is larger than that of the example, and the linear expansion coefficient is lower than that of the example both in the parallel direction and in the vertical direction with respect to the reinforcing fiber material. The decrease in the expansion coefficient is remarkable. This shows that the particulate inorganic filler is effective in reducing thermal expansion. However, the durability at 80 ° C. is inferior to that of the examples, which is because the content of the particulate inorganic filler exceeds the upper limit of the range defined in the present invention. That is, the particulate inorganic filler is effective in reducing the directional anisotropy of thermal expansion, but if it exceeds the specified amount, the strength is lowered and the durability is lowered, which is not preferable.

1 柱部
2 側板部
2a 径方向外側端面
2b 径方向内側端面
3 ポケット
5 突起部
6 案内部
7 ころ
9 突出部
20 セグメント保持器
21 保持器素子
70 外輪軌道面
80 内輪軌道面
DESCRIPTION OF SYMBOLS 1 Column part 2 Side plate part 2a Radial direction outer side end surface 2b Radial direction inner side end surface 3 Pocket 5 Projection part 6 Guide part 7 Roller 9 Protrusion part 20 Segment holder 21 Cage element 70 Outer ring raceway surface 80 Inner ring raceway surface

Claims (3)

樹脂材料からなり、転動体を保持するためのポケットが形成された保持器素子を複数、周方向端面同士を当接させて周方向に連ねて一つの保持器を形成する転がり軸受用セグメント保持器において、
前記樹脂材料が、
a)芳香族ポリアミド樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂から選ばれるベース樹脂
b)エポキシ基またはアミノ基を有するシランカップリング剤で表面処理されたガラス繊維、ポリアミド系またはエポキシ系のサイジング剤で表面処理された炭素繊維から選ばれる少なくとも一種の強化繊維材
c)エポキシ基またはアミノ基を有するシランカップリング剤で表面処理された炭酸カルシウムからなる粒子状無機充填材
を含有し、前記強化繊維材の含有量が樹脂材料全量の25〜40質量%、前記粒子状無機充填材の含有量が樹脂材料全量の20〜35質量%であるとともに、以下の物性を有することを特徴とする転がり軸受用セグメント保持器。
・常温での線膨張係数(強化繊維材と平行方向)が0.2×10−5/℃〜1.2×10−5/℃(ISO11359−2)
・常温での線膨張係数(強化繊維材と垂直方向)が1.3×10−5/℃〜4.0×10−5/℃(ISO11359−2)
・引張強度(MPa、ISO527−1,2)が150以上
・シャルピー衝撃強さ(kJ/m、ISO179−1)が4.0以上
A segment cage for rolling bearings, which is made of a resin material and has a plurality of cage elements in which pockets for holding rolling elements are formed. In
The resin material is
a) Base resin selected from aromatic polyamide resin, polyphenylene sulfide resin, and polyetheretherketone resin b) Glass fiber surface-treated with a silane coupling agent having an epoxy group or amino group, polyamide or epoxy sizing agent At least one type of reinforcing fiber material selected from carbon fibers surface-treated in step c) containing a particulate inorganic filler made of calcium carbonate surface-treated with a silane coupling agent having an epoxy group or amino group, A rolling bearing characterized in that the content of the material is 25 to 40% by mass of the total amount of the resin material, the content of the particulate inorganic filler is 20 to 35% by mass of the total amount of the resin material, and has the following physical properties: Segment cage.
· Linear expansion coefficient at room temperature (reinforcing fiber material parallel direction) is 0.2 × 10 -5 /℃~1.2×10 -5 / ℃ (ISO11359-2)
· Linear expansion coefficient at room temperature (reinforcing fiber material and the vertical direction) is 1.3 × 10 -5 /℃~4.0×10 -5 / ℃ (ISO11359-2)
-Tensile strength (MPa, ISO527-1, 2) is 150 or more
・ Charpy impact strength (kJ / m 2 , ISO179-1) is 4.0 or more
請求項1記載の転がり軸受用セグメント保持器において、
前記保持器素子が、軸方向に平行に配置された一対の側板部と、前記一対の側板部を軸方向に接続する複数の柱部とを有し、前記側板部と前記柱部とで前記ポケットを形成するとともに、前記側板部の径方向外側端面と径方向内側端面とが互いに平行な平面で、周方向に連ねて配置することにより形成される保持器全体が多角筒形状または多角錐筒形状となり、
前記保持器素子の周方向寸法の設計値と、常温での測定値との差が0.075%以下であり、かつ、
前記保持器素子のポケット内面ところ転道面との間に、径方向に変位可能な隙間が形成されていることを特徴とする転がり軸受用セグメント保持器。
The segment cage for rolling bearings according to claim 1,
The cage element has a pair of side plate portions arranged in parallel in the axial direction, and a plurality of column portions that connect the pair of side plate portions in the axial direction, and the side plate portion and the column portion The entire cage is formed by forming a pocket, and the radially outer end surface and the radially inner end surface of the side plate portion are parallel to each other and arranged in the circumferential direction. Shape
The difference between the design value of the circumferential dimension of the cage element and the measured value at room temperature is 0.075% or less, and
A segment cage for a rolling bearing, characterized in that a radially displaceable gap is formed between the pocket inner surface and the rolling surface of the cage element.
請求項1または2記載の転がり軸受用セグメント保持器を有することを特徴とするころ軸受。   A roller bearing comprising the segment cage for a rolling bearing according to claim 1.
JP2015031875A 2015-02-20 2015-02-20 Segment holder for rolling bearing, and roller bearing Pending JP2016153674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015031875A JP2016153674A (en) 2015-02-20 2015-02-20 Segment holder for rolling bearing, and roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015031875A JP2016153674A (en) 2015-02-20 2015-02-20 Segment holder for rolling bearing, and roller bearing

Publications (1)

Publication Number Publication Date
JP2016153674A true JP2016153674A (en) 2016-08-25

Family

ID=56761039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015031875A Pending JP2016153674A (en) 2015-02-20 2015-02-20 Segment holder for rolling bearing, and roller bearing

Country Status (1)

Country Link
JP (1) JP2016153674A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172039A1 (en) 2018-03-05 2019-09-12 Ntn株式会社 Roller bearing and retainer for roller bearing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172039A1 (en) 2018-03-05 2019-09-12 Ntn株式会社 Roller bearing and retainer for roller bearing
CN111868399A (en) * 2018-03-05 2020-10-30 Ntn株式会社 Roller bearing and roller bearing retainer
EP3763957A4 (en) * 2018-03-05 2021-04-07 NTN Corporation Roller bearing and retainer for roller bearing
CN111868399B (en) * 2018-03-05 2022-08-23 Ntn株式会社 Roller bearing and roller bearing retainer

Similar Documents

Publication Publication Date Title
US9995341B2 (en) Resin cage for tapered roller bearing and tapered roller bearing including the resin cage
KR102013084B1 (en) Method of manufacturing conical roller bearings and conical roller bearings
US20160178007A1 (en) Ball bearing retainer
WO2014098212A1 (en) Rolling bearing
US10422381B2 (en) Rolling bearing retainer, rolling bearing, and method for manufacturing rolling bearing retainer
JP2017172736A (en) Resin-made cage for bearing, manufacturing method of the same and rolling bearing
JP2016153674A (en) Segment holder for rolling bearing, and roller bearing
TWI568943B (en) Crown retainer and bevel ball bearing
JP2009115128A (en) Retainer for roller bearing, and roller bearing
WO2015041205A1 (en) Solid lubricant, and solid-lubricated roller bearing
JP6565570B2 (en) Outer ring guide resin retainer, injection mold, and outer ring guide resin retainer manufacturing method
JP2011052784A (en) Resin retainer
US10663001B2 (en) Ball bearing cage
JP2016145644A5 (en)
JP2016145644A (en) Cage for rolling bearing, rolling bearing, and manufacturing method of cage for rolling bearing
TWI776014B (en) Ball bearing cage and ball bearing
JP6686482B2 (en) Rolling bearing cage, rolling bearing, and rolling bearing cage manufacturing method
KR20160113258A (en) Angular ball bearing
WO2016125855A1 (en) Rolling bearing retainer, rolling bearing, and method for manufacturing rolling bearing retainer
KR20170071191A (en) Single-row cylindrical roller bearing with housing
US9683608B2 (en) Universal joint bearing, joint cross, universal joint, and multi-row needle roller bearing
JP2014029174A (en) Split type cage
JP2013036608A (en) Snap cage and rolling bearing
WO2016052232A1 (en) Ball bearing cage
JP4611191B2 (en) Radial roller bearings