WO2016125855A1 - Rolling bearing retainer, rolling bearing, and method for manufacturing rolling bearing retainer - Google Patents

Rolling bearing retainer, rolling bearing, and method for manufacturing rolling bearing retainer Download PDF

Info

Publication number
WO2016125855A1
WO2016125855A1 PCT/JP2016/053351 JP2016053351W WO2016125855A1 WO 2016125855 A1 WO2016125855 A1 WO 2016125855A1 JP 2016053351 W JP2016053351 W JP 2016053351W WO 2016125855 A1 WO2016125855 A1 WO 2016125855A1
Authority
WO
WIPO (PCT)
Prior art keywords
cage
rolling bearing
pocket
outer ring
guide surface
Prior art date
Application number
PCT/JP2016/053351
Other languages
French (fr)
Japanese (ja)
Inventor
芳史 杉田
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016017836A external-priority patent/JP6686482B2/en
Priority claimed from JP2016017837A external-priority patent/JP6686483B2/en
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to US15/548,487 priority Critical patent/US10422381B2/en
Priority to CN201680008792.4A priority patent/CN107250582B/en
Priority to KR1020177021769A priority patent/KR102018966B1/en
Priority to EP16746686.1A priority patent/EP3255293B1/en
Publication of WO2016125855A1 publication Critical patent/WO2016125855A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/3806Details of interaction of cage and race, e.g. retention, centring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/3837Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages
    • F16C33/3843Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages
    • F16C33/3856Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages made from plastic, e.g. injection moulded window cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/44Selection of substances
    • F16C33/445Coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • F16C19/163Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact

Definitions

  • the present invention relates to a rolling bearing cage, a rolling bearing, and a method for manufacturing a rolling bearing cage.
  • angular contact ball bearings and the like are widely used as spindle bearings for machine tools.
  • phenol resin cages are used particularly when the use conditions are severe. Phenol resin cages have high sliding wear resistance and exhibit excellent durability when used in bearings.
  • a cage made of phenol resin cannot reduce dimensional tolerances and guide clearances, and may cause generation of cage noise and non-repeatable run-out (NRRO).
  • NRRO non-repeatable run-out
  • a phenol resin is a thermosetting resin, it is difficult to make it into a complicated shape having a plurality of pockets.
  • a typical cage injection molding method there are a radial draw method in which a movable mold is slid in a radial direction and an axial draw method in which a movable mold is slid in an axial direction.
  • burrs are formed on the surface of the molded product corresponding to the mold matching portion of the mold member.
  • burrs are generated on the outer diameter side surface of the cage, and in the axial draw type, burrs are generated in the connection portion with the chamfered portion.
  • burrs are generated in the guided portion of the cage (in the case of a cage for outer ring guidance, the outer diameter surface of the cage corresponds to the guided portion), the generated burrs may damage the sliding counterpart member. Further, the progress of wear may be promoted starting from the burr generated on the cage side.
  • the generated burrs can be removed by barrel processing or the like, but the fine irregularities transferred and formed on the cage are also removed together, and the above-described effects of improving lubricity and durability cannot be obtained.
  • Patent Document 2 describes a technique that eliminates the need for burr removal processing by providing a parting line in a recess on the outer diameter surface of the cage.
  • a cage that transfers a specific surface shape.
  • it cannot be applied to a rolling bearing used in a severe environment such as a rolling bearing for supporting a spindle of a machine tool. For this reason, the wear resistance of the cage is insufficient and the life of the bearing is reduced. Even if this problem is changed to a resin material having high slidability, this problem is not necessarily improved.
  • Patent Documents 1 and 2 considers the presence of a chamfered portion at the edge of the guided portion.
  • the cage since the cage is supported with a clearance in the bearing, the cage itself may be inclined and the chamfered portion may slide with other members such as an outer ring. For this reason, if burrs are generated in the chamfered portion, the wear of the cage proceeds as described above, and the life of the bearing may be reduced by the generated wear powder.
  • the fine uneven shape on the surface of the cage can be obtained by processing the mold surface of the molding die into a fine uneven shape in advance and transferring the fine uneven shape on the mold surface to the molded product.
  • the pocket of the cage is formed by the slide core, when the slide core is pulled out, the fine irregular shape on the inner peripheral surface of the pocket may be scraped off by shearing with the mold.
  • a first object is to provide a method for manufacturing a rolling bearing cage.
  • it is possible to suppress the damage of the fine irregularities on the inner peripheral surface of the pocket of the cage, and to provide a highly durable and productive rolling bearing cage, a rolling bearing provided with the rolling bearing cage, and a rolling bearing cage.
  • a second object is to provide a manufacturing method.
  • the present invention has the following configuration.
  • a synthetic resin rolling bearing cage disposed between an inner ring and an outer ring of a rolling bearing,
  • a plurality of guided portions protruding radially outward from the outer diameter surface are provided along the circumferential direction of the outer diameter surface,
  • the guided portion is formed along the axial direction on a guide surface formed so as to be slidably contacted with the outer ring, a chamfered portion formed on an edge of the guide surface, and a part of the guide surface.
  • a groove portion, The guide surface and the chamfered portion have a surface property with an arithmetic average roughness Ra of 1.0 to 9.8 ⁇ m and a maximum height Rt of 10.1 to 102.9 ⁇ m.
  • a rolling bearing retainer wherein a parting line is provided radially inward from the guide surface.
  • the chamfered portion is connected to the edge portion of the guide surface, and has an inclined surface formed with the guide surface and having an angle of 20 ° or less.
  • a relief groove recessed radially inward is formed in a region facing a raceway surface edge that is a boundary between an outer ring inner peripheral surface of the outer ring and an outer ring raceway surface.
  • the rolling bearing retainer according to any one of 4).
  • the surface layer of the cage is formed with an amorphous layer having a thickness from the surface of the cage of 0.1 to 30 ⁇ m and containing no reinforcing fiber, (1) to (5)
  • a method for manufacturing a rolling bearing cage wherein the rolling bearing cage according to any one of (1) to (6) is molded using a molding die
  • a method for manufacturing a rolling bearing retainer wherein the shape of a processed surface provided on a mold surface of the molding die is transferred to at least one of the guide surface and the chamfered portion.
  • a rolling bearing retainer in which a pocket for holding a plurality of rolling elements disposed between an inner ring raceway and an outer ring raceway of a rolling bearing is formed.
  • the inner peripheral surface of the pocket has a surface property with an arithmetic average roughness Ra of 1.0 to 9.8 ⁇ m and a maximum height Rt of 10.1 to 102.9 ⁇ m.
  • the inner circumferential surface of the pocket is a cylindrical surface along the radial direction of the cage, and the thickness of the cylindrical surface in the radial direction of the cage is 3.5 mm or less.
  • a rolling bearing retainer in which a pocket for holding a plurality of rolling elements arranged between an inner ring raceway and an outer ring raceway of a rolling bearing is formed.
  • the inner peripheral surface of the pocket has a surface property with an arithmetic average roughness Ra of 1.0 to 9.8 ⁇ m and a maximum height Rt of 10.1 to 102.9 ⁇ m, from the inner peripheral side toward the outer peripheral side.
  • a cage for a rolling bearing characterized by a tapered surface that expands in diameter.
  • an amorphous layer not containing reinforcing fibers having a thickness from the surface of the cage of 0.1 to 30 ⁇ m is formed on the cage surface layer.
  • the protruding part (burr) of the parting line is There is no wear on the cage or other members.
  • the progress of wear of the cage due to the rubbing of the convex portion is suppressed, and it is possible to prevent the occurrence of abnormalities such as a decrease in life and vibration.
  • the chamfered portion of the cage has a specific surface property that provides high dynamic sliding properties, wear of the chamfered portion and the outer ring can be suppressed even when the cage is tilted and contacts the outer ring in the rolling bearing.
  • the pocket inner surface has an arithmetic mean roughness Ra of 1.0 to 9.8 ⁇ m and a maximum height Rt of 10.1 to 102.9 ⁇ m.
  • the thickness in the radial direction is 3.5 mm or less. Therefore, even when the pocket is formed with the slide core, it is possible to suppress damage to the fine unevenness on the inner peripheral surface of the pocket. Thereby, durability of a holder
  • FIG. 3 is a partially enlarged perspective view of the cage shown in FIG. 2.
  • FIG. 4 is an enlarged sectional view taken along line P1-P1 of the cage shown in FIG. (A)-(C) are enlarged sectional views showing the shape of the chamfered portion.
  • (A) is explanatory drawing which shows typically an example of the metal mold
  • (B) is explanatory drawing which shows the P2-P2 line cross section of (A). It is explanatory drawing which shows typically the other structural example of the metal mold
  • FIG. 1 It is a partially expanded perspective view of a cage. It is a graph which shows the relationship between the ratio of the sum total of the outer-diameter groove length with respect to a holder
  • (A) is an enlarged view of the outer diameter surface of the cage
  • (B) is a cross-sectional view schematically showing a molding die for P3-P3 line in (A).
  • (A) to (C) are partially enlarged views showing outer diameter surfaces of other cages.
  • (A) to (H) are enlarged sectional views showing various pocket shapes of the cage. It is a partial cross section figure of the angular ball bearing provided with the cage of other composition. It is an external appearance perspective view of the holder
  • FIG. 1 is a view for explaining an embodiment of the present invention and is a partial sectional view of a rolling bearing.
  • an angular ball bearing used in a device that rotates at high speed such as a spindle of a machine tool, will be described as an example of the rolling bearing.
  • An angular ball bearing 100 (hereinafter also abbreviated as “bearing”) includes an outer ring 13 having an outer ring raceway surface 11 on an inner peripheral surface, an inner ring 17 having an inner ring raceway surface 15 on an outer peripheral surface, and a plurality of balls ( Rolling element) 19 and a cage (roller bearing cage) 23 having a plurality of pockets 21.
  • the balls 19 are arranged so as to roll freely with a contact angle ⁇ between the outer ring raceway surface 11 and the inner ring raceway surface 15.
  • maintains the some ball 19 within the pocket 21 so that rolling is possible.
  • the retainer 23 is formed with a plurality of guided portions 25A and 25B protruding outward in the radial direction at both axial ends of the outer diameter surface of the retainer.
  • the guided portions 25A and 25B are arranged at equal intervals along the circumferential direction, and both are arranged at the same circumferential position.
  • the guide surface 27 of the guided portion 25A on one end side in the axial direction is the outer ring inner peripheral surface on the counter-bore side with respect to the outer ring raceway surface 11 of the outer ring 13.
  • 29 is an outer ring guide method guided by 29.
  • the guided portions 25 ⁇ / b> A and 25 ⁇ / b> B of the cage 23 have a surface shape with a predetermined surface roughness, as will be described in detail later.
  • Grease which is a lubricant, is held in the minute recesses that form the surface shape, and the sliding performance between the cage 23 and the outer ring 13 is improved.
  • the cage 23 is an injection molded product using a material containing synthetic resin.
  • the synthetic resin that can be used for the cage 23 include PPS (polyphenylene sulfide), PPS-CF (carbon fiber reinforced polyphenylene sulfide), and the like.
  • PA polyamide
  • PAI polyamideimide
  • thermoplastic polyimide polyetheretherketone
  • organic fibers such as carbon fiber, glass fiber, and aramid fiber can be used as the reinforcing fiber. Fiber is available.
  • FIG. 2 is an external perspective view of the cage 23, and FIG. 3 is a partially enlarged perspective view of the cage shown in FIG.
  • Each of the guided portions 25A and 25B includes a guide surface 27 that protrudes radially outward and is slidably contactable with the inner peripheral surface 29 of the outer ring (see FIG. 1), and a chamfered portion that is formed at the edge of the guide surface 27 31.
  • the chamfered portion 31 of this configuration is provided over the entire circumference of the peripheral edge, which is the axial and circumferential edge of the guide surface 27.
  • a groove portion 33 ⁇ / b> A is formed in the circumferential central portion of the guide surface 27 of the guided portion 25 ⁇ / b> A so as to be recessed from the radial height of the guide surface 27 and along the axial direction of the cage 23.
  • a groove 33 ⁇ / b> B is formed in the central portion in the circumferential direction of the guide surface 27 of the guided portion 25 ⁇ / b> B so as to be recessed from the radial height of the guide surface 27 and along the axial direction of the cage 23.
  • the cross-sectional shape in the circumferential direction of the grooves 33A and 33B may be a triangular shape, a rectangular shape, a trapezoidal shape or the like in addition to the circular arc shape in the illustrated example.
  • the respective groove portions 33A and 33B are arranged on a single straight line parallel to the axial direction.
  • a plurality of sets of groove portions 33A and 33B having the same phase in the circumferential direction are arranged along the circumferential direction.
  • outer diameter grooves 35A and 35B having a radial height lower than that of the guide surface 27 are formed between the guided portions 25A and 25A adjacent to each other in the circumferential direction and between the guided portions 25B and 25B. .
  • Each outer diameter groove 35A, 35B functions as a lubricant discharge groove.
  • FIG. 4 is an enlarged cross-sectional view taken along line P1-P1 of the cage 23 shown in FIG.
  • the chamfered portion 31 formed at the edge in the axial direction of the guide surface 27 has a curved surface with a curvature radius of 0.2 mm or more.
  • the cage 23 disposed in the bearing is movable within a range of a guide clearance ⁇ G / 2 between the guide surface 27 and the outer ring inner peripheral surface 29 and a pocket clearance. .
  • the cage 23 may be inclined from the axis and the peripheral edge of the guide surface 27 may be biased against the outer ring 13.
  • the cage 23 is worn, and abnormalities such as a decrease in life and deterioration of vibration occur.
  • the wear of the cage 23 mostly proceeds from the peripheral edge of the guide surface 27.
  • the peripheral edge of the guide surface 27 is made into the chamfered portion 31 with smooth corners, so that the wear does not easily progress.
  • the cage 23 may come into contact with the raceway surface edge 11a at the boundary between the outer race inner circumferential surface 29 of the outer race 13 and the outer raceway raceway surface 11 shown in FIG. is there.
  • the wear of the cage 23 proceeds from the contact portion with the track surface edge 11a as described above. Therefore, as shown in FIGS. 1 and 4, the cage 23 of this configuration is in contact with the raceway surface edge 11 a which is an axial edge of the outer ring raceway surface 11 of the outer ring 13 so as not to contact the raceway surface edge 11 a.
  • An edge relief 37 that is recessed radially inward is provided in the facing region.
  • the edge relief portion 37 corresponds to a region between the guided portions 25A and 25B shown in FIG. 3, and is formed one step lower than the radial height of the guide surface 27. Even if the cage 23 is tilted by this step, the raceway edge 11a does not contact the cage 23, and wear of the cage 23 due to contact with the raceway edge 11a can be prevented.
  • the guide surface 27 and the chamfered portion 31 are formed with surface characteristics of minute irregularities. Since the lubricant such as the grease described above accumulates in the minute concave and convex portions, the contact resistance at the time of contact with the outer ring 13 is reduced, and the progress of wear is suppressed. In order to form this surface property, it is necessary to connect the guide surface 27 and the chamfered portion 31 smoothly.
  • FIG. 5A to 5C are enlarged sectional views showing the shape of the chamfered portion 31.
  • FIG. The chamfered portion 31 shown in FIG. 5A is configured by a curved surface having a curvature radius r of 0.2 mm or more. Thereby, the surrounding edge of the guide surface 27 does not stand, and the guide surface 27 and the curved surface are smoothly connected.
  • the chamfered portion 31 intersects the guide surface 27 with the tangential direction of the curved surface of the chamfered portion 31 by bringing the center of the curvature radius r of the chamfered portion 31 closer to the guide surface 27.
  • the chamfered portion 31 may be connected to the edge portion 27a of the guide surface 27 in the tangential direction.
  • the angle ⁇ formed by the tangential direction of the curved surface connected at the edge 27a and the guide surface 27 is preferably 20 ° or less (0 ° ⁇ ⁇ 20 °).
  • the chamfered portion 31 is an inclined surface having an angle ⁇ formed with the guide surface 27 of 20 ° or less (0 ° ⁇ ⁇ 20 °) in the axial cross section of the cage 23. There may be. In this case, the surface pressure applied to the cage 23 can be reduced, the occurrence of dents can be prevented, and the progress of wear can be suppressed.
  • the shape of the chamfered portion 31 described above is an example, and is not limited to these, and can be an arbitrary shape.
  • the chamfered portion 31 has a curved surface shape (R shape), and the curved surface tangent and the guide surface 27 are smoothly connected.
  • the radial guide clearance ⁇ G / 2 between the outer ring inner circumferential surface 29 of the outer ring 13 and the guide surface 27 of the cage 23 generates the cage noise during asynchronous rotation, and is asynchronous.
  • the guide clearance ⁇ G / 2 By setting the guide clearance ⁇ G / 2 to 0.2% to 0.8% of the guide diameter ⁇ G of the inner peripheral surface 29 of the outer ring, the NRRO and dynamic torque of the bearing during high speed rotation can be reduced.
  • the guide diameter ⁇ G changes due to centrifugal force and thermal expansion acting during rotation. If the initial guide clearance is small, the guide clearance during rotation becomes zero, and there is a risk of increased torque, temperature rise, breakage, and abnormal noise. Therefore, it is preferable that the guide clearance ⁇ G / 2 is 0.2% or more of the guide diameter ⁇ G.
  • the guide clearance ⁇ G / 2 is preferably smaller than 0.8% of the guide diameter ⁇ G.
  • FIG. 6A and 6B schematically show an example of a molding die.
  • FIG. 6A shows an outer mold 41 that molds the outer diameter surface of the cage 23 and a slide core 43 that molds the pocket 21 of the cage 23.
  • FIG. 6B is a cross-sectional view taken along line P2-P2 of FIG.
  • the molding die includes an inner die that forms the inner diameter surface of the cage 23 in addition to these die members, but the description thereof is omitted here.
  • 6 (A) and 6 (B) are axial draw molds.
  • a plurality of outer molds 41 are arranged along the circumferential direction of the cage 23, and the guided portions 25A and 25B of the cage 23 are formed.
  • the outer molds 41 are each movable in the radial direction.
  • the circumferential position of the groove portion 33A (33B) of the guided portions 25A, 25A (25B, 25B) is a parting line with the adjacent outer mold.
  • one outer mold 41 is configured to mold the circumferential half of a pair of adjacent guided portions 25A, 25A (25B, 25B). It is good also as a structure shape
  • the mold surfaces corresponding to the guide surfaces 27 and the chamfered portions 31 in the guided portions 25A and 25B of the cage 23 are processed surfaces having a predetermined surface roughness larger than usual. .
  • the surface shape of the processed surface of the mold surface is transferred to the surfaces of the guide surface 27 and the chamfered portion 31 of the cage 23 to be injection-molded.
  • the shape of the guide surface 27 of the cage 23 and the shape transfer surface of the chamfered portion 31 to which the shape of the processing surface of the mold surface is transferred are given an arithmetic average roughness Ra defined by JIS B0601 of 1. 0.0 to 9.8 ⁇ m and the maximum height Rt is set to 10.1 to 102.9 ⁇ m (For numerical values of Ra and Rt, refer to Japanese Unexamined Patent Publication No. 2014-95469 as necessary. ).
  • the retainer 23 may be reinforced by mixing a filler such as glass fiber or carbon fiber with a resin material in order to improve wear resistance and mechanical strength.
  • wear powder containing a filler may be generated at the contact interface between the guide surface 27 of the cage 23 and the outer ring inner peripheral surface 29 of the outer ring 13.
  • This wear powder acts as a foreign object during rotation of the bearing, and there is a risk that cutting wear will increase.
  • corrugation of predetermined surface roughness is formed along the direction parallel to the direction where the holder
  • FIG. By forming the unevenness, the generated wear powder is easily removed from the contact interface. Therefore, the wear resistance of the cage 23 is improved.
  • the wear resistance of the cage 23 can be further improved by setting the surface roughness in the direction orthogonal to the guided direction and the surface texture of the irregularities in the same range as described above.
  • the arithmetic average roughness Ra in the guide surface 27 and the chamfered portion 31 is less than 1.0 ⁇ m, the amount of grease retained in the concave portion forming the surface roughness decreases, and the guide surface 27 of the cage 23 and the outer ring 13 The amount of grease supplied to the contact interface with the inner peripheral surface 29 of the outer ring becomes insufficient. Further, when the arithmetic average roughness Ra exceeds 9.8 ⁇ m, the roughness itself may adversely affect the rotational accuracy of the spindle bearing for machine tools that require high-precision high-speed rotation.
  • the surface roughness given to the guide surface 27 and the chamfered portion 31 has a maximum height Rt in the range of 10.1 to 102.9 ⁇ m.
  • the surface properties of the guide surface 27 and the chamfered portion 31 of the cage 23 are imparted by shape transfer of the mold surface during the injection molding of the cage 23. For this reason, a surface layer (shape transfer layer) is formed on the guide surface 27 and the chamfered portion 31 in a uniform and highly reproducible state, which can be improved more reliably than the wear resistance of the cage 23.
  • the processed surface (textured surface) having a predetermined surface roughness provided in the molding die can be formed by any one of shot processing such as shot peening, electric discharge processing, etching, water jet, and laser processing.
  • the said processed surface may be formed by the processing which combined the said processing method individually or in combination, and may be formed by processing methods other than the above.
  • the surface shape of the processed surface may be a concave shape such as a dimple or a surface shape composed of fine grooves.
  • the shape is formed on the outer circumferential surface, the inner circumferential surface, or the entire surface of the cage.
  • a transfer surface may be formed.
  • the shape transfer surface is removed from the cage 23 provided with the shape transfer surface, and the grease cannot be retained. Therefore, in this configuration, the parting lines that cause burrs are not removed by post-processing, and the parting lines are arranged at positions that do not affect the burrs. Thereby, productivity can be improved, without making the processing process of the holder
  • the cage 23 of this configuration a specific surface shape is formed on the surface of the cage, and the convex portion due to the parting line is not arranged at the sliding portion. Will improve. Further, the cage 23 can be easily mass-produced by an injection molding method that does not require post-processing such as cutting. Therefore, both the durability and productivity of the cage 23 can be improved.
  • FIG. 7 schematically shows another configuration example of the molding die.
  • the mold for molding includes an outer mold 45 for molding the outer diameter surface side of the cage 23 and a slide core 47 for molding the pocket 21 of the cage 23.
  • the molding mold includes an inner mold or the like that forms the inner diameter surface side of the cage 23, but the description thereof is omitted here.
  • the same members as those shown in FIG. 1 are denoted by the same reference numerals, and the description of the members is omitted or simplified.
  • the slide core 47 slides in the radial direction to form the pocket 21.
  • the outer mold 45 is a radial draw method, and is slid in the P1 direction in the drawing with the slide core 47 being removed from the pocket 21. Thereby, the outer diameter surface of the cage 23 is formed.
  • the parting line PL of the cage 23 is generated on the end surface of the cage 23 as shown in FIG. 8, and guided portions 25A and 25B and chamfers are formed. It does not occur in the part 31. Even if burrs exist on the end face of the cage, the burrs do not contact the outer ring 13 or the inner ring 17 of the angular ball bearing 100 shown in FIG. 1, and the burrs do not affect the bearing performance.
  • Figure 9 is the angular contact ball bearing having an inner diameter is 70 mm (NSK Ltd. 70BNR10H), rotation speed 4000 min -1, the time and the outer diameter groove to break operation is completed when rotating in axial load 150N size ( It is a graph which shows the relationship with the ratio of the sum total of the outer-diameter groove
  • the outer diameter grooves 35A and 35B have a total groove of 35% to 70% of the circumferential length of the cage. Further, it is more preferably 40% to 70%.
  • the torque of the rotational resistance of the cage 23 can be reduced by reducing the guide width L of the guide surface 27 (the width of the straight portion excluding the chamfered portion 31).
  • the guide width L of the guide surface 27 the width of the straight portion excluding the chamfered portion 31.
  • the guide width L of the guide surface 27 needs to be 0.5 mm or more.
  • the width H (see FIG. 4) of the cage 23 is H / B ⁇ 0.95 from the viewpoint of securing the space volume and reducing the weight. Furthermore, in order to secure a minimum thickness t (see FIG. 10B described later) in a pocket opening portion described later of the cage 23, it is desirable that 0.4 ⁇ H / B (0 .4 ⁇ H / B ⁇ 0.95).
  • FIG. 10A is an enlarged view of the outer diameter surface of the cage.
  • FIG. 10B is a cross-sectional view taken along the line P3-P3 in FIG. 10A, schematically showing the molding die.
  • FIG. 10B shows an outer mold 41 that molds the outer diameter portion of the cage 23 and a slide core 43 that molds the pocket 21 of the cage 23.
  • the molding die in the illustrated example includes an inner die that forms the inner diameter surface of the cage 23 in addition to these die members, but the description thereof is also omitted here.
  • the mold for molding shown in FIG. 10B is an axial draw mold.
  • a plurality of outer molds 41 and slide cores 43 are arranged along the circumferential direction of the cage 23 and are movable in the radial direction.
  • the circumferential position of the groove portion 33A (33B) of the guided portions 25A, 25A (25B, 25B) is a parting line with the adjacent outer mold.
  • the retainer 23 has an outer diameter surface including guided portions 25 ⁇ / b> A and 25 ⁇ / b> B, outer diameter grooves 35 ⁇ / b> A and 35 ⁇ / b> B, and edge relief portions 37 from the outer mold 41. Molded. Further, the pocket 21 is formed by the slide core 43. As will be described later, predetermined surface properties formed on the surface of the slide core 43 are transferred to the inner peripheral surface of the pocket 21 of the cage 23.
  • the processed surface (textured surface) having a predetermined surface property provided on the slide core 43 can be formed by any one of shot processing such as shot peening, electric discharge processing, etching, water jet, and laser processing.
  • the said processed surface may be formed by the processing which combined the said processing method individually or in combination, and may be formed by processing methods other than the above.
  • molds this connection part becomes thin. .
  • the mold strength may be insufficient, and the mold may be deformed or cracked.
  • the circumferential phase of the corner portion K of the guided portions 25A, 25B is set to the circumferential position Pk1 that is the maximum axial diameter of the pocket 21 and the circumferential end of the pocket 21. It is provided in a region C between the circumferential position Pk2.
  • angular part K of the to-be-guided parts 25A and 25B and the inner peripheral surface of the pocket 21 shall be 0.5 mm or more.
  • FIGS. 11A to 11C are partially enlarged views showing the outer diameter surfaces of other cages formed by a mold in which a thin portion is corrected.
  • the minimum thickness t of the mold is increased by making the corner portion K of the guided portions 25A and 25B into a curved chamfered shape.
  • the minimum thickness t of the mold is increased by obliquely cutting the corners K of the guided portions 25A and 25B.
  • the cage shown in FIG. 11C has a guide clearance ⁇ G / 2 of a normal size (for example, 0.8% or more of the guide diameter ⁇ G of the inner peripheral surface 29 of the outer ring), and the outer diameter groove 35A. , 35B need not be provided (see FIG. 16 described later).
  • This cage 23 is provided with guided portions 26A, 26B spaced apart from the pocket 21 in the axial direction, so that the minimum distance (minimum thickness t) between the guided portions 26A, 26B and the pocket 21 is 0.5 mm or more. It is said.
  • Any of the cages shown above can prevent a failure due to insufficient strength of the mold.
  • the pocket 21 of the cage 23 is a cylindrical surface whose inner circumferential surface is along the radial direction of the cage, and the cylindrical inner circumferential surface has a predetermined surface property.
  • Grease which is a lubricant, is held in the minute recesses that form this surface property, and the sliding performance with the balls 19 of the pocket 21 is improved.
  • a molding die in which the surface of the mold (slide core 43) for forming the pocket 21 in the cage 23 has a predetermined surface property is used. That is, the mold surface of the slide core 43 is a processed surface having a predetermined surface roughness larger than usual. The surface shape of the processed surface is transferred to the inner peripheral surface of the pocket 21 of the cage 23 to be injection molded. Thereby, the pocket inner peripheral surface becomes a shape transfer surface (for example, a textured surface) corresponding to the shape of the processed surface.
  • the surface roughness of the shape transfer surface obtained by transferring the shape of the processed surface of the mold surface to the inner peripheral surface of the pocket 21 of the cage 23 is 1.0 to the arithmetic average roughness Ra specified in JIS B0601.
  • the maximum height Rt is set to 9.8 ⁇ m and 10.1 to 102.9 ⁇ m (refer to Japanese Laid-Open Patent Publication No. 2014-95469 as necessary for the numerical values of Ra and Rt).
  • the grease as the lubricant is held in the concave portion forming a predetermined surface roughness, and the grease is supplied from the concave portion to the contact interface (see FIG. 1) between the inner peripheral surface of the pocket 21 and the ball 19. Therefore, even if the lubrication conditions become severe due to the high-speed rotation of the bearing, the oil film does not break at the contact interface. For this reason, rapid temperature rise and image sticking can be suppressed over a long period of time.
  • the surface shape of the processed surface may be a concave shape such as a dimple or a fine groove in addition to a random fine uneven shape.
  • the arithmetic average roughness Ra is less than 1.0 ⁇ m, the amount of grease retained in the recesses that form the surface roughness decreases, and the grease is supplied to the contact interface between the inner peripheral surface of the pocket 21 of the cage 23 and the ball 19. It becomes insufficient. Further, when the arithmetic average roughness Ra exceeds 9.8 ⁇ m, the roughness itself may adversely affect the rotational accuracy of the spindle bearing for machine tools that require high-precision high-speed rotation.
  • the surface roughness applied to the inner peripheral surface of the pocket 21 has a maximum height Rt in the range of 10.1 to 102.9 ⁇ m.
  • the surface property of the inner peripheral surface of the pocket 21 is imparted by transferring the shape of the surface of the slide core 43 during the injection molding of the cage 23. For this reason, a surface layer (shape transfer layer) is formed on the inner peripheral surface of the pocket 21 in a uniform and highly reproducible state, and the wear resistance of the cage 23 can be improved more reliably.
  • the cage 23 having the above-described configuration may have both the above-described guide surface 27 and the chamfered portion 31 having a micro uneven surface property.
  • the wear of the cage 23 is more reliably suppressed, and the guidance during high-speed rotation becomes smoother.
  • the pocket 21 of the outer ring guide type cage 23 is generally cylindrical in the radial direction. For this reason, when extracting the slide core 43 provided with the surface shape which becomes the above-mentioned surface property to the outside in the radial direction, the surface shape applied to the inner peripheral surface of the pocket 21 may be broken by shearing.
  • Table 1 shows that a retainer 23 was formed by using a die obtained by processing a cylindrical portion having a diameter of 95 mm into an arithmetic average roughness Ra of 3 ⁇ m by a shot method, and a distance of 16 mm in length was drawn parallel to the surface shape transfer surface. The result of having observed the state of the surface shape of PPS-CF resin at the time with a microscope is shown.
  • the drawing length is 3.5 mm or less
  • the surface shape transferred from the mold remains without abnormality.
  • the drawing distance is 3.5 to 4.5 mm
  • 80% or more of the surface shape transferred from the mold remains.
  • the length D (see FIG. 12) of the inner peripheral surface of the pocket 21 corresponding to the drawing distance in the shearing direction of the mold, that is, the thickness of the cylindrical surface of the pocket 21 in the cage radial direction is 4.5 mm.
  • the thickness is 3.5 mm or less.
  • the pocket diameter d1 on the radially inner side of the cage 23 that does not contact the ball 19 is reduced. That's fine.
  • the pocket diameter d2 on the radially outer side of the cage 23 that does not contact the ball 19 may be increased.
  • a substantial pulling distance (a distance that slides while contacting) can be shortened. Damage to the transferred surface shape can be suppressed.
  • the pocket diameter d1 on the radially inner side of the cage 23 may be reduced and the pocket diameter d2 on the radially outer side may be increased. In this case, the drawing distance can be further shortened.
  • 0.5 °
  • the life of the slide core can be improved.
  • FIG. 12 (F) the pocket diameter d1 on the radially inner side is reduced and a tapered surface 21a is formed.
  • FIG. 12G the radially outer pocket diameter d2 is increased and a tapered surface 21a is formed.
  • FIG. 12H the radially inner pocket diameter d1 is reduced, the radially outer pocket diameter d2 is increased, and the tapered surface 21a is formed.
  • the outer mold 41 As described above, a shearing force is generated in the pocket portion when the slide core 43 is pulled out. Therefore, it is conceivable that the lifetime of the outer mold 41 that molds the outer diameter portion of the cage 23 and the lifetime of the slide core 43 that molds the pocket 21 of the cage 23 are greatly different.
  • the outer mold 41 having a complicated shape and expensive is continuously used as it is, and the slide core 43 is configured separately from the outer mold 41. Therefore, only the inexpensive pin-shaped slide core 43 can be replaced, and the running cost of the mold can be reduced.
  • the amorphous layer crystallizes to the vicinity of the surface, so that it has a very thin thickness of about 0.1 to 10 ⁇ m. It becomes.
  • the resin material is a polyamide resin such as nylon, an amorphous layer is easily formed and has a thickness of about 10 to 30 ⁇ m.
  • Reinforcing fibers are highly aggressive against the outer ring, inner ring, and rolling element steel that slide with the cage.
  • the reinforcing fibers are deposited in a direction intersecting the resin surface. Therefore, the end of the reinforcing fiber has an acute angle, which damages the outer ring, the inner ring, and the rolling element, or causes wear.
  • the reinforcing fibers appear on the surface of the cage, the reinforcing fibers may fall off, leading to a reduction in bearing life.
  • the reinforcing fibers are arranged in parallel on the cage surface, the ends of the reinforcing fibers do not hit the outer ring, the inner ring, and the rolling element even after the skin layer is removed by wear or the like. Thereby, wear of the mating member can be suppressed.
  • This skin layer is desirably present at 30 ⁇ m or less from the surface as disclosed in JP-A-2001-227548. Further, as described above, since it is necessary for the skin layer to be present in the surface layer portion, the cage surface layer has an amorphous thickness of 0.1 to 30 ⁇ m from the cage surface and does not contain reinforcing fibers. It is desirable that a layer is formed.
  • FIG. 13 is a partial sectional view of an angular ball bearing 110 provided with a cage 23A having another configuration
  • FIG. 14 is an external perspective view of the cage 23A.
  • the same members as those shown in FIG. 1 are given the same reference numerals, and the description of the members is omitted or simplified.
  • the cage 23A of this modification is provided with a guided portion 25A only on one end side in the axial direction, and the guided portion on the other end side is omitted.
  • the guided portion 25 ⁇ / b> A is guided to the outer ring inner peripheral surface 29 of the outer ring 13.
  • the edge escape portion 37 is provided in the cage 23A, the raceway surface edge 11a of the outer ring does not contact the cage 23A.
  • a parting line (not shown) at the time of injection molding of the cage 23A is provided along the axial direction in the groove 33A formed in the guided portion 25A, as described above.
  • the cage 23A can have a simpler structure, and the bearings are not affected by burrs by arranging the parting lines to be convex portions (burrs) in the groove portions 33A. Therefore, both durability and productivity of the cage 23A can be improved.
  • the inner peripheral surface of the pocket 21 of the cage 23A has the predetermined surface properties described above. This surface shape is formed by transferring the processed surface of the mold (slide core 43). According to this modified example, the cage 23A can have a simpler structure. Further, grease as a lubricant is held in a minute recess of the pocket 21 forming a predetermined surface roughness, and grease is supplied from this recess to the contact interface between the inner peripheral surface of the pocket 21 and the rolling element 19. The Therefore, the durability of the cage 23A is improved.
  • the above-described surface properties of the guide surface 27 and the chamfered portion 31 of the cage 23A and the inner peripheral surface of the pocket 21 may be formed on at least one of them, or may be formed on both. . When formed on both sides, the wear resistance and durability of the cage 23A can be further improved by a synergistic effect.
  • FIG. 15 shows a partial cross-sectional view of an angular ball bearing 120 provided with a cage 23B having another configuration.
  • the cage 23B of this modified example does not include any of the guided portions 25A and 25B, and the predetermined surface properties described above are transferred from the mold to the inner peripheral surface of the pocket 21 of the cage 23B. Is formed. Other than that, it is the same as the cage 23A of the first modified example described above.
  • the cage 23B can have a simpler structure.
  • grease which is a lubricant, is held in a minute recess that forms a predetermined surface property, and grease is supplied from this recess to the contact interface between the inner peripheral surface of the pocket 21 and the ball 19. Therefore, the durability of the cage 23B is improved.
  • FIG. 16 shows an external perspective view of a cage 23C having another configuration.
  • the cage 23C has guided portions 26A and 26B projecting radially outward at both axial ends of the cage outer diameter surface.
  • a plurality of groove portions 33A, 33B that are recessed from the radial height of the guide surface 27 along the axial direction are formed in each guided portion 26A, 26B.
  • a set of groove portions 33A and 33B are arranged at the same circumferential position as in the case of the cage 23 shown in FIG. Further, chamfered portions 31, 31 are formed at the axial edges of the guided portions 26 ⁇ / b> A, 26 ⁇ / b> B of the guide surface 27. However, the aforementioned outer diameter grooves 35A and 35B (see FIG. 3) do not exist, and the guide surface 27 is continuously arranged in the circumferential direction.
  • parting line (not shown) is provided along the axial direction in the groove portions 33A and 33B formed in the guided portions 26A and 26B, as described above.
  • the peripheral edge of the guide surface 27 is made into the chamfered portion 31, and the wear is less likely to proceed.
  • the edge relief portion 37 recessed radially inward prevents the raceway surface edge 11a (see FIG. 1) from coming into contact with the cage 23, thereby preventing wear due to contact.
  • the guide surface 27 and the chamfered portion 31 become a shape transfer surface having a predetermined surface roughness, the wear resistance can be improved.
  • a bearing will not receive the influence of a burr
  • the cage 23C is formed in the pocket 21 in which the surface shape having the predetermined surface roughness described above is transferred from the slide core 43.
  • the inner peripheral surface of the pocket 21 becomes a shape transfer surface having a predetermined surface property, so that the wear resistance can be improved and the durability of the cage 23C is enhanced.
  • the above-described surface properties of the guide surface 27 and the chamfered portion 31 of the cage 23C and the inner peripheral surface of the pocket 21 may be formed on at least one of them, or may be formed on both. . When formed on both sides, the wear resistance and durability of the cage 23C can be further improved by a synergistic effect.
  • FIG. 17 shows an external perspective view of a cage 23D having another configuration.
  • the cage 23D is the same as the cage 23C of the third modified example described above except that it has a guided portion 26A that protrudes radially outward only at one axial end of the cage outer diameter portion.
  • the cage 23D of the present modified example can have a simple structure, and the bearing can be affected by burrs by disposing the parting line serving as a convex portion (burr) in the groove portion 33A. Disappear. Therefore, both durability and productivity of the cage 23C can be improved.
  • the cage 23D of the present modification can be made simple, and the surface shape having the predetermined surface properties described above is transferred from the mold to the inner peripheral surface of the pocket 21. As a result, grease is supplied to the contact interface between the inner peripheral surface of the pocket 21 and the rolling element 19. Therefore, the durability of the cage 23D can be increased.
  • the above-described surface properties of the guide surface 27 and the chamfered portion 31 of the cage 23D and the inner peripheral surface of the pocket 21 may be formed in at least one of them, or may be formed in both. . When formed on both sides, the wear resistance and durability of the cage 23D can be further improved by a synergistic effect.
  • the rolling bearing of this configuration is not limited to an angular ball bearing, and may be another type of rolling bearing such as a cylindrical roller bearing, or may be a rolling element guide type rolling bearing.
  • the cage 23E is a ball 19 that is rotatably arranged in a tapered hole 21b formed in the pocket 21, or a rolling element guide type rolling bearing guided by rollers. May be.
  • the present invention is not limited to the above-described embodiments, and those skilled in the art can make changes and applications based on combinations of the configurations of the embodiments, descriptions in the specification, and well-known techniques. This is also the scope of the present invention, and is included in the scope for which protection is sought.
  • outer ring raceway surface 13 outer ring 15 inner ring raceway surface 17 inner ring 19 ball (rolling element) 21 pocket 21a taper surface 22 stepped portion 23, 23A, 23B, 23C, 23D, 23E cage (roller bearing cage) 25A, 25B Guided portion 26A, 26B Guided portion 27 Guide surface 31 Chamfered portion 33A, 33B Groove portion 37 Edge relief portion 41 Outer mold 43 Slide core 100, 110, 120 Angular ball bearing (rolling bearing) D Radial length of inner peripheral surface (radial thickness of cylindrical surface)

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

This rolling bearing retainer is a synthetic resin retainer disposed between the inner ring and the outer ring of a rolling bearing, wherein a plurality of sections to be guided are provided along the circumferential direction to protrude radially outward from the outer diameter surface. Each of the sections to be guided is provided with a guide surface which can be in sliding contact with the outer ring, a chamfered section formed on an edge portion of the guide surface, and a groove section formed in a portion of the guide surface in the axial direction. The guide surface 27 and the chamfered section have surface properties in which the arithmetic average roughness Ra is 1.0-9.8 µm and the maximum height Rt is 10.1-102.9 µm. A parting line PL is provided radially inside the guide surface.

Description

転がり軸受用保持器、及び転がり軸受、並びに転がり軸受用保持器の製造方法Roller bearing cage, rolling bearing, and method for manufacturing rolling bearing cage
 本発明は、転がり軸受用保持器、及び転がり軸受、並びに転がり軸受用保持器の製造方法に関する。 The present invention relates to a rolling bearing cage, a rolling bearing, and a method for manufacturing a rolling bearing cage.
 現在、工作機械の主軸用軸受には、アンギュラ玉軸受等が広く使用されている。工作機械用のアンギュラ玉軸受には、特に使用条件が厳しい場合にはフェノール樹脂保持器が用いられる。フェノール樹脂保持器は、耐摺動摩耗性が高く、軸受に用いた場合に優れた耐久性を発揮する。しかし、低強度で吸水膨張量が大きいため、寸法安定性が低く、設計が制限される不利がある。一般に、フェノール樹脂製の保持器は、寸法公差や案内すきまを小さくできず、保持器音の発生や非同期振れNRRO(Non-Repeatable Run-Out)の悪化を招くことある。また、フェノール樹脂は熱硬化性樹脂であるため、複数のポケットを有する複雑な形状にすることは難しい。そのため、成形後に切削加工が必要で、生産性が低く、大量生産には向かないといった問題がある。
 一方、射出成形により作製される合成樹脂製の保持器は、高い生産性を有する。しかし、軸受の使用条件が厳しい場合には、摺動部の潤滑性が低下し、摩耗によって寿命が低下することがある。
 上記保持器の耐久性を改善する手段として、特許文献1のように保持器表面に微細凹凸形状を形成し、この表面形状をコントロールする技術がある。この技術によれば、微細凹凸形状の調整によって摺動部の潤滑性や耐久性を高めることができる。
At present, angular contact ball bearings and the like are widely used as spindle bearings for machine tools. For angular contact ball bearings for machine tools, phenol resin cages are used particularly when the use conditions are severe. Phenol resin cages have high sliding wear resistance and exhibit excellent durability when used in bearings. However, since it has a low strength and a large amount of water expansion, there is a disadvantage that the dimensional stability is low and the design is limited. Generally, a cage made of phenol resin cannot reduce dimensional tolerances and guide clearances, and may cause generation of cage noise and non-repeatable run-out (NRRO). Moreover, since a phenol resin is a thermosetting resin, it is difficult to make it into a complicated shape having a plurality of pockets. Therefore, there is a problem that cutting is necessary after molding, productivity is low, and it is not suitable for mass production.
On the other hand, a cage made of synthetic resin produced by injection molding has high productivity. However, when the usage conditions of the bearing are severe, the lubricity of the sliding portion is lowered, and the life may be reduced due to wear.
As means for improving the durability of the cage, there is a technique of forming a fine uneven shape on the surface of the cage and controlling the surface shape as in Patent Document 1. According to this technique, the lubricity and durability of the sliding portion can be improved by adjusting the fine uneven shape.
日本国特開2014-95469号公報Japanese Unexamined Patent Publication No. 2014-95469 日本国特開2002-144380号公報Japanese Unexamined Patent Publication No. 2002-144380
 代表的な保持器の射出成形方式として、可動金型をラジアル方向にスライドするラジアルドロー方式と、可動金型を軸方向にスライドするアキシアルドロー方式がある。しかし、一般的な保持器及び保持器成形用の金型の形状では、金型部材の型合わせ部に対応する成形品表面にバリが形成される。ラジアルドロー形式では、保持器の外径側面にバリが生じ、アキシアルドロー形式では、面取り部との接続部にバリが生じる。保持器の被案内部内(外輪案内の保持器の場合、保持器外径面が被案内部に相当する)にバリが生じると、発生したバリが摺動相手の部材を傷付けることがある。また、保持器側も生じたバリを基点として、摩耗の進行が助長されることもある。発生したバリは、バレル加工等によって除去可能であるが、保持器に転写形成した微細凹凸形状も一緒に除去されてしまい、上記の潤滑性・耐久性向上の効果が得られなくなる。 As a typical cage injection molding method, there are a radial draw method in which a movable mold is slid in a radial direction and an axial draw method in which a movable mold is slid in an axial direction. However, in a general shape of a cage and a mold for molding the cage, burrs are formed on the surface of the molded product corresponding to the mold matching portion of the mold member. In the radial draw type, burrs are generated on the outer diameter side surface of the cage, and in the axial draw type, burrs are generated in the connection portion with the chamfered portion. If burrs are generated in the guided portion of the cage (in the case of a cage for outer ring guidance, the outer diameter surface of the cage corresponds to the guided portion), the generated burrs may damage the sliding counterpart member. Further, the progress of wear may be promoted starting from the burr generated on the cage side. The generated burrs can be removed by barrel processing or the like, but the fine irregularities transferred and formed on the cage are also removed together, and the above-described effects of improving lubricity and durability cannot be obtained.
 特許文献2には、パーティングラインを保持器外径面の凹部に設けることで、バリの除去加工を不要にする技術が記載されている。しかし、特定の表面形状を転写する保持器については何ら考慮されていない。また、工作機械の主軸支持用の転がり軸受等、厳しい環境下で使用される転がり軸受には適用ができない。そのため、保持器の耐摩耗性が不足し、軸受の寿命低下を招く。この問題は、高い摺動性を有する樹脂材料に変更しても、必ずしも改善されるものではない。 Patent Document 2 describes a technique that eliminates the need for burr removal processing by providing a parting line in a recess on the outer diameter surface of the cage. However, no consideration is given to a cage that transfers a specific surface shape. Further, it cannot be applied to a rolling bearing used in a severe environment such as a rolling bearing for supporting a spindle of a machine tool. For this reason, the wear resistance of the cage is insufficient and the life of the bearing is reduced. Even if this problem is changed to a resin material having high slidability, this problem is not necessarily improved.
 更に、特許文献1,2のいずれにおいても、被案内部の縁部における面取り部の存在について考慮していない。通常、保持器は軸受内にすきまを有して支持されるため、保持器自体が傾斜して、面取り部が外輪等の他の部材と摺動することがある。そのため、面取り部にバリが生じていると、上述したように保持器の摩耗が進行し、発生する摩耗粉によって軸受の寿命を低下させる虞がある。 Furthermore, neither of Patent Documents 1 and 2 considers the presence of a chamfered portion at the edge of the guided portion. Usually, since the cage is supported with a clearance in the bearing, the cage itself may be inclined and the chamfered portion may slide with other members such as an outer ring. For this reason, if burrs are generated in the chamfered portion, the wear of the cage proceeds as described above, and the life of the bearing may be reduced by the generated wear powder.
 また、上記保持器表面の微細凹凸形状は、成形用金型の金型表面を予め微細凹凸形状に加工して、その金型表面の微細凹凸形状を成形品に転写することで得られる。しかし、保持器のポケットはスライドコアにより成形されるため、スライドコアの引抜き時に、ポケット内周面の微細凹凸形状が金型との剪断によって削り取られることがある。 The fine uneven shape on the surface of the cage can be obtained by processing the mold surface of the molding die into a fine uneven shape in advance and transferring the fine uneven shape on the mold surface to the molded product. However, since the pocket of the cage is formed by the slide core, when the slide core is pulled out, the fine irregular shape on the inner peripheral surface of the pocket may be scraped off by shearing with the mold.
 本発明は、上記事項に鑑みてなされたものであり、表面に特定の表面形状を形成した保持器を、生産性を損なうことなく耐久性を更に高めた転がり軸受用保持器、及び転がり軸受、並びに転がり軸受用保持器の製造方法を提供することを第1の目的とする。
 また、保持器のポケットの内周面における微細凹凸形状の損傷を抑制して、耐久性が高く生産性のよい転がり軸受用保持器、及びこれを備えた転がり軸受、並びに転がり軸受用保持器の製造方法を提供することを第2の目的とする。
The present invention has been made in view of the above matters, a cage having a specific surface shape formed on the surface thereof, a cage for a rolling bearing having further improved durability without impairing productivity, and a rolling bearing, A first object is to provide a method for manufacturing a rolling bearing cage.
In addition, it is possible to suppress the damage of the fine irregularities on the inner peripheral surface of the pocket of the cage, and to provide a highly durable and productive rolling bearing cage, a rolling bearing provided with the rolling bearing cage, and a rolling bearing cage. A second object is to provide a manufacturing method.
 本発明は下記構成からなる。
(1) 転がり軸受の内輪と外輪との間に配置された合成樹脂製の転がり軸受用保持器であって、
 外径面から径方向外側に突出する複数の被案内部が前記外径面の周方向に沿って設けられ、
 前記被案内部は、前記外輪に摺接可能に突出して形成された案内面と、該案内面の縁部に形成された面取り部と、前記案内面の一部に軸方向に沿って形成された溝部と、を備え、
 前記案内面及び前記面取り部は、算術平均粗さRaが1.0~9.8μm、最大高さRtが10.1~102.9μmの表面性状を有し、
 パーティングラインが、前記案内面より径方向内側に設けられることを特徴とする転がり軸受用保持器。
(2) 前記パーティングラインは、前記溝部と保持器端面のいずれかに設けられることを特徴とする(1)に記載の転がり軸受用保持器。
(3) 前記面取り部は、前記案内面の前記縁部に、接線方向に接続される曲面を有することを特徴とする(1)又は(2)に記載の転がり軸受用保持器。
(4) 前記面取り部は、前記案内面の前記縁部に接続され、前記案内面との成す角が20°以下の傾斜面を有することを特徴とする(1)又は(2)に記載の転がり軸受用保持器。
(5) 前記外輪の外輪内周面と外輪軌道面との境界である軌道面エッジと対面する領域に、径方向内側に窪む逃し溝が形成されたことを特徴とする(1)乃至(4)のいずれか一つに記載の転がり軸受用保持器。
(6) 保持器表層に、保持器表面からの厚みが0.1~30μmである、強化繊維を含まない非晶質層が形成されていることを特徴とする(1)乃至(5)のいずれか一つに記載の転がり軸受用保持器。
(7) (1)乃至(6)のいずれか一項に記載の転がり軸受用保持器を、成形用金型を用いて成形する転がり軸受用保持器の製造方法であって、
 前記案内面と前記面取り部の少なくとも一方に、前記成形用金型の金型表面に施された加工面の形状を転写することを特徴とする転がり軸受用保持器の製造方法。
(8) 転がり軸受の内輪軌道と外輪軌道との間に配置される複数の転動体を転動自在に保持するポケットが形成された転がり軸受用保持器であって、
 前記ポケットの内周面は、算術平均粗さRaが1.0~9.8μm、最大高さRtが10.1~102.9μmの表面性状を有し、
 前記ポケットの内周面は、保持器径方向に沿った円筒面であり、前記円筒面の保持器径方向の厚みが3.5mm以下であることを特徴とする転がり軸受用保持器。
(9) 転がり軸受の内輪軌道と外輪軌道との間に配置される複数の転動体を転動自在に保持するポケットが形成された転がり軸受用保持器であって、
 前記ポケットの内周面は、算術平均粗さRaが1.0~9.8μm、最大高さRtが10.1~102.9μmの表面性状を有し、内周側から外周側に向けて拡径するテーパ面であることを特徴とする転がり軸受用保持器。
(10) 保持器表層に、保持器表面からの厚みが0.1~30μmである、強化繊維を含まない非晶質層が形成されていることを特徴とする(8)又は(9)に記載の転がり軸受用保持器。
(11) 保持器内径側又は保持器外径側の少なくとも一方に、前記ポケットの内径を拡縮する段付き部を有する(8)乃至(10)のいずれか一つに記載の転がり軸受用保持器。
(12) (8)乃至(11)のいずれか一つに記載の転がり軸受用保持器を、成形用金型を用いて射出成形する転がり軸受用保持器の製造方法であって、
 前記ポケットを、前記成形用金型のスライドコアにより形成することを特徴とする転がり軸受用保持器の製造方法。
(13) 前記ポケットの内径面に、前記成形用金型の金型表面に施された加工面の形状を転写することを特徴とする(12)に記載の転がり軸受用保持器の製造方法。
(14) 前記ポケットの内周面を形成する前記スライドコアの表面を、ショットピーニング、放電加工、エッチングのいずれかによって形成することを特徴とする(12)又は(13)に記載の転がり軸受用保持器の製造方法。
(15) (1)乃至(6)、(8)乃至(11)のいずれか一つに記載の転がり軸受用保持器を備える転がり軸受。
The present invention has the following configuration.
(1) A synthetic resin rolling bearing cage disposed between an inner ring and an outer ring of a rolling bearing,
A plurality of guided portions protruding radially outward from the outer diameter surface are provided along the circumferential direction of the outer diameter surface,
The guided portion is formed along the axial direction on a guide surface formed so as to be slidably contacted with the outer ring, a chamfered portion formed on an edge of the guide surface, and a part of the guide surface. A groove portion,
The guide surface and the chamfered portion have a surface property with an arithmetic average roughness Ra of 1.0 to 9.8 μm and a maximum height Rt of 10.1 to 102.9 μm.
A rolling bearing retainer, wherein a parting line is provided radially inward from the guide surface.
(2) The rolling bearing retainer according to (1), wherein the parting line is provided on either the groove or the end face of the retainer.
(3) The cage for a rolling bearing according to (1) or (2), wherein the chamfered portion has a curved surface connected in a tangential direction to the edge portion of the guide surface.
(4) The chamfered portion is connected to the edge portion of the guide surface, and has an inclined surface formed with the guide surface and having an angle of 20 ° or less. (1) or (2) Roller bearing cage.
(5) A relief groove recessed radially inward is formed in a region facing a raceway surface edge that is a boundary between an outer ring inner peripheral surface of the outer ring and an outer ring raceway surface. 4) The rolling bearing retainer according to any one of 4).
(6) The surface layer of the cage is formed with an amorphous layer having a thickness from the surface of the cage of 0.1 to 30 μm and containing no reinforcing fiber, (1) to (5) The cage for rolling bearings as described in any one.
(7) A method for manufacturing a rolling bearing cage, wherein the rolling bearing cage according to any one of (1) to (6) is molded using a molding die,
A method for manufacturing a rolling bearing retainer, wherein the shape of a processed surface provided on a mold surface of the molding die is transferred to at least one of the guide surface and the chamfered portion.
(8) A rolling bearing retainer in which a pocket for holding a plurality of rolling elements disposed between an inner ring raceway and an outer ring raceway of a rolling bearing is formed.
The inner peripheral surface of the pocket has a surface property with an arithmetic average roughness Ra of 1.0 to 9.8 μm and a maximum height Rt of 10.1 to 102.9 μm.
The inner circumferential surface of the pocket is a cylindrical surface along the radial direction of the cage, and the thickness of the cylindrical surface in the radial direction of the cage is 3.5 mm or less.
(9) A rolling bearing retainer in which a pocket for holding a plurality of rolling elements arranged between an inner ring raceway and an outer ring raceway of a rolling bearing is formed.
The inner peripheral surface of the pocket has a surface property with an arithmetic average roughness Ra of 1.0 to 9.8 μm and a maximum height Rt of 10.1 to 102.9 μm, from the inner peripheral side toward the outer peripheral side. A cage for a rolling bearing, characterized by a tapered surface that expands in diameter.
(10) In (8) or (9), an amorphous layer not containing reinforcing fibers having a thickness from the surface of the cage of 0.1 to 30 μm is formed on the cage surface layer. The cage for rolling bearings as described.
(11) The cage for a rolling bearing according to any one of (8) to (10), wherein a stepped portion that expands or contracts the inner diameter of the pocket is provided on at least one of the cage inner diameter side or the cage outer diameter side. .
(12) A method for manufacturing a rolling bearing cage, wherein the rolling bearing cage according to any one of (8) to (11) is injection-molded using a molding die,
A method for manufacturing a rolling bearing cage, wherein the pocket is formed by a slide core of the molding die.
(13) The method for manufacturing a rolling bearing cage according to (12), wherein the shape of the processed surface provided on the mold surface of the molding die is transferred to the inner diameter surface of the pocket.
(14) The surface of the slide core that forms the inner peripheral surface of the pocket is formed by any one of shot peening, electric discharge machining, and etching, for the rolling bearing according to (12) or (13) A method for manufacturing a cage.
(15) A rolling bearing comprising the rolling bearing cage according to any one of (1) to (6) and (8) to (11).
 本発明によれば、被案内面より径方向内側の溝部と保持器端面との少なくとも一方に、成形用金型によるパーティングラインを形成することで、パーティングラインの凸部(バリ)が、保持器や他の部材に摩耗を生じさせることがない。その結果、凸部の擦れによる保持器の摩耗進行が抑制され、寿命低下や振動等の異常発生を防止できる。また、保持器の面取り部が、高い動滑性が得られる特定の表面性状を有するため、転がり軸受内で保持器が傾いて外輪に接触しても面取り部や外輪の摩耗を抑制できる。よって、高速回転時でも円滑な案内が行える。更に、この保持器を転がり軸受に用いることにより、転がり軸受の耐久性を向上できる。
 また、本発明によれば、ポケットの内周面が算術平均粗さRaが1.0~9.8μm、最大高さRtが10.1~102.9μmの表面性状を有し、ポケットの保持器径方向の厚みが3.5mm以下に形成される。そのため、ポケットをスライドコアで成形する場合でも、ポケットの内周面における微細凹凸形状の損傷を抑制できる。これにより、生産性を損なうことなく、保持器の耐久性を向上できる。
According to the present invention, by forming a parting line by a molding die in at least one of the groove portion on the radially inner side of the guided surface and the end face of the cage, the protruding part (burr) of the parting line is There is no wear on the cage or other members. As a result, the progress of wear of the cage due to the rubbing of the convex portion is suppressed, and it is possible to prevent the occurrence of abnormalities such as a decrease in life and vibration. In addition, since the chamfered portion of the cage has a specific surface property that provides high dynamic sliding properties, wear of the chamfered portion and the outer ring can be suppressed even when the cage is tilted and contacts the outer ring in the rolling bearing. Therefore, smooth guidance can be performed even during high-speed rotation. Furthermore, the durability of the rolling bearing can be improved by using this cage for the rolling bearing.
In addition, according to the present invention, the pocket inner surface has an arithmetic mean roughness Ra of 1.0 to 9.8 μm and a maximum height Rt of 10.1 to 102.9 μm. The thickness in the radial direction is 3.5 mm or less. Therefore, even when the pocket is formed with the slide core, it is possible to suppress damage to the fine unevenness on the inner peripheral surface of the pocket. Thereby, durability of a holder | retainer can be improved, without impairing productivity.
本発明の実施形態を説明するための図で、転がり軸受の一部断面図である。It is a figure for demonstrating embodiment of this invention, and is a partial cross section figure of a rolling bearing. 保持器の外観斜視図である。It is an external appearance perspective view of a holder | retainer. 図2に示す保持器の一部拡大斜視図である。FIG. 3 is a partially enlarged perspective view of the cage shown in FIG. 2. 図3に示す保持器のP1-P1線の拡大断面図である。FIG. 4 is an enlarged sectional view taken along line P1-P1 of the cage shown in FIG. (A)~(C)は、面取り部の形状を示す拡大断面図である。(A)-(C) are enlarged sectional views showing the shape of the chamfered portion. (A)は成形用金型の一例を模式的に示す説明図で、(B)は(A)のP2-P2線断面を示す説明図である。(A) is explanatory drawing which shows typically an example of the metal mold | die for shaping | molding, (B) is explanatory drawing which shows the P2-P2 line cross section of (A). 成形用金型の他の構成例を模式的に示す説明図である。It is explanatory drawing which shows typically the other structural example of the metal mold | die for shaping | molding. 保持器の一部拡大斜視図である。It is a partially expanded perspective view of a cage. 保持器周長に対する外径溝長さの総和の割合と慣らし時間との関係を示すグラフである。It is a graph which shows the relationship between the ratio of the sum total of the outer-diameter groove length with respect to a holder | retainer circumferential length, and break-in time. (A)は保持器の外径面の拡大図、(B)は(A)のP3-P3線における成形用金型を模式的に示した断面図である。(A) is an enlarged view of the outer diameter surface of the cage, and (B) is a cross-sectional view schematically showing a molding die for P3-P3 line in (A). (A)~(C)は、他の保持器の外径面を示す一部拡大図である。(A) to (C) are partially enlarged views showing outer diameter surfaces of other cages. (A)~(H)は、保持器の各種ポケット形状を示す拡大断面図である。(A) to (H) are enlarged sectional views showing various pocket shapes of the cage. 他の構成の保持器を備えたアンギュラ玉軸受の一部断面図である。It is a partial cross section figure of the angular ball bearing provided with the cage of other composition. 図13に示す保持器の外観斜視図である。It is an external appearance perspective view of the holder | retainer shown in FIG. 他の構成の保持器を備えたアンギュラ玉軸受の一部断面図である。It is a partial cross section figure of the angular ball bearing provided with the cage of other composition. 他の構成の保持器の外観斜視図である。It is an external appearance perspective view of the holder | retainer of another structure. 他の構成の保持器の外観斜視図である。It is an external appearance perspective view of the holder | retainer of another structure. 転動体案内型保持器の一部拡大断面図である。It is a partial expanded sectional view of a rolling element guide type holder.
 以下、本発明の実施形態について、図面を参照して詳細に説明する。
 図1は本発明の実施形態を説明するための図で、転がり軸受の一部断面図である。ここでは転がり軸受として、工作機械の主軸等、高速回転する装置に用いられるアンギュラ玉軸受を一例として説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a view for explaining an embodiment of the present invention and is a partial sectional view of a rolling bearing. Here, an angular ball bearing used in a device that rotates at high speed, such as a spindle of a machine tool, will be described as an example of the rolling bearing.
 アンギュラ玉軸受100(以下、「軸受」と略称することもある)は、内周面に外輪軌道面11を有する外輪13と、外周面に内輪軌道面15を有する内輪17と、複数の玉(転動体)19と、複数のポケット21を有する保持器(転がり軸受用保持器)23と、を備える。 An angular ball bearing 100 (hereinafter also abbreviated as “bearing”) includes an outer ring 13 having an outer ring raceway surface 11 on an inner peripheral surface, an inner ring 17 having an inner ring raceway surface 15 on an outer peripheral surface, and a plurality of balls ( Rolling element) 19 and a cage (roller bearing cage) 23 having a plurality of pockets 21.
 複数の玉19は、外輪軌道面11及び内輪軌道面15との間に接触角αを有して転動自在に配置される。保持器23は、複数の玉19をポケット21内で転動自在に保持する。 The balls 19 are arranged so as to roll freely with a contact angle α between the outer ring raceway surface 11 and the inner ring raceway surface 15. The holder | retainer 23 hold | maintains the some ball 19 within the pocket 21 so that rolling is possible.
 保持器23は、保持器外径面の軸方向両端に、径方向外側へ突出する複数の被案内部25A,25Bが形成される。各被案内部25A,25Bは、それぞれ周方向に沿って等間隔で、しかも双方が同じ周位置に配置される。 The retainer 23 is formed with a plurality of guided portions 25A and 25B protruding outward in the radial direction at both axial ends of the outer diameter surface of the retainer. The guided portions 25A and 25B are arranged at equal intervals along the circumferential direction, and both are arranged at the same circumferential position.
 本構成のアンギュラ玉軸受100は、軸方向の一端側(図1における左側)の被案内部25Aの案内面27が、外輪13の外輪軌道面11に対して反カウンターボア側の外輪内周面29に案内される外輪案内方式である。 In the angular ball bearing 100 of this configuration, the guide surface 27 of the guided portion 25A on one end side in the axial direction (left side in FIG. 1) is the outer ring inner peripheral surface on the counter-bore side with respect to the outer ring raceway surface 11 of the outer ring 13. 29 is an outer ring guide method guided by 29.
<保持器の基本形状>
 保持器23の被案内部25A,25Bは、詳細を後述するように、所定の表面粗さの表面形状にされている。この表面形状を形成する微小な凹部には、潤滑剤であるグリースが保持され、保持器23と外輪13との動滑性を向上させている。
<Basic shape of cage>
The guided portions 25 </ b> A and 25 </ b> B of the cage 23 have a surface shape with a predetermined surface roughness, as will be described in detail later. Grease, which is a lubricant, is held in the minute recesses that form the surface shape, and the sliding performance between the cage 23 and the outer ring 13 is improved.
 保持器23は、合成樹脂を含む材料を用いた射出成形品である。保持器23に使用可能な合成樹脂としては、例えば、PPS(ポリフェニレンサルファイド)、PPS-CF(カーボン繊維強化ポリフェニレンサルファイド)等が挙げられる。その他にも、母材として、PA(ポリアミド)、PAI(ポリアミドイミド)、熱可塑性ポリイミド、PEEK(ポリエーテルエーテルケトン)が利用可能で、強化繊維として、カーボン繊維、ガラス繊維、アラミド繊維等の有機繊維が利用可能である。 The cage 23 is an injection molded product using a material containing synthetic resin. Examples of the synthetic resin that can be used for the cage 23 include PPS (polyphenylene sulfide), PPS-CF (carbon fiber reinforced polyphenylene sulfide), and the like. In addition, PA (polyamide), PAI (polyamideimide), thermoplastic polyimide, PEEK (polyetheretherketone) can be used as the base material, and organic fibers such as carbon fiber, glass fiber, and aramid fiber can be used as the reinforcing fiber. Fiber is available.
 図2は保持器23の外観斜視図、図3は図2に示す保持器の一部拡大斜視図である。各被案内部25A,25Bは、径方向外側へ突出して外輪内周面29(図1参照)に摺接可能に形成される案内面27と、案内面27の縁部に形成された面取り部31とを有する。本構成の面取り部31は、案内面27の軸方向及び周方向の縁部である、周囲エッジの全周にわたって設けられる。 2 is an external perspective view of the cage 23, and FIG. 3 is a partially enlarged perspective view of the cage shown in FIG. Each of the guided portions 25A and 25B includes a guide surface 27 that protrudes radially outward and is slidably contactable with the inner peripheral surface 29 of the outer ring (see FIG. 1), and a chamfered portion that is formed at the edge of the guide surface 27 31. The chamfered portion 31 of this configuration is provided over the entire circumference of the peripheral edge, which is the axial and circumferential edge of the guide surface 27.
 被案内部25Aの案内面27の周方向中央部には、案内面27の径方向高さから窪んで、保持器23の軸方向に沿った溝部33Aが形成される。同様に、被案内部25Bの案内面27の周方向中央部にも、案内面27の径方向高さから窪んで、保持器23の軸方向に沿った溝部33Bが形成される。溝部33A,33Bの周方向の断面形状は、図示例の円弧形状の他、三角形状、矩形状、台形状等であってもよい。 A groove portion 33 </ b> A is formed in the circumferential central portion of the guide surface 27 of the guided portion 25 </ b> A so as to be recessed from the radial height of the guide surface 27 and along the axial direction of the cage 23. Similarly, a groove 33 </ b> B is formed in the central portion in the circumferential direction of the guide surface 27 of the guided portion 25 </ b> B so as to be recessed from the radial height of the guide surface 27 and along the axial direction of the cage 23. The cross-sectional shape in the circumferential direction of the grooves 33A and 33B may be a triangular shape, a rectangular shape, a trapezoidal shape or the like in addition to the circular arc shape in the illustrated example.
 同じ周位置に配置される一組の被案内部25A,25Bは、軸方向と平行な一本の直線上に、それぞれの溝部33A,33Bが配置される。保持器23の外径面には、周方向の位相を一致させた一組の溝部33A,33Bが、周方向に沿って複数組配置される。 In the set of guided portions 25A and 25B arranged at the same circumferential position, the respective groove portions 33A and 33B are arranged on a single straight line parallel to the axial direction. On the outer diameter surface of the cage 23, a plurality of sets of groove portions 33A and 33B having the same phase in the circumferential direction are arranged along the circumferential direction.
 また、周方向に隣接する被案内部25A,25Aとの間、及び、被案内部25B,25Bとの間は、案内面27より径方向高さが低い外径溝35A,35Bとされている。各外径溝35A,35Bは、それぞれ潤滑剤の排出溝として機能する。 Further, outer diameter grooves 35A and 35B having a radial height lower than that of the guide surface 27 are formed between the guided portions 25A and 25A adjacent to each other in the circumferential direction and between the guided portions 25B and 25B. . Each outer diameter groove 35A, 35B functions as a lubricant discharge groove.
 図4は図3に示す保持器23のP1-P1線の拡大断面図である。案内面27の軸方向の縁部に形成された面取り部31は、曲率半径が0.2mm以上の曲面を有する。 FIG. 4 is an enlarged cross-sectional view taken along line P1-P1 of the cage 23 shown in FIG. The chamfered portion 31 formed at the edge in the axial direction of the guide surface 27 has a curved surface with a curvature radius of 0.2 mm or more.
 一般に、軸受内に配置された保持器23は、図1に示すように、案内面27と外輪内周面29との間の案内すきまΔG/2と、ポケットすきまとの範囲で移動自在となる。そのため、保持器23は、軸線から傾斜して案内面27の周囲エッジが外輪13に偏当たりする場合がある。偏当たりが生じると、保持器23が摩耗して、寿命の低下や振動の劣化等の異常が生じる。この場合の保持器23の摩耗は、案内面27の周囲エッジから進行することが殆どである。しかし、本構成の保持器23によれば、案内面27の周囲エッジが、角部を滑らかにした面取り部31にされるため、摩耗が進行しにくくなる。 Generally, as shown in FIG. 1, the cage 23 disposed in the bearing is movable within a range of a guide clearance ΔG / 2 between the guide surface 27 and the outer ring inner peripheral surface 29 and a pocket clearance. . For this reason, the cage 23 may be inclined from the axis and the peripheral edge of the guide surface 27 may be biased against the outer ring 13. When uneven contact occurs, the cage 23 is worn, and abnormalities such as a decrease in life and deterioration of vibration occur. In this case, the wear of the cage 23 mostly proceeds from the peripheral edge of the guide surface 27. However, according to the cage 23 of this configuration, the peripheral edge of the guide surface 27 is made into the chamfered portion 31 with smooth corners, so that the wear does not easily progress.
 また、一般に、外輪案内方式のアンギュラ玉軸受100においては、図1に示す外輪13の外輪内周面29と外輪軌道面11との境界の軌道面エッジ11aに、保持器23が接触することがある。保持器23が軌道面エッジ11aに接触すると、前述のように、保持器23は軌道面エッジ11aとの接触部分から摩耗が進行する。そこで、本構成の保持器23は、図1,図4に示すように、軌道面エッジ11aに接触しないように、外輪13の外輪軌道面11の軸方向縁部である軌道面エッジ11aとの対面領域に、径方向内側に窪むエッジ逃し部37を設けてある。 In general, in the outer ring guide type angular contact ball bearing 100, the cage 23 may come into contact with the raceway surface edge 11a at the boundary between the outer race inner circumferential surface 29 of the outer race 13 and the outer raceway raceway surface 11 shown in FIG. is there. When the cage 23 comes into contact with the track surface edge 11a, the wear of the cage 23 proceeds from the contact portion with the track surface edge 11a as described above. Therefore, as shown in FIGS. 1 and 4, the cage 23 of this configuration is in contact with the raceway surface edge 11 a which is an axial edge of the outer ring raceway surface 11 of the outer ring 13 so as not to contact the raceway surface edge 11 a. An edge relief 37 that is recessed radially inward is provided in the facing region.
 エッジ逃し部37は、図3に示す被案内部25Aと25Bとの間の領域に相当し、案内面27の径方向高さから一段低く形成される。この段差によって、保持器23が傾斜した場合でも、軌道面エッジ11aが保持器23に接触することがなくなり、軌道面エッジ11aとの接触による保持器23の摩耗を未然に防止できる。 The edge relief portion 37 corresponds to a region between the guided portions 25A and 25B shown in FIG. 3, and is formed one step lower than the radial height of the guide surface 27. Even if the cage 23 is tilted by this step, the raceway edge 11a does not contact the cage 23, and wear of the cage 23 due to contact with the raceway edge 11a can be prevented.
 また、案内面27と面取り部31には、微小凹凸形状の表面性状が形成される。この微小凹凸形状の凹部に前述したグリース等の潤滑剤が溜まることで、外輪13との接触時における接触抵抗が軽減され、摩耗の進行が抑制される。この表面性状を形成するためには、案内面27と面取り部31とを滑らかに接続する必要がある。 In addition, the guide surface 27 and the chamfered portion 31 are formed with surface characteristics of minute irregularities. Since the lubricant such as the grease described above accumulates in the minute concave and convex portions, the contact resistance at the time of contact with the outer ring 13 is reduced, and the progress of wear is suppressed. In order to form this surface property, it is necessary to connect the guide surface 27 and the chamfered portion 31 smoothly.
 図5(A)~(C)は、面取り部31の形状を示す拡大断面図である。図5(A)に示す面取り部31は、曲率半径rが0.2mm以上の曲面で構成される。これにより、案内面27の周囲エッジが立つことがなく、案内面27と曲面とが滑らかに接続される。 5A to 5C are enlarged sectional views showing the shape of the chamfered portion 31. FIG. The chamfered portion 31 shown in FIG. 5A is configured by a curved surface having a curvature radius r of 0.2 mm or more. Thereby, the surrounding edge of the guide surface 27 does not stand, and the guide surface 27 and the curved surface are smoothly connected.
 また、面取り部31は、図5(B)に示すように、面取り部31の曲率半径rの中心を案内面27に近づけることで、面取り部31の曲面の接線方向と案内面27とを交差させ、案内面27の縁部27aに、面取り部31を接線方向に接続した構成であってもよい。縁部27aにおいて接続される曲面の接線方向と、案内面27との成す角θは、20°以下(0°<θ≦20°)とすることが好ましい。 Further, as shown in FIG. 5B, the chamfered portion 31 intersects the guide surface 27 with the tangential direction of the curved surface of the chamfered portion 31 by bringing the center of the curvature radius r of the chamfered portion 31 closer to the guide surface 27. The chamfered portion 31 may be connected to the edge portion 27a of the guide surface 27 in the tangential direction. The angle θ formed by the tangential direction of the curved surface connected at the edge 27a and the guide surface 27 is preferably 20 ° or less (0 ° <θ ≦ 20 °).
 更に、面取り部31は、図5(C)に示すように、保持器23の軸断面において、案内面27との成す角θが20°以下(0°<θ≦20°)の傾斜面であってもよい。この場合、保持器23に負荷される面圧を軽減し、打痕の発生を防止し、摩耗の進行を抑制できる。 Further, as shown in FIG. 5C, the chamfered portion 31 is an inclined surface having an angle θ formed with the guide surface 27 of 20 ° or less (0 ° <θ ≦ 20 °) in the axial cross section of the cage 23. There may be. In this case, the surface pressure applied to the cage 23 can be reduced, the occurrence of dents can be prevented, and the progress of wear can be suppressed.
 上記の面取り部31の形状は一例であって、これらに限らず任意の形状にできる。望ましくは、面取り部31を曲面形状(R形状)とし、曲面の接線と案内面27とが滑らかに接続される形状とするのがよい。 The shape of the chamfered portion 31 described above is an example, and is not limited to these, and can be an arbitrary shape. Desirably, the chamfered portion 31 has a curved surface shape (R shape), and the curved surface tangent and the guide surface 27 are smoothly connected.
 また、図1に示すように、外輪13の外輪内周面29と保持器23の案内面27との間の径方向の案内すきまΔG/2は、高速回転時における保持器音の発生、非同期振れNRRO、動トルク等に及ぼす影響が大きい。案内すきまΔG/2を外輪内周面29の案内径φGの0.2%~0.8%に設定することで、高速回転時の軸受のNRRO及び動トルクを低減できる。 Further, as shown in FIG. 1, the radial guide clearance ΔG / 2 between the outer ring inner circumferential surface 29 of the outer ring 13 and the guide surface 27 of the cage 23 generates the cage noise during asynchronous rotation, and is asynchronous. Greatly affects runout NRRO, dynamic torque, etc. By setting the guide clearance ΔG / 2 to 0.2% to 0.8% of the guide diameter φG of the inner peripheral surface 29 of the outer ring, the NRRO and dynamic torque of the bearing during high speed rotation can be reduced.
 外輪案内保持器の場合、回転時に作用する遠心力と熱膨張により案内径φGが変化する。初期案内すきまが小さいと、回転時の案内すきまが0になり、トルクの増大や温度上昇、破損、異音が発生する虞がある。そのため、案内すきまΔG/2を案内径φGの0.2%以上にするのがよい。 In the case of an outer ring guide cage, the guide diameter φG changes due to centrifugal force and thermal expansion acting during rotation. If the initial guide clearance is small, the guide clearance during rotation becomes zero, and there is a risk of increased torque, temperature rise, breakage, and abnormal noise. Therefore, it is preferable that the guide clearance ΔG / 2 is 0.2% or more of the guide diameter φG.
 また、軸受回転時における保持器23の旋回する回転径は、案内すきまΔG/2で決定されるため、案内面の接触荷重は、案内すきまΔG/2に比例して大きくなる。更に、案内すきまΔG/2が過大の場合、保持器23が軸受内部で振動して保持器音が発生する要因となる。これらの理由より、案内すきまΔG/2は、案内径φGの0.8%より小さくするのがよい。 In addition, since the rotation diameter of the cage 23 when the bearing rotates is determined by the guide clearance ΔG / 2, the contact load on the guide surface increases in proportion to the guide clearance ΔG / 2. Furthermore, when the guide clearance ΔG / 2 is excessive, the cage 23 vibrates inside the bearing and causes cage noise. For these reasons, the guide clearance ΔG / 2 is preferably smaller than 0.8% of the guide diameter φG.
 案内すきまΔG/2が案内径φGの0.8%以下に設定された保持器23は、軸受に組み込んでグリース潤滑で使用した場合、グリースの排出が妨げられる。このような保持器23は、慣らし運転に長時間を要するため、不良品となる。この慣らし運転時間は、外径溝35A,35Bの領域に保持器23のポケット21を含めることで、換言すれば、ポケット21の軸受軸方向の側方に外径溝35A,35Bを設けることで短縮できる。 When the cage 23 in which the guide clearance ΔG / 2 is set to 0.8% or less of the guide diameter φG is incorporated in a bearing and used for grease lubrication, the grease discharge is prevented. Such a cage 23 becomes a defective product because it takes a long time for the break-in operation. This break-in operation time is obtained by including the pocket 21 of the cage 23 in the region of the outer diameter grooves 35A and 35B, in other words, by providing the outer diameter grooves 35A and 35B on the side of the pocket 21 in the bearing axial direction. Can be shortened.
<保持器の成形用金型>
 次に、上記構成の保持器23を射出成形する成形用金型について説明する。
 上記した合成樹脂製の保持器23は、成形用金型を用いて成形される。図6(A),(B)に成形用金型の一例を模式的に示した。図6(A)は、保持器23の外径面を成形する外側金型41と、保持器23のポケット21を成形するスライドコア43とを示す。図6(B)は、図6(A)のP2-P2線断面図である。成形用金型は、これらの金型部材の他に保持器23の内径面を形成する内側金型等を備えるが、ここではその説明を省略する。
<Mold for molding cage>
Next, a molding die for injection molding the cage 23 having the above configuration will be described.
The above-described cage 23 made of synthetic resin is molded using a molding die. 6A and 6B schematically show an example of a molding die. FIG. 6A shows an outer mold 41 that molds the outer diameter surface of the cage 23 and a slide core 43 that molds the pocket 21 of the cage 23. FIG. 6B is a cross-sectional view taken along line P2-P2 of FIG. The molding die includes an inner die that forms the inner diameter surface of the cage 23 in addition to these die members, but the description thereof is omitted here.
 図6(A),(B)に示す成形用金型は、アキシアルドロー方式の金型である。外側金型41は、保持器23の周方向に沿って複数個が配置され、前述の保持器23の被案内部25A,25Bを成形する。外側金型41は、それぞれ径方向に移動自在である。被案内部25A,25A(25B,25B)の溝部33A(33B)の周位置は、隣接する外側金型とのパーティングラインとなる。 6 (A) and 6 (B) are axial draw molds. A plurality of outer molds 41 are arranged along the circumferential direction of the cage 23, and the guided portions 25A and 25B of the cage 23 are formed. The outer molds 41 are each movable in the radial direction. The circumferential position of the groove portion 33A (33B) of the guided portions 25A, 25A (25B, 25B) is a parting line with the adjacent outer mold.
 なお、図示例では、一つの外側金型41が、隣接する一対の被案内部25A,25A(25B,25B)の周方向半分を成形する構成としているが、更に複数の被案内部を一つの金型部材で成形する構成としてもよい。 In the illustrated example, one outer mold 41 is configured to mold the circumferential half of a pair of adjacent guided portions 25A, 25A (25B, 25B). It is good also as a structure shape | molded with a mold member.
<保持器の表面性状>
 上記の成形用金型は、保持器23の被案内部25A,25Bにおける案内面27及び面取り部31に対応する金型表面が、通常よりも大きな所定の表面粗さの加工面とされている。金型表面の加工面における表面形状は、射出成形される保持器23の案内面27及び面取り部31の表面に転写される。
<Surface properties of cage>
In the molding die described above, the mold surfaces corresponding to the guide surfaces 27 and the chamfered portions 31 in the guided portions 25A and 25B of the cage 23 are processed surfaces having a predetermined surface roughness larger than usual. . The surface shape of the processed surface of the mold surface is transferred to the surfaces of the guide surface 27 and the chamfered portion 31 of the cage 23 to be injection-molded.
 金型表面の加工面の形状が転写付与された、保持器23の案内面27及び面取り部31の形状転写面は、その表面粗さが、JIS B0601に規定される算術平均粗さRaを1.0~9.8μmに、最大高さRtを10.1~102.9μmに設定される(Ra,Rtの数値については、必要に応じて日本国特開2014-95469号公報を参照されたい)。 The shape of the guide surface 27 of the cage 23 and the shape transfer surface of the chamfered portion 31 to which the shape of the processing surface of the mold surface is transferred are given an arithmetic average roughness Ra defined by JIS B0601 of 1. 0.0 to 9.8 μm and the maximum height Rt is set to 10.1 to 102.9 μm (For numerical values of Ra and Rt, refer to Japanese Unexamined Patent Publication No. 2014-95469 as necessary. ).
 これにより、所定の表面粗さを形成する凹部に潤滑剤であるグリースが保持され、この凹部から保持器23の案内面27と外輪13の外輪内周面29(図1参照)との接触界面にグリースが供給される。したがって、軸受の高速回転化によって潤滑条件が厳しくなった場合であっても、接触界面に油膜が途切れることがない。このため、軸受の急激な温度上昇や焼き付きを長期にわたり抑制できる。 As a result, grease as a lubricant is held in the concave portion forming a predetermined surface roughness, and the contact interface between the guide surface 27 of the cage 23 and the outer ring inner peripheral surface 29 (see FIG. 1) of the outer ring 13 from the concave portion. Is supplied with grease. Therefore, even if the lubrication conditions become severe due to the high-speed rotation of the bearing, the oil film does not break at the contact interface. For this reason, rapid temperature rise and seizure of the bearing can be suppressed over a long period of time.
 保持器23は、耐摩耗性や機械的強度の向上のために、ガラス繊維や炭素繊維等の充填材を樹脂材料に混入させて補強してもよい。その場合、充填材を含む摩耗粉が、保持器23の案内面27と外輪13の外輪内周面29との接触界面で生成されることがある。この摩耗粉は、軸受回転時に異物として作用して、切削摩耗が増大する虞がある。しかし、本構成によれば、保持器23や玉19が案内される方向と平行な方向、すなわち、保持器23の周方向に沿って所定の表面粗の凹凸が形成されている。この凹凸が形成されることによって、発生した摩耗粉が接触界面から容易に排除される。よって、保持器23の耐摩耗性が向上する。また、案内される方向に直交する方向の表面粗さや凹凸の表面性状を上記同様の範囲にすることにより、保持器23の耐摩耗性を一層向上できる。 The retainer 23 may be reinforced by mixing a filler such as glass fiber or carbon fiber with a resin material in order to improve wear resistance and mechanical strength. In that case, wear powder containing a filler may be generated at the contact interface between the guide surface 27 of the cage 23 and the outer ring inner peripheral surface 29 of the outer ring 13. This wear powder acts as a foreign object during rotation of the bearing, and there is a risk that cutting wear will increase. However, according to this structure, the unevenness | corrugation of predetermined surface roughness is formed along the direction parallel to the direction where the holder | retainer 23 and the ball | bowl 19 are guided, ie, the circumferential direction of the holder | retainer 23. FIG. By forming the unevenness, the generated wear powder is easily removed from the contact interface. Therefore, the wear resistance of the cage 23 is improved. In addition, the wear resistance of the cage 23 can be further improved by setting the surface roughness in the direction orthogonal to the guided direction and the surface texture of the irregularities in the same range as described above.
 なお、案内面27及び面取り部31における算術平均粗さRaが1.0μm未満の範囲では、表面粗さを形成する凹部のグリース保持量が少なくなり、保持器23の案内面27と外輪13の外輪内周面29との接触界面に供給するグリース量が不十分となる。また、算術平均粗さRaが9.8μmを超えると、その粗さ自体が、高精度の高速回転が要求される工作機械の主軸用軸受の回転精度に悪影響を及ぼす可能性がある。 In addition, when the arithmetic average roughness Ra in the guide surface 27 and the chamfered portion 31 is less than 1.0 μm, the amount of grease retained in the concave portion forming the surface roughness decreases, and the guide surface 27 of the cage 23 and the outer ring 13 The amount of grease supplied to the contact interface with the inner peripheral surface 29 of the outer ring becomes insufficient. Further, when the arithmetic average roughness Ra exceeds 9.8 μm, the roughness itself may adversely affect the rotational accuracy of the spindle bearing for machine tools that require high-precision high-speed rotation.
 案内面27及び面取り部31に付与される表面粗さは、最大高さRtが10.1~102.9μmの範囲にされている。最大高さRtを上記範囲にすることで、特異的に高い山部や低い谷部の発生が抑えられ、摺動時の振動が抑制されて軸受性能を向上できる。 The surface roughness given to the guide surface 27 and the chamfered portion 31 has a maximum height Rt in the range of 10.1 to 102.9 μm. By setting the maximum height Rt within the above range, the generation of specifically high peaks and low valleys can be suppressed, and vibration during sliding can be suppressed to improve bearing performance.
 上記の通り、保持器23の案内面27及び面取り部31の表面性状は、保持器23の射出成形時に金型表面の形状転写によって付与される。このため、案内面27及び面取り部31には、均一かつ再現性の高い状態で表面層(形状転写層)が形成され、保持器23の耐摩耗性より確実に向上できる。 As described above, the surface properties of the guide surface 27 and the chamfered portion 31 of the cage 23 are imparted by shape transfer of the mold surface during the injection molding of the cage 23. For this reason, a surface layer (shape transfer layer) is formed on the guide surface 27 and the chamfered portion 31 in a uniform and highly reproducible state, which can be improved more reliably than the wear resistance of the cage 23.
 成形用金型に設けられる所定の表面粗さを有した加工面(シボ加工面)は、ショットピーニング等のショット加工、放電加工、エッチング、ウォータージェット、レーザ加工等のいずれかにより形成できる。なお、上記加工面は、上記加工方法を単独、又は組み合わせた加工で形成してもよく、上記以外の加工方法で形成してもよい。加工面の表面形状は、ディンプル等の凹形状や微細な溝からなる表面形状であってもよい。 The processed surface (textured surface) having a predetermined surface roughness provided in the molding die can be formed by any one of shot processing such as shot peening, electric discharge processing, etching, water jet, and laser processing. In addition, the said processed surface may be formed by the processing which combined the said processing method individually or in combination, and may be formed by processing methods other than the above. The surface shape of the processed surface may be a concave shape such as a dimple or a surface shape composed of fine grooves.
 また、少なくとも保持器23の案内面27及び面取り部31に上記した表面粗さの形状転写面が付与されていれば、保持器23の外周面、内周面、又は保持器の全面に上記形状転写面を形成してもよい。 Further, if at least the guide surface 27 and the chamfered portion 31 of the cage 23 are provided with the shape transfer surface having the above-described surface roughness, the shape is formed on the outer circumferential surface, the inner circumferential surface, or the entire surface of the cage. A transfer surface may be formed.
 上記形状転写面が付与された保持器23は、保持器23表面に生じたバリをバレル加工等によって除去すると、形状転写面が除去され、グリースの保持ができなくなる。そこで、本構成においては、バリを生じさせるパーティングラインを後処理で除去することなく、バリが生じても影響を及ぼさない位置にパーティングラインを配置している。これにより、保持器23の加工工程を煩雑にすることなく、生産性を高めることができる。 When the burrs generated on the surface of the cage 23 are removed by barreling or the like, the shape transfer surface is removed from the cage 23 provided with the shape transfer surface, and the grease cannot be retained. Therefore, in this configuration, the parting lines that cause burrs are not removed by post-processing, and the parting lines are arranged at positions that do not affect the burrs. Thereby, productivity can be improved, without making the processing process of the holder | retainer 23 complicated.
 本構成の保持器23によれば、保持器表面に特定の表面形状を形成しつつ、パーティングラインによる凸部が摺動部位に配置されない構成となり、保持器23の動滑性、耐摩耗性が向上する。また、切削加工等の後処理が不要な射出成形法によって、保持器23を容易に大量生産できる。よって、保持器23の耐久性と生産性を共に向上できる。 According to the cage 23 of this configuration, a specific surface shape is formed on the surface of the cage, and the convex portion due to the parting line is not arranged at the sliding portion. Will improve. Further, the cage 23 can be easily mass-produced by an injection molding method that does not require post-processing such as cutting. Therefore, both the durability and productivity of the cage 23 can be improved.
<他の成形用金型の構成>
 次に、他の成形用金型について説明する。
 図7に成形用金型の他の構成例を模式的に示す。この成形用金型は、保持器23の外径面側を成形する外側金型45と、保持器23のポケット21を成形するスライドコア47とを有する。成形用金型は、これらの金型部材の他に保持器23の内径面側を形成する内側金型等を備えるが、ここではその説明を省略する。なお、以下の説明では、図1に示す部材と同一の部材に対しては同一の符号を付与することで、その部材の説明は省略又は簡単化する。
<Configuration of other molds>
Next, another mold for molding will be described.
FIG. 7 schematically shows another configuration example of the molding die. The mold for molding includes an outer mold 45 for molding the outer diameter surface side of the cage 23 and a slide core 47 for molding the pocket 21 of the cage 23. In addition to these mold members, the molding mold includes an inner mold or the like that forms the inner diameter surface side of the cage 23, but the description thereof is omitted here. In the following description, the same members as those shown in FIG. 1 are denoted by the same reference numerals, and the description of the members is omitted or simplified.
 この成形用金型は、スライドコア47が径方向にスライドしてポケット21を形成する。また、外側金型45は、ラジアルドロー方式であり、スライドコア47をポケット21から抜いた状態で、図中P1方向にスライドされる。これにより、保持器23の外径面が成形される。 In this molding die, the slide core 47 slides in the radial direction to form the pocket 21. Further, the outer mold 45 is a radial draw method, and is slid in the P1 direction in the drawing with the slide core 47 being removed from the pocket 21. Thereby, the outer diameter surface of the cage 23 is formed.
 上記構成の成形用金型を用いて保持器23を成形すると、図8に示すように、保持器23のパーティングラインPLは、保持器23の端面に生じ、被案内部25A,25Bや面取り部31には生じない。保持器端面にバリが存在していても、図1に示すアンギュラ玉軸受100の外輪13や内輪17にバリが接触することはなく、バリが軸受性能に影響を及ぼすことはない。 When the cage 23 is molded using the molding die having the above-described configuration, the parting line PL of the cage 23 is generated on the end surface of the cage 23 as shown in FIG. 8, and guided portions 25A and 25B and chamfers are formed. It does not occur in the part 31. Even if burrs exist on the end face of the cage, the burrs do not contact the outer ring 13 or the inner ring 17 of the angular ball bearing 100 shown in FIG. 1, and the burrs do not affect the bearing performance.
 したがって、本構成の成形用金型を用いて保持器23を成形することで、上記した保持器23の摩耗が抑制され、転がり軸受の耐久性を高められる。 Therefore, by forming the cage 23 using the molding die of this configuration, the wear of the cage 23 described above is suppressed, and the durability of the rolling bearing can be enhanced.
 図9は、内径が70mmのアンギュラ玉軸受(日本精工製 70BNR10H)において、回転数4000min-1、アキシアル荷重150Nで回転させたときの慣らし運転が完了するまでの時間と外径溝の大きさ(保持器周長に対する外径溝長さの総和の割合)との関係を示すグラフである。 Figure 9 is the angular contact ball bearing having an inner diameter is 70 mm (NSK Ltd. 70BNR10H), rotation speed 4000 min -1, the time and the outer diameter groove to break operation is completed when rotating in axial load 150N size ( It is a graph which shows the relationship with the ratio of the sum total of the outer-diameter groove | channel length with respect to a holder | retainer circumference.
 保持器周長に対する外径溝の総和の割合が35%以下であると、グリース潤滑の慣らし運転終了までに1分以上要する。上記割合が30%付近からは、グラフの傾斜が緩やかになっており、それ以上の領域では外径溝の割合が大きくなっても慣らし運転時間の変化は小さい。 ¡If the ratio of the sum of the outer diameter grooves to the cage circumference is 35% or less, it takes 1 minute or more to finish the break-in operation of grease lubrication. When the ratio is around 30%, the slope of the graph is gentle, and in the region beyond that, the change in the running-in time is small even if the ratio of the outer diameter groove is increased.
 図示しないが、上記割合が70%以上では、外輪内周面29と接触する面積が小さくなりすぎて、接触面圧が高くなり、保持器23が磨耗して軸受の寿命が低下する。したがって、外径溝35A,35Bは、溝の総和が保持器周長の35%~70%とするのが好ましい。更には、40%~70%とするのがより好ましい。 Although not shown, when the ratio is 70% or more, the area in contact with the inner peripheral surface 29 of the outer ring becomes too small, the contact surface pressure is increased, the cage 23 is worn, and the life of the bearing is reduced. Therefore, it is preferable that the outer diameter grooves 35A and 35B have a total groove of 35% to 70% of the circumferential length of the cage. Further, it is more preferably 40% to 70%.
 オイルエア潤滑の場合も同様であり、案内すきまが小さすぎると、オイルの排出性が悪くなり、異常な温度上昇や焼き付きの原因となる。なお、案内すきまが大きい場合には、グリースの排出が妨げられることはなく、外径溝を設けなくてもよい。 The same applies to oil / air lubrication, and if the guide clearance is too small, the oil drainage will deteriorate, causing abnormal temperature rise and seizure. When the guide clearance is large, the grease discharge is not hindered and the outer diameter groove does not have to be provided.
 また、図4に示すように、案内面27の案内幅L(面取り部31を除くストレート部の幅)を小さくすることで、保持器23の回転抵抗のトルクを低減できる。ただし、案内幅Lが0.5mm未満の場合には、外輪内周面29との接触面圧が高くなる。その場合、磨耗が進行して、軸受の耐久性が低下する。このため、案内面27の案内幅Lは0.5mm以上にする必要がある。 Further, as shown in FIG. 4, the torque of the rotational resistance of the cage 23 can be reduced by reducing the guide width L of the guide surface 27 (the width of the straight portion excluding the chamfered portion 31). However, when the guide width L is less than 0.5 mm, the contact surface pressure with the inner peripheral surface 29 of the outer ring increases. In that case, wear progresses and the durability of the bearing decreases. For this reason, the guide width L of the guide surface 27 needs to be 0.5 mm or more.
 また、外輪13の軸方向幅をB(図1参照)としたとき、保持器23の幅H(図4参照)は、空間容積の確保と軽量化の観点からH/B≦0.95とするのがよく、更に、保持器23の後述するポケット開口部における最小肉厚t(後述の図10(B)参照)を確保するため、0.4≦H/Bとするのが望ましい(0.4≦H/B≦0.95)。 Further, when the axial width of the outer ring 13 is B (see FIG. 1), the width H (see FIG. 4) of the cage 23 is H / B ≦ 0.95 from the viewpoint of securing the space volume and reducing the weight. Furthermore, in order to secure a minimum thickness t (see FIG. 10B described later) in a pocket opening portion described later of the cage 23, it is desirable that 0.4 ≦ H / B (0 .4 ≦ H / B ≦ 0.95).
 次に、保持器23のポケット開口部における最小肉厚tを確保する成形用金型について説明する。
 図10(A)は、保持器外径面の拡大図である。図10(B)は、成形用金型を模式的に示した図10(A)のP3-P3線における断面図である。図10(B)には、保持器23の外径部を成形する外側金型41と、保持器23のポケット21を成形するスライドコア43とを示す。図示例の成形用金型は、これらの金型部材の他に保持器23の内径面を形成する内側金型等を備えるが、ここでもその説明を省略する。
Next, a mold for securing a minimum thickness t at the pocket opening of the cage 23 will be described.
FIG. 10A is an enlarged view of the outer diameter surface of the cage. FIG. 10B is a cross-sectional view taken along the line P3-P3 in FIG. 10A, schematically showing the molding die. FIG. 10B shows an outer mold 41 that molds the outer diameter portion of the cage 23 and a slide core 43 that molds the pocket 21 of the cage 23. The molding die in the illustrated example includes an inner die that forms the inner diameter surface of the cage 23 in addition to these die members, but the description thereof is also omitted here.
 図10(B)に示す成形用金型は、アキシアルドロー方式の金型である。外側金型41及びスライドコア43は、保持器23の周方向に沿って複数個が配置され、それぞれ径方向に移動自在である。被案内部25A,25A(25B,25B)の溝部33A(33B)の周位置は、隣接する外側金型とのパーティングラインとなる。 The mold for molding shown in FIG. 10B is an axial draw mold. A plurality of outer molds 41 and slide cores 43 are arranged along the circumferential direction of the cage 23 and are movable in the radial direction. The circumferential position of the groove portion 33A (33B) of the guided portions 25A, 25A (25B, 25B) is a parting line with the adjacent outer mold.
 図10(A),(B)に示すように、保持器23は、被案内部25A,25B、外径溝35A,35B、及びエッジ逃し部37を含む外径面が、外側金型41より成形される。また、ポケット21が、スライドコア43により成形される。後述するように、スライドコア43の表面に形成された所定の表面性状は、保持器23のポケット21の内周面に転写される。 As shown in FIGS. 10A and 10B, the retainer 23 has an outer diameter surface including guided portions 25 </ b> A and 25 </ b> B, outer diameter grooves 35 </ b> A and 35 </ b> B, and edge relief portions 37 from the outer mold 41. Molded. Further, the pocket 21 is formed by the slide core 43. As will be described later, predetermined surface properties formed on the surface of the slide core 43 are transferred to the inner peripheral surface of the pocket 21 of the cage 23.
 スライドコア43に設けられる所定の表面性状を有した加工面(シボ加工面)は、ショットピーニング等のショット加工、放電加工、エッチング、ウォータージェット、レーザ加工等のいずれかにより形成できる。なお、上記加工面は、上記加工方法を単独、又は組み合わせた加工で形成してもよく、上記以外の加工方法で形成してもよい。 The processed surface (textured surface) having a predetermined surface property provided on the slide core 43 can be formed by any one of shot processing such as shot peening, electric discharge processing, etching, water jet, and laser processing. In addition, the said processed surface may be formed by the processing which combined the said processing method individually or in combination, and may be formed by processing methods other than the above.
 ところで、被案内部25A,25Bの角部Kとポケット21(内周面)とは接近しているため、この繋ぎ部を成形する外側金型41の凸部41aの最小肉厚tが薄くなる。このように、金型に最小肉厚tの薄い部分があると、金型強度が不足して、金型に変形や割れ等が生じる虞がある。 By the way, since the corner | angular part K of the guided parts 25A and 25B and the pocket 21 (inner peripheral surface) are approaching, the minimum thickness t of the convex part 41a of the outer side metal mold | die 41 which shape | molds this connection part becomes thin. . As described above, if the mold has a thin portion having the minimum thickness t, the mold strength may be insufficient, and the mold may be deformed or cracked.
 そのため、図10(A)に示すように、被案内部25A,25Bの角部Kの円周方向位相を、ポケット21の軸方向最大径となる周方向位置Pk1とポケット21の周方向端部となる周方向位置Pk2との間の領域Cに設ける。そして、被案内部25A,25Bの角部Kとポケット21の内周面との最小距離(最小肉厚t)を0.5mm以上にする。これにより、金型が特に薄くなる部分をなくし、金型強度不足による障害を防止している。 Therefore, as shown in FIG. 10A, the circumferential phase of the corner portion K of the guided portions 25A, 25B is set to the circumferential position Pk1 that is the maximum axial diameter of the pocket 21 and the circumferential end of the pocket 21. It is provided in a region C between the circumferential position Pk2. And the minimum distance (minimum thickness t) between the corner | angular part K of the to- be-guided parts 25A and 25B and the inner peripheral surface of the pocket 21 shall be 0.5 mm or more. As a result, the part where the mold is particularly thin is eliminated, and the failure due to insufficient mold strength is prevented.
 図11(A)~(C)は、薄肉部を補正した金型により成形される他の保持器の外径面を示す一部拡大図である。図11(A)に示す保持器は、被案内部25A,25Bの角部Kを、曲面状の面取り形状にすることで金型の最小肉厚tを大きくしている。 FIGS. 11A to 11C are partially enlarged views showing the outer diameter surfaces of other cages formed by a mold in which a thin portion is corrected. In the cage shown in FIG. 11A, the minimum thickness t of the mold is increased by making the corner portion K of the guided portions 25A and 25B into a curved chamfered shape.
 図11(B)に示す保持器は、被案内部25A,25Bの角部Kを斜めにカットすることで金型の最小肉厚tを大きくしている。 In the cage shown in FIG. 11 (B), the minimum thickness t of the mold is increased by obliquely cutting the corners K of the guided portions 25A and 25B.
 また、図11(C)に示す保持器は、通常の大きさの案内すきまΔG/2(例えば、外輪内周面29の案内径φGの0.8%以上)を有し、外径溝35A,35Bを設ける必要がない保持器23である(後述の図16参照)。この保持器23は、被案内部26A,26Bをポケット21から軸方向に離間して設けることで、被案内部26A,26Bとポケット21との最小距離(最小肉厚t)を0.5mm以上としている。 Further, the cage shown in FIG. 11C has a guide clearance ΔG / 2 of a normal size (for example, 0.8% or more of the guide diameter φG of the inner peripheral surface 29 of the outer ring), and the outer diameter groove 35A. , 35B need not be provided (see FIG. 16 described later). This cage 23 is provided with guided portions 26A, 26B spaced apart from the pocket 21 in the axial direction, so that the minimum distance (minimum thickness t) between the guided portions 26A, 26B and the pocket 21 is 0.5 mm or more. It is said.
 上記図示したいずれの保持器であっても、金型の強度不足による障害を防止できる。 Any of the cages shown above can prevent a failure due to insufficient strength of the mold.
<ポケット内周面の表面性状>
 次に、ポケット内周面に微小凹凸形状の表面性状を形成した保持器を説明する。
 保持器23のポケット21は、内周面が保持器径方向に沿った円筒面であり、その円筒状の内周面は、所定の表面性状にされている。この表面性状を形成する微小な凹部には、潤滑剤であるグリースが保持され、ポケット21の玉19との動滑性を向上させている。
<Surface properties of pocket inner peripheral surface>
Next, a description will be given of a cage in which minute irregularities are formed on the inner peripheral surface of the pocket.
The pocket 21 of the cage 23 is a cylindrical surface whose inner circumferential surface is along the radial direction of the cage, and the cylindrical inner circumferential surface has a predetermined surface property. Grease, which is a lubricant, is held in the minute recesses that form this surface property, and the sliding performance with the balls 19 of the pocket 21 is improved.
 上記構成の保持器23を成形するには、保持器23にポケット21を形成する金型(スライドコア43)の表面が、所定の表面性状を有する成形用金型を用いる。すなわち、スライドコア43の金型表面は、通常よりも大きな所定の表面粗さの加工面とする。この加工面の表面形状は、射出成形される保持器23のポケット21の内周面に転写される。これにより、ポケット内周面は上記加工面の形状に対応した形状転写面(例えば、シボ加工面)となる。 In order to mold the cage 23 having the above-described configuration, a molding die in which the surface of the mold (slide core 43) for forming the pocket 21 in the cage 23 has a predetermined surface property is used. That is, the mold surface of the slide core 43 is a processed surface having a predetermined surface roughness larger than usual. The surface shape of the processed surface is transferred to the inner peripheral surface of the pocket 21 of the cage 23 to be injection molded. Thereby, the pocket inner peripheral surface becomes a shape transfer surface (for example, a textured surface) corresponding to the shape of the processed surface.
 保持器23のポケット21の内周面に、金型表面の加工面の形状が転写付与された形状転写面の表面粗さは、JIS B0601に規定される算術平均粗さRaを1.0~9.8μmに、最大高さRtを10.1~102.9μmに設定される(Ra,Rtの数値については、必要に応じて日本国特開2014-95469号公報を参照されたい)。 The surface roughness of the shape transfer surface obtained by transferring the shape of the processed surface of the mold surface to the inner peripheral surface of the pocket 21 of the cage 23 is 1.0 to the arithmetic average roughness Ra specified in JIS B0601. The maximum height Rt is set to 9.8 μm and 10.1 to 102.9 μm (refer to Japanese Laid-Open Patent Publication No. 2014-95469 as necessary for the numerical values of Ra and Rt).
 これにより、所定の表面粗さを形成する凹部に潤滑剤であるグリースが保持され、この凹部からポケット21の内周面と玉19との接触界面(図1参照)にグリースが供給される。したがって、軸受の高速回転化によって潤滑条件が厳しくなった場合であっても、接触界面に油膜が途切れることがない。このため、急激な温度上昇や焼き付きを長期にわたり抑制できる。 Thereby, the grease as the lubricant is held in the concave portion forming a predetermined surface roughness, and the grease is supplied from the concave portion to the contact interface (see FIG. 1) between the inner peripheral surface of the pocket 21 and the ball 19. Therefore, even if the lubrication conditions become severe due to the high-speed rotation of the bearing, the oil film does not break at the contact interface. For this reason, rapid temperature rise and image sticking can be suppressed over a long period of time.
 また、加工面の表面形状は、ランダムな微細凹凸形状の他、ディンプル等の凹形状や微細な溝であってもよい。 Further, the surface shape of the processed surface may be a concave shape such as a dimple or a fine groove in addition to a random fine uneven shape.
 算術平均粗さRaが1.0μm未満の範囲では、表面粗さを形成する凹部のグリース保持量が少なくなり、保持器23のポケット21の内周面と玉19との接触界面に対するグリース供給が不十分となる。また、算術平均粗さRaが9.8μmを超えると、その粗さ自体が、高精度の高速回転が要求される工作機械の主軸用軸受の回転精度に悪影響を及ぼす可能性がある。 When the arithmetic average roughness Ra is less than 1.0 μm, the amount of grease retained in the recesses that form the surface roughness decreases, and the grease is supplied to the contact interface between the inner peripheral surface of the pocket 21 of the cage 23 and the ball 19. It becomes insufficient. Further, when the arithmetic average roughness Ra exceeds 9.8 μm, the roughness itself may adversely affect the rotational accuracy of the spindle bearing for machine tools that require high-precision high-speed rotation.
 ポケット21の内周面に付与される表面粗さは、最大高さRtを10.1~102.9μmの範囲にされている。このように最大高さRtを上記範囲に定めることで、特異的に高い山部や低い谷部の発生が抑えられ、摺動時の振動が抑制されて軸受性能を向上できる。 The surface roughness applied to the inner peripheral surface of the pocket 21 has a maximum height Rt in the range of 10.1 to 102.9 μm. Thus, by setting the maximum height Rt within the above range, the generation of specifically high peaks and low valleys can be suppressed, vibration during sliding can be suppressed, and bearing performance can be improved.
 上記の通り、ポケット21の内周面の表面性状は、保持器23の射出成形時にスライドコア43の表面の形状転写によって付与される。このため、ポケット21の内周面には、均一、且つ再現性の高い状態で表面層(形状転写層)が形成され、保持器23の耐摩耗性をより確実に向上できる。 As described above, the surface property of the inner peripheral surface of the pocket 21 is imparted by transferring the shape of the surface of the slide core 43 during the injection molding of the cage 23. For this reason, a surface layer (shape transfer layer) is formed on the inner peripheral surface of the pocket 21 in a uniform and highly reproducible state, and the wear resistance of the cage 23 can be improved more reliably.
 また、上記構成の保持器23は、前述の案内面27と面取り部31に微小凹凸形状の表面性状を併せ持っていてもよい。その場合、案内面27、面取り部31、及びポケット21の内周面の各表面性状の相乗効果によって、保持器23の摩耗がより確実に抑制され、高速回転時の案内がより円滑となる。 Moreover, the cage 23 having the above-described configuration may have both the above-described guide surface 27 and the chamfered portion 31 having a micro uneven surface property. In that case, due to the synergistic effect of the surface properties of the guide surface 27, the chamfered portion 31, and the inner peripheral surface of the pocket 21, the wear of the cage 23 is more reliably suppressed, and the guidance during high-speed rotation becomes smoother.
<ポケットの成形>
 外輪案内形式の保持器23のポケット21は、通常、径方向に沿った円筒形状となっている。このため、上記した表面性状となる表面形状を設けたスライドコア43を径方向外側に抜き取る際、ポケット21の内周面に付与した表面形状が剪断により崩れる虞がある。
<Pocket molding>
The pocket 21 of the outer ring guide type cage 23 is generally cylindrical in the radial direction. For this reason, when extracting the slide core 43 provided with the surface shape which becomes the above-mentioned surface property to the outside in the radial direction, the surface shape applied to the inner peripheral surface of the pocket 21 may be broken by shearing.
 表1は、直径95mmの円筒形状部をショット法により算術平均粗さRa3μmに加工した金型を用い、保持器23を成形して、長さ16mmの距離を表面形状転写面と平行に引抜いたときの、PPS-CF樹脂の表面形状の状態を顕微鏡で観察した結果を示す。 Table 1 shows that a retainer 23 was formed by using a die obtained by processing a cylindrical portion having a diameter of 95 mm into an arithmetic average roughness Ra of 3 μm by a shot method, and a distance of 16 mm in length was drawn parallel to the surface shape transfer surface. The result of having observed the state of the surface shape of PPS-CF resin at the time with a microscope is shown.
 引抜き長さが3.5mm以下では、金型から転写させた表面形状が異常なく残っている。引抜き距離が3.5~4.5mmでは80%以上、金型から転写させた表面形状が残っている。しかし、引抜き距離が4.5mm以上では、金型との剪断で表面が削り取られており、金型から転写された所定の表面粗さの表面形状が破壊された状態となっている。したがって、金型の剪断方向への引抜き距離に相当する、ポケット21の内周面の長さD(図12参照)、つまり、ポケット21の円筒面の保持器径方向の厚みは、4.5mm以下、より望ましくは3.5mm以下とするのが好ましい。 When the drawing length is 3.5 mm or less, the surface shape transferred from the mold remains without abnormality. When the drawing distance is 3.5 to 4.5 mm, 80% or more of the surface shape transferred from the mold remains. However, when the drawing distance is 4.5 mm or more, the surface is scraped off by shearing with the mold, and the surface shape having a predetermined surface roughness transferred from the mold is destroyed. Therefore, the length D (see FIG. 12) of the inner peripheral surface of the pocket 21 corresponding to the drawing distance in the shearing direction of the mold, that is, the thickness of the cylindrical surface of the pocket 21 in the cage radial direction is 4.5 mm. Hereinafter, it is more preferable that the thickness is 3.5 mm or less.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 保持器は、ポケット21の内周面の径方向長さDが大きく、上記の引抜き距離が大きい場合や、付与される表面形状が大きく、引抜きによりポケット21の内周面の表面形状が損傷し、金型が磨耗して寿命が低下する場合がある。そのような場合には、図12(A)に示す前述した形状に代えて、図12(B)に示すように、玉19と接触しない保持器23の径方向内側のポケット径d1を小さくすればよい。又は、図12(C)に示すように、玉19と接触しない保持器23の径方向外側のポケット径d2を大きくすればよい。 In the cage, when the radial length D of the inner peripheral surface of the pocket 21 is large and the above drawing distance is large, or the surface shape to be applied is large, the surface shape of the inner peripheral surface of the pocket 21 is damaged by the pulling. The mold may be worn out and the life may be shortened. In such a case, instead of the above-described shape shown in FIG. 12A, as shown in FIG. 12B, the pocket diameter d1 on the radially inner side of the cage 23 that does not contact the ball 19 is reduced. That's fine. Alternatively, as shown in FIG. 12C, the pocket diameter d2 on the radially outer side of the cage 23 that does not contact the ball 19 may be increased.
 保持器内径側や保持器外径側に、ポケット21の内径を拡縮する段付き部22を設けることにより、実質的な引抜き距離(接触しながら摺動する距離)を短縮でき、スライドコア43から転写される表面形状の損傷を抑制できる。 By providing the stepped portion 22 that expands and contracts the inner diameter of the pocket 21 on the inner diameter side of the cage and the outer diameter side of the cage, a substantial pulling distance (a distance that slides while contacting) can be shortened. Damage to the transferred surface shape can be suppressed.
 また、図12(D)に示すように、保持器23の径方向内側のポケット径d1を小さくし、且つ径方向外側のポケット径d2を大きくしてもよい。この場合、引抜き距離をより短縮できる。 Further, as shown in FIG. 12D, the pocket diameter d1 on the radially inner side of the cage 23 may be reduced and the pocket diameter d2 on the radially outer side may be increased. In this case, the drawing distance can be further shortened.
 また、図12(E)に示すように、ポケット21の内周面全体をθ=0.5°以上のテーパ角で、内周側から外周側に向けて拡径するテーパ面にしてもよい。その場合、スライドコア43を引抜く際に、剪断が発生しなくなり、ポケットの表面形状を保護できる。また、スライドコアの寿命を向上できる。 Further, as shown in FIG. 12 (E), the entire inner peripheral surface of the pocket 21 may be a tapered surface with a taper angle of θ = 0.5 ° or more and the diameter is increased from the inner peripheral side toward the outer peripheral side. . In that case, when the slide core 43 is pulled out, shearing does not occur, and the surface shape of the pocket can be protected. In addition, the life of the slide core can be improved.
 図12(F)は径方向内側のポケット径d1を小さくし、且つテーパ面21aとしている。図12(G)は径方向外側のポケット径d2を大きくし、且つテーパ面21aとしている。図12(H)は径方向内側のポケット径d1を小さく、径方向外側のポケット径d2を大きく形成すると共にテーパ面21aとしている。このように、ポケット21の内周面の形状を、引抜き距離が実質的に短縮する形状にすることで、スライドコア43の引抜き時における樹脂の損傷が抑制され、金型寿命を延長することが可能になる。 In FIG. 12 (F), the pocket diameter d1 on the radially inner side is reduced and a tapered surface 21a is formed. In FIG. 12G, the radially outer pocket diameter d2 is increased and a tapered surface 21a is formed. In FIG. 12H, the radially inner pocket diameter d1 is reduced, the radially outer pocket diameter d2 is increased, and the tapered surface 21a is formed. Thus, by making the shape of the inner peripheral surface of the pocket 21 into a shape in which the drawing distance is substantially shortened, damage to the resin when the slide core 43 is drawn can be suppressed, and the mold life can be extended. It becomes possible.
 上記したように、ポケット部には、スライドコア43を引抜く際に剪断力が発生する。そのため、保持器23の外径部を成形する外側金型41の寿命と、保持器23のポケット21を成形するスライドコア43の寿命とが、大きく異なってしまうことが考えられる。しかし、本金型構成によれば、形状が複雑で高価な外側金型41は、そのまま継続して利用して、スライドコア43は、外側金型41とは別体に構成されている。そのため、ピン形状の安価なスライドコア43のみを交換可能にでき、金型のランニングコストを低減できる。 As described above, a shearing force is generated in the pocket portion when the slide core 43 is pulled out. Therefore, it is conceivable that the lifetime of the outer mold 41 that molds the outer diameter portion of the cage 23 and the lifetime of the slide core 43 that molds the pocket 21 of the cage 23 are greatly different. However, according to the present mold configuration, the outer mold 41 having a complicated shape and expensive is continuously used as it is, and the slide core 43 is configured separately from the outer mold 41. Therefore, only the inexpensive pin-shaped slide core 43 can be replaced, and the running cost of the mold can be reduced.
 なお、上記の案内面27と面取り部31の微小凹凸形状は、ポケット21の内周面と同様に、算術平均粗さRa=1.0~9.8μm、最大高さRt=10.1~102.9μmの範囲にしてもよい。また、この微小凹凸形状は、スライドコア43の表面加工方法と同様に、金型表面に施すことで得られる。 Note that the minute uneven shapes of the guide surface 27 and the chamfered portion 31 are the same as the inner peripheral surface of the pocket 21, and the arithmetic average roughness Ra = 1.0 to 9.8 μm and the maximum height Rt = 10.1 to You may make it the range of 102.9 micrometers. Further, this minute uneven shape can be obtained by applying to the mold surface in the same manner as the surface processing method of the slide core 43.
 <保持器表面のスキン層>
 保持器23を射出成形により成形する際には、高温の樹脂が温度の低い金型に接触して急冷される。そのため、金型付近の部分となる保持器23の表面部分に、スキン層と呼ばれる非晶質層が形成される。また、成形時の樹脂が樹脂表面に並行に流れるため、成形後の樹脂内部の表層部における強化繊維(CF(カーボンファイバー)、GF(グラスファイバー)、AF(アラミドファイバー)等)も表面に並行に配列される。
<Skin layer on cage surface>
When the cage 23 is molded by injection molding, the high temperature resin comes into contact with a low temperature mold and is rapidly cooled. Therefore, an amorphous layer called a skin layer is formed on the surface portion of the cage 23 in the vicinity of the mold. In addition, since the resin during molding flows in parallel to the resin surface, reinforcing fibers (CF (carbon fiber), GF (glass fiber), AF (aramid fiber), etc.) in the surface layer inside the resin after molding are also parallel to the surface. Arranged.
 非晶質層は、樹脂材料がPPS(ポリフェニレンサルファイド樹脂)やPEEK(ポリエーテルエーテルケトン樹脂)等である場合には、表面近傍まで結晶化するため、非常に薄い0.1~10μm程度の厚さとなる。樹脂材料がナイロン等のポリアミド樹脂である場合には、非晶質層が形成されやすく10~30μm程度の厚さとなる。 When the resin material is PPS (polyphenylene sulfide resin), PEEK (polyether ether ketone resin), etc., the amorphous layer crystallizes to the vicinity of the surface, so that it has a very thin thickness of about 0.1 to 10 μm. It becomes. When the resin material is a polyamide resin such as nylon, an amorphous layer is easily formed and has a thickness of about 10 to 30 μm.
 強化繊維は、保持器と摺動される外輪、内輪、及び転動体の鋼材に対して攻撃性が強い。特に、強化繊維を含む樹脂材料をバリ取りのためバレル加工や切削加工を施した表面を摺動面とした場合は、強化繊維が樹脂表面に対して交差する方向に析出する。そのため、強化繊維は、端部が鋭角になり、外輪、内輪、及び転動体を傷付けたり、摩耗の原因となる。更に、強化繊維が保持器表層に現れるため、強化繊維が脱落し、軸受の寿命低下に繋がる虞がある。 Reinforcing fibers are highly aggressive against the outer ring, inner ring, and rolling element steel that slide with the cage. In particular, when the surface subjected to barrel processing or cutting for deburring a resin material containing reinforcing fibers is used as a sliding surface, the reinforcing fibers are deposited in a direction intersecting the resin surface. Therefore, the end of the reinforcing fiber has an acute angle, which damages the outer ring, the inner ring, and the rolling element, or causes wear. Furthermore, since the reinforcing fibers appear on the surface of the cage, the reinforcing fibers may fall off, leading to a reduction in bearing life.
 そのため、保持器表層にスキン層を持つことにより、強化繊維の脱落及び析出した強化繊維による相手部材への攻撃を抑制できる。 Therefore, by having a skin layer on the surface layer of the cage, it is possible to suppress the dropping of the reinforcing fibers and the attack on the mating member by the precipitated reinforcing fibers.
 更に、保持器表面に強化繊維が並行に配列されるため、スキン層が摩耗等で除去された後も強化繊維の端部が外輪、内輪、及び転動体に対して鋭角に当たらない。これにより、相手部材の摩耗を抑制できる。 Furthermore, since the reinforcing fibers are arranged in parallel on the cage surface, the ends of the reinforcing fibers do not hit the outer ring, the inner ring, and the rolling element even after the skin layer is removed by wear or the like. Thereby, wear of the mating member can be suppressed.
 このスキン層は、特開2001-227548に示すように、表面から30μm以下に存在するのが望ましい。また、上述したように、表層部にスキン層が存在することが必要であるため、保持器表層に、保持器表面からの厚みが0.1~30μmである、強化繊維を含まない非晶質層が形成されていることが望ましい。 This skin layer is desirably present at 30 μm or less from the surface as disclosed in JP-A-2001-227548. Further, as described above, since it is necessary for the skin layer to be present in the surface layer portion, the cage surface layer has an amorphous thickness of 0.1 to 30 μm from the cage surface and does not contain reinforcing fibers. It is desirable that a layer is formed.
<他の構成例>
 次に、上記した保持器23の他の構成例について説明する。
(第1変形例)
 図13に他の構成の保持器23Aを備えたアンギュラ玉軸受110の一部断面図、図14に保持器23Aの外観斜視図を示す。以下の説明では、図1に示す部材と同一の部材に対しては同一の符号を付与することで、その部材の説明は省略又は簡単化する。
<Other configuration examples>
Next, another configuration example of the above-described cage 23 will be described.
(First modification)
FIG. 13 is a partial sectional view of an angular ball bearing 110 provided with a cage 23A having another configuration, and FIG. 14 is an external perspective view of the cage 23A. In the following description, the same members as those shown in FIG. 1 are given the same reference numerals, and the description of the members is omitted or simplified.
 本変形例の保持器23Aは、軸方向の一端側のみに被案内部25Aを設けてあり、他端側の被案内部は省略されている。保持器23Aは、被案内部25Aが外輪13の外輪内周面29に案内される。その際、保持器23Aにエッジ逃し部37が設けられたことにより、外輪の軌道面エッジ11aが保持器23Aに接触することはない。また、保持器23Aの射出成形時におけるパーティングライン(図示略)は、前述同様に、被案内部25Aに形成した溝部33A内に軸方向に沿って設けられる。 The cage 23A of this modification is provided with a guided portion 25A only on one end side in the axial direction, and the guided portion on the other end side is omitted. In the cage 23 </ b> A, the guided portion 25 </ b> A is guided to the outer ring inner peripheral surface 29 of the outer ring 13. At that time, since the edge escape portion 37 is provided in the cage 23A, the raceway surface edge 11a of the outer ring does not contact the cage 23A. Further, a parting line (not shown) at the time of injection molding of the cage 23A is provided along the axial direction in the groove 33A formed in the guided portion 25A, as described above.
 本変形例によれば、保持器23Aをよりシンプルな構造にでき、凸部(バリ)となるパーティングラインを溝部33Aに配置することで、軸受はバリの影響を受けることがない。よって、保持器23Aの耐久性と生産性とを共に高めることができる。 According to this modification, the cage 23A can have a simpler structure, and the bearings are not affected by burrs by arranging the parting lines to be convex portions (burrs) in the groove portions 33A. Therefore, both durability and productivity of the cage 23A can be improved.
 また、保持器23Aのポケット21の内周面は、前述した所定の表面性状となっている。この表面形状は、金型(スライドコア43)の加工面が転写されて形成されたものである。
 本変形例によれば、保持器23Aをよりシンプルな構造にできる。また、所定の表面粗さを形成するポケット21の微小な凹部に、潤滑剤であるグリースが保持されて、この凹部からポケット21の内周面と転動体19との接触界面にグリースが供給される。よって、保持器23Aの耐久性が高められる。
Further, the inner peripheral surface of the pocket 21 of the cage 23A has the predetermined surface properties described above. This surface shape is formed by transferring the processed surface of the mold (slide core 43).
According to this modified example, the cage 23A can have a simpler structure. Further, grease as a lubricant is held in a minute recess of the pocket 21 forming a predetermined surface roughness, and grease is supplied from this recess to the contact interface between the inner peripheral surface of the pocket 21 and the rolling element 19. The Therefore, the durability of the cage 23A is improved.
 なお、保持器23Aの案内面27及び面取り部31と、ポケット21の内周面と、の前述した表面性状は、少なくともいずれか一方に形成されていればよく、双方に形成されていてもよい。
双方に形成された場合には、相乗効果によって、保持器23Aの耐摩耗性や、耐久性を一層向上できる。
Note that the above-described surface properties of the guide surface 27 and the chamfered portion 31 of the cage 23A and the inner peripheral surface of the pocket 21 may be formed on at least one of them, or may be formed on both. .
When formed on both sides, the wear resistance and durability of the cage 23A can be further improved by a synergistic effect.
(第2変形例)
 図15に他の構成の保持器23Bを備えたアンギュラ玉軸受120の一部断面図を示す。本変形例の保持器23Bは、被案内部25A,25Bのいずれも備えておらず、保持器23Bのポケット21の内周面には、前述した所定の表面性状が、金型から転写されて形成されている。それ以外は、前述の第1変形例の保持器23Aと同様である。
(Second modification)
FIG. 15 shows a partial cross-sectional view of an angular ball bearing 120 provided with a cage 23B having another configuration. The cage 23B of this modified example does not include any of the guided portions 25A and 25B, and the predetermined surface properties described above are transferred from the mold to the inner peripheral surface of the pocket 21 of the cage 23B. Is formed. Other than that, it is the same as the cage 23A of the first modified example described above.
 本変形例によれば、保持器23Bをよりシンプルな構造にできる。また、所定の表面性状を形成する微小な凹部に、潤滑剤であるグリースが保持され、この凹部からポケット21の内周面と玉19との接触界面にグリースが供給される。よって、保持器23Bの耐久性が高められる。 According to this modification, the cage 23B can have a simpler structure. In addition, grease, which is a lubricant, is held in a minute recess that forms a predetermined surface property, and grease is supplied from this recess to the contact interface between the inner peripheral surface of the pocket 21 and the ball 19. Therefore, the durability of the cage 23B is improved.
(第3変形例)
 図16に他の構成の保持器23Cの外観斜視図を示す。保持器23Cは、保持器外径面の軸方向両端に半径方向外側へ突出する被案内部26A,26Bを有する。各被案内部26A,26Bには、それぞれ軸方向に沿って案内面27の径方向高さから窪んだ溝部33A,33Bが複数形成される。
(Third Modification)
FIG. 16 shows an external perspective view of a cage 23C having another configuration. The cage 23C has guided portions 26A and 26B projecting radially outward at both axial ends of the cage outer diameter surface. A plurality of groove portions 33A, 33B that are recessed from the radial height of the guide surface 27 along the axial direction are formed in each guided portion 26A, 26B.
 本変形例の保持器23Cは、図3に示す保持器23の場合と同様に、一組の溝部33A,33Bが同じ周位置に配置される。また、案内面27の被案内部26A,26Bの軸方向の縁部には、面取り部31,31が形成される。ただし、前述した外径溝35A,35B(図3参照)は存在せず、案内面27が周方向に連続して配置される。 In the cage 23C of the present modification, a set of groove portions 33A and 33B are arranged at the same circumferential position as in the case of the cage 23 shown in FIG. Further, chamfered portions 31, 31 are formed at the axial edges of the guided portions 26 </ b> A, 26 </ b> B of the guide surface 27. However, the aforementioned outer diameter grooves 35A and 35B (see FIG. 3) do not exist, and the guide surface 27 is continuously arranged in the circumferential direction.
 また、パーティングライン(図示略)は、前述同様に、被案内部26A,26Bに形成した溝部33A,33Bに軸方向に沿って設けられる。 Further, the parting line (not shown) is provided along the axial direction in the groove portions 33A and 33B formed in the guided portions 26A and 26B, as described above.
 本変形例の保持器23Cによれば、案内面27の周囲エッジが面取り部31にされ、摩耗が進行しにくくなる。また、径方向内側に窪むエッジ逃し部37によって、軌道面エッジ11a(図1参照)が保持器23に接触しなくなり、接触による摩耗を未然に防止できる。更に、案内面27及び面取り部31が、所定の表面粗さを有する形状転写面となることで、耐摩耗性を向上できる。そして、凸部(バリ)となるパーティングラインを溝部33A,33Bに設けることで、軸受はバリの影響を受けることがなくなり、保持器23Bの耐久性と生産性とを共に高めることができる。 According to the cage 23C of this modified example, the peripheral edge of the guide surface 27 is made into the chamfered portion 31, and the wear is less likely to proceed. In addition, the edge relief portion 37 recessed radially inward prevents the raceway surface edge 11a (see FIG. 1) from coming into contact with the cage 23, thereby preventing wear due to contact. Furthermore, since the guide surface 27 and the chamfered portion 31 become a shape transfer surface having a predetermined surface roughness, the wear resistance can be improved. And by providing the parting line used as a convex part (burr) in groove part 33A, 33B, a bearing will not receive the influence of a burr | flash and it can improve both durability and productivity of the holder | retainer 23B.
 また、保持器23Cは、前述した所定の表面粗さを有する表面形状がスライドコア43から転写されたポケット21に形成される。 Further, the cage 23C is formed in the pocket 21 in which the surface shape having the predetermined surface roughness described above is transferred from the slide core 43.
 本変形例の保持器23Cによれば、ポケット21の内周面が、所定の表面性状を有する形状転写面となることで、耐摩耗性を向上でき、保持器23Cの耐久性が高められる。 According to the cage 23C of this modified example, the inner peripheral surface of the pocket 21 becomes a shape transfer surface having a predetermined surface property, so that the wear resistance can be improved and the durability of the cage 23C is enhanced.
 なお、保持器23Cの案内面27及び面取り部31と、ポケット21の内周面と、の前述した表面性状は、少なくともいずれか一方に形成されていればよく、双方に形成されていてもよい。双方に形成された場合には、相乗効果によって、保持器23Cの耐摩耗性や、耐久性を一層向上できる。 Note that the above-described surface properties of the guide surface 27 and the chamfered portion 31 of the cage 23C and the inner peripheral surface of the pocket 21 may be formed on at least one of them, or may be formed on both. . When formed on both sides, the wear resistance and durability of the cage 23C can be further improved by a synergistic effect.
(第4変形例)
 図17に他の構成の保持器23Dの外観斜視図を示す。保持器23Dは、保持器外径部の軸方向一端のみに半径方向外側へ突出する被案内部26Aを有すること以外は、前述の第3変形例の保持器23Cと同様である。
(Fourth modification)
FIG. 17 shows an external perspective view of a cage 23D having another configuration. The cage 23D is the same as the cage 23C of the third modified example described above except that it has a guided portion 26A that protrudes radially outward only at one axial end of the cage outer diameter portion.
 本変形例の保持器23Dによれば、保持器23Dをシンプルな構造にでき、凸部(バリ)となるパーティングラインを溝部33A内に配置することで、軸受はバリの影響を受けることがなくなる。よって、保持器23Cの耐久性と生産性とを共に高めることができる。 According to the cage 23D of the present modified example, the cage 23D can have a simple structure, and the bearing can be affected by burrs by disposing the parting line serving as a convex portion (burr) in the groove portion 33A. Disappear. Therefore, both durability and productivity of the cage 23C can be improved.
 また、本変形例の保持器23Dによれば、保持器23Dをシンプルな構造にでき、ポケット21の内周面に、前述した所定の表面性状を有する表面形状が、金型から転写されて形成されることで、ポケット21の内周面と転動体19との接触界面にグリースが供給される。よって、保持器23Dの耐久性を高めることができる。 Further, according to the cage 23D of the present modification, the cage 23D can be made simple, and the surface shape having the predetermined surface properties described above is transferred from the mold to the inner peripheral surface of the pocket 21. As a result, grease is supplied to the contact interface between the inner peripheral surface of the pocket 21 and the rolling element 19. Therefore, the durability of the cage 23D can be increased.
 なお、保持器23Dの案内面27及び面取り部31と、ポケット21の内周面と、の前述した表面性状は、少なくともいずれか一方に形成されていればよく、双方に形成されていてもよい。双方に形成された場合には、相乗効果によって、保持器23Dの耐摩耗性や、耐久性を一層向上できる。 Note that the above-described surface properties of the guide surface 27 and the chamfered portion 31 of the cage 23D and the inner peripheral surface of the pocket 21 may be formed in at least one of them, or may be formed in both. . When formed on both sides, the wear resistance and durability of the cage 23D can be further improved by a synergistic effect.
 なお、本構成の転がり軸受としては、アンギュラ玉軸受に限定されるものではなく、円筒ころ軸受等、他の種類の転がり軸受であってもよく、転動体案内方式の転がり軸受であってもよい。例えば、図18に示すように、保持器23Eが、ポケット21に形成されたテーパ孔21bに転動自在に配置される玉19、或いは、ころによって案内される転動体案内方式の転がり軸受であってもよい。 Note that the rolling bearing of this configuration is not limited to an angular ball bearing, and may be another type of rolling bearing such as a cylindrical roller bearing, or may be a rolling element guide type rolling bearing. . For example, as shown in FIG. 18, the cage 23E is a ball 19 that is rotatably arranged in a tapered hole 21b formed in the pocket 21, or a rolling element guide type rolling bearing guided by rollers. May be.
 このように、本発明は上記の実施形態に限定されるものではなく、実施形態の各構成を相互に組み合わせることや、明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。 As described above, the present invention is not limited to the above-described embodiments, and those skilled in the art can make changes and applications based on combinations of the configurations of the embodiments, descriptions in the specification, and well-known techniques. This is also the scope of the present invention, and is included in the scope for which protection is sought.
 本出願は2015年2月4日出願の日本国特許出願(特願2015-020736)、2015年2月4日出願の日本国特許出願(特願2015-020737)、2016年2月2日出願の日本国特許出願(特願2016-017836)、及び2016年2月2日出願の日本国特許出願(特願2016-017837)に基づくものであり、その内容はここに参照として取り込まれる。 This application is a Japanese patent application filed on February 4, 2015 (Japanese Patent Application No. 2015-020736), a Japanese patent application filed on February 4, 2015 (Japanese Patent Application No. 2015-020737), and an application filed on February 2, 2016 Japanese Patent Application (Japanese Patent Application No. 2016-017836) and Japanese Patent Application (Japanese Patent Application No. 2016-017837) filed on Feb. 2, 2016, the contents of which are incorporated herein by reference.
 11 外輪軌道面
 13 外輪
 15 内輪軌道面
 17 内輪
 19 玉(転動体)
 21 ポケット
 21a テーパ面
 22 段付き部
 23,23A,23B,23C,23D,23E 保持器(転がり軸受用保持器)
 25A,25B 被案内部
 26A,26B 被案内部
 27 案内面
 31 面取り部
 33A,33B 溝部
 37 エッジ逃し部
 41 外側金型
 43 スライドコア
100,110,120 アンギュラ玉軸受(転がり軸受)
 D 内周面の径方向長さ(円筒面の径方向厚み)
11 outer ring raceway surface 13 outer ring 15 inner ring raceway surface 17 inner ring 19 ball (rolling element)
21 pocket 21a taper surface 22 stepped portion 23, 23A, 23B, 23C, 23D, 23E cage (roller bearing cage)
25A, 25B Guided portion 26A, 26B Guided portion 27 Guide surface 31 Chamfered portion 33A, 33B Groove portion 37 Edge relief portion 41 Outer mold 43 Slide core 100, 110, 120 Angular ball bearing (rolling bearing)
D Radial length of inner peripheral surface (radial thickness of cylindrical surface)

Claims (15)

  1.  転がり軸受の内輪と外輪との間に配置された合成樹脂製の転がり軸受用保持器であって、
     外径面から径方向外側に突出する複数の被案内部が前記外径面の周方向に沿って設けられ、
     前記被案内部は、前記外輪に摺接可能に突出して形成された案内面と、該案内面の縁部に形成された面取り部と、前記案内面の一部に軸方向に沿って形成された溝部と、を備え、
     前記案内面及び前記面取り部は、算術平均粗さRaが1.0~9.8μm、最大高さRtが10.1~102.9μmの表面性状を有し、
     パーティングラインが、前記案内面より径方向内側に設けられることを特徴とする転がり軸受用保持器。
    A rolling bearing cage made of synthetic resin disposed between an inner ring and an outer ring of a rolling bearing,
    A plurality of guided portions protruding radially outward from the outer diameter surface are provided along the circumferential direction of the outer diameter surface,
    The guided portion is formed along the axial direction on a guide surface formed so as to be slidably contacted with the outer ring, a chamfered portion formed on an edge of the guide surface, and a part of the guide surface. A groove portion,
    The guide surface and the chamfered portion have a surface property with an arithmetic average roughness Ra of 1.0 to 9.8 μm and a maximum height Rt of 10.1 to 102.9 μm.
    A rolling bearing retainer, wherein a parting line is provided radially inward from the guide surface.
  2.  前記パーティングラインは、前記溝部と保持器端面のいずれかに設けられることを特徴とする請求項1に記載の転がり軸受用保持器。 The rolling bearing retainer according to claim 1, wherein the parting line is provided on either the groove or the end face of the retainer.
  3.  前記面取り部は、前記案内面の前記縁部に、接線方向に接続される曲面を有することを特徴とする請求項1又は請求項2に記載の転がり軸受用保持器。 The rolling bearing retainer according to claim 1 or 2, wherein the chamfered portion has a curved surface connected in a tangential direction to the edge portion of the guide surface.
  4.  前記面取り部は、前記案内面の前記縁部に接続され、前記案内面との成す角が20°以下の傾斜面を有することを特徴とする請求項1又は請求項2に記載の転がり軸受用保持器。 3. The rolling bearing according to claim 1, wherein the chamfered portion is connected to the edge portion of the guide surface and has an inclined surface having an angle of 20 ° or less with the guide surface. Cage.
  5.  前記外輪の外輪内周面と外輪軌道面との境界である軌道面エッジと対面する領域に、径方向内側に窪む逃し溝が形成されたことを特徴とする請求項1乃至請求項4のいずれか一項に記載の転がり軸受用保持器。 5. A relief groove recessed radially inward is formed in a region facing a raceway surface edge that is a boundary between an outer ring inner peripheral surface of the outer ring and an outer ring raceway surface. The rolling bearing retainer according to any one of the above.
  6.  保持器表層に、保持器表面からの厚みが0.1~30μmである、強化繊維を含まない非晶質層が形成されていることを特徴とする請求項1乃至請求項5のいずれか一項に記載の転がり軸受用保持器。 6. The amorphous layer which does not contain reinforcing fibers and has a thickness of 0.1 to 30 μm from the surface of the cage is formed on the surface layer of the cage. The rolling bearing retainer according to item.
  7.  請求項1乃至請求項6のいずれか一項に記載の転がり軸受用保持器を、成形用金型を用いて成形する転がり軸受用保持器の製造方法であって、
     前記案内面と前記面取り部の少なくとも一方に、前記成形用金型の金型表面に施された加工面の形状を転写することを特徴とする転がり軸受用保持器の製造方法。
    A method for manufacturing a rolling bearing cage, wherein the rolling bearing cage according to any one of claims 1 to 6 is molded using a molding die.
    A method for manufacturing a rolling bearing retainer, wherein the shape of a processed surface provided on a mold surface of the molding die is transferred to at least one of the guide surface and the chamfered portion.
  8.  転がり軸受の内輪軌道と外輪軌道との間に配置される複数の転動体を転動自在に保持するポケットが形成された転がり軸受用保持器であって、
     前記ポケットの内周面は、算術平均粗さRaが1.0~9.8μm、最大高さRtが10.1~102.9μmの表面性状を有し、
     前記ポケットの内周面は、保持器径方向に沿った円筒面であり、前記円筒面の保持器径方向の厚みが3.5mm以下であることを特徴とする転がり軸受用保持器。
    A rolling bearing retainer in which a pocket for freely rolling a plurality of rolling elements arranged between an inner ring raceway and an outer ring raceway of a rolling bearing is formed,
    The inner peripheral surface of the pocket has a surface property with an arithmetic average roughness Ra of 1.0 to 9.8 μm and a maximum height Rt of 10.1 to 102.9 μm.
    The inner circumferential surface of the pocket is a cylindrical surface along the radial direction of the cage, and the thickness of the cylindrical surface in the radial direction of the cage is 3.5 mm or less.
  9.  転がり軸受の内輪軌道と外輪軌道との間に配置される複数の転動体を転動自在に保持するポケットが形成された転がり軸受用保持器であって、
     前記ポケットの内周面は、算術平均粗さRaが1.0~9.8μm、最大高さRtが10.1~102.9μmの表面性状を有し、内周側から外周側に向けて拡径するテーパ面であることを特徴とする転がり軸受用保持器。
    A rolling bearing retainer in which a pocket for freely rolling a plurality of rolling elements arranged between an inner ring raceway and an outer ring raceway of a rolling bearing is formed,
    The inner peripheral surface of the pocket has a surface property with an arithmetic average roughness Ra of 1.0 to 9.8 μm and a maximum height Rt of 10.1 to 102.9 μm, from the inner peripheral side toward the outer peripheral side. A cage for a rolling bearing, characterized by a tapered surface that expands in diameter.
  10.  保持器表層に、保持器表面からの厚みが0.1~30μmである、強化繊維を含まない非晶質層が形成されていることを特徴とする請求項8又は請求項9に記載の転がり軸受用保持器。 The rolling according to claim 8 or 9, wherein an amorphous layer containing no reinforcing fibers and having a thickness from the surface of the cage of 0.1 to 30 µm is formed on the surface of the cage. Bearing cage.
  11.  保持器内径側又は保持器外径側の少なくとも一方に、前記ポケットの内径を拡縮する段付き部を有する請求項8乃至請求項10のいずれか一項に記載の転がり軸受用保持器。 The rolling bearing cage according to any one of claims 8 to 10, further comprising a stepped portion that expands or contracts the inner diameter of the pocket on at least one of the cage inner diameter side and the cage outer diameter side.
  12.  請求項8乃至請求項11のいずれか一項に記載の転がり軸受用保持器を、成形用金型を用いて射出成形する転がり軸受用保持器の製造方法であって、
     前記ポケットを、前記成形用金型のスライドコアにより形成することを特徴とする転がり軸受用保持器の製造方法。
    A method for manufacturing a rolling bearing cage, wherein the rolling bearing cage according to any one of claims 8 to 11 is injection-molded using a molding die.
    A method for manufacturing a rolling bearing cage, wherein the pocket is formed by a slide core of the molding die.
  13.  前記ポケットの内径面に、前記成形用金型の金型表面に施された加工面の形状を転写することを特徴とする請求項12に記載の転がり軸受用保持器の製造方法。 The method for manufacturing a rolling bearing cage according to claim 12, wherein the shape of the processed surface provided on the mold surface of the molding die is transferred to the inner diameter surface of the pocket.
  14.  前記ポケットの内周面を形成する前記スライドコアの表面を、ショットピーニング、放電加工、エッチングのいずれかによって形成することを特徴とする請求項12又は請求項13に記載の転がり軸受用保持器の製造方法。 14. The rolling bearing cage according to claim 12, wherein the surface of the slide core that forms the inner peripheral surface of the pocket is formed by any one of shot peening, electric discharge machining, and etching. Production method.
  15.  請求項1乃至請求項6、請求項8乃至請求項11のいずれか一項に記載の転がり軸受用保持器を備える転がり軸受。 A rolling bearing comprising the rolling bearing cage according to any one of claims 1 to 6 and claims 8 to 11.
PCT/JP2016/053351 2015-02-04 2016-02-04 Rolling bearing retainer, rolling bearing, and method for manufacturing rolling bearing retainer WO2016125855A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/548,487 US10422381B2 (en) 2015-02-04 2016-02-04 Rolling bearing retainer, rolling bearing, and method for manufacturing rolling bearing retainer
CN201680008792.4A CN107250582B (en) 2015-02-04 2016-02-04 The manufacturing method of retainer for rolling bearing and rolling bearing and retainer for rolling bearing
KR1020177021769A KR102018966B1 (en) 2015-02-04 2016-02-04 Rolling bearing retainer, rolling bearing, and method for manufacturing rolling bearing retainer
EP16746686.1A EP3255293B1 (en) 2015-02-04 2016-02-04 Rolling bearing retainer, rolling bearing, and method for manufacturing rolling bearing retainer

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2015-020737 2015-02-04
JP2015020737 2015-02-04
JP2015-020736 2015-02-04
JP2015020736 2015-02-04
JP2016-017837 2016-02-02
JP2016017836A JP6686482B2 (en) 2015-02-04 2016-02-02 Rolling bearing cage, rolling bearing, and rolling bearing cage manufacturing method
JP2016017837A JP6686483B2 (en) 2015-02-04 2016-02-02 Rolling bearing cage, rolling bearing, and rolling bearing cage manufacturing method
JP2016-017836 2016-02-02

Publications (1)

Publication Number Publication Date
WO2016125855A1 true WO2016125855A1 (en) 2016-08-11

Family

ID=56564194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053351 WO2016125855A1 (en) 2015-02-04 2016-02-04 Rolling bearing retainer, rolling bearing, and method for manufacturing rolling bearing retainer

Country Status (1)

Country Link
WO (1) WO2016125855A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107314031A (en) * 2017-07-20 2017-11-03 洛阳汇工轴承科技有限公司 New angular contact ball bearing and its processing technology
WO2018199285A1 (en) * 2017-04-28 2018-11-01 Ntn株式会社 Angular ball bearing retainer and angular ball bearing
WO2024088464A1 (en) * 2022-10-24 2024-05-02 Schaeffler Technologies AG & Co. KG Angular contact ball bearing

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000065067A (en) * 1998-08-13 2000-03-03 Nippon Seiko Kk Split type cage of rolling bearing
JP2001227548A (en) * 2000-02-17 2001-08-24 Nsk Ltd Cage for rolling bearing
JP2002144380A (en) * 2000-11-09 2002-05-21 Nsk Ltd Roller bearing
JP2002323048A (en) * 2000-10-27 2002-11-08 Nsk Ltd Bearing device and main spindle of machine tool
JP2005090657A (en) * 2003-09-18 2005-04-07 Nsk Ltd Retainer for rolling bearing and rolling bearing having the built-in retainer
JP2005256893A (en) * 2004-03-10 2005-09-22 Nsk Ltd Rolling bearing for turbo charger
JP2014005848A (en) * 2012-06-21 2014-01-16 Nsk Ltd Ball bearing and spindle device for machine tool
JP2014095469A (en) * 2012-10-09 2014-05-22 Nsk Ltd Rolling bearing

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000065067A (en) * 1998-08-13 2000-03-03 Nippon Seiko Kk Split type cage of rolling bearing
JP2001227548A (en) * 2000-02-17 2001-08-24 Nsk Ltd Cage for rolling bearing
JP2002323048A (en) * 2000-10-27 2002-11-08 Nsk Ltd Bearing device and main spindle of machine tool
JP2002144380A (en) * 2000-11-09 2002-05-21 Nsk Ltd Roller bearing
JP2005090657A (en) * 2003-09-18 2005-04-07 Nsk Ltd Retainer for rolling bearing and rolling bearing having the built-in retainer
JP2005256893A (en) * 2004-03-10 2005-09-22 Nsk Ltd Rolling bearing for turbo charger
JP2014005848A (en) * 2012-06-21 2014-01-16 Nsk Ltd Ball bearing and spindle device for machine tool
JP2014095469A (en) * 2012-10-09 2014-05-22 Nsk Ltd Rolling bearing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018199285A1 (en) * 2017-04-28 2018-11-01 Ntn株式会社 Angular ball bearing retainer and angular ball bearing
JPWO2018199285A1 (en) * 2017-04-28 2020-06-11 Ntn株式会社 Angular ball bearing cage and angular ball bearing
JP7142629B2 (en) 2017-04-28 2022-09-27 Ntn株式会社 Angular contact ball bearing cage and angular contact ball bearing
CN107314031A (en) * 2017-07-20 2017-11-03 洛阳汇工轴承科技有限公司 New angular contact ball bearing and its processing technology
WO2024088464A1 (en) * 2022-10-24 2024-05-02 Schaeffler Technologies AG & Co. KG Angular contact ball bearing

Similar Documents

Publication Publication Date Title
US10422381B2 (en) Rolling bearing retainer, rolling bearing, and method for manufacturing rolling bearing retainer
WO2014163177A1 (en) Tapered roller bearing-use resin made cage and tapered roller bearing provided with such cage
JP5604896B2 (en) Angular contact ball bearings
JP6686483B2 (en) Rolling bearing cage, rolling bearing, and rolling bearing cage manufacturing method
US10221891B2 (en) Taper roller bearing
JP2016145644A5 (en)
JP2014095469A (en) Rolling bearing
WO2016125855A1 (en) Rolling bearing retainer, rolling bearing, and method for manufacturing rolling bearing retainer
WO2018084219A1 (en) Retainer and rolling bearing with same
US10352358B2 (en) Taper roller bearing
JP6686482B2 (en) Rolling bearing cage, rolling bearing, and rolling bearing cage manufacturing method
US10539184B2 (en) Taper roller bearing
JP2005201457A (en) Cylindrical roller bearing
WO2013080824A1 (en) Roller bearing
US10138939B2 (en) Taper Roller Bearing
JP2014101946A (en) Rolling bearing
JP6529209B2 (en) Angular contact ball bearings
US10215233B2 (en) Taper roller bearing
US20170191528A1 (en) Ball bearing cage
US10408266B2 (en) Cage for taper roller bearing and taper roller bearing
JP2008175239A (en) Ball bearing crown cage and ball bearing
JP4387162B2 (en) Cylindrical roller bearing
JP2009257593A (en) Cylindrical roller bearing
JP3700780B2 (en) Cylindrical roller bearing
US20200049199A1 (en) Resin holder for cylindrical roller bearings and cylindrical roller bearing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746686

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016746686

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177021769

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15548487

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE