JP2016150883A - Bi2O3-TeO2-SiO2-WO3-BASED GLASS - Google Patents

Bi2O3-TeO2-SiO2-WO3-BASED GLASS Download PDF

Info

Publication number
JP2016150883A
JP2016150883A JP2015030121A JP2015030121A JP2016150883A JP 2016150883 A JP2016150883 A JP 2016150883A JP 2015030121 A JP2015030121 A JP 2015030121A JP 2015030121 A JP2015030121 A JP 2015030121A JP 2016150883 A JP2016150883 A JP 2016150883A
Authority
JP
Japan
Prior art keywords
glass
teo
sio
mass
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015030121A
Other languages
Japanese (ja)
Other versions
JP6531421B2 (en
Inventor
潤 濱田
Jun Hamada
潤 濱田
貴久 木田
Takahisa Kida
貴久 木田
誠通 柳沢
Shigemichi Yanagisawa
誠通 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2015030121A priority Critical patent/JP6531421B2/en
Priority to CN201610089951.XA priority patent/CN105906199A/en
Priority to TW105104999A priority patent/TWI614223B/en
Publication of JP2016150883A publication Critical patent/JP2016150883A/en
Application granted granted Critical
Publication of JP6531421B2 publication Critical patent/JP6531421B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/07Glass compositions containing silica with less than 40% silica by weight containing lead
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a glass having flowability available for a fire through method as a conductive paste for electrode formation of a crystalline Si solar cell and capable of suppressing corrosion of an N type silicone layer by floating glass.SOLUTION: There is provided a BiO-TeO-SiO-WO-based glass containing BiO, TeO, SiOand WOas essential components with BiOof 30 to 60, TeOof 1 to 40, SiOof 1 to 20 and WOof 1 to 20 by mass% in components of the glass.SELECTED DRAWING: Figure 1

Description

本発明は、Bi−TeO−SiO−WO系ガラスに関するものであり、特に、該ガラスを用いた結晶Si太陽電池に関するものである。 The present invention relates to Bi 2 O 3 —TeO 2 —SiO 2 —WO 3 -based glass, and particularly to a crystalline Si solar cell using the glass.

一般的な結晶Si太陽電池は、p型シリコン基板の一方の面にn型シリコン層を設けた構造の半導体であり、そのn型シリコン層側を受光面とし、該受光面側表面に窒化珪素膜などの反射防止膜を介して、n型シリコン層と接続した表面電極を設けている。さらに、上記のp型シリコン基板のもう一方の面に裏面電極を設け、半導体のpn接合により生じた電力を取り出している。上記の反射防止膜は受光効率を向上させるために設けられているが、一方で比較的高い電気抵抗値を持つことから、通常は表面電極とn型シリコン層との接触部分について、該反射防止膜をエッチングや熔融により除去し、n型シリコン層と表面電極との接続を良好にする操作が行われている。   A general crystalline Si solar cell is a semiconductor having a structure in which an n-type silicon layer is provided on one surface of a p-type silicon substrate. The n-type silicon layer side serves as a light-receiving surface, and silicon nitride is formed on the light-receiving surface side surface. A surface electrode connected to the n-type silicon layer is provided through an antireflection film such as a film. Further, a back electrode is provided on the other surface of the p-type silicon substrate, and the electric power generated by the semiconductor pn junction is taken out. The antireflection film is provided to improve the light receiving efficiency. However, since it has a relatively high electric resistance value, the antireflection film is usually applied to the contact portion between the surface electrode and the n-type silicon layer. An operation for removing the film by etching or melting to improve the connection between the n-type silicon layer and the surface electrode is performed.

上記の反射防止膜を除去する方法としてファイアースルー法と呼ばれる方法が用いられている。ファイアースルー法とは、表面電極の電極材料を直接反射防止膜上に印刷した後、焼成を行うことにより焼成時の熱で該反射防止膜を熔融・除去する方法であり、該電極材料として、銀粉末、有機ビヒクル、及びガラス粉末材料(ガラスフリットなど)からなる導電性ペーストが好適に利用されている(特許文献1、2)。上記のファイアースルー法は、上記電極材料の組成や焼成温度によって性能が左右されるが、特にガラス粉末材料の組成に影響されることが分かっている。これは、導電性ペーストの焼成時にガラス粉末材料が溶融して反射防止膜を除去するためである。ファイアースルー法は熱を利用することから、半導体の損傷を抑制したり作業効率を向上させたりする為に、使用するガラス粉末材料の軟化点を低くすることが要求されており、例えば特許文献3には、LiOを多量に含有させ、ガラスを低軟化点にした鉛を含有するガラス粉末材料が開示されている。ただし、LiO成分を多量に含む場合、Liがn型シリコン層に拡散してしまい、結果的に太陽電池の性能を低下させる可能性がある。 As a method for removing the antireflection film, a method called a fire-through method is used. The fire-through method is a method in which the electrode material of the surface electrode is directly printed on the antireflection film, and then the antireflection film is melted and removed by heat at the time of firing by performing firing. A conductive paste made of silver powder, an organic vehicle, and a glass powder material (such as glass frit) is suitably used (Patent Documents 1 and 2). The performance of the fire-through method depends on the composition of the electrode material and the firing temperature, but it has been found that it is particularly affected by the composition of the glass powder material. This is because the glass powder material melts during the firing of the conductive paste to remove the antireflection film. Since the fire-through method uses heat, it is required to lower the softening point of the glass powder material to be used in order to suppress damage to the semiconductor and improve work efficiency. Discloses a glass powder material containing lead in which a large amount of Li 2 O is contained and the glass has a low softening point. However, when a large amount of Li 2 O component is contained, Li diffuses into the n-type silicon layer, and as a result, the performance of the solar cell may be reduced.

ここで、ガラス粉末材料としては、従来、低温で封着や被覆が可能なガラスとして知られている粉末材料が使用されている。このようなガラス粉末材料として、成分中に鉛を含有するPbO−B系ガラス、PbO−B−ZnO系ガラス、PbO−B−Bi系ガラス等が広く知られている。 Here, as the glass powder material, conventionally, a powder material known as glass that can be sealed and coated at a low temperature is used. Examples of such glass powder materials include PbO—B 2 O 3 based glass, PbO—B 2 O 3 —ZnO based glass, PbO—B 2 O 3 —Bi 2 O 3 based glass containing lead in the components. Widely known.

例えば、特許文献4には、400〜600℃で封着可能なPbO−B−ZnO−TeO系ガラス粉末材料が開示されている。また、特許文献5には、500℃以下で封着可能なPbO、B、及びTeOを主成分とするガラス粉末材料が開示されており、該ガラス粉末材料はTeOを成分中に含有させることによりガラスを安定化させている。また、特許文献6には、400℃以下で封着可能なPbO−B−Bi系ガラス粉末材料が開示されており、該ガラス粉末材料はTeOを成分中に含有させることによりガラスの耐水性を向上させている。 For example, Patent Document 4 discloses a PbO—B 2 O 3 —ZnO—TeO 2 glass powder material that can be sealed at 400 to 600 ° C. Patent Document 5 discloses a glass powder material mainly composed of PbO, B 2 O 3 , and TeO 2 that can be sealed at 500 ° C. or less, and the glass powder material contains TeO 2 in its component. The glass is stabilized by being contained in the glass. Patent Document 6 discloses a PbO—B 2 O 3 —Bi 2 O 3 -based glass powder material that can be sealed at 400 ° C. or lower, and this glass powder material contains TeO 2 in its components. This improves the water resistance of the glass.

特開昭62−49676号公報JP 62-49676 A 特開2001−313400号公報JP 2001-313400 A 特開2012−015409号公報JP 2012-015409 A 特開昭62−36040号公報Japanese Patent Laid-Open No. 62-36040 特開平7−53237号公報JP-A-7-53237 特開平8−253344号公報JP-A-8-253344

前述したように、ファイアースルー法に適したガラス粉末材料として軟化点が低いものが求められている。しかしその一方で、Bi−TeO系やPbO−TeO系など過度に軟化点が低いガラス粉末材料を用いた場合、流動したガラスが反射防止膜を除去するだけでなくn型シリコン層まで侵食する恐れがあることがわかった。最近は変換効率向上を目的としてn型シリコン層は薄くなる傾向にあることから、流動したガラスによる侵食がより顕著になるという問題がある。 As described above, a glass powder material suitable for the fire-through method is required to have a low softening point. However, on the other hand, when a glass powder material having an excessively low softening point, such as Bi 2 O 3 —TeO 2 system or PbO—TeO 2 system, is used, not only the flowing glass removes the antireflection film but also n-type silicon. It turns out that there is a risk of erosion to the layer. Recently, the n-type silicon layer tends to be thin for the purpose of improving the conversion efficiency, so that there is a problem that the erosion by the flowing glass becomes more remarkable.

従って、本発明は結晶Si太陽電池の電極形成用の導電性ペーストとしてファイアースルー法に利用可能な流動性を有し、流動したガラスによるn型シリコン層の侵食を抑制可能なガラスを得ることを目的とした。   Therefore, the present invention is to obtain a glass having fluidity that can be used in the fire-through method as a conductive paste for forming an electrode of a crystalline Si solar cell and capable of suppressing erosion of the n-type silicon layer by the flowing glass. It was aimed.

一般的に、前述したファイアースルー法によって反射防止膜を除去する際、電極材料を800℃以上に加熱し、電極材料中のガラス粉末材料を焼成させる。粉末材料に用いられるガラスはこの焼成時の流動性が高いことが求められるが、一方で流動性に優れたガラスは反射防止膜を除去した後に更に流動を続け、n型シリコン層を侵食してしまう。上記の知見に基づいて本発明者らが鋭意検討を行ったところ、成分中にWOとSiOを含有させたガラスを用いると、焼成時の流動性とn型シリコン層の侵食の抑制という、一見相反する2つの性質を両立させることが可能となることがわかった。 Generally, when removing the antireflection film by the above-described fire-through method, the electrode material is heated to 800 ° C. or higher, and the glass powder material in the electrode material is fired. The glass used for the powder material is required to have high fluidity at the time of firing. On the other hand, the glass having excellent fluidity continues to flow after removing the antireflection film, and erodes the n-type silicon layer. End up. Based on the above findings, the present inventors have conducted intensive studies. As a result, when glass containing WO 3 and SiO 2 is used in the components, fluidity during firing and suppression of erosion of the n-type silicon layer can be said. It has been found that it is possible to reconcile two seemingly contradictory properties.

従って本発明は、Bi、TeO、SiO、及びWOを必須成分とするBi−TeO−SiO−WO系ガラスであって、該ガラスの成分中に質量%で、Biを30〜60、TeOを1〜40、SiOを1〜20、及びWOを1〜20含有することを特徴とするBi−TeO−SiO−WO系ガラスである。 Accordingly, the present invention is a Bi 2 O 3 —TeO 2 —SiO 2 —WO 3 -based glass containing Bi 2 O 3 , TeO 2 , SiO 2 , and WO 3 as essential components, wherein Bi 2 O 3 —TeO 2 —SiO 2 containing 30 to 60 Bi 2 O 3 , 1 to 40 TeO 2 , 1 to 20 SiO 2, and 1 to 20 WO 3 -WO is a 3-based glass.

本発明のBi−TeO−SiO−WO系ガラスは、Bi、TeO、SiO、及びWOを必須成分とするガラスである。また、当該4成分の必須成分の他に任意成分を合計0〜25質量%の範囲内となるように含有してもよい。 The Bi 2 O 3 —TeO 2 —SiO 2 —WO 3 -based glass of the present invention is a glass containing Bi 2 O 3 , TeO 2 , SiO 2 , and WO 3 as essential components. Moreover, you may contain an arbitrary component other than the said four essential components so that it may become in the range of 0-25 mass% in total.

上記の任意成分としては、ZnO、PbO、B、Al、RO成分(KO、NaO、及びLiO)、及びRO成分(MgO、CaO、SrO、及びBaO)等のガラス軟化点やガラスの安定性を調整する成分や、V、Sb、ZrO、Fe、CuO、TiO、In、Bi、LaO、CeO、NbO、及びSnO等のガラスの流動性や安定性、表面電極のオーミック接触を向上させる事を目的とした成分が挙げられる。 The optional components of the, ZnO, PbO, B 2 O 3, Al 2 O 3, R 2 O component (K 2 O, Na 2 O , and Li 2 O), and RO component (MgO, CaO, SrO, And components for adjusting the glass softening point and glass stability such as BaO), V 2 O 5 , Sb 2 O 5 , ZrO 2 , Fe 2 O 3 , CuO, TiO 2 , In 2 O 3 , Bi 2 O. 3 , components such as LaO, CeO, NbO, and SnO 2 that are intended to improve the fluidity and stability of the glass and the ohmic contact of the surface electrode.

また、上記の任意成分のうち、結晶Si太陽電池の電極形成用の電極材料として用いる場合は、前述したように太陽電池の変換効率を低下させないために、RO成分を極力含まないガラス組成とするのが好ましく、例えば10質量%以下とするのが好ましい。また、Bを含有させると、n型シリコン層へアクセプタ元素として作用することがあり、結果的に太陽電池の性能を低下させてしまう傾向があることから、RO成分同様に極力含有しないことが好ましく、例えば10質量%以下とするのが好ましい。 In addition, among the optional components mentioned above, when used as an electrode material for electrode formation of the crystalline Si solar cells, in order not to lower the conversion efficiency of the solar cell as described above, a glass composition that does not include as much as possible the R 2 O component For example, it is preferably 10% by mass or less. Further, the inclusion of B 2 O 3, can act as an acceptor element into the n-type silicon layer, since eventually tends to cause lowering the performance of the solar cell, R 2 O component similarly as possible It is preferable not to contain, for example, it is preferable to set it as 10 mass% or less.

本発明は結晶Si太陽電池の電極形成用の導電性ペーストとして利用可能な流動性を有し、n型シリコン層の侵食を抑制可能なガラスを得ることが可能となった。   The present invention makes it possible to obtain a glass having fluidity that can be used as a conductive paste for forming an electrode of a crystalline Si solar cell and capable of suppressing erosion of an n-type silicon layer.

結晶Si太陽電池の断面を示す模式図である。It is a schematic diagram which shows the cross section of a crystalline Si solar cell.

本発明は、Bi、TeO、SiO、及びWOを必須成分とするBi−TeO−SiO−WO系ガラスであって、該ガラスの成分中に質量%で、Biを30〜60、TeOを1〜40、SiOを1〜20、及びWOを1〜20含有することを特徴とするBi−TeO−SiO−WO系ガラスである。 The present invention is a Bi 2 O 3 —TeO 2 —SiO 2 —WO 3 -based glass containing Bi 2 O 3 , TeO 2 , SiO 2 , and WO 3 as essential components, and the mass% in the components of the glass Bi 2 O 3 —TeO 2 —SiO 2 — containing 30 to 60 Bi 2 O 3 , 1 to 40 TeO 2 , 1 to 20 SiO 2, and 1 to 20 WO 3 WO 3 glass.

本明細書における「流動性」とは、後述する実施例において、ガラス粉末材料のプレス成形体(2mm×10mmφ)を、890℃で30秒間焼成した際、該焼成後のプレス成形体の外径が13mm以上に広がっているものを流動性が高いとした。   In this specification, “fluidity” refers to the outer diameter of a press-molded body after firing when a glass powder material press-molded body (2 mm × 10 mmφ) is fired at 890 ° C. for 30 seconds. The fluidity is considered to be high if it is spread over 13 mm.

また、n型シリコン層の侵食を抑制可能なBi−TeO−SiO−WO系ガラスを評価したところ、いずれのガラスも前述した流動性の評価後に結晶化が生じていることがわかった。この結晶化は焼成の過程で徐々に生じると予想される。したがって、流動性の評価試験後に結晶化が生じているものをn型シリコン層の侵食を抑制可能であるとした。尚、n型シリコン層の侵食を抑制したメカニズムは定かではないが、上記で見られた結果により、一定時間加熱した後に結晶化することによってガラスの流動が停止するためと推察される。 Further, when Bi 2 O 3 —TeO 2 —SiO 2 —WO 3 -based glass capable of suppressing erosion of the n-type silicon layer was evaluated, crystallization occurred in any glass after the above-described evaluation of fluidity. I understood. This crystallization is expected to occur gradually during the firing process. Therefore, it is assumed that erosion of the n-type silicon layer can be suppressed when crystallization occurs after the fluidity evaluation test. Although the mechanism that suppresses the erosion of the n-type silicon layer is not clear, it is presumed that the flow of the glass is stopped by crystallization after heating for a certain period of time based on the results seen above.

前記Bi−TeO−SiO−WO系ガラスを結晶Si太陽電池の電極材料として用いる場合、電極パターンの形成のし易さから、粉末状のガラス粉末材料として用いるのが望ましい。 When the Bi 2 O 3 —TeO 2 —SiO 2 —WO 3 -based glass is used as an electrode material of a crystalline Si solar cell, it is desirable to use it as a powdery glass powder material because of the ease of forming an electrode pattern.

上記のガラス粉末材料は、平均粒子径D50が5μm以下であることが好ましい。近年では、太陽光の入射面積を大きくする目的で電極パターンが高精細化されている。平均粒子径D50を5μm以下とすることで、より高精細な電極パターンが形成でき、その結果、太陽電池の光電変換効率が向上する。また、下限値は特に限定するものではないが、例えば0.1μm以上としてもよい。該ガラス粉末材料を上記範囲内とするために、乳鉢やボールミル、及びジェットミル方式の粉砕機等を用いてもよい。なお、本明細書の実施例では平均粒子径D50が上記の0.1〜5μmの範囲内に入るように粉砕を行った。平均粒子径は、日機装株式会社製マイクロトラックMT3000を用いて、レーザー回折・散乱法により測定した。具体的には、溶媒にガラス粉末材料を分散させた後、レーザー光を照射して得られる粒度分布の積算値50%における粒子径の値を平均粒子径D50とした。 The above glass powder material preferably has an average particle diameter D 50 is 5μm or less. In recent years, electrode patterns have been refined for the purpose of increasing the incident area of sunlight. By setting the average particle diameter D 50 and 5μm or less, more can high definition electrode pattern is formed, thereby improving the photoelectric conversion efficiency of the solar cell. The lower limit value is not particularly limited, but may be, for example, 0.1 μm or more. In order to bring the glass powder material into the above range, a mortar, a ball mill, a jet mill type pulverizer, or the like may be used. In the examples of the present specification, pulverization was performed so that the average particle diameter D50 was within the range of 0.1 to 5 μm. The average particle diameter was measured by a laser diffraction / scattering method using Microtrack MT3000 manufactured by Nikkiso Co., Ltd. Specifically, after the glass powder material is dispersed in a solvent, the value of the particle size in cumulative value of 50% of the particle size distribution obtained by irradiating the laser beam was defined as the average particle diameter D 50.

以下に本発明のBi−TeO−SiO−WO系ガラスの各成分について記載する。 The components of the Bi 2 O 3 —TeO 2 —SiO 2 —WO 3 glass of the present invention are described below.

Biはガラス骨格を構成する成分のひとつであり、ガラスに流動性を与え反射防止膜を除去する効果(以下「ファイアースルー性」と記載することもある)を高める成分であり、ガラス中に30〜60質量%で含有させる。30質量%未満ではその作用を発揮し得ず、60質量%を超えるとガラス化範囲を外れ、ガラス原料の溶融時に結晶化しやすくなる。好ましくは下限値を35質量%以上、上限値を55質量%以下としてもよい。 Bi 2 O 3 is one of the components constituting the glass skeleton, and is a component that improves the effect of removing the antireflection film by imparting fluidity to the glass (hereinafter sometimes referred to as “fire-through”). It is made to contain in 30-60 mass%. If the amount is less than 30% by mass, the effect cannot be exhibited. If the amount exceeds 60% by mass, the vitrification range is removed, and the glass raw material is easily crystallized. Preferably, the lower limit may be 35% by mass or more, and the upper limit may be 55% by mass or less.

TeOは、Biと同様にガラスに流動性を与えファイアースルー性を高める成分であり、ガラス中に1〜40質量%で含有させる。また、焼成時に銀などの導電性材料を良好に溶かし、さらには、n型シリコン層との界面近傍で導電性材料の再結晶化を促進する成分である。これにより、表面電極とn型シリコン層との接触抵抗が下がり光電変換効率が向上する。1質量%未満ではその作用を発揮し得ず、40質量%を超えるとガラス化範囲を外れ、ガラス原料の溶融時に結晶化しやすくなる。好ましくは下限値を3質量%以上、より好ましくは5質量%以上、上限値を35質量%以下としてもよい。 TeO 2 is a component that imparts fluidity to glass and enhances the fire-through property in the same manner as Bi 2 O 3, and is contained in the glass at 1 to 40% by mass. Further, it is a component that dissolves a conductive material such as silver well during firing and further promotes recrystallization of the conductive material in the vicinity of the interface with the n-type silicon layer. Thereby, the contact resistance between the surface electrode and the n-type silicon layer is lowered, and the photoelectric conversion efficiency is improved. If the amount is less than 1% by mass, the effect cannot be exhibited. If the amount exceeds 40% by mass, the vitrification range is removed, and the glass material is easily crystallized when melted. The lower limit is preferably 3% by mass or more, more preferably 5% by mass or more, and the upper limit may be 35% by mass or less.

SiOはガラス骨格を構成する成分のひとつであり、焼成時の流動性を調整する成分である。これによりn型シリコン層の侵食を抑制することができる。本発明においては1〜20質量%の範囲で含有させる。1質量%未満ではガラスが不安定になり易く、20質量%を越えるとガラスの軟化点が上昇し本発明の目的に適さない。好ましくは下限値を2質量%以上、より好ましくは5質量%以上、上限値を18質量%以下、より好ましくは16質量%以下の範囲としてもよい。 SiO 2 is one of the components constituting the glass skeleton, and is a component that adjusts the fluidity during firing. Thereby, erosion of the n-type silicon layer can be suppressed. In this invention, it is made to contain in 1-20 mass%. If it is less than 1% by mass, the glass tends to be unstable, and if it exceeds 20% by mass, the softening point of the glass is increased, which is not suitable for the purpose of the present invention. Preferably, the lower limit value may be 2% by mass or more, more preferably 5% by mass or more, and the upper limit value may be 18% by mass or less, more preferably 16% by mass or less.

WOは焼成時に結晶化を促進させる成分のひとつであり、1〜20質量%の範囲で含有させる。焼成時に反射防止膜を除去した後、ガラスに含有されるBiとの間で結晶化を引き起こす。1質量%未満ではその作用を発揮し得ず、また、20質量%を超えるとガラスが不安定となる。好ましくは、下限値を2質量%以上、より好ましくは5質量%以上、上限値を18質量%以下、より好ましくは16質量%以下としてもよい。 WO 3 is one of the components that promote crystallization during firing, and is contained in the range of 1 to 20% by mass. After removing the antireflection film at the time of firing, crystallization is caused with Bi 2 O 3 contained in the glass. If it is less than 1% by mass, the effect cannot be exhibited, and if it exceeds 20% by mass, the glass becomes unstable. Preferably, the lower limit may be 2% by mass or more, more preferably 5% by mass or more, and the upper limit may be 18% by mass or less, more preferably 16% by mass or less.

前述したように、本発明のガラス粉末材料はBi、TeO、SiO、及びWOを必須成分とするBi−TeO−SiO−WO系ガラスであり、BiとTeOを主成分とすることで高いファイアースルー性を有し、ここにSiO及びWOを加えることによってn型シリコン層の侵食の抑制を可能としたものである。当該4成分の必須成分の他に任意成分を0〜25質量%の範囲内となるように含有してもよい。 As described above, the glass powder material of the present invention is Bi 2 O 3 —TeO 2 —SiO 2 —WO 3 -based glass containing Bi 2 O 3 , TeO 2 , SiO 2 , and WO 3 as essential components. By having 2 O 3 and TeO 2 as main components, it has high fire-through properties, and by adding SiO 2 and WO 3 thereto, erosion of the n-type silicon layer can be suppressed. You may contain an arbitrary component other than the said 4 essential component so that it may exist in the range of 0-25 mass%.

上記の任意成分としては、前述したように、ZnO、PbO、B、Al、RO成分(KO、NaO、及びLiO)、RO成分(MgO、CaO、SrO、及びBaO)、V、Sb、ZrO、Fe、CuO、TiO、In、Bi、LaO、CeO、NbO、及びSnO等が挙げられる。 As described above, as described above, ZnO, PbO, B 2 O 3 , Al 2 O 3 , R 2 O components (K 2 O, Na 2 O, and Li 2 O), RO components (MgO, CaO, SrO, and BaO), V 2 O 5, Sb 2 O 5, ZrO 2, Fe 2 O 3, CuO, TiO 2, In 2 O 3, Bi 2 O 3, LaO, CeO, NbO, and SnO 2 Etc.

また、本発明の好適な実施形態のひとつとして、任意成分を合計0.1〜25質量%含有し、該任意成分は、ZnO、PbO、B、Al、RO成分(KO、NaO、及びLiOからなる群から選ばれる少なくとも1つ)、及びRO成分(MgO、CaO、SrO、及びBaOからなる群から選ばれる少なくとも1つ)からなる群から選ばれる少なくとも1つであることが好ましい。 Furthermore, as one preferred embodiment of the present invention contains optional components total 0.1 to 25 wt%, the optional components, ZnO, PbO, B 2 O 3, Al 2 O 3, R 2 O component (From at least one selected from the group consisting of K 2 O, Na 2 O, and Li 2 O) and from the group consisting of RO components (at least one selected from the group consisting of MgO, CaO, SrO, and BaO) It is preferable that at least one selected.

ZnOはガラスの軟化点を下げる成分であり、ガラス組成中に0〜15質量%の範囲内で含有させてもよい。15質量%を超えるとガラス化範囲を外れ、ガラス原料の溶融時に結晶化しやすくなる。   ZnO is a component that lowers the softening point of the glass, and may be contained within the range of 0 to 15% by mass in the glass composition. If it exceeds 15% by mass, it will be out of the vitrification range and will be easily crystallized when the glass raw material is melted.

PbOはガラスに流動性を与えファイアースルー性を高める成分であり、ガラス組成中に0〜15質量%の範囲内で含有させてもよい。15質量%を超えると流動性が過度になりn型シリコン層を侵食しやすくなる。   PbO is a component that imparts fluidity to glass and enhances fire-through properties, and may be contained within a range of 0 to 15% by mass in the glass composition. If it exceeds 15% by mass, the fluidity becomes excessive and the n-type silicon layer is easily eroded.

はガラス骨格を構成する成分のひとつであり、ガラス組成中に含有させることにより安定したガラスを形成することができる。本発明においては0〜10質量%の範囲内で含有させてもよい。10質量%を超えると前述したとおり、n型シリコン層へアクセプタ元素として作用することがあり、結果的に光電変換効率が低下しやすくなる。 B 2 O 3 is one of the components constituting the glass skeleton, and a stable glass can be formed by being contained in the glass composition. In this invention, you may make it contain in 0-10 mass%. If it exceeds 10 mass%, as described above, it may act as an acceptor element to the n-type silicon layer, and as a result, the photoelectric conversion efficiency tends to decrease.

Alはガラスの結晶化を抑制する成分であり、ガラス組成中に10質量%以下の範囲内で含有させてもよい。10質量%を超えるとガラスの流動性が損なわれるため、本発明の目的には適さない。 Al 2 O 3 is a component that suppresses crystallization of glass, and may be contained in the glass composition within a range of 10% by mass or less. If it exceeds 10% by mass, the fluidity of the glass is impaired, so that it is not suitable for the purpose of the present invention.

O成分はガラスの軟化点を下げる成分であり、ガラス組成中に、LiO、NaO、及びKOの合計で0〜10質量%の範囲内で含有させてもよい。また、該RO成分は1成分でも複数成分を用いてもよい。一方で前述したように10質量%を超えるとアルカリ金属がn型シリコン層へ拡散してしまうため、本発明の目的には適さない。 The R 2 O component is a component that lowers the softening point of the glass, and may be contained within the range of 0 to 10% by mass in the total of Li 2 O, Na 2 O, and K 2 O in the glass composition. The R 2 O component may be a single component or a plurality of components. On the other hand, if it exceeds 10% by mass as described above, the alkali metal diffuses into the n-type silicon layer, which is not suitable for the purpose of the present invention.

RO成分はガラスの結晶化を抑制する成分であり、ガラス組成中に、MgO、CaO、SrO、及びBaOの合計で10質量%以下の範囲内で含有させてもよい。また、該RO成分は1成分でも複数成分を用いてもよい。10質量%を超えるとガラスの軟化点が上昇してしまうため、本発明の目的には適さない。   The RO component is a component that suppresses crystallization of glass, and may be contained in the glass composition within a range of 10% by mass or less in total of MgO, CaO, SrO, and BaO. The RO component may be a single component or a plurality of components. If it exceeds 10% by mass, the softening point of the glass will increase, so it is not suitable for the purpose of the present invention.

また、上記の成分の他にも、本発明のBi−TeO−SiO−WO系ガラスの性質を損なわない範囲内であれば、ガラスの流動性や安定性、オーミック接触を向上させる事等を目的として、ZrO、Fe、CuO、TiO、In、P、V、Sb、La、CeO、Nb、及びSnO等を任意成分として5質量%以下の範囲内で加えてもよい。 In addition to the above components, the fluidity, stability, and ohmic contact of the glass are within the range that does not impair the properties of the Bi 2 O 3 —TeO 2 —SiO 2 —WO 3 glass of the present invention. for the purpose of such increase, ZrO 2, Fe 2 O 3 , CuO, TiO 2, In 2 O 3, P 2 O 5, V 2 O 5, Sb 2 O 3, La 2 O 3, CeO 2, Nb 2 O 5, and SnO 2 or the like may be added within the range of 5 mass% or less as an optional component.

また、本発明の好適な実施形態のひとつは、ガラス内に導電性材料を含有するBi−TeO−SiO−WO系ガラスである。当該実施形態は、ガラス内部に導電性材料が分散している形態や、ガラス内部や表面に導電性材料の層が形成された形態等が挙げられる。具体的には、例えばガラス粉末材料と導電性材料とを混合した後に焼成することによって得ることが可能であり、電極部材等として用いることができる。 One of the preferred embodiments of the present invention is Bi 2 O 3 —TeO 2 —SiO 2 —WO 3 -based glass containing a conductive material in the glass. Examples of the embodiment include a form in which a conductive material is dispersed inside the glass and a form in which a layer of a conductive material is formed inside or on the surface of the glass. Specifically, it can be obtained, for example, by mixing a glass powder material and a conductive material and then firing, and can be used as an electrode member or the like.

上記の導電性材料は、導電性を有するものであれば特に限定されるものではないが、導電性に優れるAg、Au、Pd、Ni、Cu、Al及びPtからなる群から選ばれる少なくとも1種であるのが好ましい。   The conductive material is not particularly limited as long as it has conductivity, but at least one selected from the group consisting of Ag, Au, Pd, Ni, Cu, Al, and Pt, which is excellent in conductivity. Is preferred.

また、本発明の好適な実施形態のひとつは、前記ガラス粉末材料と、有機ビヒクルと、導電性材料とを含有することを特徴とする導電性ペーストである。   One of the preferred embodiments of the present invention is a conductive paste containing the glass powder material, an organic vehicle, and a conductive material.

導電性ペースト中に含まれるガラス粉末材料は、導電性材料100質量%に対して1〜20質量%の範囲内とするのが好ましい。20質量%を超えると電極の抵抗が高くなりすぎることがある。また、1質量%未満ではガラス成分が不足し緻密な電極を形成できないことがある。   The glass powder material contained in the conductive paste is preferably in the range of 1 to 20% by mass with respect to 100% by mass of the conductive material. If it exceeds 20% by mass, the resistance of the electrode may become too high. On the other hand, if it is less than 1% by mass, the glass component may be insufficient and a dense electrode may not be formed.

導電性ペースト中に使用する導電性材料は、前述した導電性材料と同様に、良好な導電性を有するAg、Au、Pd、Ni、Cu、Al及びPtからなる群から選ばれる少なくとも1種であるのが好ましい。また、導電性ペーストの塗布や焼成をし易くする為に、該導電性材料は粉末状の導電性粉末であるのが望ましい。   The conductive material used in the conductive paste is at least one selected from the group consisting of Ag, Au, Pd, Ni, Cu, Al and Pt having good conductivity, like the conductive material described above. Preferably there is. In order to facilitate the application and firing of the conductive paste, the conductive material is preferably a powdered conductive powder.

有機ビヒクルは、有機溶剤と有機バインダーとからなるものであり、導電性ペーストを加熱、焼成させた後に燃焼、分解、又は揮発等により消失するものである。尚、有機バインダーとはガラス粉末材料を導電性ペースト中に分散・担持させるものである。有機溶剤及び有機バインダーは適宜選択されればよく、加熱時に導電性ペーストから除去できれば特に限定するものではない。   The organic vehicle is composed of an organic solvent and an organic binder, and disappears by burning, decomposition, volatilization, or the like after the conductive paste is heated and fired. The organic binder is a glass powder material dispersed and supported in a conductive paste. The organic solvent and the organic binder may be appropriately selected and are not particularly limited as long as they can be removed from the conductive paste during heating.

また、本発明の好適な実施形態のひとつは、n型シリコン層の上に形成された反射防止膜上に、前記導電性ペーストを表面電極形成用材料として塗布する工程、該導電性ペーストを800℃以上に加熱する工程、及び前記反射防止膜をファイアースルー法により除去する工程を含有することを特徴とする結晶Si太陽電池の製造方法である。   One of preferred embodiments of the present invention is a step of applying the conductive paste as a surface electrode forming material on an antireflection film formed on an n-type silicon layer, A method for producing a crystalline Si solar cell, comprising: a step of heating to a temperature of at least ° C; and a step of removing the antireflection film by a fire-through method.

図1に結晶Si太陽電池の断面の模式図を示した。以下に結晶Si太陽電池の製造方法の一例を記載する。   FIG. 1 shows a schematic diagram of a cross section of a crystalline Si solar cell. An example of a method for producing a crystalline Si solar cell is described below.

結晶Si太陽電池は、まずp型シリコン基板1上にホウ素拡散剤及びリン拡散剤を塗布し、加熱やイオン注入等を行うことによって、p層5、n型シリコン層2を形成する。 In the crystalline Si solar cell, first, a boron diffusing agent and a phosphorus diffusing agent are applied on the p-type silicon substrate 1, and a p + layer 5 and an n-type silicon layer 2 are formed by heating, ion implantation, or the like.

次に、形成したn型シリコン層2上に反射防止膜3を形成する。該反射防止膜3としては、一般的に用いられている窒化珪素等が挙げられる。   Next, an antireflection film 3 is formed on the formed n-type silicon layer 2. Examples of the antireflection film 3 include commonly used silicon nitride.

次に、p層5上に裏面電極としてアルミニウム電極6を形成する。アルミニウム電極は、アルミニウム粉末を含有するペースト等を塗布し、焼き付けることによって形成することが可能である。 Next, an aluminum electrode 6 is formed on the p + layer 5 as a back electrode. The aluminum electrode can be formed by applying and baking a paste containing aluminum powder.

次に、反射防止膜3上に、導電性ペーストを塗布する。該導電性ペーストは焼成後に表面電極4となる為、所望の形状に塗布を行う。塗布方法は既存のものを用いればよく、例えばスクリーン印刷を用いるとパターン形成も好適に行えるため有用である。該導電性ペーストを塗布した後、800℃以上に加熱を行う。この時、導電性ペースト内に含まれる有機ビヒクルは除去され、同時にガラス粉末材料の焼成と表面電極4の部分の反射防止膜3の除去が生じ、n型シリコン層と接続した表面電極4が得られる。   Next, a conductive paste is applied on the antireflection film 3. Since the conductive paste becomes the surface electrode 4 after firing, it is applied in a desired shape. An existing coating method may be used. For example, screen printing is useful because pattern formation can be suitably performed. After applying the conductive paste, heating is performed to 800 ° C. or higher. At this time, the organic vehicle contained in the conductive paste is removed, and at the same time, baking of the glass powder material and removal of the antireflection film 3 in the surface electrode 4 portion occur, and the surface electrode 4 connected to the n-type silicon layer is obtained. It is done.

実施例1〜6
まず、表1に記載した所定組成となるように各種無機原料を秤量、混合して原料バッチを作製した。この原料バッチを白金ルツボに投入し、電気加熱炉内で1000〜1200℃、1〜2時間で加熱溶融して、表1の実施例1〜6に示す組成のガラスを得た。得られたガラスは急冷双ロール成形機にてフレーク状とし、粉砕装置で平均粒径1〜5μm、最大粒径20μm未満の粉末状に整粒しガラス粉末材料を得た。
Examples 1-6
First, various inorganic raw materials were weighed and mixed so as to have a predetermined composition described in Table 1, thereby preparing a raw material batch. This raw material batch was put into a platinum crucible and heated and melted at 1000 to 1200 ° C. for 1 to 2 hours in an electric heating furnace to obtain glasses having the compositions shown in Examples 1 to 6 in Table 1. The obtained glass was made into flakes with a rapid cooling twin roll molding machine and sized with a pulverizer into a powder having an average particle size of 1 to 5 μm and a maximum particle size of less than 20 μm to obtain a glass powder material.

また、ガラス粉末材料について、ハンドプレス機を用いて2mm×10mmφのボタン状にプレス成形した。次に、プレス成形体をシリコン基板上に置き、890℃で30秒間焼成した。プレス成形体の焼成後の広がりが大きい程流動性が高くなり、ファイアースルー法を効率的に行えるため好適である。焼成後のプレス成形体の外径が13mm以上に広がっているものを〇(流動性が高い)、広がりが不十分なものを×(流動性が低い)とし、さらに、焼成後のプレス体の結晶化の有無を表1に記載した。   Further, the glass powder material was press-molded into a 2 mm × 10 mmφ button using a hand press machine. Next, the press-molded body was placed on a silicon substrate and baked at 890 ° C. for 30 seconds. The larger the spread of the press-molded body after firing, the better the fluidity and the more efficient the fire-through method. When the outer diameter of the press-molded body after firing spreads to 13 mm or more is indicated as ◯ (high fluidity), and when the outer diameter is insufficiently spread is indicated as x (low fluidity). The presence or absence of crystallization is shown in Table 1.

Figure 2016150883
Figure 2016150883

比較例1〜5
表2に記載した所定組成となるように各種無機原料を秤量、混合して原料バッチを作製した以外は、実施例と同様の方法でガラスの作製を行った。ただし、比較例1についてはガラス化しなかった為流動性の評価は行わず、比較例2、3、5は流動が不十分であった。また、比較例4は流動性が良好でファイアースルー法に適したものだったが結晶化が生じなかった為、n型シリコン層の侵食の抑制に適していないと推察される。
Comparative Examples 1-5
A glass was prepared in the same manner as in Example, except that various inorganic raw materials were weighed and mixed so as to have a predetermined composition described in Table 2 to prepare a raw material batch. However, since Comparative Example 1 was not vitrified, fluidity was not evaluated, and Comparative Examples 2, 3, and 5 were insufficiently flowable. Further, Comparative Example 4 was good in fluidity and suitable for the fire-through method, but since crystallization did not occur, it is presumed that it was not suitable for suppressing the erosion of the n-type silicon layer.

Figure 2016150883
Figure 2016150883

実施例1〜6に示すように、本発明の組成範囲内においては、ガラスの流動性が良好であり、高温時の結晶化も見られることから、結晶Si太陽電池の表面電極形成用の導電性ペーストとして利用可能であることがわかった。一方、比較例1〜5は、ガラス化しない、流動性が低い、又は流動性は高いものの結晶化しない等、本発明の目的に適さないものとなった。   As shown in Examples 1 to 6, within the composition range of the present invention, the flowability of the glass is good and crystallization at high temperatures is also observed. It was found that it can be used as a sex paste. On the other hand, Comparative Examples 1 to 5 were not suitable for the purpose of the present invention, such as not vitrifying, low fluidity, or high fluidity but not crystallizing.

1:p型シリコン基板、2:n型シリコン層、3:反射防止膜、4:表面電極、5:p層、6:アルミニウム電極
1: p-type silicon substrate, 2: n-type silicon layer, 3: antireflection film, 4: surface electrode, 5: p + layer, 6: aluminum electrode

Claims (6)

Bi、TeO、SiO、及びWOを必須成分とするBi−TeO−SiO−WO系ガラスであって、該ガラスの成分中に質量%で、Biを30〜60、TeOを1〜40、SiOを1〜20、及びWOを1〜20含有することを特徴とするBi−TeO−SiO−WO系ガラス。 A Bi 2 O 3, TeO 2, SiO 2, and Bi 2 O 3 -TeO 2 -SiO 2 -WO 3 based glass and WO 3 as essential components, by mass% in the component of the glass, Bi 2 O 3 and 30 to 60, TeO 2 and 1 to 40, SiO 2 1-20, and Bi 2 O 3 -TeO 2 -SiO 2 -WO 3 based glass, characterized in that the WO 3 1-20 contain . 前記Bi−TeO−SiO−WO系ガラスは任意成分を合計0.1〜25質量%含有するものであり、該任意成分は、ZnO、PbO、B、Al、RO成分(KO、NaO、及びLiOからなる群から選ばれる少なくとも1つ)、及びRO成分(MgO、CaO、SrO、及びBaOからなる群から選ばれる少なくとも1つ)からなる群から選ばれる少なくとも1つであることを特徴とする請求項1に記載のBi−TeO−SiO−WO系ガラス。 The Bi 2 O 3 —TeO 2 —SiO 2 —WO 3 -based glass contains a total of 0.1 to 25 mass% of arbitrary components, and these optional components include ZnO, PbO, B 2 O 3 , Al 2. O 3 , R 2 O component (at least one selected from the group consisting of K 2 O, Na 2 O, and Li 2 O), and RO component (at least selected from the group consisting of MgO, CaO, SrO, and BaO) The Bi 2 O 3 —TeO 2 —SiO 2 —WO 3 -based glass according to claim 1, wherein the glass is at least one selected from the group consisting of (1). ガラス内に導電性材料を有することを特徴とする請求項1又は請求項2に記載のBi−TeO−SiO−WO系ガラス。 The Bi 2 O 3 —TeO 2 —SiO 2 —WO 3 -based glass according to claim 1, wherein the glass has a conductive material. 請求項1又は請求項2に記載のBi−TeO−SiO−WO系ガラスのガラス粉末であることを特徴とするガラス粉末材料。 A glass powder material comprising the glass powder of the Bi 2 O 3 —TeO 2 —SiO 2 —WO 3 glass according to claim 1. 請求項4に記載のガラス粉末材料と、有機ビヒクルと、導電性材料とを含有することを特徴とする導電性ペースト。 An electrically conductive paste comprising the glass powder material according to claim 4, an organic vehicle, and an electrically conductive material. n型シリコン層の上に形成された反射防止膜上に、請求項5に記載の導電性ペーストを表面電極形成用材料として塗布する工程、
該導電性ペーストを800℃以上に加熱する工程、及び
前記反射防止膜をファイアースルー法により除去する工程を含有することを特徴とする結晶Si太陽電池の製造方法。
a step of applying the conductive paste according to claim 5 as a surface electrode forming material on an antireflection film formed on the n-type silicon layer;
A method for producing a crystalline Si solar cell, comprising a step of heating the conductive paste to 800 ° C. or higher and a step of removing the antireflection film by a fire-through method.
JP2015030121A 2015-02-19 2015-02-19 Bi2O3-TeO2-SiO2-WO3-RO Glass Expired - Fee Related JP6531421B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015030121A JP6531421B2 (en) 2015-02-19 2015-02-19 Bi2O3-TeO2-SiO2-WO3-RO Glass
CN201610089951.XA CN105906199A (en) 2015-02-19 2016-02-17 Bi2O3-TeO2-SiO2-WO3-series glass
TW105104999A TWI614223B (en) 2015-02-19 2016-02-19 BiO-TeO-SiO-WO glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015030121A JP6531421B2 (en) 2015-02-19 2015-02-19 Bi2O3-TeO2-SiO2-WO3-RO Glass

Publications (2)

Publication Number Publication Date
JP2016150883A true JP2016150883A (en) 2016-08-22
JP6531421B2 JP6531421B2 (en) 2019-06-19

Family

ID=56696045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015030121A Expired - Fee Related JP6531421B2 (en) 2015-02-19 2015-02-19 Bi2O3-TeO2-SiO2-WO3-RO Glass

Country Status (3)

Country Link
JP (1) JP6531421B2 (en)
CN (1) CN105906199A (en)
TW (1) TWI614223B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106972081A (en) * 2017-05-18 2017-07-21 阳光中科(福建)能源股份有限公司 A kind of preparation method of white solar cell
CN107195354A (en) * 2017-04-20 2017-09-22 广东爱康太阳能科技有限公司 One kind back of the body passivation silicon solar cell positive electrode silver paste and preparation method thereof
JP2018032491A (en) * 2016-08-23 2018-03-01 ナミックス株式会社 Conductive paste and solar cell
JP2018182331A (en) * 2017-04-18 2018-11-15 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Conductive paste composition and semiconductor devices made therewith
US10134925B2 (en) 2016-04-13 2018-11-20 E I Du Pont De Nemours And Company Conductive paste composition and semiconductor devices made therewith
CN116062999A (en) * 2022-12-12 2023-05-05 广州市儒兴科技股份有限公司 Glass powder combination and preparation method thereof, electronic paste and battery

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106448803A (en) * 2016-08-31 2017-02-22 王立建 Hole-poured electronic slurry for back contact solar cell
CN106128554B (en) * 2016-09-23 2017-10-13 苏州柏特瑞新材料有限公司 A kind of anti-aging crystal silicon solar batteries back electrode silver paste
CN107162426A (en) * 2017-06-21 2017-09-15 苏州卡睿知光电科技有限公司 A kind of glass capsulation material, sealing material paste and preparation method thereof
CN107265872B (en) * 2017-07-10 2020-08-04 上海银浆科技有限公司 Double-component lead-free glass powder suitable for front silver paste of crystalline silicon battery
US10040717B1 (en) * 2017-09-18 2018-08-07 Jiangxi Jiayin Science and Technology, Ltd. Thick-film paste with multiple discrete frits and methods for contacting crystalline silicon solar cell emitter surfaces
CN111268915B (en) * 2018-12-04 2023-02-03 上海银浆科技有限公司 Bi-component high-contact glass powder for solar front silver paste
CN109659066B (en) * 2019-01-10 2020-04-17 四川东树新材料有限公司 Front silver paste for preparing PERC silicon solar cell
CN109694202A (en) * 2019-01-20 2019-04-30 江苏正能电子科技有限公司 A kind of back passivated battery silver paste glass powder
CN111875254A (en) * 2020-07-27 2020-11-03 上海银浆科技有限公司 Lead-free glass powder suitable for front silver paste of black silicon + perc battery and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011096747A (en) * 2009-10-28 2011-05-12 Shoei Chem Ind Co Conductive paste for forming solar cell electrode
JP2014031294A (en) * 2012-08-03 2014-02-20 Nippon Electric Glass Co Ltd Glass for electrode formation and electrode formation material using the same
US20140175340A1 (en) * 2012-12-21 2014-06-26 Young Wook Choi Glass frit, composition for solar cell electrodes including the same, and electrode fabricated using the same
JP2015092567A (en) * 2013-10-25 2015-05-14 碩禾電子材料股▲ふん▼有限公司 Conductive paste for solar cell and manufacturing method of the same
JP2016103354A (en) * 2014-11-27 2016-06-02 株式会社ノリタケカンパニーリミテド Conductive composition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101888981B (en) * 2007-12-06 2013-03-27 旭硝子株式会社 Optical glass and preforms for precision press molding and optical elements made by using the glass
CN102120693A (en) * 2010-01-11 2011-07-13 上海歌灵新材料科技有限公司 Lead-free sealing glass and preparation method thereof
CN102603186A (en) * 2011-01-21 2012-07-25 株式会社小原 Optical glass, pre-form body and optical element
CN102898024A (en) * 2012-09-27 2013-01-30 广东风华高新科技股份有限公司 Tellurium-containing glass material and preparation method and application thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011096747A (en) * 2009-10-28 2011-05-12 Shoei Chem Ind Co Conductive paste for forming solar cell electrode
JP2014031294A (en) * 2012-08-03 2014-02-20 Nippon Electric Glass Co Ltd Glass for electrode formation and electrode formation material using the same
US20140175340A1 (en) * 2012-12-21 2014-06-26 Young Wook Choi Glass frit, composition for solar cell electrodes including the same, and electrode fabricated using the same
JP2015092567A (en) * 2013-10-25 2015-05-14 碩禾電子材料股▲ふん▼有限公司 Conductive paste for solar cell and manufacturing method of the same
JP2016103354A (en) * 2014-11-27 2016-06-02 株式会社ノリタケカンパニーリミテド Conductive composition

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10134925B2 (en) 2016-04-13 2018-11-20 E I Du Pont De Nemours And Company Conductive paste composition and semiconductor devices made therewith
US10861985B2 (en) 2016-04-13 2020-12-08 Dupont Electronics, Inc. Conductive paste composition and semiconductor devices made therewith
WO2018037746A1 (en) * 2016-08-23 2018-03-01 ナミックス株式会社 Conductive paste and solar cell
JP2018032491A (en) * 2016-08-23 2018-03-01 ナミックス株式会社 Conductive paste and solar cell
CN109564945A (en) * 2016-08-23 2019-04-02 纳美仕有限公司 Conductive paste and solar battery
KR20190044628A (en) * 2016-08-23 2019-04-30 나믹스 가부시끼가이샤 Conductive paste and solar cell
TWI722216B (en) * 2016-08-23 2021-03-21 日商納美仕有限公司 Conductive paste and solar cell
US11049983B2 (en) 2016-08-23 2021-06-29 Namics Corporation Conductive paste and solar cell
KR102316105B1 (en) 2016-08-23 2021-10-25 나믹스 가부시끼가이샤 Conductive paste and solar cell
JP2018182331A (en) * 2017-04-18 2018-11-15 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Conductive paste composition and semiconductor devices made therewith
JP7098397B2 (en) 2017-04-18 2022-07-11 ソーラー ペースト リミテッド ライアビリティ カンパニー Methods for Forming Conductive Paste Compositions and Conductive Structures
CN107195354B (en) * 2017-04-20 2019-02-26 广东爱康太阳能科技有限公司 A kind of back passivation silicon solar cell positive electrode silver paste and preparation method thereof
CN107195354A (en) * 2017-04-20 2017-09-22 广东爱康太阳能科技有限公司 One kind back of the body passivation silicon solar cell positive electrode silver paste and preparation method thereof
CN106972081A (en) * 2017-05-18 2017-07-21 阳光中科(福建)能源股份有限公司 A kind of preparation method of white solar cell
CN116062999A (en) * 2022-12-12 2023-05-05 广州市儒兴科技股份有限公司 Glass powder combination and preparation method thereof, electronic paste and battery

Also Published As

Publication number Publication date
CN105906199A (en) 2016-08-31
TWI614223B (en) 2018-02-11
JP6531421B2 (en) 2019-06-19
TW201638036A (en) 2016-11-01

Similar Documents

Publication Publication Date Title
JP6531421B2 (en) Bi2O3-TeO2-SiO2-WO3-RO Glass
JP5272373B2 (en) Polycrystalline Si solar cell
JP5888493B2 (en) Conductive paste and solar cell element using the conductive paste
JP6142756B2 (en) Glass powder material
JPWO2009041182A1 (en) Ag electrode paste, solar battery cell and manufacturing method thereof
JP2011526579A (en) Glass composition for use in photovoltaic cell conductors
JP2011035034A (en) Lead-free electrically conductive composition for solar cell electrode
WO2012023413A1 (en) Glass for use in forming electrodes, and electrode-forming material using same
WO2013085961A1 (en) Conductive silver paste for a metal-wrap-through silicon solar cell
JP2010083748A (en) Glass composition for electrode formation and electrode formation material
JP2010199334A (en) Paste composition for solar cell electrode
US11171251B2 (en) Process for forming conductive track or coating
JP6075601B2 (en) Electrode forming glass and electrode forming material using the same
JP6090706B2 (en) Electrode forming glass and electrode forming material using the same
TWI422547B (en) A conductive paste and a solar cell element using the conductive paste
JP2007081059A (en) Aluminum paste composite and solar battery element employing the same
JP2012066993A (en) Glass for electrode formation and electrode formation material using the same
KR20180082517A (en) Conductive paste and conductive track or coating
JP2014007212A (en) Glass for electrode formation and electrode-formation material using the same
JP5796281B2 (en) Electrode forming material
WO2013031957A1 (en) Lead-free glass composition for forming conductors
JP5943295B2 (en) Electrode forming glass and electrode forming material using the same
JP6112384B2 (en) Electrode forming glass and electrode forming material using the same
JP2013018666A (en) Electrode formation glass and electrode formation material
JP2014105153A (en) Bismuth-based glass composition and electrode formation material using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190506

R150 Certificate of patent or registration of utility model

Ref document number: 6531421

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees