JP2016150308A - Concentration apparatus and concentration method for oral or external application - Google Patents

Concentration apparatus and concentration method for oral or external application Download PDF

Info

Publication number
JP2016150308A
JP2016150308A JP2015029021A JP2015029021A JP2016150308A JP 2016150308 A JP2016150308 A JP 2016150308A JP 2015029021 A JP2015029021 A JP 2015029021A JP 2015029021 A JP2015029021 A JP 2015029021A JP 2016150308 A JP2016150308 A JP 2016150308A
Authority
JP
Japan
Prior art keywords
liquid
raw material
water
water absorption
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015029021A
Other languages
Japanese (ja)
Other versions
JP6262678B2 (en
Inventor
平野 悟
Satoru Hirano
悟 平野
幸則 紀平
Yukinori Kihira
幸則 紀平
和彦 石田
Kazuhiko Ishida
和彦 石田
峰 閻
Feng Yan
峰 閻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP2015029021A priority Critical patent/JP6262678B2/en
Publication of JP2016150308A publication Critical patent/JP2016150308A/en
Application granted granted Critical
Publication of JP6262678B2 publication Critical patent/JP6262678B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Preparation And Processing Of Foods (AREA)
  • Non-Alcoholic Beverages (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve an efficiency increase or a suppression of running cost in concentrating an oral or external application liquid with many solids (or high viscosity) such as a beverage or liquid food.SOLUTION: A forward permeable membrane 5 is used as concentration means. A part of moisture content contained in a raw material liquid is transferred into a water-absorbing liquid passage chamber 7 via the forward permeable membrane 5 from a raw material liquid passage chamber 6. The water-absorbing liquid circulates through the raw material liquid concentration part 1 and the water-absorbing liquid concentration part 2 to recover concentration by the water-absorbing liquid concentration part 2 of evaporation condensation type. Condensation water in an amount equal to an exhaust out of the raw material liquid concentration part 1 is exhausted outside the system from a condensed water exhaust pipe 29. Heat can be exchanged with a diluted treatment liquid flowing through a water-absorbing exhaust pipe 16 from concentrated water-absorbing liquid and condensation water via first and second preheaters 3, 4. This process can promotes evaporation in an evaporation can 19 to contribute to suppress running cost and prevent a quality change of the raw material liquid by increasing the temperature of the concentrated water-absorbing liquid.SELECTED DRAWING: Figure 1

Description

本願発明は、経口又は外用液体の濃縮装置及びその洗浄方法に関するものである。ここに、経口の液体とは、人又は動物が口にするもの全体を意味しており、その典型として、濃縮ジュースや清涼飲料等の飲料、麺つゆ・各種出汁・調味料・スープのような液状(汁状)の食べ物、液状の健康補助食品、経口医薬品などが挙げられる。   The present invention relates to an apparatus for concentrating an oral or external liquid and a washing method thereof. Here, the oral liquid means the whole thing that a person or an animal eats. Typical examples include beverages such as concentrated juices and soft drinks, noodle soup, various soups, seasonings, and soups. Liquid (juice-like) foods, liquid health supplements, oral medicines and the like can be mentioned.

また、外用液体とは、人又は動物の体に塗る液状のものを総称しており、典型として、化粧水やローション、液状ハンドクリームのような液状化粧料、皮膚や口中に塗布又は散布する液状医薬品などが挙げられる。また、液状とは水分を含んで流動性があることを意味しており、ジェル状やシャーベット状のものも含んでいる。更に、経口液体にしても外用液体にしても、消費者或いは患者が最終的に使用するものには限らず、原料になるものも含んでいる。   The liquid for external use is a generic term for liquids to be applied to the human or animal body. Typically, it is a liquid cosmetic such as a lotion, lotion, or liquid hand cream, and a liquid that is applied or sprayed to the skin or mouth. Examples include pharmaceuticals. Liquid means that it contains water and has fluidity, and includes gel-like and sherbet-like ones. Furthermore, whether it is an oral liquid or a liquid for external use, it is not limited to those finally used by consumers or patients, but includes those that are used as raw materials.

飲料・食品の分野では、例えば、果汁ジュース、スープや麺つゆ、出汁などにおいて、流通や保管に要するスペース・費用を節約するために濃縮品が広く使用されている。これら濃縮タイプの飲料・食品は、原料を製造してから濃縮処理しており、濃縮方法としては、一般に、特許文献1に開示されているように、煮沸して水分を除去する蒸発法が採用されている。しかし、蒸発法では、熱によって品質が変化したり、固形成分が崩れてしまったりする不具合が懸念される。   In the field of beverages and foods, for example, concentrated products are widely used in fruit juice juice, soup, noodle soup, soup stock, etc., in order to save space and cost required for distribution and storage. These concentrated beverages and foods are concentrated after the raw materials are manufactured, and as a concentration method, an evaporation method is generally adopted in which the water is removed by boiling, as disclosed in Patent Document 1. Has been. However, in the evaporation method, there is a concern that the quality may change due to heat or the solid components may collapse.

他方、溶液から水分を取り出す手段として、水を分子レベルで透過させる膜があり、逆浸透膜は海水の淡水化に広く使用されていて実績がある。従って、飲料や食品の濃縮についても、逆浸透膜を使用することにより、組織の変化や風味の低下を招くことなく濃縮できると推測される。   On the other hand, as means for extracting water from a solution, there is a membrane that allows water to permeate at a molecular level, and reverse osmosis membranes have been widely used for seawater desalination. Therefore, it is estimated that the concentration of beverages and foods can be achieved by using a reverse osmosis membrane without causing a change in tissue or a decrease in flavor.

特開平7−115899号公報Japanese Unexamined Patent Publication No. 7-115899

逆浸透膜は海水淡水化に実用化されているが、加圧が必要であるため、固形物が多い飲料・食品に使用すると目詰まりが発生しやすくなって、実用には不適切と推測される。また、飲料や液状食品は海水に比べて濃度が高いため、濃縮のためには加圧力を高くせざるを得ず、すると、逆浸透膜が破れやすくなるという問題があり、この点からも、逆浸透膜は飲料・液状食品の濃縮には実用性に問題があると云える。   Reverse osmosis membranes have been put to practical use for seawater desalination, but because they need to be pressurized, clogging is likely to occur when used in beverages and foods that contain a large amount of solids, which is considered inappropriate for practical use. The In addition, since beverages and liquid foods are higher in concentration than seawater, it is necessary to increase the pressure for concentration, and there is a problem that the reverse osmosis membrane is easily broken. It can be said that reverse osmosis membranes have problems in practical use for concentration of beverages and liquid foods.

他方、浸透圧の違いを利用して水を透過させる膜として、濃度が低い液から濃度が高い溶液に対して水を拡散させる正浸透膜があり、この正浸透膜は加圧を要しないため、飲料や食品のように固形物が多い原料液であっても、長時間にわたって濃縮作用(水分の拡散)を実現できると期待される。   On the other hand, there is a forward osmosis membrane that diffuses water from a low-concentration solution to a high-concentration solution as a membrane that permeates water using the difference in osmotic pressure, and this forward osmosis membrane does not require pressurization. Even a raw material liquid with a large amount of solids such as beverages and foods is expected to be able to achieve a concentration action (moisture diffusion) over a long period of time.

しかし、正浸透膜を使用した濃縮方法では、水分の透過・拡散によって吸水液が希釈されるため、正浸透膜の片側において吸水液を高い濃度に維持しけなければならないという制約がある。また、効率向上やコスト抑制といった要請もある。   However, in the concentration method using the forward osmosis membrane, the water absorption liquid is diluted by the permeation / diffusion of moisture, and thus there is a restriction that the water absorption liquid must be maintained at a high concentration on one side of the forward osmosis membrane. There are also demands for improving efficiency and reducing costs.

本願発明はこのような現状に鑑み成されたものであり、飲料や食品等の経口・外用液体を正浸透膜にて濃縮する装置及び方法を、改良された状態で提供しようとするものである。   The present invention has been made in view of the present situation, and intends to provide an improved apparatus and method for concentrating oral and external liquids such as beverages and foods using a forward osmosis membrane. .

本願発明は濃縮装置と濃縮方法とを含んでおり、濃縮装置はその典型を正浸透膜1〜7で特定している。このうち正浸透膜1の発明は、「原料液通過室と吸水液通過室とが正浸透膜によって隔てられた原料液濃縮部を備えており、前記原料液通過室に、人が経口又は外用で用いる濃縮対象としての原料液が供給される一方、前記吸水液通過室には、前記原料液よりも浸透圧が高い吸水液が循環するようになっており、前記吸水液の浸透圧を原料液の浸透圧よりも高い値に設定しておくことにより、前記原料液の水分の一部が前記正浸透膜を介して吸水液通過室に拡散するようになっている」、という構成を含んでいる。   The present invention includes a concentrating device and a concentrating method, and the concentrating device specifies a typical example by forward osmosis membranes 1 to 7. Among these, the forward osmosis membrane 1 invention is “provided with a raw material liquid concentrating portion in which a raw material liquid passage chamber and a water absorption liquid passage chamber are separated by a forward osmosis membrane, and a human is orally or externally used in the raw material liquid passage chamber. While the raw material liquid to be concentrated used in the above is supplied, a water absorption liquid having a higher osmotic pressure than the raw material liquid circulates in the water absorption liquid passage chamber, and the osmotic pressure of the water absorption liquid is used as the raw material. By setting it to a value higher than the osmotic pressure of the liquid, a part of the moisture of the raw material liquid is diffused to the water absorption liquid passage chamber through the forward osmosis membrane ”. It is out.

更に、請求項1の濃縮装置は、前記正浸透膜を透過した水分によって薄められた希釈吸水液の濃度を回復させる吸水液濃縮部を備えており、前記吸水液濃縮部から濃縮済み吸水液が前記吸水液通過室に送られて、希釈吸水液は前記吸水液通過室から吸水液濃縮部に戻されるようになっている。なお、原料液濃縮部は、濃縮処理ハウジングや濃縮処理タンクのように言い換えることも可能である
請求項1の濃縮装置の展開例として請求項2の発明では、前記吸水液濃縮部は、吸水液を減圧下でヒートポンプによって圧縮して水分を蒸発・凝縮させてから凝縮水を排出する方式になっている。
Furthermore, the concentrating device according to claim 1 further includes a water-absorbing liquid concentrating unit that recovers the concentration of the diluted water-absorbing liquid diluted by the water that has passed through the forward osmosis membrane, and the concentrated water-absorbing liquid is supplied from the water-absorbing liquid concentrating unit. The diluted water absorption liquid sent to the water absorption liquid passage chamber is returned from the water absorption liquid passage chamber to the water absorption liquid concentration section. The raw material liquid concentrating part can be paraphrased as a concentrating process housing or a concentrating process tank. As an example of development of the concentrating device according to claim 1, in the invention according to claim 2, the water absorbing liquid concentrating part is a water absorbing liquid. Is compressed by a heat pump under reduced pressure to evaporate and condense the moisture, and then the condensed water is discharged.

請求項3の発明は請求項1又は2を具体化したものであり、前記吸水液として、前記原料液と略同じ成分のものが使用されることを特徴にしている。請求項4の発明は請求項2又は3において、前記濃縮済み吸水液の熱と凝縮水の熱とのうち少なくともいずれか一方によって希釈吸水液を加温する予熱器が備えられている。   The invention of claim 3 embodies claim 1 or 2 and is characterized in that the water-absorbing liquid has substantially the same components as the raw material liquid. According to a fourth aspect of the present invention, there is provided the preheater according to the second or third aspect, wherein the diluted water absorption liquid is heated by at least one of the heat of the concentrated water absorption liquid and the heat of the condensed water.

請求項5の発明は、請求項1〜4のうちのいずれかにおいて、前記原料液通過室から排出された原料液を再び原料液通過室に戻す原料液循環路を備えている。また、請求項6の発明は、請求項1〜5のうちのいずれかにおいて、直列に接続された複数の原料液濃縮部を備えている。   According to a fifth aspect of the present invention, in any one of the first to fourth aspects, a raw material liquid circulation path for returning the raw material liquid discharged from the raw material liquid passage chamber back to the raw material liquid passage chamber is provided. The invention of claim 6 is provided with a plurality of raw material liquid concentrating parts connected in series in any one of claims 1 to 5.

請求項7の発明は、請求項1〜6のうちのいずれかにおいて、前記希釈吸水液が流れる管路と濃縮済み吸水液が流れる経路とのうちいずれか一方又は両方に、固形物を補集するフィルターを設けている。   A seventh aspect of the present invention is the method according to any one of the first to sixth aspects, wherein the solid matter is collected in one or both of the pipe line through which the diluted water absorption liquid flows and the path through which the concentrated water absorption liquid flows. A filter is provided.

請求項8の発明は濃縮方法に関するものである。すなわち、正浸透膜を備えた濃縮装置を使用して経口又は外用液体を濃縮する方法に関するものであり、前提の構成として、前記濃縮装置は、原料液通過室と吸水液通過室とが正浸透膜によって隔てられた原料液濃縮部を有している。   The invention of claim 8 relates to a concentration method. That is, the present invention relates to a method of concentrating an oral or external liquid using a concentrating device equipped with a forward osmosis membrane. As a precondition, the concentrating device has a forward osmosis between a raw material liquid passage chamber and a water absorption liquid passage chamber. It has a raw material liquid concentration part separated by a membrane.

そして、この方法では、まず、前記原料液通過室に濃縮前の経口又は外用液体を連続的に又は間欠的に供給しつつ、前記吸水液通過室には、前記濃縮前の経口又は外用液体よりも浸透圧が高い吸水液を循環させることにより、前記原料液通過室に供給された経口又は外用液体の水分の一部が前記正浸透膜を介して吸水液通過室に拡散させる。   In this method, first, the oral or external liquid before concentration is continuously or intermittently supplied to the raw material liquid passage chamber, while the oral or external liquid before concentration is supplied to the water absorption liquid passage chamber. In addition, by circulating the water-absorbing liquid having a high osmotic pressure, a part of the water of the oral or external liquid supplied to the raw material liquid passage chamber is diffused to the water-absorbing liquid passage chamber through the forward osmosis membrane.

更に、前記経口又は外用液体の水分で希釈された吸水液を吸水液濃縮部に送り、吸水液濃縮部で濃度が回復した吸水液を前記吸水液通過室に還流させることにより、前記吸水液通過室における吸水液の濃度を原料液通過室における経口又は外用液体よりも高い濃度に維持している。   Further, the water absorption liquid diluted with the water of the oral or external liquid is sent to the water absorption liquid concentration section, and the water absorption liquid whose concentration is recovered in the water absorption liquid concentration section is refluxed to the water absorption liquid passage chamber, thereby passing the water absorption liquid. The concentration of the water-absorbing liquid in the chamber is maintained at a higher concentration than the oral or external liquid in the raw material liquid passage chamber.

本願各発明では、原料液(濃縮対象である経口又は外用液体)から拡散した水によって吸水液が希釈されても、吸水液は吸水液濃縮部に送られて濃度が回復してから吸水液通過室に流入する(循環する)。このため、吸水液を連続的に供給して、原料液を連続的に濃縮することができる。これにより、高い作業効率を確保することができる。   In each invention of the present application, even if the water absorption liquid is diluted with water diffused from the raw material liquid (oral or external liquid to be concentrated), the water absorption liquid is sent to the water absorption liquid concentration section and the water concentration is recovered, and then passes through the water absorption liquid. Flows into the chamber (circulates). For this reason, a raw material liquid can be continuously concentrated by supplying a water absorption liquid continuously. Thereby, high working efficiency can be ensured.

吸水液の濃縮手段(濃縮方法)は多々有り得るが、請求項2のように減圧下においてヒートポンプで圧縮する方式を採用すると、使用するエネルギーを著しく抑制してランニングコストの低減に貢献できる。   There are many means for concentrating the water-absorbing liquid (concentration method). However, if a method of compressing with a heat pump under reduced pressure as in claim 2 is adopted, the energy used can be remarkably suppressed and the running cost can be reduced.

吸水液は原料液よりも浸透圧が高ければよく、従って、例えば飽和食塩水のような安全な溶液を使用することも可能である。しかし、正浸透膜に僅かな欠陥がある等して吸水液に含まれている分子が原料液通過室に漏洩することがないとも云えず、仮に、塩化ナトリウムが原料液に混入すると、味や風味に悪影響を与えるおそれがないとも云えない。   The water-absorbing liquid only needs to have a higher osmotic pressure than the raw material liquid. Therefore, it is possible to use a safe solution such as saturated saline. However, it cannot be said that the molecules contained in the water absorption liquid will not leak into the raw material liquid passage chamber due to a slight defect in the forward osmosis membrane, and if sodium chloride is mixed into the raw material liquid, It cannot be said that there is no possibility of adversely affecting the flavor.

これに対して請求項3の発明を採用すると、吸水液は原料液と略同じ成分であるため、仮に、吸水液に含まれている成分が原料液に混入しても、味や風味に悪影響を与えることを防止することができる。   On the other hand, when the invention of claim 3 is adopted, the water absorption liquid is substantially the same component as the raw material liquid, so even if the components contained in the water absorption liquid are mixed into the raw material liquid, the taste and flavor are adversely affected. Can be prevented.

さて、吸水液の濃縮手段として、加熱して蒸気を凝縮して排出する方式を採用すると、濃縮された吸水液と廃棄される凝縮水とはある程度の高い温度になっている。このため、高温の濃縮済み吸水液が原料液に熱交換されることによって原料液の冷却の必要が生じたり、高温の凝縮水がそのまま廃棄されてエネルギの無駄が生じたりするおそれがある。   Now, when a method of condensing and discharging steam by heating is adopted as the means for concentrating the water absorption liquid, the concentrated water absorption liquid and the condensed water to be discarded are at a certain high temperature. For this reason, heat exchange of the high-temperature concentrated water-absorbing liquid with the raw material liquid may cause cooling of the raw material liquid, or high-temperature condensed water may be discarded as it is, resulting in waste of energy.

この点、請求項3の構成を採用すると、濃縮済み吸水液の熱を希釈吸水液に熱交換することにより、濃縮済み吸水液から原料液への伝熱量を抑制したり、濃縮済み吸水液又は凝縮水(廃水)から希釈吸水液に熱交換して、希釈吸水液の蒸発・凝縮に要する熱エネルギを抑制したりすることができる。これにより、ランニングコストを抑制することができる。換言すると、吸水液の濃度維持(或いは濃度回復)のための熱エネルギを回収して、ランニングコストを抑制することができるのである。   In this regard, when the configuration of claim 3 is adopted, the heat transfer from the concentrated water absorption liquid to the raw material liquid can be suppressed by exchanging the heat of the concentrated water absorption liquid with the diluted water absorption liquid, or the concentrated water absorption liquid or Heat exchange from the condensed water (waste water) to the diluted water-absorbing liquid can suppress heat energy required for evaporation / condensation of the diluted water-absorbing liquid. Thereby, running cost can be suppressed. In other words, the heat energy for maintaining the concentration (or restoring the concentration) of the water-absorbing liquid can be recovered to reduce the running cost.

また、請求項2のような蒸発式の濃縮装置を用いた場合、一般に、蒸発缶内の吸水液の温度は70℃程度の温度になるため、濃縮済みの吸水液が吸水液通過室にそのまま供給されると、原料液通過室の経口又は外用液体が昇温して品質の変化が懸念されるが、請求項4の構成を採用すると、濃縮済吸水液の温度を、例えば常温よりやや高い程度に降温させることができるため、経口又は外用液体の昇温による品質変化防止にも貢献できる。   In addition, when the evaporation type concentrator as in claim 2 is used, the temperature of the water absorption liquid in the evaporator is generally about 70 ° C., so that the concentrated water absorption liquid remains in the water absorption liquid passage chamber as it is. When supplied, the temperature of the oral or external liquid in the raw material liquid passage chamber is raised and there is a concern about the quality change. However, when the configuration of claim 4 is adopted, the temperature of the concentrated water absorption liquid is, for example, slightly higher than room temperature. Since the temperature can be lowered to the extent, it can also contribute to prevention of quality change due to the temperature rise of the oral or external liquid.

なお、濃縮済み吸水液及び凝縮水(廃水)の熱の有効利用手段としては、両者で1つの熱交換器に伝熱することも可能であるが、濃縮済み吸水液の温度が凝縮水の温度より高いことが多いため、両者で1つの熱交換機に伝熱すると、吸水液通過室に入る濃縮済み吸水液の温度を効率良く低減できない場合が生じる可能性もある。この点、実施形態のように別々の予熱器を設けると、温度が高い濃縮済み吸水液から温度が低い希釈吸水液に伝熱することにより、吸水液通過室に入る濃縮済み吸水液の温度を効率よく低減できると共に、希釈吸水液の昇温も効率よく行うことができる。   In addition, as an effective utilization means of the heat | fever of concentrated water absorption liquid and condensed water (waste water), although it is also possible to transmit heat to one heat exchanger by both, the temperature of concentrated water absorption liquid is the temperature of condensed water. In many cases, if the heat is transferred to one heat exchanger, there is a possibility that the temperature of the concentrated water absorption liquid entering the water absorption liquid passage chamber cannot be reduced efficiently. In this regard, if a separate preheater is provided as in the embodiment, the temperature of the concentrated water absorption liquid entering the water absorption liquid passage chamber is transferred by transferring heat from the concentrated water absorption liquid having a high temperature to the diluted water absorption liquid having a low temperature. While being able to reduce efficiently, the temperature rise of a diluted water absorption liquid can also be performed efficiently.

また、2つの予熱器を設けた場合、2つの予熱器の配置は、並列配置と直列配置とのいずれも選択できる。いずれを選択するかは、濃縮済み吸水液の温度及び流量と凝縮水の温度及び流量との違いや設置スペース等のを考慮して決めたらよい。   When two preheaters are provided, the arrangement of the two preheaters can be selected from either a parallel arrangement or a series arrangement. Which one to select may be determined in consideration of the difference between the temperature and flow rate of the concentrated water absorption liquid and the temperature and flow rate of the condensed water, the installation space, and the like.

請求項5のように、原料液通過室から排出された原料液を再び原料液通過室に循環させると、原料液が正浸透膜に接触する機会を増やして、原料液を1つの濃縮部で所望の濃度に濃縮できる利点がある。請求項6のように複数の濃縮装置を直列配置すると、原料液を効率良く高濃度に濃縮できる。   As in claim 5, when the raw material liquid discharged from the raw material liquid passage chamber is circulated again to the raw material liquid passage chamber, the opportunity for the raw material liquid to come into contact with the forward osmosis membrane is increased, and the raw material liquid is concentrated in one concentrating portion. There is an advantage that it can be concentrated to a desired concentration. When a plurality of concentrating devices are arranged in series as in the sixth aspect, the raw material liquid can be efficiently concentrated to a high concentration.

正浸透膜の目詰まりを抑制するには、吸水液通過室に固形物が入るのはできるだけ避けるべきである。この点、請求項7の構成を採用すると、吸水液の循環経路で固形物をフィルターに補集できるため、吸水液をいわばサラサラの状態に保持して正浸透膜の目詰まりを抑制することができる。   In order to suppress clogging of the forward osmosis membrane, solid material should be avoided as much as possible in the water absorption liquid passage chamber. In this regard, if the structure of claim 7 is adopted, solid matter can be collected in the filter through the water absorption liquid circulation path, so that the water absorption liquid is maintained in a smooth state to suppress clogging of the forward osmosis membrane. it can.

第1実施形態を示すであり、(A)はブロック図(模式図)、(B)(C)は原料液濃縮部の配置姿勢の別例図である。1A and 1B show a first embodiment, in which FIG. 4A is a block diagram (schematic diagram), and FIG. 4B and FIG. 多段濃縮式である第2実施形態のブロック図である。It is a block diagram of 2nd Embodiment which is a multistage concentration type. 吸水液の流れの別例である第3実施形態のブロック図である。It is a block diagram of 3rd Embodiment which is another example of the flow of a water absorption liquid.

(1).第1実施形態の概要と原料液濃縮部
次に、本願発明の実施形態を図面に基づいて説明する。まず、図1に示す第1実施形態を説明する。濃縮装置は、原料液(濃縮すべき経口又は外用液体)から水分を吸収して濃縮する原料液濃縮部1と、濃縮に使用する吸水液を所定の濃度に維持する吸水液濃縮部2と、原料液濃縮部1から吸水液濃縮部2に戻る吸水液(以下「希釈吸水液」という)を昇温させる第1及び第2の予熱器3,4を備えている。
(1). Outline of First Embodiment and Raw Material Liquid Concentration Unit Next, an embodiment of the present invention will be described based on the drawings. First, the first embodiment shown in FIG. 1 will be described. The concentration device includes a raw material liquid concentration unit 1 that absorbs and concentrates water from a raw material liquid (oral or external liquid to be concentrated), a water absorption liquid concentration unit 2 that maintains a water absorption liquid used for concentration at a predetermined concentration, and First and second preheaters 3 and 4 for raising the temperature of the water absorption liquid (hereinafter referred to as “diluted water absorption liquid”) returning from the raw material liquid concentration section 1 to the water absorption liquid concentration section 2 are provided.

吸水液濃縮部1は閉じたタンク(或いはハウジング、ケーシング)の構造であり、内部は、正浸透膜5により、原料液通過室6と吸水液通過室7とに区分されている。簡単に述べると、原料液濃縮部1において、原料液と吸水液との浸透圧の違いにより、原料液の水分の一部が正浸透膜5を介して吸水液通過室7に透過(拡散)し、希釈吸水液は吸水液濃縮部2で濃度が回復し、所定濃度の吸水液として吸水液通過室7に還流する。また、吸水液通過室7から吸水液濃縮部2に向かう希釈吸水液は、2つの予熱器3,4で加温される。   The water absorption liquid concentrating part 1 has a closed tank (or housing, casing) structure, and the inside is divided into a raw material liquid passage chamber 6 and a water absorption liquid passage chamber 7 by a forward osmosis membrane 5. Briefly, in the raw material liquid concentrating unit 1, due to the difference in osmotic pressure between the raw material liquid and the water absorption liquid, a part of the water in the raw material liquid permeates (diffuses) through the forward osmosis membrane 5 into the water absorption liquid passage chamber 7. Then, the concentration of the diluted water-absorbing liquid is recovered by the water-absorbing liquid concentrating unit 2 and is returned to the water-absorbing liquid passage chamber 7 as a water absorbing liquid having a predetermined concentration. Moreover, the diluted water absorption liquid which goes to the water absorption liquid concentration part 2 from the water absorption liquid passage chamber 7 is heated by the two preheaters 3 and 4.

本実施形態では、吸水液濃縮部1は縦置き方式になっており、原料液通過室6には、原料液は下端から流入して上端から排出される。従って、原料液供給管8は原料液通過室6の下端部に接続されて、原料液排出管9は原料液通過室6の上端部に接続されている。   In this embodiment, the water-absorbing liquid concentrating unit 1 is of a vertically placed system, and the raw material liquid flows into the raw material liquid passage chamber 6 from the lower end and is discharged from the upper end. Accordingly, the raw material liquid supply pipe 8 is connected to the lower end portion of the raw material liquid passage chamber 6, and the raw material liquid discharge pipe 9 is connected to the upper end portion of the raw material liquid passage chamber 6.

原料液供給管8の適宜部位には原料液送りポンプ10が介在しており、原料液供給管8のうち原料送りポンプ10より上流側の部位と原料液排出管9とが原料液循環路11によって接続されている。原料液供給管8のうち原料液循環路11の接続部より上流側には第1バルブ12を設け、原料液排出管9のうち原料液循環路11の接続部よりも下流側には第2バルブ13を設け、原料液循環路11には第3バルブ14を設けている。これらバルブ12〜14の流量調節操作により、原料液が原料液通過室6に全く循環しない状態と、原料液の一部が原料液通過室6に循環する状態と、原料液の全部が原料液通過室6に循環する状態とを選択することができる。   A raw material liquid feed pump 10 is interposed in an appropriate part of the raw material liquid supply pipe 8, and a part of the raw material liquid supply pipe 8 upstream of the raw material feed pump 10 and the raw material liquid discharge pipe 9 are connected to the raw material liquid circulation path 11. Connected by. A first valve 12 is provided in the raw material liquid supply pipe 8 on the upstream side of the connecting portion of the raw material liquid circulation path 11, and a second valve in the raw material liquid discharge pipe 9 is provided on the downstream side of the connecting portion of the raw material liquid circulation path 11. A valve 13 is provided, and a third valve 14 is provided in the raw material liquid circulation path 11. By adjusting the flow rate of these valves 12 to 14, a state in which the raw material liquid does not circulate at all in the raw material liquid passage chamber 6, a state in which a part of the raw material liquid circulates in the raw material liquid passage chamber 6, and the whole of the raw material liquid A state of circulating in the passage chamber 6 can be selected.

吸水液通過室7には、吸水液は上端部から流入して下端部から排出される。すなわち、吸水液通過室7の上端部に吸水液流入管15の終端が接続されて、吸水液通過室7の下端部に吸水液排出管16の始端が接続されている。従って、原料液の流れ方向と吸水液の流れ方向とが逆になっている。   The water absorption liquid flows into the water absorption liquid passage chamber 7 from the upper end portion and is discharged from the lower end portion. That is, the end of the water absorption liquid inflow pipe 15 is connected to the upper end of the water absorption liquid passage chamber 7, and the start of the water absorption liquid discharge pipe 16 is connected to the lower end of the water absorption liquid passage chamber 7. Therefore, the flow direction of the raw material liquid and the flow direction of the water absorption liquid are reversed.

なお、原料液濃縮部1は、原料液や希釈処理液が略水平方向に流れる横置き姿勢に配置することも可能である。その例を図1の(B)及び(C)で表示している。(B)では、原料液通過室6が上で吸水液通過室7が下になっており、(C)では、原料液通過室6が下で吸水液通過室7が上になっている。いずれにしても、原料液と吸水液との流れ方向は逆向きになっている。   In addition, the raw material liquid concentration part 1 can also be arrange | positioned in the horizontal position in which a raw material liquid and a dilution process liquid flow in a substantially horizontal direction. The example is displayed by (B) and (C) of FIG. In (B), the raw material liquid passage chamber 6 is up and the water absorption liquid passage chamber 7 is down. In (C), the raw material liquid passage chamber 6 is down and the water absorption liquid passage chamber 7 is up. In any case, the flow directions of the raw material liquid and the water absorption liquid are opposite to each other.

なお、原料液通過室6及び吸水液通過室7の断面形状に特に限定はないが、正浸透膜5が単なる平坦なシート状である場合は、正浸透膜5との接触効率を高めるには、両者も偏平な箱状が好ましいと推測される。原料液濃縮部1は、水平面及び鉛直に対して傾斜させることも可能である。   The cross-sectional shapes of the raw material liquid passage chamber 6 and the water absorption liquid passage chamber 7 are not particularly limited. However, when the forward osmosis membrane 5 is a simple flat sheet, the contact efficiency with the forward osmosis membrane 5 is increased. Both are presumed to be flat. The raw material liquid concentrating unit 1 can be inclined with respect to the horizontal plane and the vertical plane.

(2).第1実施形態の吸水液濃縮部
吸水液濃縮部2は、大きな要素として蒸発缶19と凝縮器20とを備えており、吸水液流入管15の始端は蒸発管19の底部に接続されており、吸水液排出管16の終端が蒸発缶19の側部に接続されている。
(2). Water-absorbing liquid concentrating part of the first embodiment The water-absorbing liquid concentrating part 2 includes an evaporation can 19 and a condenser 20 as major elements, and the starting end of the water-absorbing liquid inflow pipe 15 is located at the bottom of the evaporation pipe 19. The end of the water absorption liquid discharge pipe 16 is connected to the side of the evaporator 19.

凝縮器20は水平姿勢等の細管の群を備えており、細管の群の一端と他端はそれぞれヘッダー21,22に開口している。また、一方のヘッダー21の下部には蒸気入口23が形成されて、他方のヘッダー22の上部には、蒸発缶19の内部に連通した真空吸引口24が形成されている。   The condenser 20 includes a group of thin tubes having a horizontal posture or the like, and one end and the other end of the group of thin tubes open to the headers 21 and 22, respectively. A vapor inlet 23 is formed in the lower portion of one header 21, and a vacuum suction port 24 communicating with the inside of the evaporator 19 is formed in the upper portion of the other header 22.

そして、真空吸引口24には真空管路25を介して真空ポンプ26が接続されており、蒸発缶19の上端と蒸気入口23とが凝縮管路27で接続されて、凝縮管路27にヒートポンプ28を介在させている。他方のヘッダー22の下端には凝縮水排出管29が接続されていて、凝縮水排出管29には排水ポンプ30を介在させている。真空ポンプ26は真空源の一例である。真空源としては、例えばエジェクターなども使用できる。   A vacuum pump 26 is connected to the vacuum suction port 24 via a vacuum line 25, the upper end of the evaporator 19 and the vapor inlet 23 are connected by a condensation line 27, and a heat pump 28 is connected to the condensation line 27. Is interposed. A condensed water discharge pipe 29 is connected to the lower end of the other header 22, and a drainage pump 30 is interposed in the condensed water discharge pipe 29. The vacuum pump 26 is an example of a vacuum source. As the vacuum source, for example, an ejector can be used.

吸水液流入管15の中途部には循環ポンプ31が介在しており、かつ、循環ポンプ31よりも上流側にフィルター32を設けている。また、吸水液流入管15のうち循環ポンプ31よりも下流側で第1予熱器3よりも上流側から散布管33が分岐しており、散布管33の終端は蒸発缶19の上端に位置しており、これに図示しない噴霧器が接続されている。吸水液流入管15の中途部のうち、循環ポンプ31より下流側で散布管33の接続部より上流側にはドレン管34が接続されており、ドレン管34には第4バルブ35を設けて、吸水液流入管15には第5バルブ36を設けている。   A circulation pump 31 is interposed in the middle of the water absorption liquid inflow pipe 15, and a filter 32 is provided upstream of the circulation pump 31. Further, the spray pipe 33 is branched from the upstream side of the first preheater 3 on the downstream side of the circulating pump 31 in the water absorption liquid inlet pipe 15, and the end of the spray pipe 33 is located at the upper end of the evaporator 19. This is connected to a sprayer (not shown). A drain pipe 34 is connected to the middle part of the water absorption liquid inlet pipe 15 downstream of the circulation pump 31 and upstream of the connecting part of the spray pipe 33, and the drain pipe 34 is provided with a fourth valve 35. The water absorption liquid inflow pipe 15 is provided with a fifth valve 36.

第1予熱器3と第2予熱器4とは熱交換器であり、例えば、ケースに多数本の細管又は屈曲した長い細管を内蔵した方式を採用できる(多数本の細管を有する場合は、細管の群は2つのヘッダーに接続されている。)。この場合は、ケースに放熱液を供給して細管の液体に伝熱したり、逆に、細管に放熱液を流してケースの液体に伝熱したりすることができる。当然ながら、プレート式熱交換器も使用可能である。   The first preheater 3 and the second preheater 4 are heat exchangers, and for example, a method in which a large number of thin tubes or bent long thin tubes are incorporated in the case can be adopted (in the case of having a large number of thin tubes, the thin tubes Is connected to two headers). In this case, heat can be supplied to the case to transfer heat to the liquid in the narrow tube, or conversely, heat can be transferred to the liquid in the case by flowing the heat to the thin tube. Of course, a plate heat exchanger can also be used.

そして、第1予熱器3の放熱部を吸水液供給管15の中途部に接続(介挿)して、第2予熱器4の放熱部を凝縮水排出29の中途部に接続(介挿)している。吸水液排出管16は途中で二股に分岐してから再び合流しており、第1分岐部16aを第1予熱器3の受熱部に接続して、第2分岐部16bを第2予熱器3の受熱部を接続している。従って、本実施形態では、第1及び第2の予熱器3,4は、吸水液排出管16に対して並列状態に接続されている。   Then, the heat dissipating part of the first preheater 3 is connected (inserted) to the midway part of the water absorption liquid supply pipe 15, and the heat dissipating part of the second preheater 4 is connected to the midway part of the condensed water discharge 29 (inserted). doing. The water absorption liquid discharge pipe 16 branches in the middle and then merges again. The first branch portion 16a is connected to the heat receiving portion of the first preheater 3, and the second branch portion 16b is connected to the second preheater 3. The heat receiving part is connected. Therefore, in the present embodiment, the first and second preheaters 3 and 4 are connected in parallel to the water absorption liquid discharge pipe 16.

(3).第1実施形態のまとめ
飲料や液体食品のような原料液は、原料液送りポンプ10の駆動により、原料液供給管8から供給されて原料液通過室6を通過する。他方、例えば原料液と同じ成分で、濃度(浸透圧)が原料液よりも高い吸水液が原料液濃縮部1の吸水液通過室7に供給されており、両液の浸透圧の違いにより、原料液に含まれている水分の一部が、正浸透膜5を透過して吸水液通過室7に移行する(拡散する)。これにより、原料液の濃縮が行われる。
(3) Summary of First Embodiment A raw material liquid such as a beverage or liquid food is supplied from the raw material liquid supply pipe 8 through the raw material liquid passage chamber 6 by driving the raw material liquid feed pump 10. On the other hand, for example, a water absorption liquid having the same component as the raw material liquid and having a concentration (osmotic pressure) higher than that of the raw material liquid is supplied to the water absorption liquid passage chamber 7 of the raw material liquid concentration unit 1. Part of the water contained in the raw material liquid passes through the forward osmosis membrane 5 and moves (diffuses) to the water absorption liquid passage chamber 7. Thereby, concentration of the raw material liquid is performed.

原料液の濃縮の割合は、両液体の浸透圧の違いの程度や、正浸透膜5に対する両液の接触量の程度などによって変化する。当然ながら、浸透圧の違いが大きいほど濃縮率は高くなる。また、正浸透膜5に対する原料液の接触量が高くなることによっても、濃縮率は高くなる。従って、原料液の流速が低くなると濃縮率は高くなる。単位時間当たりに流れる原料液の量と吸水液の量との割合は、浸透圧の違いや目的とする濃縮率の違い等に応じて個別に設定(調節・変更)できる。このように、各種の条件に応じて原料液又は吸水液若しくは両方の流速を制御することは、濃縮方法や予熱の有無等とは切り離してそれ自体が独立した発明として成立しうる。   The concentration ratio of the raw material liquid varies depending on the degree of difference in osmotic pressure between the two liquids, the degree of contact between the two liquids on the forward osmosis membrane 5, and the like. Naturally, the greater the difference in osmotic pressure, the higher the concentration rate. Further, the concentration rate is increased by increasing the contact amount of the raw material liquid with respect to the forward osmosis membrane 5. Therefore, the concentration rate increases as the flow rate of the raw material liquid decreases. The ratio between the amount of the raw material liquid flowing per unit time and the amount of the water absorption liquid can be individually set (adjusted / changed) according to the difference in osmotic pressure, the difference in the target concentration rate, and the like. Thus, controlling the flow rates of the raw material liquid and / or the water absorption liquid according to various conditions can be established as an invention independent of the concentration method and the presence or absence of preheating.

原料液と吸水液との浸透圧が大きく異なっていても、原料液通過室6を流れる原料液のうち一部しか正浸透膜5に接触しない可能性もある。この点については、原料液の流速を遅くすることで対処できるが、流速を低下させただけでは、濃縮済みの原料液が正浸透膜5の近くに滞留してしまって、濃縮が進行し難くなる可能性もある。   Even if the osmotic pressures of the raw material liquid and the water absorption liquid are greatly different, only a part of the raw material liquid flowing through the raw material liquid passage chamber 6 may contact the forward osmosis membrane 5. This can be dealt with by slowing down the flow rate of the raw material liquid. However, if the flow rate is lowered, the concentrated raw material liquid stays near the forward osmosis membrane 5 and the concentration does not proceed easily. There is also a possibility.

この点、第1〜第3のバルブ12〜14を操作して、原料液の一部又は全部を循環させると、原料液は、流れによって攪拌されて濃度をできるだけ均一に維持しつつ正浸透膜5に繰り返し接触するため、濃縮(水分の拡散)を効率よく行えると云える。また、固形物が正浸透膜5に付着することも防止又は著しく抑制できると云える。   In this regard, when the first to third valves 12 to 14 are operated to circulate a part or all of the raw material liquid, the raw material liquid is stirred by the flow and the forward osmosis membrane is maintained while maintaining the concentration as uniform as possible. 5 is repeatedly contacted, it can be said that concentration (moisture diffusion) can be performed efficiently. Further, it can be said that the solid matter can be prevented or remarkably suppressed from adhering to the forward osmosis membrane 5.

なお、正浸透膜5は浸透圧の違いで水分を透過させるものであるため、原料液体に加圧することは基本的には不要であるが、吸水液の濃縮が減圧下で行われることによって原料液通過室6と吸水液通過室8とに圧力差が生じる場合、結果として原料液通過室6が加圧されたのと同じ状態になり得るが、このような状態は当然に許容される。また、本願発明は、正浸透膜5の強度を保持し得る範囲内で原料液通過室6を積極的に加圧することを排除するものではない。   Since the forward osmosis membrane 5 allows moisture to permeate due to the difference in osmotic pressure, it is basically unnecessary to pressurize the raw material liquid, but the raw material is obtained by concentrating the water absorption liquid under reduced pressure. When a pressure difference is generated between the liquid passage chamber 6 and the water absorption liquid passage chamber 8, the resulting state may be the same as when the raw material liquid passage chamber 6 is pressurized, but such a state is naturally allowed. The present invention does not exclude positively pressurizing the raw material liquid passage chamber 6 within a range in which the strength of the forward osmosis membrane 5 can be maintained.

吸水液通過室7には原料液から水分が移行するため、吸水液通過室7を通過した吸水液は、濃度(浸透圧)が低下した希釈処理液になっている。この希釈処理液は、吸水液排出管16から蒸発缶19に送られて、蒸発缶19に溜まっていた濃縮済み吸水液と混合する。蒸発管19に溜まっていた濃縮済み吸水液は過剰に濃縮されており、これと希釈処理液とが混合することで、目的とする濃度の吸水液が得られるように設定している。   Since water is transferred from the raw material liquid to the water absorption liquid passage chamber 7, the water absorption liquid that has passed through the water absorption liquid passage chamber 7 is a diluted treatment liquid having a reduced concentration (osmotic pressure). This diluted processing liquid is sent from the water absorption liquid discharge pipe 16 to the evaporator 19 and mixed with the concentrated water absorption liquid accumulated in the evaporator 19. The concentrated water-absorbing liquid accumulated in the evaporation pipe 19 is excessively concentrated, and is set so that a water-absorbing liquid having a target concentration can be obtained by mixing this with the dilution treatment liquid.

例えば、蒸発缶19に溜まっている過剰濃縮吸水液の量を、吸水液排出管16から供給される希釈処理液の量よりも相当に大きくなるように設定しておくことにより、安定した濃度の吸水液を得ることができる。   For example, by setting the amount of the overconcentrated water absorption liquid stored in the evaporator 19 to be considerably larger than the amount of the diluted processing liquid supplied from the water absorption liquid discharge pipe 16, a stable concentration can be obtained. A water-absorbing liquid can be obtained.

蒸発缶19から吸水液流入管15に取り出された吸水液の一部は散布管33によって凝縮器20の上方に導かれ、シャワー状になって凝縮器20の細管に噴霧される。このとき、蒸発缶19の内部は加温されてかつ減圧されているため、吸水液に含まれている水分は100℃よりも低い温度で効率よく蒸発する。   A part of the water absorption liquid taken out from the evaporator 19 to the water absorption liquid inflow pipe 15 is guided to the upper side of the condenser 20 by the spray pipe 33 and sprayed on the narrow pipe of the condenser 20 in a shower shape. At this time, since the inside of the evaporator 19 is heated and depressurized, the water contained in the water absorption liquid is efficiently evaporated at a temperature lower than 100 ° C.

そして、蒸気は、蒸発缶19の上部からヒートポンプ28に導かれて圧縮・加温され(数度昇温し)、蒸気流入口23から凝縮器20の細管群に流入する。そして、細管群に流入した蒸気は、細管群の表面に付着した水滴を蒸発させてヒートポンプ28への導入蒸気を生成させると共に、自身は熱の放出によって凝縮して水滴となり、凝縮水排出管29から系外に排出される。   Then, the vapor is guided to the heat pump 28 from the upper part of the evaporator 19 and compressed and heated (heated up several degrees), and flows into the thin tube group of the condenser 20 from the vapor inlet 23. The steam flowing into the narrow tube group evaporates water droplets adhering to the surface of the thin tube group to generate steam introduced into the heat pump 28, and condenses into water droplets by the release of heat, resulting in a condensed water discharge pipe 29. Is discharged from the system.

吸水液通過室7から排出された希釈処理液は蒸発缶19に還流するが、蒸発缶19の内部での蒸発を促進して濃縮効率を高める(ランニングコストを抑制する)には、蒸発缶19に流入する温度はできるだけ高いのが好ましい。   The diluted processing liquid discharged from the water absorption liquid passage chamber 7 is returned to the evaporator 19. However, in order to promote evaporation inside the evaporator 19 and increase the concentration efficiency (suppress running cost), the evaporator 19 It is preferable that the temperature flowing into is as high as possible.

この場合、原料液の温度は一般に常温程度であって吸水液の温度よりは低いため、吸水液が吸水液通過室7を通過する過程で正浸透膜5を介して原料液への熱伝達が行われ、希釈処理液の温度は濃縮済み吸水液の温度よりも低下している。また、吸水液供給管15や吸水液排出管16が大気に露出していると、それら管路での放熱も発生する。   In this case, since the temperature of the raw material liquid is generally about room temperature and lower than the temperature of the water absorption liquid, heat transfer to the raw material liquid through the forward osmosis membrane 5 is performed in the process of the water absorption liquid passing through the water absorption liquid passage chamber 7. The temperature of the diluted treatment liquid is lower than that of the concentrated water absorption liquid. Further, when the water absorption liquid supply pipe 15 and the water absorption liquid discharge pipe 16 are exposed to the atmosphere, heat is also radiated through these pipe lines.

従って、吸水液が吸水液通過室7と蒸発缶19とを循環するに際して、吸水液からの放熱現象があり、装置に使用する熱エネルギにロスが発生しているが、本実施形態では、第1予熱器3により、濃縮済み吸水液から希釈処理液に熱交換して、蒸発缶19に還流した希釈処理液を加温(昇温)できるため、エネルギのロスを抑制できる。   Therefore, when the water absorption liquid circulates between the water absorption liquid passage chamber 7 and the evaporator 19, there is a heat dissipation phenomenon from the water absorption liquid, and a loss occurs in the heat energy used in the apparatus. 1 The preheater 3 can exchange heat from the concentrated water absorption liquid to the diluted processing liquid and heat (heat up) the diluted processing liquid refluxed to the evaporator 19, thereby suppressing energy loss.

更に、凝縮水は蒸気が水滴化したものであってかなり高い温度が維持されているため、凝縮水の熱を吸水液に伝熱することによっても、蒸発缶19に還流する希釈処理液を加温できる。これら2つの加温作用により、装置全体として熱のロスを抑制して、ランニングコストを抑制することができる。なお、吸水液供給管15や吸水液排出管16、凝縮水排出管29は、放熱を抑制するため断熱構造にしておくのが好ましい。   Furthermore, since condensed water is a droplet of steam that is maintained at a considerably high temperature, the diluted treatment liquid that is returned to the evaporator 19 can be added by transferring the heat of the condensed water to the water absorption liquid. Can warm. By these two heating actions, heat loss can be suppressed as a whole apparatus, and running cost can be suppressed. The water absorption liquid supply pipe 15, the water absorption liquid discharge pipe 16, and the condensed water discharge pipe 29 are preferably provided with a heat insulating structure in order to suppress heat radiation.

しかも、濃縮済み吸水液を熱交換によって例えば常温よりもやや高い程度の温度に降温させることができるため、原料液が熱による悪影響を受けやすい場合であっても、濃縮部1において原料液が吸水液によって加温されて品質が変化することを防止又は著しく抑制できる。また、濃縮済み原料液の冷却工程を不要にして、包装工程の迅速化に貢献することも可能になる。   Moreover, since the concentrated water-absorbing liquid can be lowered to a temperature slightly higher than room temperature by heat exchange, for example, even if the raw material liquid is easily affected by heat, the raw material liquid absorbs water in the concentration unit 1. It is possible to prevent or remarkably prevent the quality from being changed by being heated by the liquid. Moreover, it becomes possible to contribute to speeding up the packaging process by eliminating the cooling process of the concentrated raw material liquid.

実施形態では2つの予熱器3,4を設けたが、1つの予熱器に複数の放熱部を設けることにより、1つの予熱器で希釈処理液を加温することも可能である。この場合は、当然ながら吸水液排出管16を分岐させる必要はない。また、第1予熱器3と第2予熱器4とを直列に配置して、希釈処理液が2つの予熱器3,4に順番に流入するように設定してもよい。この場合、2つの予熱器3,4は、放熱温度が低いものを上流側に配置するのが好ましい。   In the embodiment, the two preheaters 3 and 4 are provided. However, by providing a plurality of heat dissipating units in one preheater, it is also possible to heat the dilution processing liquid with one preheater. In this case, of course, it is not necessary to branch the water absorption liquid discharge pipe 16. Alternatively, the first preheater 3 and the second preheater 4 may be arranged in series so that the diluted processing liquid flows into the two preheaters 3 and 4 in order. In this case, it is preferable to arrange two preheaters 3 and 4 on the upstream side with a low heat radiation temperature.

本実施形態のように、吸水液供給管15にフィルター32を設けると、固形物が正浸透膜5に付着することを抑制して濃縮効率維持に貢献できる。また、蒸発缶19や管等の管路のクリーン度維持(スケールの抑制)にも貢献できる。フィルター32は、吸水液供給管15に設けることに代えて又はこれに加えて、吸水液排出管16に設けることも可能である。   When the filter 32 is provided in the water absorption liquid supply pipe 15 as in the present embodiment, it is possible to suppress the solid matter from adhering to the forward osmosis membrane 5 and contribute to maintaining the concentration efficiency. Further, it can contribute to maintaining the cleanliness of the pipelines such as the evaporator 19 and the pipes (suppressing the scale). The filter 32 can be provided in the water absorption liquid discharge pipe 16 instead of or in addition to the water absorption liquid supply pipe 15.

原料液濃縮部1は原料液通過室6を流れながら水分が減じるため、原料液通過室6では、入口側より出口側において濃度が高くなっていると云える。他方、吸水液は原料液からの水分供給を受けて薄まっていくため、濃度は入口側で高くて出口側で低くなっている。このため、原料液と吸水液との流れ方向が同じであると、流れ方向に向けて水分の透過性(拡散)が低下していく。   Since the raw material liquid concentrating unit 1 reduces the moisture while flowing through the raw material liquid passage chamber 6, it can be said that the concentration in the raw material liquid passage chamber 6 is higher on the outlet side than on the inlet side. On the other hand, since the water absorption liquid is thinned by receiving moisture from the raw material liquid, the concentration is high on the inlet side and low on the outlet side. For this reason, if the flow directions of the raw material liquid and the water absorption liquid are the same, the moisture permeability (diffusion) decreases in the flow direction.

この点、本実施形態のように、原料液の流れ方向と吸水液の流れ方向とを逆向きにすると、原料液と吸水液との濃度差を正浸透膜5の各部位において均一化できる。このため、正浸透膜5の全体をフルに活用して濃縮効率を向上できると共に、正浸透膜5の耐久性も向上できると云える。   In this regard, as in this embodiment, when the flow direction of the raw material liquid and the flow direction of the water absorption liquid are reversed, the concentration difference between the raw material liquid and the water absorption liquid can be made uniform in each part of the forward osmosis membrane 5. For this reason, it can be said that the entire forward osmosis membrane 5 can be fully utilized to improve the concentration efficiency, and the durability of the forward osmosis membrane 5 can also be improved.

(4).第2実施形態
次に、図2に示す第2実施形態を説明する。この第2実施形態において、第1実施形態と共通した要素は図1と同じ符号を付しており、その説明は、特に必要がない限り省略している(第3実施形態も同様である。)。
(4). Second Embodiment Next, a second embodiment shown in FIG. 2 will be described. In the second embodiment, the same elements as those in the first embodiment are denoted by the same reference numerals as those in FIG. 1, and the description thereof is omitted unless particularly necessary (the third embodiment is also the same). ).

この第2実施形態では、第1〜第3の原料液濃縮部1a,1b,1cを直列に配置しており、第1原料液濃縮部1aにおける原料液通過室6の出口と第2原料液濃縮部1bにおける原料液通過室6の入口とが第1中間供給管44で接続されて、第2原料液濃縮部1bにおける原料液通過室6の出口と第3原料液濃縮部1cにおける原料液通過室6の入口とが第2中間供給管・・で接続されている。従って、原料液は第1〜第3の原料液濃縮部1a,1b,1cの原料液通過室6に順番に流入していく。   In this 2nd Embodiment, the 1st-3rd raw material liquid concentration part 1a, 1b, 1c is arrange | positioned in series, the exit of the raw material liquid passage chamber 6 and the 2nd raw material liquid in the 1st raw material liquid concentration part 1a The inlet of the raw material liquid passage chamber 6 in the concentration unit 1b is connected by the first intermediate supply pipe 44, and the outlet of the raw material liquid passage chamber 6 in the second raw material liquid concentration unit 1b and the raw material liquid in the third raw material liquid concentration unit 1c. The inlet of the passage chamber 6 is connected by a second intermediate supply pipe. Accordingly, the raw material liquid sequentially flows into the raw material liquid passage chamber 6 of the first to third raw material liquid concentrating portions 1a, 1b, and 1c.

各原料液濃縮部1a,1b,1cで濃縮していくので、吸水液濃縮部2による吸水液の濃度は、第3原料液濃縮部1cに対応した高い濃度に設定されている。また、本実施形態でも、第1及び第2の予熱器3,4を使用している。吸水液濃縮部2は1台のみ設置している。   Since each raw material liquid concentrating part 1a, 1b, 1c is concentrated, the concentration of the water absorbing liquid by the water absorbing liquid concentrating part 2 is set to a high concentration corresponding to the third raw material liquid concentrating part 1c. Also in this embodiment, the first and second preheaters 3 and 4 are used. Only one water-absorbing liquid concentrating unit 2 is installed.

そして、吸水液供給路15を、第1原料液濃縮部1aの吸水液通過室6に濃縮済み吸水液を給液する第1吸水液分岐供給路46と、第2原料液濃縮部1bの吸水液通過室6に濃縮済み吸水液を給液する第2吸水液分岐供給路47と、第3原料液濃縮部1cの吸水液通過室6に濃縮済み吸水液を給液する第3吸水液分岐供給路47とに分岐させている。他方、吸水液排出管15も、第1原料液濃縮部1aに接続された第1吸水液排出管49、第2原料液濃縮部1bに接続された第2吸水液排出管50、第3原料液濃縮部1cに接続された第3吸水液排出管50に分岐しており、これらは1本に集合して予熱器3,4に至っている。   Then, the water absorption liquid supply path 15, the first water absorption liquid branch supply path 46 for supplying the concentrated water absorption liquid to the water absorption liquid passage chamber 6 of the first raw material liquid concentration section 1 a, and the water absorption of the second raw material liquid concentration section 1 b. A second water absorption liquid branch supply passage 47 for supplying the concentrated water absorption liquid to the liquid passage chamber 6, and a third water absorption liquid branch for supplying the concentrated water absorption liquid to the water absorption liquid passage chamber 6 of the third raw material liquid concentration unit 1c. It branches off to the supply path 47. On the other hand, the water absorption liquid discharge pipe 15 also includes a first water absorption liquid discharge pipe 49 connected to the first raw material liquid concentration part 1a, a second water absorption liquid discharge pipe 50 connected to the second raw material liquid concentration part 1b, and a third raw material. It branches to the 3rd water absorption liquid discharge pipe 50 connected to the liquid concentrating part 1c, these are gathered together and reach the preheaters 3 and 4.

第1分岐供給路46の中途部に設けた第1攪拌室52と第2吸水液排出管50とが第1補助管路53で接続され、第2分岐供給路47の中途部に設けた第2攪拌室54と第3吸水液排出管51とが第2補助管路55で接続している。両補助管路53,55には、流量制御バルブ56,57を設けている。   The first stirring chamber 52 provided in the middle part of the first branch supply path 46 and the second water absorption liquid discharge pipe 50 are connected by the first auxiliary pipe 53, and the first stirring chamber 52 provided in the middle part of the second branch supply path 47. The second stirring chamber 54 and the third water absorption liquid discharge pipe 51 are connected by a second auxiliary pipe 55. Both auxiliary pipes 53 and 55 are provided with flow control valves 56 and 57.

この実施形態では、第1吸水液分岐供給路46には第2吸水液排出管50から希釈処理液が供給されて吸水液の濃度が薄まり、第2吸水液分岐供給路47には第3吸水液排出管51から希釈処理液が供給されて吸水液の濃度が薄まるが、第3吸水液排出管51の希釈処理液の濃度が第2吸水液排出管50の希釈処理液の濃度よりも高いため、各原料液濃縮部1a〜1cの吸水液通過室7に流れる吸水液の濃度(浸透圧)は、第1原料液濃縮部1a<第2原料液濃縮部1b<第3原料液濃縮部1cの関係になっている。このため、原料液を段階的に濃縮できる。   In this embodiment, the first water absorption liquid branch supply path 46 is supplied with the diluted processing liquid from the second water absorption liquid discharge pipe 50 to reduce the concentration of the water absorption liquid, and the second water absorption liquid branch supply path 47 has the third water absorption. The diluted treatment liquid is supplied from the liquid discharge pipe 51 to reduce the concentration of the water absorption liquid, but the concentration of the dilution treatment liquid in the third water absorption liquid discharge pipe 51 is higher than the concentration of the dilution treatment liquid in the second water absorption liquid discharge pipe 50. Therefore, the concentration (osmotic pressure) of the water-absorbing liquid flowing in the water-absorbing-liquid passage chamber 7 of each of the raw material liquid concentrating parts 1a to 1c is determined as follows: first raw material liquid concentrating part 1a The relationship is 1c. For this reason, a raw material liquid can be concentrated in steps.

本実施形態では、原料液濃縮部1a〜1cを原料液濃縮部1が略水平方向に流れる横置き式にしているが、縦置きであってもよい。また、本実施形態の変形例(或いは類似例)として、補助管路53,55は使用せずに、少なくとも第1吸水液分岐供給路46と第2吸水液分岐供給路46とに流量調節バルブを設けて、これらのバルブを制御することにより、各吸水液分岐供給路46,47,48を流れる吸水液の量を、第1吸水液分岐供給路46<第2吸水液分岐供給路47<第3吸水液分岐供給路48、の関係に設定することが可能である。   In the present embodiment, the raw material liquid concentrating units 1a to 1c are horizontally placed so that the raw material liquid concentrating unit 1 flows in a substantially horizontal direction. As a modified example (or similar example) of the present embodiment, the auxiliary pipes 53 and 55 are not used, and at least the first water absorption liquid branch supply path 46 and the second water absorption liquid branch supply path 46 are flow rate control valves. And by controlling these valves, the amount of the water-absorbing liquid flowing through each of the water-absorbing liquid branch supply paths 46, 47, 48 is set to the first water-absorbing liquid branch supply path 46 <the second water-absorbing liquid branch supply path 47 <. It is possible to set the relationship to the third water absorption liquid branch supply path 48.

この場合は、各原料液濃縮部1に流れる吸水液の濃度は一定でも、原料液に対する流量の比率の違いにより、原料液の濃縮度を段階的に高くすることができる。   In this case, even if the concentration of the water absorption liquid flowing through each raw material liquid concentrating unit 1 is constant, the concentration of the raw material liquid can be increased stepwise due to the difference in the ratio of the flow rate to the raw material liquid.

原料液濃縮部1を複数段配置する場合、その段数は3段に限らず、2段又は4段以上であってもよい。また、原料液濃縮部1を多段に配置した場合、吸水液濃縮部2を複数設置することも可能である。吸水液濃縮部2を複数配置する場合、吸水液濃縮部2を原料液濃縮部1の段数と同じ数だけ配置して、各原料液濃縮部1に対応した濃度の吸水液を個々の吸水液濃縮部2で製造してもよいし、1つの吸水液濃縮部2で複数の原料液濃縮部1に対応させてもよい。予熱器も数も任意に設定できる。   When the raw material liquid concentrating unit 1 is arranged in a plurality of stages, the number of stages is not limited to three, but may be two or four or more. Moreover, when the raw material liquid concentration part 1 is arrange | positioned in multiple stages, it is also possible to install two or more water absorption liquid concentration parts 2. FIG. In the case where a plurality of water-absorbing liquid concentrating units 2 are arranged, the same number of water-absorbing liquid concentrating units 2 as the number of stages of the raw material liquid concentrating units 1 are arranged, and the water absorbing liquid having a concentration corresponding to each raw material liquid concentrating unit 1 It may be manufactured by the concentration unit 2, or one water absorption liquid concentration unit 2 may correspond to a plurality of raw material liquid concentration units 1. The preheater and the number can be set arbitrarily.

(5).第3実施形態
図3に示す第3実施形態は、第1実施形態の変形例である。この第3実施形態では、蒸発管19から取り出した吸水液はその全量を原料液濃縮部1に供給して、予熱器3,4を通過した希釈処理液は凝縮器3に散布している。この実施形態も、吸水液は第1実施形態と同様に濃縮される。
(5) Third Embodiment A third embodiment shown in FIG. 3 is a modification of the first embodiment. In the third embodiment, the entire amount of the water absorption liquid taken out from the evaporation pipe 19 is supplied to the raw material liquid concentrating unit 1, and the diluted processing liquid that has passed through the preheaters 3 and 4 is dispersed in the condenser 3. In this embodiment as well, the water-absorbing liquid is concentrated as in the first embodiment.

(6).その他
本願発明は、上記の実施形態の他にも様々に具体化できる。例えば、正浸透膜は、平膜や中空糸状のものなど、各種の構造のものを使用できる。また、吸水液の濃縮方法は必ずしも蒸発・凝縮式のものを使用する必要はないのであり、例えば逆浸透膜を使用することも可能である。吸水液として例えば飽和食塩水を使用すると、吸水液の目詰まりは殆どないため、逆浸透膜を使用した濃縮でも実用に足りる。
(6). Others The present invention can be embodied in various ways other than the above embodiment. For example, the forward osmosis membrane may be of various structures such as a flat membrane or a hollow fiber. In addition, it is not always necessary to use an evaporation / condensation method as a method for concentrating the water absorption liquid. For example, a reverse osmosis membrane can also be used. For example, when a saturated saline solution is used as the water-absorbing solution, the water-absorbing solution is hardly clogged, so that concentration using a reverse osmosis membrane is sufficient for practical use.

正浸透膜は、例えば金網のような支持体によって姿勢を保持することも可能である。また、原料液通過室と正浸透膜と吸水液通過室とを、液の流れ方向から見て螺旋状に形成することも可能であり、この場合は、単位容積当たりに原料液及び吸水液が正浸透膜に接触する両を壮大できるため、スペースを有効利用できる利点がある。   The forward osmosis membrane can also hold its posture by a support such as a wire mesh. It is also possible to form the raw material liquid passage chamber, the forward osmosis membrane, and the water absorption liquid passage chamber in a spiral shape when viewed from the liquid flow direction. In this case, the raw material liquid and the water absorption liquid are per unit volume. Since both sides that contact the forward osmosis membrane can be magnified, there is an advantage that the space can be used effectively.

本願発明は、飲料や液状食品の濃縮に具体化できる。従って、産業上利用できる。   The present invention can be embodied in the concentration of beverages and liquid foods. Therefore, it can be used industrially.

1,1a〜1c 原料液濃縮部
2 吸水液濃縮部
3 第1予熱器
4 第2予熱器
5 正浸透膜
6 原料液通過室
7 吸水液通過室
8 原料液供給管
9 原料液排出管
11 原料液循環路
15 吸水液流入管
16 吸水液排出管
19 蒸発缶
20 凝縮器
26 真空ポンプ
27 凝縮管路
28 ヒートポンプ
29 凝縮水排出管
31 循環ポンプ
32 フィルター
33 散布管
DESCRIPTION OF SYMBOLS 1,1a-1c Raw material liquid concentration part 2 Water absorption liquid concentration part 3 1st preheater 4 2nd preheater 5 Forward osmosis membrane 6 Raw material liquid passage chamber 7 Water absorption liquid passage chamber 8 Raw material liquid supply pipe 9 Raw material liquid discharge pipe 11 Raw material Liquid circulation path 15 Water absorption liquid inflow pipe 16 Water absorption liquid discharge pipe 19 Evaporator 20 Condenser 26 Vacuum pump 27 Condensation pipe 28 Heat pump 29 Condensate water discharge pipe 31 Circulation pump 32 Filter 33 Spreading pipe

本願発明は、経口又は外用液体の濃縮装置及びその濃縮方法に関するものである。ここに、経口の液体とは、人又は動物が口にするもの全体を意味しており、その典型として、濃縮ジュースや清涼飲料等の飲料、麺つゆ・各種出汁・調味料・スープのような液状(汁状)の食べ物、液状の健康補助食品、経口医薬品などが挙げられる。 The present invention relates to an oral or external liquid concentrating device and a concentrating method thereof. Here, the oral liquid means the whole thing that a person or an animal eats. Typical examples include beverages such as concentrated juices and soft drinks, noodle soup, various soups, seasonings, and soups. Liquid (juice-like) foods, liquid health supplements, oral medicines and the like can be mentioned.

更に、請求項1の濃縮装置は、前記正浸透膜を透過した水分によって薄められた希釈吸水液の濃度を回復させる吸水液濃縮部を備えており、前記吸水液濃縮部から濃縮済み吸水液が前記吸水液通過室に送られて、希釈吸水液は前記吸水液通過室から吸水液濃縮部に戻されるようになっている。なお、原料液濃縮部は、濃縮処理ハウジングや濃縮処理タンクのように言い換えることも可能である
請求項1の濃縮装置の展開例として請求項2の発明では、前記吸水液濃縮部は、吸水液を減圧下でヒートポンプによって圧縮して水分を蒸発・凝縮させてから凝縮水を排出する方式になっている。
Furthermore, the concentrating device according to claim 1 further includes a water-absorbing liquid concentrating unit that recovers the concentration of the diluted water-absorbing liquid diluted by the water that has passed through the forward osmosis membrane, and the concentrated water-absorbing liquid is supplied from the water-absorbing liquid concentrating unit. The diluted water absorption liquid sent to the water absorption liquid passage chamber is returned from the water absorption liquid passage chamber to the water absorption liquid concentration section. In addition, the raw material liquid concentrating part can be paraphrased like a concentration processing housing or a concentration processing tank .
In the invention of claim 2 as an example of development of the concentrator of claim 1, the water-absorbing liquid concentrating unit is a system in which the water-absorbing liquid is compressed by a heat pump under reduced pressure to evaporate and condense the water, and then discharge the condensed water. It has become.

この点、請求項の構成を採用すると、濃縮済み吸水液の熱を希釈吸水液に熱交換することにより、濃縮済み吸水液から原料液への伝熱量を抑制したり、濃縮済み吸水液又は凝縮水(廃水)から希釈吸水液に熱交換して、希釈吸水液の蒸発・凝縮に要する熱エネルギを抑制したりすることができる。これにより、ランニングコストを抑制することができる。換言すると、吸水液の濃度維持(或いは濃度回復)のための熱エネルギを回収して、ランニングコストを抑制することができるのである。 In this regard, when the configuration of claim 4 is adopted, the amount of heat transferred from the concentrated water absorption liquid to the raw material liquid can be suppressed by exchanging the heat of the concentrated water absorption liquid with the diluted water absorption liquid, or the concentrated water absorption liquid or Heat exchange from the condensed water (waste water) to the diluted water-absorbing liquid can suppress heat energy required for evaporation / condensation of the diluted water-absorbing liquid. Thereby, running cost can be suppressed. In other words, the heat energy for maintaining the concentration (or restoring the concentration) of the water-absorbing liquid can be recovered to reduce the running cost.

原料液は原料液通過室6を流れながら水分が減じるため、原料液通過室6では、入口側より出口側において濃度が高くなっていると云える。他方、吸水液は原料液からの水分供給を受けて薄まっていくため、濃度は入口側で高くて出口側で低くなっている。このため、原料液と吸水液との流れ方向が同じであると、流れ方向に向けて水分の透過性(拡散)が低下していく。 Starting material liquid to reduce the water while flowing the raw material liquid passage chamber 6, the raw material liquid passage chamber 6, when the concentration is higher at the outlet side of the inlet side it can be said. On the other hand, since the water absorption liquid is thinned by receiving moisture from the raw material liquid, the concentration is high on the inlet side and low on the outlet side. For this reason, if the flow directions of the raw material liquid and the water absorption liquid are the same, the moisture permeability (diffusion) decreases in the flow direction.

この第2実施形態では、第1〜第3の原料液濃縮部1a,1b,1cを直列に配置しており、第1原料液濃縮部1aにおける原料液通過室6の出口と第2原料液濃縮部1bにおける原料液通過室6の入口とが第1中間供給管44で接続されて、第2原料液濃縮部1bにおける原料液通過室6の出口と第3原料液濃縮部1cにおける原料液通過室6の入口とが第2中間供給管45で接続されている。従って、原料液は第1〜第3の原料液濃縮部1a,1b,1cの原料液通過室6に順番に流入していく。 In this 2nd Embodiment, the 1st-3rd raw material liquid concentration part 1a, 1b, 1c is arrange | positioned in series, the exit of the raw material liquid passage chamber 6 and the 2nd raw material liquid in the 1st raw material liquid concentration part 1a The inlet of the raw material liquid passage chamber 6 in the concentration unit 1b is connected by the first intermediate supply pipe 44, and the outlet of the raw material liquid passage chamber 6 in the second raw material liquid concentration unit 1b and the raw material liquid in the third raw material liquid concentration unit 1c. The inlet of the passage chamber 6 is connected by a second intermediate supply pipe 45 . Accordingly, the raw material liquid sequentially flows into the raw material liquid passage chamber 6 of the first to third raw material liquid concentrating portions 1a, 1b, and 1c.

第1分岐供給路46の中途部に設けた第1攪拌室52と第2吸水液排出管50とが第1補助管路53で接続され、第2分岐供給路47の中途部に設けた第2攪拌室54と第3吸水液排出管51とが第2補助管路55で接続されている。両補助管路53,55には、流量制御バルブ56,57を設けている。 The first stirring chamber 52 provided in the middle part of the first branch supply path 46 and the second water absorption liquid discharge pipe 50 are connected by the first auxiliary pipe 53, and the first stirring chamber 52 provided in the middle part of the second branch supply path 47. The second stirring chamber 54 and the third water absorption liquid discharge pipe 51 are connected by a second auxiliary pipe 55. Both auxiliary pipes 53 and 55 are provided with flow control valves 56 and 57.

原料液濃縮部1を複数段配置する場合、その段数は3段に限らず、2段又は4段以上であってもよい。また、原料液濃縮部1を多段に配置した場合、吸水液濃縮部2を複数設置することも可能である。吸水液濃縮部2を複数配置する場合、吸水液濃縮部2を原料液濃縮部1の段数と同じ数だけ配置して、各原料液濃縮部1に対応した濃度の吸水液を個々の吸水液濃縮部2で製造してもよいし、1つの吸水液濃縮部2で複数の原料液濃縮部1に対応させてもよい。予熱器数も任意に設定できる。 When the raw material liquid concentrating unit 1 is arranged in a plurality of stages, the number of stages is not limited to three, but may be two or four or more. Moreover, when the raw material liquid concentration part 1 is arrange | positioned in multiple stages, it is also possible to install two or more water absorption liquid concentration parts 2. FIG. In the case where a plurality of water-absorbing liquid concentrating units 2 are arranged, the same number of water-absorbing liquid concentrating units 2 as the number of stages of the raw material liquid concentrating units 1 are arranged, and the water absorbing liquid having a concentration corresponding to each raw material liquid concentrating unit 1 It may be manufactured by the concentration unit 2, or one water absorption liquid concentration unit 2 may correspond to a plurality of raw material liquid concentration units 1. The number of preheaters can also be set arbitrarily.

正浸透膜は、例えば金網のような支持体によって姿勢を保持することも可能である。また、原料液通過室と正浸透膜と吸水液通過室とを、液の流れ方向から見て螺旋状に形成することも可能であり、この場合は、単位容積当たりに原料液及び吸水液が正浸透膜に接触する増大できるため、スペースを有効利用できる利点がある。 The forward osmosis membrane can also hold its posture by a support such as a wire mesh. It is also possible to form the raw material liquid passage chamber, the forward osmosis membrane, and the water absorption liquid passage chamber in a spiral shape when viewed from the liquid flow direction. In this case, the raw material liquid and the water absorption liquid are per unit volume. Since the amount of contact with the forward osmosis membrane can be increased , there is an advantage that the space can be effectively used.

Claims (8)

原料液通過室と吸水液通過室とが正浸透膜によって隔てられた原料液濃縮部を備えており、
前記原料液通過室に、人が経口又は外用で用いる濃縮対象としての原料液が供給される一方、前記吸水液通過室には、前記原料液よりも浸透圧が高い吸水液が循環するようになっており、前記吸水液の浸透圧を原料液の浸透圧よりも高い値に設定しておくことにより、前記原料液の水分の一部が前記正浸透膜を介して吸水液通過室に拡散するようになっており、
かつ、前記正浸透膜を透過した水分によって薄められた希釈吸水液の濃度を回復させる吸水液濃縮部を備えており、前記吸水液濃縮部から濃縮済み吸水液が前記吸水液通過室に送られて、希釈吸水液は前記吸水液通過室から吸水液濃縮部に戻される、
経口又は外用液体の濃縮装置。
The raw material liquid passage chamber and the water absorption liquid passage chamber are provided with a raw material liquid concentration section separated by a forward osmosis membrane,
The raw material liquid passage chamber is supplied with a raw material liquid as a concentration target that is used orally or externally by a person, while a water absorption liquid having a higher osmotic pressure than the raw material liquid circulates in the water absorption liquid passage chamber. By setting the osmotic pressure of the water absorption liquid to a value higher than the osmotic pressure of the raw material liquid, a part of the moisture of the raw material liquid diffuses into the water absorption liquid passage chamber through the forward osmosis membrane. Is supposed to
And a water-absorbing liquid concentrating section for recovering the concentration of the diluted water-absorbing liquid diluted by the water that has passed through the forward osmosis membrane, and the concentrated water-absorbing liquid is sent from the water-absorbing liquid concentrating section to the water-absorbing liquid passage chamber. The diluted water absorption liquid is returned from the water absorption liquid passage chamber to the water absorption liquid concentration unit.
Oral or external liquid concentrator.
前記吸水液濃縮部は、吸水液を減圧下でヒートポンプによって圧縮して水分を蒸発・凝縮させてから凝縮水を排出する方式である、
請求項1に記載した経口又は外用液体の濃縮装置。
The water-absorbing liquid concentrating unit is a method of discharging condensed water after compressing the water-absorbing liquid with a heat pump under reduced pressure to evaporate and condense the water.
The device for concentrating an oral or external liquid according to claim 1.
前記吸水液として、前記原料液と略同じ成分のものが使用される、
請求項1又は2に記載した経口又は外用液体の濃縮装置。
As the water-absorbing liquid, substantially the same component as the raw material liquid is used,
The device for concentrating an oral or external liquid according to claim 1 or 2.
前記濃縮済み吸水液の熱と凝縮水の熱とのうち少なくともいずれか一方によって希釈吸水液を加温する予熱器が備えられている、
請求項2又は3に記載した経口又は外用液体の濃縮装置。
A preheater is provided for heating the diluted water absorption liquid by at least one of the heat of the concentrated water absorption liquid and the heat of the condensed water;
The device for concentrating an oral or external liquid according to claim 2 or 3.
→原液の循環を限定。
前記原料液通過室から排出された原料液を再び原料液通過室に戻す原料液循環路を備えている、
請求項1〜4のうちのいずれかに記載した経口又は外用液体の濃縮装置。
→ Limited circulation of stock solution.
A raw material liquid circulation path for returning the raw material liquid discharged from the raw material liquid passage chamber to the raw material liquid passage chamber again,
The device for concentrating an oral or external liquid according to any one of claims 1 to 4.
直列に接続された複数の原料液濃縮部を備えている、
請求項1〜5のうちのいずれかに記載した経口又は外用液体の濃縮装置。
Comprising a plurality of raw material liquid concentrating parts connected in series;
The device for concentrating an oral or external liquid according to any one of claims 1 to 5.
前記希釈吸水液が流れる管路と濃縮済み吸水液が流れる経路とのうちいずれか一方又は両方に、固形物を補集するフィルターを設けている、
請求項1〜6のうちのいずれかに記載した経口又は外用液体の濃縮装置。
A filter that collects solid matter is provided in either one or both of the pipe line through which the diluted water-absorbing liquid flows and the path through which the concentrated water-absorbing liquid flows.
The device for concentrating an oral or external liquid according to any one of claims 1 to 6.
正浸透膜を備えた濃縮装置を使用して経口又は外用液体を濃縮する方法であって、
前記濃縮装置は、原料液通過室と吸水液通過室とが正浸透膜によって隔てられた原料液濃縮部を有しており、
前記原料液通過室に濃縮前の経口又は外用液体を連続的に又は間欠的に供給しつつ、前記吸水液通過室には、前記濃縮前の経口又は外用液体よりも浸透圧が高い吸水液を循環させることにより、前記原料液通過室に供給された経口又は外用液体の水分の一部が前記正浸透膜を介して吸水液通過室に拡散するものであり、
前記経口又は外用液体の水分で希釈された吸水液を吸水液濃縮部に送り、吸水液濃縮部で濃度が回復した吸水液を前記吸水液通過室に還流させることにより、前記吸水液通過室における吸水液の濃度を原料液通過室における経口又は外用液体よりも高い濃度に維持している、
経口又は外用液体の濃縮方法。
A method of concentrating an oral or external liquid using a concentrating device equipped with a forward osmosis membrane,
The concentrator has a raw material liquid concentrating part in which a raw material liquid passage chamber and a water absorption liquid passage chamber are separated by a forward osmosis membrane,
While continuously or intermittently supplying the oral or external liquid before concentration to the raw material liquid passage chamber, a water absorption liquid having a higher osmotic pressure than the oral or external liquid before concentration is supplied to the water absorption liquid passage chamber. By circulating, a part of the moisture of the oral or external liquid supplied to the raw material liquid passage chamber diffuses into the water absorption liquid passage chamber through the forward osmosis membrane,
In the water absorption liquid passage chamber, the water absorption liquid diluted with water of the oral or external liquid is sent to the water absorption liquid concentration section, and the water absorption liquid whose concentration is recovered in the water absorption liquid concentration section is refluxed to the water absorption liquid passage chamber. The concentration of the water-absorbing liquid is maintained at a higher concentration than the oral or external liquid in the raw material liquid passage chamber.
Method for concentrating liquid for oral or external use.
JP2015029021A 2015-02-17 2015-02-17 Concentration apparatus and concentration method for oral liquid Active JP6262678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015029021A JP6262678B2 (en) 2015-02-17 2015-02-17 Concentration apparatus and concentration method for oral liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015029021A JP6262678B2 (en) 2015-02-17 2015-02-17 Concentration apparatus and concentration method for oral liquid

Publications (2)

Publication Number Publication Date
JP2016150308A true JP2016150308A (en) 2016-08-22
JP6262678B2 JP6262678B2 (en) 2018-01-17

Family

ID=56694969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015029021A Active JP6262678B2 (en) 2015-02-17 2015-02-17 Concentration apparatus and concentration method for oral liquid

Country Status (1)

Country Link
JP (1) JP6262678B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017038402A1 (en) * 2015-08-31 2017-03-09 東洋紡株式会社 Water treatment method and water treatment system
JP2018038367A (en) * 2016-09-09 2018-03-15 旭化成株式会社 Method for concentration of liquid food
WO2019098390A1 (en) * 2017-11-20 2019-05-23 旭化成株式会社 System for concentrating solvent-containing articles, and concentrate
CN110064305A (en) * 2019-05-31 2019-07-30 成都泓润科技有限公司 A kind of device and application method improving film cycles of concentration and dope concentration
WO2020050282A1 (en) 2018-09-03 2020-03-12 旭化成株式会社 Feedstock solution flow concentration system
JP2020044470A (en) * 2018-09-14 2020-03-26 旭化成株式会社 Concentration system of solvent-containing article
WO2021125002A1 (en) * 2019-12-17 2021-06-24 東洋紡株式会社 Concentration system
WO2021187438A1 (en) * 2020-03-19 2021-09-23 旭化成株式会社 Concentration method for raw material liquid
CN113545429A (en) * 2020-04-24 2021-10-26 苏州诺津环保科技有限公司 High-concentration and high-viscosity liquid concentration device
JP7289225B2 (en) 2019-06-25 2023-06-09 美浜株式会社 Concentrator and method for cleaning and concentrating the concentrator
JP7462460B2 (en) 2020-04-06 2024-04-05 美浜株式会社 Concentration Equipment

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5190752A (en) * 1975-02-07 1976-08-09
JPS54119096A (en) * 1978-03-06 1979-09-14 Yamasa Shoyu Co Ltd Production of strong alcoholic drink
JPS60150883A (en) * 1984-01-13 1985-08-08 Nippon Atom Ind Group Co Ltd Concentration device
JPS63182004A (en) * 1987-01-22 1988-07-27 Showa Denko Kk Aqueous solution concentration system
JPH0523547A (en) * 1991-07-19 1993-02-02 Nissin Electric Co Ltd Solution concentrating apparatus
JPH085187A (en) * 1994-06-15 1996-01-12 Sanki Eng Co Ltd Heat pump for film separator
JP2005060225A (en) * 2003-08-13 2005-03-10 Boc Group Inc:The Method and device for concentrating ammonia
JP2008307447A (en) * 2007-06-13 2008-12-25 Zousui Sokushin Center Fresh water generating apparatus and method
JP2010046008A (en) * 2008-08-21 2010-03-04 Sumitomo Electric Ind Ltd Fermentation system using biomass
JP2011131209A (en) * 2009-11-25 2011-07-07 Kurita Water Ind Ltd Method and apparatus for treating acidic solution
JP2012236124A (en) * 2011-05-10 2012-12-06 Kobe Univ Method and apparatus for concentrating water to be treated
JP2014097464A (en) * 2012-11-15 2014-05-29 Jfe Engineering Corp Method and apparatus for production of pure water

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5190752A (en) * 1975-02-07 1976-08-09
JPS54119096A (en) * 1978-03-06 1979-09-14 Yamasa Shoyu Co Ltd Production of strong alcoholic drink
JPS60150883A (en) * 1984-01-13 1985-08-08 Nippon Atom Ind Group Co Ltd Concentration device
JPS63182004A (en) * 1987-01-22 1988-07-27 Showa Denko Kk Aqueous solution concentration system
JPH0523547A (en) * 1991-07-19 1993-02-02 Nissin Electric Co Ltd Solution concentrating apparatus
JPH085187A (en) * 1994-06-15 1996-01-12 Sanki Eng Co Ltd Heat pump for film separator
JP2005060225A (en) * 2003-08-13 2005-03-10 Boc Group Inc:The Method and device for concentrating ammonia
JP2008307447A (en) * 2007-06-13 2008-12-25 Zousui Sokushin Center Fresh water generating apparatus and method
JP2010046008A (en) * 2008-08-21 2010-03-04 Sumitomo Electric Ind Ltd Fermentation system using biomass
JP2011131209A (en) * 2009-11-25 2011-07-07 Kurita Water Ind Ltd Method and apparatus for treating acidic solution
JP2012236124A (en) * 2011-05-10 2012-12-06 Kobe Univ Method and apparatus for concentrating water to be treated
JP2014097464A (en) * 2012-11-15 2014-05-29 Jfe Engineering Corp Method and apparatus for production of pure water

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017038402A1 (en) * 2015-08-31 2018-03-01 東洋紡株式会社 Water treatment method and water treatment system
WO2017038402A1 (en) * 2015-08-31 2017-03-09 東洋紡株式会社 Water treatment method and water treatment system
JP2018038367A (en) * 2016-09-09 2018-03-15 旭化成株式会社 Method for concentration of liquid food
CN111356518A (en) * 2017-11-20 2020-06-30 旭化成株式会社 Concentration system and concentrate for solvent-containing articles
WO2019098390A1 (en) * 2017-11-20 2019-05-23 旭化成株式会社 System for concentrating solvent-containing articles, and concentrate
JPWO2019098390A1 (en) * 2017-11-20 2020-09-17 旭化成株式会社 Concentration system and concentrate for solvent-containing articles
JPWO2020050282A1 (en) * 2018-09-03 2021-05-20 旭化成株式会社 Raw material liquid flow concentration system
JP7095098B2 (en) 2018-09-03 2022-07-04 旭化成株式会社 Raw material flow concentration system
WO2020050282A1 (en) 2018-09-03 2020-03-12 旭化成株式会社 Feedstock solution flow concentration system
CN112638508A (en) * 2018-09-03 2021-04-09 旭化成株式会社 Feed stream concentration system
JP2020044470A (en) * 2018-09-14 2020-03-26 旭化成株式会社 Concentration system of solvent-containing article
JP7186557B2 (en) 2018-09-14 2022-12-09 旭化成株式会社 Concentration system for solvent-containing articles
CN110064305A (en) * 2019-05-31 2019-07-30 成都泓润科技有限公司 A kind of device and application method improving film cycles of concentration and dope concentration
JP7289225B2 (en) 2019-06-25 2023-06-09 美浜株式会社 Concentrator and method for cleaning and concentrating the concentrator
JP2021094519A (en) * 2019-12-17 2021-06-24 東洋紡株式会社 Concentration system
WO2021125002A1 (en) * 2019-12-17 2021-06-24 東洋紡株式会社 Concentration system
WO2021187438A1 (en) * 2020-03-19 2021-09-23 旭化成株式会社 Concentration method for raw material liquid
JP7462460B2 (en) 2020-04-06 2024-04-05 美浜株式会社 Concentration Equipment
CN113545429A (en) * 2020-04-24 2021-10-26 苏州诺津环保科技有限公司 High-concentration and high-viscosity liquid concentration device
CN113545429B (en) * 2020-04-24 2023-11-17 苏州诺津环保科技有限公司 High-concentration and high-viscosity liquid concentration device

Also Published As

Publication number Publication date
JP6262678B2 (en) 2018-01-17

Similar Documents

Publication Publication Date Title
JP6262678B2 (en) Concentration apparatus and concentration method for oral liquid
JP6524298B2 (en) Vacuum evaporation type fresh water generator
US8277614B2 (en) Multi-stage flash desalination plant with feed cooler
KR20030041854A (en) Process and plant for multi-stage flash desalination of water
US7811420B2 (en) Isothermal gas-free water distillation
RU2631182C2 (en) Process of fresh water preliminary heating in steam-turbine power plants with process steam vent
ES2739080T3 (en) Procedure to deaerate and heat a vegetable product
KR102308392B1 (en) Distillation apparatus including distillation column
JP4996068B2 (en) Waste water concentration method and apparatus
CN104190259A (en) Multi-effect decompression membrane distillation method and device thereof
JP5150785B2 (en) Pure liquid production equipment
JP6138586B2 (en) Supply water heating device
EP2039407A3 (en) MSF desalination apparatus with heat-pipe heat dissipater
CN202822811U (en) Low-temperature vacuum concentration machine set of integration heat pump
JP7250325B2 (en) Membrane distillation system
ES2814348T3 (en) Absorption refrigeration machine
JP5808044B2 (en) Steam sterilization method for multiple-effect can-type distilled water production equipment
CN213569596U (en) Low-temperature evaporation treatment system for membrane-making wastewater
CN204778912U (en) Concentrated processing system of evaporation formula liquid
JP2014221441A (en) Evaporation concentrator and cleaning method of the same
CN109332290B (en) Material sterilizing machine
JP2014073452A (en) Evaporative concentration device and evaporative concentration method
JP5105796B2 (en) Multi-stage flash water generator
RU2342322C2 (en) Method of leaching for bauxite pulp, facility (versions) and heat-exchanger for its inmplementation
CN211383819U (en) Vacuum concentration device and energy-saving efficient tea juice concentration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171214

R150 Certificate of patent or registration of utility model

Ref document number: 6262678

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250