JP6262678B2 - Concentration apparatus and concentration method for oral liquid - Google Patents

Concentration apparatus and concentration method for oral liquid Download PDF

Info

Publication number
JP6262678B2
JP6262678B2 JP2015029021A JP2015029021A JP6262678B2 JP 6262678 B2 JP6262678 B2 JP 6262678B2 JP 2015029021 A JP2015029021 A JP 2015029021A JP 2015029021 A JP2015029021 A JP 2015029021A JP 6262678 B2 JP6262678 B2 JP 6262678B2
Authority
JP
Japan
Prior art keywords
liquid
raw material
water
material liquid
water absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015029021A
Other languages
Japanese (ja)
Other versions
JP2016150308A (en
Inventor
平野 悟
悟 平野
幸則 紀平
幸則 紀平
和彦 石田
和彦 石田
峰 閻
峰 閻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP2015029021A priority Critical patent/JP6262678B2/en
Publication of JP2016150308A publication Critical patent/JP2016150308A/en
Application granted granted Critical
Publication of JP6262678B2 publication Critical patent/JP6262678B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Non-Alcoholic Beverages (AREA)

Description

本願発明は、経口液体の濃縮装置及びその濃縮方法に関するものである。ここに、経口液体とは、人又は動物が口にするもの全体を意味しており、その典型として、濃縮ジュースや清涼飲料等の飲料、麺つゆ・各種出汁・調味料・スープのような液状(汁状)の食べ物、液状の健康補助食品、経口医薬品などが挙げられる。 The present invention relates to an oral liquid concentrating device and a concentrating method thereof. Here, the oral liquid means the whole thing that a person or an animal eats. Typical examples thereof include beverages such as concentrated juices and soft drinks, and liquids such as noodle soup, various soups, seasonings and soups. Examples include (juice-like) foods, liquid health supplements, and oral medicines.

口液体は、消費者或いは患者が最終的に使用するものには限らず、原料になるものも含んでいる。 Oral liquid consumer or patient is not limited to a final use, and also include those made to the raw material.

飲料・食品の分野では、例えば、果汁ジュース、スープや麺つゆ、出汁などにおいて、流通や保管に要するスペース・費用を節約するために濃縮品が広く使用されている。これら濃縮タイプの飲料・食品は、原料を製造してから濃縮処理しており、濃縮方法としては、一般に、特許文献1に開示されているように、煮沸して水分を除去する蒸発法が採用されている。しかし、蒸発法では、熱によって品質が変化したり、固形成分が崩れてしまったりする不具合が懸念される。   In the field of beverages and foods, for example, concentrated products are widely used in fruit juice juice, soup, noodle soup, soup stock, etc., in order to save space and cost required for distribution and storage. These concentrated beverages and foods are concentrated after the raw materials are manufactured, and as a concentration method, an evaporation method is generally adopted in which the water is removed by boiling, as disclosed in Patent Document 1. Has been. However, in the evaporation method, there is a concern that the quality may change due to heat or the solid components may collapse.

他方、溶液から水分を取り出す手段として、水を分子レベルで透過させる膜があり、逆浸透膜は海水の淡水化に広く使用されていて実績がある。従って、飲料や食品の濃縮についても、逆浸透膜を使用することにより、組織の変化や風味の低下を招くことなく濃縮できると推測される。   On the other hand, as means for extracting water from a solution, there is a membrane that allows water to permeate at a molecular level, and reverse osmosis membranes have been widely used for seawater desalination. Therefore, it is estimated that the concentration of beverages and foods can be achieved by using a reverse osmosis membrane without causing a change in tissue or a decrease in flavor.

特開平7−115899号公報Japanese Unexamined Patent Publication No. 7-115899

逆浸透膜は海水淡水化に実用化されているが、加圧が必要であるため、固形物が多い飲料・食品に使用すると目詰まりが発生しやすくなって、実用には不適切と推測される。また、飲料や液状食品は海水に比べて濃度が高いため、濃縮のためには加圧力を高くせざるを得ず、すると、逆浸透膜が破れやすくなるという問題があり、この点からも、逆浸透膜は飲料・液状食品の濃縮には実用性に問題があると云える。   Reverse osmosis membranes have been put to practical use for seawater desalination, but since they need to be pressurized, clogging is likely to occur when used in beverages and foods that contain a large amount of solids, which is considered inappropriate for practical use. The In addition, since beverages and liquid foods are higher in concentration than seawater, it is necessary to increase the pressure for concentration, and there is a problem that the reverse osmosis membrane is easily broken. It can be said that reverse osmosis membranes have problems in practical use for concentration of beverages and liquid foods.

他方、浸透圧の違いを利用して水を透過させる膜として、濃度が低い液から濃度が高い溶液に対して水を拡散させる正浸透膜があり、この正浸透膜は加圧を要しないため、飲料や食品のように固形物が多い原料液であっても、長時間にわたって濃縮作用(水分の拡散)を実現できると期待される。   On the other hand, there is a forward osmosis membrane that diffuses water from a low-concentration solution to a high-concentration solution as a membrane that permeates water using the difference in osmotic pressure, and this forward osmosis membrane does not require pressurization. Even a raw material liquid with a large amount of solids such as beverages and foods is expected to be able to achieve a concentration action (moisture diffusion) over a long period of time.

しかし、正浸透膜を使用した濃縮方法では、水分の透過・拡散によって吸水液が希釈されるため、正浸透膜の片側において吸水液を高い濃度に維持しけなければならないという制約がある。また、効率向上やコスト抑制といった要請もある。
さて、吸水液は原料液よりも浸透圧が高ければよく、従って、例えば飽和食塩水のような安全な溶液を使用することも可能である。しかし、正浸透膜に僅かな欠陥がある等して吸水液に含まれている分子が原料液通過室に漏洩することがないとも云えず、仮に、塩化ナトリウムが原料液に混入すると、味や風味に悪影響を与えるおそれがないとも云えない。
However, in the concentration method using the forward osmosis membrane, the water absorption liquid is diluted by the permeation / diffusion of moisture, and thus there is a restriction that the water absorption liquid must be maintained at a high concentration on one side of the forward osmosis membrane. There are also demands for improving efficiency and reducing costs.
Now, it is sufficient that the water absorption liquid has a higher osmotic pressure than the raw material liquid. Therefore, it is possible to use a safe solution such as saturated saline. However, it cannot be said that the molecules contained in the water absorption liquid will not leak into the raw material liquid passage chamber due to a slight defect in the forward osmosis membrane, and if sodium chloride is mixed into the raw material liquid, It cannot be said that there is no possibility of adversely affecting the flavor.

本願発明はこのような現状に鑑み成されたものであり、飲料や食品等の経口液体を正浸透膜にて濃縮する装置及び方法を、改良された状態で提供しようとするものである。 The present invention has been made in view of such a current situation, and intends to provide an improved apparatus and method for concentrating oral liquids such as beverages and foods using a forward osmosis membrane.

本願発明は濃縮装置と濃縮方法とを含んでおり、濃縮装置は請求項1,2で特定している。このうち請求項1の発明は、
「人が経口で用いる原料液を濃縮する装置であって、
前記原料液から吸水液に水分を吸収する原料液濃縮部と、前記原料液濃縮部で希釈された吸水液の濃度を回復させる吸水液濃縮部とを有しており、
前記原料液濃縮部は、原料液通過室と吸水液通過室とが正浸透膜によって隔てられた構造であり、前記吸水液として浸透圧が前記原料液の浸透圧よりも高いものを使用することにより、前記原料液の水分の一部が前記正浸透膜を介して吸水液通過室に透過するようになっている構成において、
前記吸水液として、前記原料液そのものを濃縮して浸透圧を原料液よりも高くした濃縮原料液が使用されている」
というものである。
The present invention includes a concentrating device and a concentrating method, and the concentrating device is specified in claims 1 and 2 . Of these, the invention of claim 1
"A device for concentrating raw material liquids used by people orally,
A raw material liquid concentration part that absorbs moisture from the raw material liquid into the water absorption liquid, and a water absorption liquid concentration part that recovers the concentration of the water absorption liquid diluted in the raw material liquid concentration part,
The raw material liquid concentrating part has a structure in which a raw material liquid passage chamber and a water absorption liquid passage chamber are separated by a forward osmosis membrane, and the water absorption liquid uses an osmotic pressure higher than the osmotic pressure of the raw material liquid. In the configuration in which a part of the water of the raw material liquid is transmitted to the water absorption liquid passage chamber through the forward osmosis membrane,
As the water-absorbing liquid, a concentrated raw material liquid in which the raw material liquid itself is concentrated to make the osmotic pressure higher than that of the raw material liquid is used.
That's it.

求項2の発明は、請求項1において、希釈された吸水液を吸水液濃縮部に送って濃度が回復した吸水液を原料液濃縮部に戻す吸水液循環路を備えており、前記吸水液循環路のうち少なくとも濃縮済み吸水液が流れる経路に、固形物を補集するフィルターが設けられている。 Motomeko 2 of the invention resides in that in Claim 1, provided with a water circulation passage for returning the water solution concentration was recovered was diluted water solution is sent to the water absorbing liquid enriched portion in the raw material solution concentration unit, the water absorption A filter that collects solid matter is provided at least in a path through which the concentrated water-absorbing liquid flows in the liquid circulation path.

請求項3の発明は、人が経口で用いる原料液を濃縮する方法であって、
濃縮装置として、前記原料液から吸水液に水分を吸収する原料液濃縮部と、前記原料液濃縮部で希釈された吸水液の濃度を回復させる吸水液濃縮部とを有するものが使用されており、
前記原料液濃縮部は、原料液通過室と吸水液通過室とが正浸透膜によって隔てられた構造であり、前記吸水液として浸透圧が前記原料液の浸透圧よりも高いものを使用することにより、前記原料液の水分の一部が前記正浸透膜を介して吸水液通過室に透過するようになっている構成において、
前記吸水液として、前記原料液そのものを濃縮して浸透圧を原料液よりも高くした濃縮原料液が使用していることを特徴とするものである。
The invention of claim 3 is a method for concentrating a raw material liquid used orally by a person,
As the concentrating device, one having a raw material liquid concentrating part that absorbs moisture from the raw material liquid into the water absorbing liquid and a water absorbing liquid concentrating part that recovers the concentration of the water absorbing liquid diluted in the raw material liquid concentrating part is used. ,
The raw material liquid concentrating part has a structure in which a raw material liquid passage chamber and a water absorption liquid passage chamber are separated by a forward osmosis membrane, and the water absorption liquid uses an osmotic pressure higher than the osmotic pressure of the raw material liquid. In the configuration in which a part of the water of the raw material liquid is transmitted to the water absorption liquid passage chamber through the forward osmosis membrane,
As the water-absorbing liquid, a concentrated raw material liquid in which the raw material liquid itself is concentrated to have an osmotic pressure higher than that of the raw material liquid is used.

本願各発明では、原料液(濃縮対象である経口液体)から拡散した水によって吸水液が希釈されても、吸水液は吸水液濃縮部に送られて濃度が回復してから吸水液通過室に流入する(循環する)。このため、吸水液を連続的に供給して、原料液を連続的に濃縮することができる。これにより、高い作業効率を確保することができる。 In each invention of the present application, even if the water absorbing liquid is diluted with water diffused from the raw material liquid ( oral liquid to be concentrated), the water absorbing liquid is sent to the water absorbing liquid concentrating portion and the concentration is recovered, and then the water absorbing liquid is passed into the water absorbing liquid passage chamber. Inflow (circulate). For this reason, a raw material liquid can be continuously concentrated by supplying a water absorption liquid continuously. Thereby, high working efficiency can be ensured.

吸水液の濃縮手段(濃縮方法)は多々有り得るが、実施形態のように減圧下においてヒートポンプで圧縮する方式を採用すると、使用するエネルギーを著しく抑制してランニングコストの低減に貢献できる。 There are many means for concentrating the water-absorbing liquid (concentration method). However, if a method of compressing with a heat pump under reduced pressure as in the embodiment is adopted, the energy used can be remarkably suppressed and the running cost can be reduced.

本願発明では、吸水液は原料液と略同じ成分であるため、仮に、吸水液に含まれている成分が原料液に混入しても、味や風味に悪影響を与えることを防止することができる。 In the present invention, since the water-absorbing liquid is substantially the same component as the raw material liquid, even if a component contained in the water-absorbing liquid is mixed in the raw material liquid, it is possible to prevent adverse effects on the taste and flavor. .

実施形態のように、原料液通過室から排出された原料液を再び原料液通過室に循環させると、原料液が正浸透膜に接触する機会を増やして、原料液を1つの濃縮部で所望の濃度に濃縮できる利点がある。請求項6のように複数の濃縮装置を直列配置すると、原料液を効率良く高濃度に濃縮できる。 When the raw material liquid discharged from the raw material liquid passage chamber is circulated again to the raw material liquid passage chamber as in the embodiment, the opportunity for the raw material liquid to contact the forward osmosis membrane is increased, and the raw material liquid is desired in one concentrating unit. There is an advantage that can be concentrated to a concentration of When a plurality of concentrating devices are arranged in series as in the sixth aspect, the raw material liquid can be efficiently concentrated to a high concentration.

正浸透膜の目詰まりを抑制するには、吸水液通過室に固形物が入るのはできるだけ避けるべきである。この点、請求項の構成を採用すると、吸水液の循環経路で固形物をフィルターに補集できるため、吸水液をいわばサラサラの状態に保持して正浸透膜の目詰まりを抑制することができる。 In order to suppress clogging of the forward osmosis membrane, solid material should be avoided as much as possible in the water absorption liquid passage chamber. In this regard, if the configuration of claim 2 is adopted, solid matter can be collected in the filter through the water-absorbing liquid circulation path, so that the water-absorbing liquid is maintained in a smooth state to suppress clogging of the forward osmosis membrane. it can.

第1実施形態を示すであり、(A)はブロック図(模式図)、(B)(C)は原料液濃縮部の配置姿勢の別例図である。1A and 1B show a first embodiment, in which FIG. 4A is a block diagram (schematic diagram), and FIG. 4B and FIG. 多段濃縮式である第2実施形態のブロック図である。It is a block diagram of 2nd Embodiment which is a multistage concentration type. 吸水液の流れの別例である第3実施形態のブロック図である。It is a block diagram of 3rd Embodiment which is another example of the flow of a water absorption liquid.

(1).第1実施形態の概要と原料液濃縮部
次に、本願発明の実施形態を図面に基づいて説明する。まず、図1に示す第1実施形態を説明する。濃縮装置は、原料液(濃縮すべき経口液体)から水分を吸収して濃縮する原料液濃縮部1と、濃縮に使用する吸水液を所定の濃度に維持する吸水液濃縮部2と、原料液濃縮部1から吸水液濃縮部2に戻る吸水液(以下「希釈吸水液」という)を昇温させる第1及び第2の予熱器3,4を備えている。
(1). Outline of First Embodiment and Raw Material Liquid Concentration Unit Next, an embodiment of the present invention will be described based on the drawings. First, the first embodiment shown in FIG. 1 will be described. The concentrating device includes a raw material liquid concentrating unit 1 that absorbs and concentrates water from a raw material liquid ( oral liquid to be concentrated), a water absorbing liquid concentrating unit 2 that maintains a water absorbing liquid used for concentration at a predetermined concentration, and a raw material liquid. First and second preheaters 3 and 4 are provided for raising the temperature of the water absorption liquid (hereinafter referred to as “diluted water absorption liquid”) returning from the concentration section 1 to the water absorption liquid concentration section 2.

吸水液濃縮部1は閉じたタンク(或いはハウジング、ケーシング)の構造であり、内部は、正浸透膜5により、原料液通過室6と吸水液通過室7とに区分されている。簡単に述べると、原料液濃縮部1において、原料液と吸水液との浸透圧の違いにより、原料液の水分の一部が正浸透膜5を介して吸水液通過室7に透過(拡散)し、希釈吸水液は吸水液濃縮部2で濃度が回復し、所定濃度の吸水液として吸水液通過室7に還流する。また、吸水液通過室7から吸水液濃縮部2に向かう希釈吸水液は、2つの予熱器3,4で加温される。   The water absorption liquid concentrating part 1 has a closed tank (or housing, casing) structure, and the inside is divided into a raw material liquid passage chamber 6 and a water absorption liquid passage chamber 7 by a forward osmosis membrane 5. Briefly, in the raw material liquid concentrating unit 1, due to the difference in osmotic pressure between the raw material liquid and the water absorption liquid, a part of the water in the raw material liquid permeates (diffuses) through the forward osmosis membrane 5 into the water absorption liquid passage chamber 7. Then, the concentration of the diluted water-absorbing liquid is recovered by the water-absorbing liquid concentrating unit 2 and is returned to the water-absorbing liquid passage chamber 7 as a water-absorbing liquid having a predetermined concentration. Moreover, the diluted water absorption liquid which goes to the water absorption liquid concentration part 2 from the water absorption liquid passage chamber 7 is heated by the two preheaters 3 and 4.

本実施形態では、吸水液濃縮部1は縦置き方式になっており、原料液通過室6には、原料液は下端から流入して上端から排出される。従って、原料液供給管8は原料液通過室6の下端部に接続されて、原料液排出管9は原料液通過室6の上端部に接続されている。   In this embodiment, the water-absorbing liquid concentrating unit 1 is of a vertically placed system, and the raw material liquid flows into the raw material liquid passage chamber 6 from the lower end and is discharged from the upper end. Accordingly, the raw material liquid supply pipe 8 is connected to the lower end portion of the raw material liquid passage chamber 6, and the raw material liquid discharge pipe 9 is connected to the upper end portion of the raw material liquid passage chamber 6.

原料液供給管8の適宜部位には原料液送りポンプ10が介在しており、原料液供給管8のうち原料送りポンプ10より上流側の部位と原料液排出管9とが原料液循環路11によって接続されている。原料液供給管8のうち原料液循環路11の接続部より上流側には第1バルブ12を設け、原料液排出管9のうち原料液循環路11の接続部よりも下流側には第2バルブ13を設け、原料液循環路11には第3バルブ14を設けている。これらバルブ12〜14の流量調節操作により、原料液が原料液通過室6に全く循環しない状態と、原料液の一部が原料液通過室6に循環する状態と、原料液の全部が原料液通過室6に循環する状態とを選択することができる。   A raw material liquid feed pump 10 is interposed in an appropriate part of the raw material liquid supply pipe 8, and a part of the raw material liquid supply pipe 8 upstream of the raw material feed pump 10 and the raw material liquid discharge pipe 9 are connected to the raw material liquid circulation path 11. Connected by. A first valve 12 is provided in the raw material liquid supply pipe 8 on the upstream side of the connecting portion of the raw material liquid circulation path 11, and a second valve in the raw material liquid discharge pipe 9 is provided on the downstream side of the connecting portion of the raw material liquid circulation path 11. A valve 13 is provided, and a third valve 14 is provided in the raw material liquid circulation path 11. By adjusting the flow rate of these valves 12 to 14, a state in which the raw material liquid does not circulate at all in the raw material liquid passage chamber 6, a state in which a part of the raw material liquid circulates in the raw material liquid passage chamber 6, and the whole of the raw material liquid A state of circulating in the passage chamber 6 can be selected.

吸水液通過室7には、吸水液は上端部から流入して下端部から排出される。すなわち、吸水液通過室7の上端部に、吸水液循環路を構成する吸水液流入管15の終端が接続されて、吸水液通過室7の下端部に、同じく吸水液循環路を構成する吸水液排出管16の始端が接続されている。従って、原料液の流れ方向と吸水液の流れ方向とが逆になっている。 The water absorption liquid flows into the water absorption liquid passage chamber 7 from the upper end portion and is discharged from the lower end portion. That is, the upper portion of the water liquid passage chamber 7 is formed by connecting the end of the water liquid inlet pipe 15 which constitutes the water circulation passage, the lower end of the water liquid passage chamber 7, also the water circulation passage water The start end of the liquid discharge pipe 16 is connected. Therefore, the flow direction of the raw material liquid and the flow direction of the water absorption liquid are reversed.

なお、原料液濃縮部1は、原料液や吸水液が略水平方向に流れる横置き姿勢に配置することも可能である。その例を図1の(B)及び(C)で表示している。(B)では、原料液通過室6が上で吸水液通過室7が下になっており、(C)では、原料液通過室6が下で吸水液通過室7が上になっている。いずれにしても、原料液と吸水液との流れ方向は逆向きになっている。 In addition, the raw material liquid concentration part 1 can also be arrange | positioned in the horizontal position in which a raw material liquid and a water absorption liquid flow in a substantially horizontal direction. Examples thereof are shown in FIGS. 1B and 1C. In (B), the raw material liquid passage chamber 6 is up and the water absorption liquid passage chamber 7 is down. In (C), the raw material liquid passage chamber 6 is down and the water absorption liquid passage chamber 7 is up. In any case, the flow directions of the raw material liquid and the water absorption liquid are opposite to each other.

なお、原料液通過室6及び吸水液通過室7の断面形状に特に限定はないが、正浸透膜5が単なる平坦なシート状である場合は、正浸透膜5との接触効率を高めるには、両者も偏平な箱状が好ましいと推測される。原料液濃縮部1は、水平面及び鉛直に対して傾斜させることも可能である。   The cross-sectional shapes of the raw material liquid passage chamber 6 and the water absorption liquid passage chamber 7 are not particularly limited. However, when the forward osmosis membrane 5 is a simple flat sheet, the contact efficiency with the forward osmosis membrane 5 is increased. Both are presumed to be flat. The raw material liquid concentrating unit 1 can be inclined with respect to the horizontal plane and the vertical plane.

(2).第1実施形態の吸水液濃縮部
吸水液濃縮部2は、大きな要素として蒸発缶19と凝縮器20とを備えており、吸水液流入管15の始端は蒸発管19の底部に接続されており、吸水液排出管16の終端が蒸発缶19の側部に接続されている。
(2). Water-absorbing liquid concentrating part of the first embodiment The water-absorbing liquid concentrating part 2 includes an evaporation can 19 and a condenser 20 as major elements, and the starting end of the water-absorbing liquid inflow pipe 15 is located at the bottom of the evaporation pipe 19. The end of the water absorption liquid discharge pipe 16 is connected to the side of the evaporator 19.

凝縮器20は水平姿勢等の細管の群を備えており、細管の群の一端と他端はそれぞれヘッダー21,22に開口している。また、一方のヘッダー21の下部には蒸気入口23が形成されて、他方のヘッダー22の上部には、蒸発缶19の内部に連通した真空吸引口24が形成されている。   The condenser 20 includes a group of thin tubes having a horizontal posture or the like, and one end and the other end of the group of thin tubes open to the headers 21 and 22, respectively. A vapor inlet 23 is formed in the lower portion of one header 21, and a vacuum suction port 24 communicating with the inside of the evaporator 19 is formed in the upper portion of the other header 22.

そして、真空吸引口24には真空管路25を介して真空ポンプ26が接続されており、蒸発缶19の上端と蒸気入口23とが凝縮管路27で接続されて、凝縮管路27にヒートポンプ28を介在させている。他方のヘッダー22の下端には凝縮水排出管29が接続されていて、凝縮水排出管29には排水ポンプ30を介在させている。真空ポンプ26は真空源の一例である。真空源としては、例えばエジェクターなども使用できる。   A vacuum pump 26 is connected to the vacuum suction port 24 via a vacuum line 25, the upper end of the evaporator 19 and the vapor inlet 23 are connected by a condensation line 27, and a heat pump 28 is connected to the condensation line 27. Is interposed. A condensed water discharge pipe 29 is connected to the lower end of the other header 22, and a drainage pump 30 is interposed in the condensed water discharge pipe 29. The vacuum pump 26 is an example of a vacuum source. As the vacuum source, for example, an ejector can be used.

吸水液流入管15の中途部には循環ポンプ31が介在しており、かつ、循環ポンプ31よりも上流側にフィルター32を設けている。また、吸水液流入管15のうち循環ポンプ31よりも下流側で第1予熱器3よりも上流側から散布管33が分岐しており、散布管33の終端は蒸発缶19の上端に位置しており、これに図示しない噴霧器が接続されている。吸水液流入管15の中途部のうち、循環ポンプ31より下流側で散布管33の接続部より上流側にはドレン管34が接続されており、ドレン管34には第4バルブ35を設けて、吸水液流入管15には第5バルブ36を設けている。   A circulation pump 31 is interposed in the middle of the water absorption liquid inflow pipe 15, and a filter 32 is provided upstream of the circulation pump 31. Further, the spray pipe 33 is branched from the upstream side of the first preheater 3 on the downstream side of the circulating pump 31 in the water absorption liquid inlet pipe 15, and the end of the spray pipe 33 is located at the upper end of the evaporator 19. This is connected to a sprayer (not shown). A drain pipe 34 is connected to the middle part of the water absorption liquid inlet pipe 15 downstream of the circulation pump 31 and upstream of the connecting part of the spray pipe 33, and the drain pipe 34 is provided with a fourth valve 35. The water absorption liquid inflow pipe 15 is provided with a fifth valve 36.

第1予熱器3と第2予熱器4とは熱交換器であり、例えば、ケースに多数本の細管又は屈曲した長い細管を内蔵した方式を採用できる(多数本の細管を有する場合は、細管の群は2つのヘッダーに接続されている。)。この場合は、ケースに放熱液を供給して細管の液体に伝熱したり、逆に、細管に放熱液を流してケースの液体に伝熱したりすることができる。当然ながら、プレート式熱交換器も使用可能である。   The first preheater 3 and the second preheater 4 are heat exchangers, and for example, a method in which a large number of thin tubes or bent long thin tubes are incorporated in the case can be adopted (in the case of having a large number of thin tubes, the thin tubes Is connected to two headers). In this case, heat can be supplied to the case to transfer heat to the liquid in the narrow tube, or conversely, heat can be transferred to the liquid in the case by flowing the heat to the thin tube. Of course, a plate heat exchanger can also be used.

そして、第1予熱器3の放熱部を吸水液供給管15の中途部に接続(介挿)して、第2予熱器4の放熱部を凝縮水排出29の中途部に接続(介挿)している。吸水液排出管16は途中で二股に分岐してから再び合流しており、第1分岐部16aを第1予熱器3の受熱部に接続して、第2分岐部16bを第2予熱器3の受熱部を接続している。従って、本実施形態では、第1及び第2の予熱器3,4は、吸水液排出管16に対して並列状態に接続されている。   Then, the heat dissipating part of the first preheater 3 is connected (inserted) to the midway part of the water absorption liquid supply pipe 15, and the heat dissipating part of the second preheater 4 is connected to the midway part of the condensed water discharge 29 (inserted). doing. The water absorption liquid discharge pipe 16 branches in the middle and then merges again. The first branch portion 16a is connected to the heat receiving portion of the first preheater 3, and the second branch portion 16b is connected to the second preheater 3. The heat receiving part is connected. Therefore, in the present embodiment, the first and second preheaters 3 and 4 are connected in parallel to the water absorption liquid discharge pipe 16.

(3).第1実施形態のまとめ
飲料や液体食品のような原料液は、原料液送りポンプ10の駆動により、原料液供給管8から供給されて原料液通過室6を通過する。他方、原料液と同じ成分で、濃度(浸透圧)が原料液よりも高い吸水液が原料液濃縮部1の吸水液通過室7に供給されており、両液の浸透圧の違いにより、原料液に含まれている水分の一部が、正浸透膜5を透過して吸水液通過室7に移行する(拡散する)。これにより、原料液の濃縮が行われる。
(3) Summary of First Embodiment A raw material liquid such as a beverage or liquid food is supplied from the raw material liquid supply pipe 8 through the raw material liquid passage chamber 6 by driving the raw material liquid feed pump 10. On the other hand, the same components as the raw material solution, the concentration (osmotic pressure) has high water absorption liquid than the raw material liquid is supplied to the water liquid passage chamber 7 of the raw material liquid enrichment section 1, the difference between the two liquid osmotic pressure, Part of the water contained in the raw material liquid passes through the forward osmosis membrane 5 and moves (diffuses) to the water absorption liquid passage chamber 7. Thereby, concentration of the raw material liquid is performed.

原料液の濃縮の割合は、両液体の浸透圧の違いの程度や、正浸透膜5に対する両液の接触量の程度などによって変化する。当然ながら、浸透圧の違いが大きいほど濃縮率は高くなる。また、正浸透膜5に対する原料液の接触量が高くなることによっても、濃縮率は高くなる。従って、原料液の流速が低くなると濃縮率は高くなる。単位時間当たりに流れる原料液の量と吸水液の量との割合は、浸透圧の違いや目的とする濃縮率の違い等に応じて個別に設定(調節・変更)できる。このように、各種の条件に応じて原料液又は吸水液若しくは両方の流速を制御することは、濃縮方法や予熱の有無等とは切り離してそれ自体が独立した発明として成立しうる。   The concentration ratio of the raw material liquid varies depending on the degree of difference in osmotic pressure between the two liquids, the degree of contact between the two liquids on the forward osmosis membrane 5, and the like. Naturally, the greater the difference in osmotic pressure, the higher the concentration rate. Further, the concentration rate is increased by increasing the contact amount of the raw material liquid with respect to the forward osmosis membrane 5. Therefore, the concentration rate increases as the flow rate of the raw material liquid decreases. The ratio between the amount of the raw material liquid flowing per unit time and the amount of the water absorption liquid can be individually set (adjusted / changed) according to the difference in osmotic pressure, the difference in the target concentration rate, and the like. Thus, controlling the flow rates of the raw material liquid and / or the water absorption liquid according to various conditions can be established as an invention independent of the concentration method and the presence or absence of preheating.

原料液と吸水液との浸透圧が大きく異なっていても、原料液通過室6を流れる原料液のうち一部しか正浸透膜5に接触しない可能性もある。この点については、原料液の流速を遅くすることで対処できるが、流速を低下させただけでは、濃縮済みの原料液が正浸透膜5の近くに滞留してしまって、濃縮が進行し難くなる可能性もある。   Even if the osmotic pressures of the raw material liquid and the water absorption liquid are greatly different, only a part of the raw material liquid flowing through the raw material liquid passage chamber 6 may contact the forward osmosis membrane 5. This can be dealt with by slowing down the flow rate of the raw material liquid. However, if the flow rate is lowered, the concentrated raw material liquid stays near the forward osmosis membrane 5 and the concentration does not proceed easily. There is also a possibility.

この点、第1〜第3のバルブ12〜14を操作して、原料液の一部又は全部を循環させると、原料液は、流れによって攪拌されて濃度をできるだけ均一に維持しつつ正浸透膜5に繰り返し接触するため、濃縮(水分の拡散)を効率よく行えると云える。また、固形物が正浸透膜5に付着することも防止又は著しく抑制できると云える。   In this regard, when the first to third valves 12 to 14 are operated to circulate a part or all of the raw material liquid, the raw material liquid is stirred by the flow and the forward osmosis membrane is maintained while maintaining the concentration as uniform as possible. 5 is repeatedly contacted, it can be said that concentration (moisture diffusion) can be performed efficiently. Moreover, it can be said that it can prevent or remarkably suppress that a solid substance adheres to the forward osmosis membrane 5.

なお、正浸透膜5は浸透圧の違いで水分を透過させるものであるため、原料液体に加圧することは基本的には不要であるが、吸水液の濃縮が減圧下で行われることによって原料液通過室6と吸水液通過室8とに圧力差が生じる場合、結果として原料液通過室6が加圧されたのと同じ状態になり得るが、このような状態は当然に許容される。また、本願発明は、正浸透膜5の強度を保持し得る範囲内で原料液通過室6を積極的に加圧することを排除するものではない。   Since the forward osmosis membrane 5 allows moisture to permeate due to the difference in osmotic pressure, it is basically unnecessary to pressurize the raw material liquid, but the raw material is obtained by concentrating the water absorption liquid under reduced pressure. When a pressure difference is generated between the liquid passage chamber 6 and the water absorption liquid passage chamber 8, the resulting state may be the same as when the raw material liquid passage chamber 6 is pressurized, but such a state is naturally allowed. The present invention does not exclude positively pressurizing the raw material liquid passage chamber 6 within a range in which the strength of the forward osmosis membrane 5 can be maintained.

吸水液通過室7には原料液から水分が移行するため、吸水液通過室7を通過した吸水液は、濃度(浸透圧)が低下した希釈処理液になっている。この希釈処理液は、吸水液排出管16から蒸発缶19に送られて、蒸発缶19に溜まっていた濃縮済み吸水液と混合する。蒸発管19に溜まっていた濃縮済み吸水液は過剰に濃縮されており、これと希釈処理液とが混合することで、目的とする濃度の吸水液が得られるように設定している。   Since water is transferred from the raw material liquid to the water absorption liquid passage chamber 7, the water absorption liquid that has passed through the water absorption liquid passage chamber 7 is a diluted treatment liquid having a reduced concentration (osmotic pressure). This diluted processing liquid is sent from the water absorption liquid discharge pipe 16 to the evaporator 19 and mixed with the concentrated water absorption liquid accumulated in the evaporator 19. The concentrated water-absorbing liquid accumulated in the evaporation pipe 19 is excessively concentrated, and is set so that a water-absorbing liquid having a target concentration can be obtained by mixing this with the dilution treatment liquid.

例えば、蒸発缶19に溜まっている過剰濃縮吸水液の量を、吸水液排出管16から供給される希釈処理液の量よりも相当に大きくなるように設定しておくことにより、安定した濃度の吸水液を得ることができる。   For example, by setting the amount of the overconcentrated water absorption liquid stored in the evaporator 19 to be considerably larger than the amount of the diluted processing liquid supplied from the water absorption liquid discharge pipe 16, a stable concentration can be obtained. A water-absorbing liquid can be obtained.

蒸発缶19から吸水液流入管15に取り出された吸水液の一部は散布管33によって凝縮器20の上方に導かれ、シャワー状になって凝縮器20の細管に噴霧される。このとき、蒸発缶19の内部は加温されてかつ減圧されているため、吸水液に含まれている水分は100℃よりも低い温度で効率よく蒸発する。   A part of the water absorption liquid taken out from the evaporator 19 to the water absorption liquid inflow pipe 15 is guided to the upper side of the condenser 20 by the spray pipe 33 and sprayed on the narrow pipe of the condenser 20 in a shower shape. At this time, since the inside of the evaporator 19 is heated and depressurized, the water contained in the water absorption liquid is efficiently evaporated at a temperature lower than 100 ° C.

そして、蒸気は、蒸発缶19の上部からヒートポンプ28に導かれて圧縮・加温され(数度昇温し)、蒸気流入口23から凝縮器20の細管群に流入する。そして、細管群に流入した蒸気は、細管群の表面に付着した水滴を蒸発させてヒートポンプ28への導入蒸気を生成させると共に、自身は熱の放出によって凝縮して水滴となり、凝縮水排出管29から系外に排出される。   Then, the vapor is guided to the heat pump 28 from the upper part of the evaporator 19 and compressed and heated (heated up several degrees), and flows into the thin tube group of the condenser 20 from the vapor inlet 23. The steam flowing into the narrow tube group evaporates water droplets adhering to the surface of the thin tube group to generate steam introduced into the heat pump 28, and condenses into water droplets by the release of heat, resulting in a condensed water discharge pipe 29. Is discharged from the system.

吸水液通過室7から排出された希釈処理液は蒸発缶19に還流するが、蒸発缶19の内部での蒸発を促進して濃縮効率を高める(ランニングコストを抑制する)には、蒸発缶19に流入する温度はできるだけ高いのが好ましい。   The diluted processing liquid discharged from the water absorption liquid passage chamber 7 is returned to the evaporator 19. However, in order to promote evaporation inside the evaporator 19 and increase the concentration efficiency (suppress running cost), the evaporator 19 It is preferable that the temperature flowing into the chamber is as high as possible.

この場合、原料液の温度は一般に常温程度であって吸水液の温度よりは低いため、吸水液が吸水液通過室7を通過する過程で正浸透膜5を介して原料液への熱伝達が行われ、希釈処理液の温度は濃縮済み吸水液の温度よりも低下している。また、吸水液供給管15や吸水液排出管16が大気に露出していると、それら管路での放熱も発生する。   In this case, since the temperature of the raw material liquid is generally about room temperature and lower than the temperature of the water absorption liquid, heat transfer to the raw material liquid through the forward osmosis membrane 5 is performed in the process of the water absorption liquid passing through the water absorption liquid passage chamber 7. The temperature of the diluted treatment liquid is lower than that of the concentrated water absorption liquid. Further, when the water absorption liquid supply pipe 15 and the water absorption liquid discharge pipe 16 are exposed to the atmosphere, heat is also radiated through these pipe lines.

従って、吸水液が吸水液通過室7と蒸発缶19とを循環するに際して、吸水液からの放熱現象があり、装置に使用する熱エネルギにロスが発生しているが、本実施形態では、第1予熱器3により、濃縮済み吸水液から希釈処理液に熱交換して、蒸発缶19に還流した希釈処理液を加温(昇温)できるため、エネルギのロスを抑制できる。   Therefore, when the water absorption liquid circulates between the water absorption liquid passage chamber 7 and the evaporator 19, there is a heat dissipation phenomenon from the water absorption liquid, and a loss occurs in the heat energy used in the apparatus. 1 The preheater 3 can exchange heat from the concentrated water absorption liquid to the diluted processing liquid and heat (heat up) the diluted processing liquid refluxed to the evaporator 19, thereby suppressing energy loss.

更に、凝縮水は蒸気が水滴化したものであってかなり高い温度が維持されているため、凝縮水の熱を吸水液に伝熱することによっても、蒸発缶19に還流する希釈処理液を加温できる。これら2つの加温作用により、装置全体として熱のロスを抑制して、ランニングコストを抑制することができる。なお、吸水液供給管15や吸水液排出管16、凝縮水排出管29は、放熱を抑制するため断熱構造にしておくのが好ましい。   Furthermore, since condensed water is a droplet of steam that is maintained at a considerably high temperature, the diluted treatment liquid that is returned to the evaporator 19 can be added by transferring the heat of the condensed water to the water absorption liquid. Can warm. By these two heating actions, heat loss can be suppressed as a whole apparatus, and running cost can be suppressed. The water absorption liquid supply pipe 15, the water absorption liquid discharge pipe 16, and the condensed water discharge pipe 29 are preferably provided with a heat insulating structure in order to suppress heat radiation.

しかも、濃縮済み吸水液を熱交換によって例えば常温よりもやや高い程度の温度に降温させることができるため、原料液が熱による悪影響を受けやすい場合であっても、濃縮部1において原料液が吸水液によって加温されて品質が変化することを防止又は著しく抑制できる。また、濃縮済み原料液の冷却工程を不要にして、包装工程の迅速化に貢献することも可能になる。   Moreover, since the concentrated water-absorbing liquid can be lowered to a temperature slightly higher than room temperature by heat exchange, for example, even if the raw material liquid is easily affected by heat, the raw material liquid absorbs water in the concentration unit 1. It is possible to prevent or remarkably prevent the quality from being changed by being heated by the liquid. Moreover, it becomes possible to contribute to speeding up the packaging process by eliminating the cooling process of the concentrated raw material liquid.

実施形態では2つの予熱器3,4を設けたが、1つの予熱器に複数の放熱部を設けることにより、1つの予熱器で希釈処理液を加温することも可能である。この場合は、当然ながら吸水液排出管16を分岐させる必要はない。また、第1予熱器3と第2予熱器4とを直列に配置して、希釈処理液が2つの予熱器3,4に順番に流入するように設定してもよい。この場合、2つの予熱器3,4は、放熱温度が低いものを上流側に配置するのが好ましい。   In the embodiment, the two preheaters 3 and 4 are provided. However, by providing a plurality of heat dissipating units in one preheater, it is also possible to heat the dilution processing liquid with one preheater. In this case, of course, it is not necessary to branch the water absorption liquid discharge pipe 16. Alternatively, the first preheater 3 and the second preheater 4 may be arranged in series so that the diluted processing liquid flows into the two preheaters 3 and 4 in order. In this case, it is preferable to arrange two preheaters 3 and 4 on the upstream side with a low heat radiation temperature.

本実施形態のように、吸水液供給管15にフィルター32を設けると、固形物が正浸透膜5に付着することを抑制して濃縮効率維持に貢献できる。また、蒸発缶19や管等の管路のクリーン度維持(スケールの抑制)にも貢献できる。フィルター32は、吸水液供給管15に設けることに代えて又はこれに加えて、吸水液排出管16に設けることも可能である。   When the filter 32 is provided in the water absorption liquid supply pipe 15 as in the present embodiment, it is possible to suppress the solid matter from adhering to the forward osmosis membrane 5 and contribute to maintaining the concentration efficiency. Further, it can contribute to maintaining the cleanliness of the pipelines such as the evaporator 19 and the pipes (suppressing the scale). The filter 32 can be provided in the water absorption liquid discharge pipe 16 instead of or in addition to the water absorption liquid supply pipe 15.

原料液は原料液通過室6を流れながら水分が減じるため、原料液通過室6では、入口側より出口側において濃度が高くなっていると云える。他方、吸水液は原料液からの水分供給を受けて薄まっていくため、濃度は入口側で高くて出口側で低くなっている。このため、原料液と吸水液との流れ方向が同じであると、流れ方向に向けて水分の透過性(拡散)が低下していく。   It can be said that the concentration of the raw material liquid in the raw material liquid passage chamber 6 is higher on the outlet side than on the inlet side because the water content decreases while flowing through the raw material liquid passage chamber 6. On the other hand, since the water absorption liquid is thinned by receiving moisture from the raw material liquid, the concentration is high on the inlet side and low on the outlet side. For this reason, if the flow directions of the raw material liquid and the water absorption liquid are the same, the moisture permeability (diffusion) decreases in the flow direction.

この点、本実施形態のように、原料液の流れ方向と吸水液の流れ方向とを逆向きにすると、原料液と吸水液との濃度差を正浸透膜5の各部位において均一化できる。このため、正浸透膜5の全体をフルに活用して濃縮効率を向上できると共に、正浸透膜5の耐久性も向上できると云える。   In this regard, as in this embodiment, when the flow direction of the raw material liquid and the flow direction of the water absorption liquid are reversed, the concentration difference between the raw material liquid and the water absorption liquid can be made uniform in each part of the forward osmosis membrane 5. For this reason, it can be said that the entire forward osmosis membrane 5 can be fully utilized to improve the concentration efficiency, and the durability of the forward osmosis membrane 5 can also be improved.

(4).第2実施形態
次に、図2に示す第2実施形態を説明する。この第2実施形態において、第1実施形態と共通した要素は図1と同じ符号を付しており、その説明は、特に必要がない限り省略している(第3実施形態も同様である。)。
(4). Second Embodiment Next, a second embodiment shown in FIG. 2 will be described. In the second embodiment, the same elements as those in the first embodiment are denoted by the same reference numerals as those in FIG. 1, and the description thereof is omitted unless particularly necessary (the third embodiment is also the same). ).

この第2実施形態では、第1〜第3の原料液濃縮部1a,1b,1cを直列に配置しており、第1原料液濃縮部1aにおける原料液通過室6の出口と第2原料液濃縮部1bにおける原料液通過室6の入口とが第1中間供給管44で接続されて、第2原料液濃縮部1bにおける原料液通過室6の出口と第3原料液濃縮部1cにおける原料液通過室6の入口とが第2中間供給管45で接続されている。従って、原料液は第1〜第3の原料液濃縮部1a,1b,1cの原料液通過室6に順番に流入していく。   In this 2nd Embodiment, the 1st-3rd raw material liquid concentration part 1a, 1b, 1c is arrange | positioned in series, the exit of the raw material liquid passage chamber 6 and the 2nd raw material liquid in the 1st raw material liquid concentration part 1a The inlet of the raw material liquid passage chamber 6 in the concentration unit 1b is connected by the first intermediate supply pipe 44, and the outlet of the raw material liquid passage chamber 6 in the second raw material liquid concentration unit 1b and the raw material liquid in the third raw material liquid concentration unit 1c. The inlet of the passage chamber 6 is connected by a second intermediate supply pipe 45. Accordingly, the raw material liquid sequentially flows into the raw material liquid passage chamber 6 of the first to third raw material liquid concentrating portions 1a, 1b, and 1c.

各原料液濃縮部1a,1b,1cで濃縮していくので、吸水液濃縮部2による吸水液の濃度は、第3原料液濃縮部1cに対応した高い濃度に設定されている。また、本実施形態でも、第1及び第2の予熱器3,4を使用している。吸水液濃縮部2は1台のみ設置している。   Since each raw material liquid concentrating part 1a, 1b, 1c is concentrated, the concentration of the water absorbing liquid by the water absorbing liquid concentrating part 2 is set to a high concentration corresponding to the third raw material liquid concentrating part 1c. Also in this embodiment, the first and second preheaters 3 and 4 are used. Only one water-absorbing liquid concentrating unit 2 is installed.

そして、吸水液供給路15を、第1原料液濃縮部1aの吸水液通過室6に濃縮済み吸水液を給液する第1吸水液分岐供給路46と、第2原料液濃縮部1bの吸水液通過室6に濃縮済み吸水液を給液する第2吸水液分岐供給路47と、第3原料液濃縮部1cの吸水液通過室6に濃縮済み吸水液を給液する第3吸水液分岐供給路47とに分岐させている。他方、吸水液排出管15も、第1原料液濃縮部1aに接続された第1吸水液排出管49、第2原料液濃縮部1bに接続された第2吸水液排出管50、第3原料液濃縮部1cに接続された第3吸水液排出管50に分岐しており、これらは1本に集合して予熱器3,4に至っている。   Then, the water absorption liquid supply path 15, the first water absorption liquid branch supply path 46 for supplying the concentrated water absorption liquid to the water absorption liquid passage chamber 6 of the first raw material liquid concentration section 1 a, and the water absorption of the second raw material liquid concentration section 1 b. A second water absorption liquid branch supply passage 47 for supplying the concentrated water absorption liquid to the liquid passage chamber 6, and a third water absorption liquid branch for supplying the concentrated water absorption liquid to the water absorption liquid passage chamber 6 of the third raw material liquid concentration unit 1c. It branches off to the supply path 47. On the other hand, the water absorption liquid discharge pipe 15 also includes a first water absorption liquid discharge pipe 49 connected to the first raw material liquid concentration part 1a, a second water absorption liquid discharge pipe 50 connected to the second raw material liquid concentration part 1b, and a third raw material. It branches to the 3rd water absorption liquid discharge pipe 50 connected to the liquid concentrating part 1c, these are gathered together and reach the preheaters 3 and 4.

第1分岐供給路46の中途部に設けた第1攪拌室52と第2吸水液排出管50とが第1補助管路53で接続され、第2分岐供給路47の中途部に設けた第2攪拌室54と第3吸水液排出管51とが第2補助管路55で接続されている。両補助管路53,55には、流量制御バルブ56,57を設けている。   The first stirring chamber 52 provided in the middle part of the first branch supply path 46 and the second water absorption liquid discharge pipe 50 are connected by the first auxiliary pipe 53, and the first stirring chamber 52 provided in the middle part of the second branch supply path 47. The second stirring chamber 54 and the third water absorption liquid discharge pipe 51 are connected by a second auxiliary pipe 55. Both auxiliary pipes 53 and 55 are provided with flow control valves 56 and 57.

この実施形態では、第1吸水液分岐供給路46には第2吸水液排出管50から希釈処理液が供給されて吸水液の濃度が薄まり、第2吸水液分岐供給路47には第3吸水液排出管51から希釈処理液が供給されて吸水液の濃度が薄まるが、第3吸水液排出管51の希釈処理液の濃度が第2吸水液排出管50の希釈処理液の濃度よりも高いため、各原料液濃縮部1a〜1cの吸水液通過室7に流れる吸水液の濃度(浸透圧)は、第1原料液濃縮部1a<第2原料液濃縮部1b<第3原料液濃縮部1cの関係になっている。このため、原料液を段階的に濃縮できる。   In this embodiment, the first water absorption liquid branch supply path 46 is supplied with the diluted processing liquid from the second water absorption liquid discharge pipe 50 to reduce the concentration of the water absorption liquid, and the second water absorption liquid branch supply path 47 has the third water absorption. The diluted treatment liquid is supplied from the liquid discharge pipe 51 to reduce the concentration of the water absorption liquid, but the concentration of the dilution treatment liquid in the third water absorption liquid discharge pipe 51 is higher than the concentration of the dilution treatment liquid in the second water absorption liquid discharge pipe 50. Therefore, the concentration (osmotic pressure) of the water-absorbing liquid flowing in the water-absorbing-liquid passage chamber 7 of each of the raw material liquid concentrating parts 1a to 1c is determined as follows: first raw material liquid concentrating part 1a The relationship is 1c. For this reason, a raw material liquid can be concentrated in steps.

本実施形態では、原料液濃縮部1a〜1cを原料液濃縮部1が略水平方向に流れる横置き式にしているが、縦置きであってもよい。また、本実施形態の変形例(或いは類似例)として、補助管路53,55は使用せずに、少なくとも第1吸水液分岐供給路46と第2吸水液分岐供給路46とに流量調節バルブを設けて、これらのバルブを制御することにより、各吸水液分岐供給路46,47,48を流れる吸水液の量を、第1吸水液分岐供給路46<第2吸水液分岐供給路47<第3吸水液分岐供給路48、の関係に設定することが可能である。   In the present embodiment, the raw material liquid concentrating units 1a to 1c are horizontally placed so that the raw material liquid concentrating unit 1 flows in a substantially horizontal direction. As a modified example (or similar example) of the present embodiment, the auxiliary pipes 53 and 55 are not used, and at least the first water absorption liquid branch supply path 46 and the second water absorption liquid branch supply path 46 are flow rate control valves. And by controlling these valves, the amount of the water-absorbing liquid flowing through each of the water-absorbing liquid branch supply paths 46, 47, 48 is set to the first water-absorbing liquid branch supply path 46 <the second water-absorbing liquid branch supply path 47 <. It is possible to set the relationship to the third water absorption liquid branch supply path 48.

この場合は、各原料液濃縮部1に流れる吸水液の濃度は一定でも、原料液に対する流量の比率の違いにより、原料液の濃縮度を段階的に高くすることができる。   In this case, even if the concentration of the water absorption liquid flowing through each raw material liquid concentrating unit 1 is constant, the concentration of the raw material liquid can be increased stepwise due to the difference in the ratio of the flow rate to the raw material liquid.

原料液濃縮部1を複数段配置する場合、その段数は3段に限らず、2段又は4段以上であってもよい。また、原料液濃縮部1を多段に配置した場合、吸水液濃縮部2を複数設置することも可能である。吸水液濃縮部2を複数配置する場合、吸水液濃縮部2を原料液濃縮部1の段数と同じ数だけ配置して、各原料液濃縮部1に対応した濃度の吸水液を個々の吸水液濃縮部2で製造してもよいし、1つの吸水液濃縮部2で複数の原料液濃縮部1に対応させてもよい。予熱器の数も任意に設定できる。   When the raw material liquid concentrating unit 1 is arranged in a plurality of stages, the number of stages is not limited to three, but may be two or four or more. Moreover, when the raw material liquid concentration part 1 is arrange | positioned in multiple stages, it is also possible to install two or more water absorption liquid concentration parts 2. FIG. In the case where a plurality of water-absorbing liquid concentrating units 2 are arranged, the same number of water-absorbing liquid concentrating units 2 as the number of stages of the raw material liquid concentrating units 1 are arranged, and the water absorbing liquid having a concentration corresponding to each raw material liquid concentrating unit 1 It may be manufactured by the concentration unit 2, or one water absorption liquid concentration unit 2 may correspond to a plurality of raw material liquid concentration units 1. The number of preheaters can also be set arbitrarily.

(5).第3実施形態
図3に示す第3実施形態は、第1実施形態の変形例である。この第3実施形態では、蒸発管19から取り出した吸水液はその全量を原料液濃縮部1に供給して、予熱器3,4を通過した希釈処理液は凝縮器3に散布している。この実施形態も、吸水液は第1実施形態と同様に濃縮される。
(5) Third Embodiment A third embodiment shown in FIG. 3 is a modification of the first embodiment. In the third embodiment, the entire amount of the water absorption liquid taken out from the evaporation pipe 19 is supplied to the raw material liquid concentrating unit 1, and the diluted processing liquid that has passed through the preheaters 3 and 4 is dispersed in the condenser 3. In this embodiment as well, the water-absorbing liquid is concentrated as in the first embodiment.

(6).その他
本願発明は、上記の実施形態の他にも様々に具体化できる。例えば、正浸透膜は、平膜や中空糸状のものなど、各種の構造のものを使用できる。また、吸水液の濃縮方法は必ずしも蒸発・凝縮式のものを使用する必要はないのであり、例えば逆浸透膜を使用することも可能である
(6). Others The present invention can be embodied in various ways other than the above embodiment. For example, the forward osmosis membrane may be of various structures such as a flat membrane or a hollow fiber. In addition, it is not always necessary to use an evaporation / condensation method as a method for concentrating the water absorption liquid. For example, a reverse osmosis membrane can also be used .

正浸透膜は、例えば金網のような支持体によって姿勢を保持することも可能である。また、原料液通過室と正浸透膜と吸水液通過室とを、液の流れ方向から見て螺旋状に形成することも可能であり、この場合は、単位容積当たりに原料液及び吸水液が正浸透膜に接触する量を増大できるため、スペースを有効利用できる利点がある。   The forward osmosis membrane can also hold its posture by a support such as a wire mesh. It is also possible to form the raw material liquid passage chamber, the forward osmosis membrane, and the water absorption liquid passage chamber in a spiral shape when viewed from the liquid flow direction. In this case, the raw material liquid and the water absorption liquid are per unit volume. Since the amount of contact with the forward osmosis membrane can be increased, there is an advantage that the space can be effectively used.

本願発明は、飲料や液状食品の濃縮に具体化できる。従って、産業上利用できる。   The present invention can be embodied in the concentration of beverages and liquid foods. Therefore, it can be used industrially.

1,1a〜1c 原料液濃縮部
2 吸水液濃縮部
3 第1予熱器
4 第2予熱器
5 正浸透膜
6 原料液通過室
7 吸水液通過室
8 原料液供給管
9 原料液排出管
11 原料液循環路
15 吸水液循環路を構成する吸水液流入管
16 吸水液循環路を構成する吸水液排出管
19 蒸発缶
20 凝縮器
26 真空ポンプ
27 凝縮管路
28 ヒートポンプ
29 凝縮水排出管
31 循環ポンプ
32 フィルター
33 散布管
DESCRIPTION OF SYMBOLS 1,1a-1c Raw material liquid concentration part 2 Water absorption liquid concentration part 3 1st preheater 4 2nd preheater 5 Forward osmosis membrane 6 Raw material liquid passage chamber 7 Water absorption liquid passage chamber 8 Raw material liquid supply pipe 9 Raw material liquid discharge pipe 11 Raw material Liquid circulation path 15 Water absorption liquid inflow pipe constituting the water absorption liquid circulation path 16 Water absorption liquid discharge pipe constituting the water absorption liquid circulation path 19 Evaporator 20 Condenser 26 Vacuum pump 27 Condensation pipe 28 Heat pump 29 Condensate discharge pipe 31 Circulation pump 32 filter 33 spray tube

Claims (3)

人が経口で用いる原料液を濃縮する装置であって、
前記原料液から吸水液に水分を吸収する原料液濃縮部と、前記原料液濃縮部で希釈された吸水液の濃度を回復させる吸水液濃縮部とを有しており、
前記原料液濃縮部は、原料液通過室と吸水液通過室とが正浸透膜によって隔てられた構造であり、前記吸水液として浸透圧が前記原料液の浸透圧よりも高いものを使用することにより、前記原料液の水分の一部が前記正浸透膜を介して吸水液通過室に透過するようになっている構成において、
前記吸水液として、前記原料液そのものを濃縮して浸透圧を原料液よりも高くした濃縮原料液が使用されている、
経口液体の濃縮装置。
A device for concentrating raw material liquids used by humans,
A raw material liquid concentration part that absorbs moisture from the raw material liquid into the water absorption liquid, and a water absorption liquid concentration part that recovers the concentration of the water absorption liquid diluted in the raw material liquid concentration part,
The raw material liquid concentrating part has a structure in which a raw material liquid passage chamber and a water absorption liquid passage chamber are separated by a forward osmosis membrane, and the water absorption liquid uses an osmotic pressure higher than the osmotic pressure of the raw material liquid. In the configuration in which a part of the water of the raw material liquid is transmitted to the water absorption liquid passage chamber through the forward osmosis membrane,
As the water-absorbing liquid, a concentrated raw material liquid in which the raw material liquid itself is concentrated to make the osmotic pressure higher than that of the raw material liquid is used.
Oral liquid concentrator.
希釈された吸水液を吸水液濃縮部に送って濃度が回復した吸水液を原料液濃縮部に戻す吸水液循環路を備えており、前記吸水液循環路のうち少なくとも濃縮済み吸水液が流れる経路に、固形物を補集するフィルターが設けられている、
請求項1に記載した経口液体の濃縮装置。
A path through which the diluted water-absorbing liquid is sent to the water-absorbing liquid concentrating section and the water-absorbing liquid whose concentration is restored is returned to the raw material liquid concentrating section, and at least the concentrated water-absorbing liquid flows through the water-absorbing liquid circulating path In addition, a filter that collects solid matter is provided,
The apparatus for concentrating an oral liquid according to claim 1.
人が経口で用いる原料液を濃縮する方法であって、A method for concentrating a raw material liquid that is used orally by humans,
濃縮装置として、前記原料液から吸水液に水分を吸収する原料液濃縮部と、前記原料液濃縮部で希釈された吸水液の濃度を回復させる吸水液濃縮部とを有するものが使用されており、As the concentrating device, one having a raw material liquid concentrating part that absorbs moisture from the raw material liquid into the water absorbing liquid and a water absorbing liquid concentrating part that recovers the concentration of the water absorbing liquid diluted in the raw material liquid concentrating part is used. ,
前記原料液濃縮部は、原料液通過室と吸水液通過室とが正浸透膜によって隔てられた構造であり、前記吸水液として浸透圧が前記原料液の浸透圧よりも高いものを使用することにより、前記原料液の水分の一部が前記正浸透膜を介して吸水液通過室に透過するようになっている構成において、The raw material liquid concentrating part has a structure in which a raw material liquid passage chamber and a water absorption liquid passage chamber are separated by a forward osmosis membrane, and the water absorption liquid uses an osmotic pressure higher than the osmotic pressure of the raw material liquid. In the configuration in which a part of the water of the raw material liquid is transmitted to the water absorption liquid passage chamber through the forward osmosis membrane,
前記吸水液として、前記原料液そのものを濃縮して浸透圧を原料液よりも高くした濃縮原料液が使用していることを特徴とする、As the water-absorbing liquid, a concentrated raw material liquid in which the raw material liquid itself is concentrated to make the osmotic pressure higher than that of the raw material liquid is used,
経口液体の濃縮方法。Method for concentrating oral liquid.
JP2015029021A 2015-02-17 2015-02-17 Concentration apparatus and concentration method for oral liquid Active JP6262678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015029021A JP6262678B2 (en) 2015-02-17 2015-02-17 Concentration apparatus and concentration method for oral liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015029021A JP6262678B2 (en) 2015-02-17 2015-02-17 Concentration apparatus and concentration method for oral liquid

Publications (2)

Publication Number Publication Date
JP2016150308A JP2016150308A (en) 2016-08-22
JP6262678B2 true JP6262678B2 (en) 2018-01-17

Family

ID=56694969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015029021A Active JP6262678B2 (en) 2015-02-17 2015-02-17 Concentration apparatus and concentration method for oral liquid

Country Status (1)

Country Link
JP (1) JP6262678B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6521077B2 (en) * 2015-08-31 2019-05-29 東洋紡株式会社 Water treatment method and water treatment system
JP6858516B2 (en) * 2016-09-09 2021-04-14 旭化成株式会社 Liquid food concentration method
JPWO2019098390A1 (en) * 2017-11-20 2020-09-17 旭化成株式会社 Concentration system and concentrate for solvent-containing articles
CN112638508B (en) * 2018-09-03 2022-08-09 旭化成株式会社 Feed stream concentration system
JP7186557B2 (en) * 2018-09-14 2022-12-09 旭化成株式会社 Concentration system for solvent-containing articles
CN110064305A (en) * 2019-05-31 2019-07-30 成都泓润科技有限公司 A kind of device and application method improving film cycles of concentration and dope concentration
JP7289225B2 (en) 2019-06-25 2023-06-09 美浜株式会社 Concentrator and method for cleaning and concentrating the concentrator
JP2021094519A (en) * 2019-12-17 2021-06-24 東洋紡株式会社 Concentration system
JP2021146297A (en) * 2020-03-19 2021-09-27 旭化成株式会社 Raw material liquid concentration system and raw material liquid concentration method
JP7462460B2 (en) 2020-04-06 2024-04-05 美浜株式会社 Concentration Equipment
CN113545429B (en) * 2020-04-24 2023-11-17 苏州诺津环保科技有限公司 High-concentration and high-viscosity liquid concentration device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5746399B2 (en) * 1975-02-07 1982-10-02
JPS54119096A (en) * 1978-03-06 1979-09-14 Yamasa Shoyu Co Ltd Production of strong alcoholic drink
JPS60150883A (en) * 1984-01-13 1985-08-08 Nippon Atom Ind Group Co Ltd Concentration device
JPS63182004A (en) * 1987-01-22 1988-07-27 Showa Denko Kk Aqueous solution concentration system
JPH0523547A (en) * 1991-07-19 1993-02-02 Nissin Electric Co Ltd Solution concentrating apparatus
JP3246640B2 (en) * 1994-06-15 2002-01-15 三機工業株式会社 Heat pump for membrane separation equipment
US20050034479A1 (en) * 2003-08-13 2005-02-17 The Boc Group Process and apparatus for enriching ammonia
JP5264108B2 (en) * 2007-06-13 2013-08-14 一般財団法人造水促進センター Fresh water generator and fresh water generation method
JP2010046008A (en) * 2008-08-21 2010-03-04 Sumitomo Electric Ind Ltd Fermentation system using biomass
JP2011131209A (en) * 2009-11-25 2011-07-07 Kurita Water Ind Ltd Method and apparatus for treating acidic solution
JP2012236124A (en) * 2011-05-10 2012-12-06 Kobe Univ Method and apparatus for concentrating water to be treated
JP5910466B2 (en) * 2012-11-15 2016-04-27 Jfeエンジニアリング株式会社 Water purification manufacturing method and apparatus

Also Published As

Publication number Publication date
JP2016150308A (en) 2016-08-22

Similar Documents

Publication Publication Date Title
JP6262678B2 (en) Concentration apparatus and concentration method for oral liquid
JP5036822B2 (en) Membrane distillation method for liquid purification
US8277614B2 (en) Multi-stage flash desalination plant with feed cooler
Menchik et al. Nonthermal concentration of liquid foods by a combination of reverse osmosis and forward osmosis. Acid whey: A case study
US8460551B2 (en) Solar membrane distillation system and method of use
JP5264108B2 (en) Fresh water generator and fresh water generation method
US20130146437A1 (en) Dehumidifier system and method
WO2016043259A1 (en) Fresh water generation device and fresh water generation method
KR20110047228A (en) Desalination Apparatus and Method
US7811420B2 (en) Isothermal gas-free water distillation
PT2707115T (en) Evaporator system
CN204051448U (en) High-efficient flat-plate distillation device
ES2739080T3 (en) Procedure to deaerate and heat a vegetable product
JP2017131876A (en) Concentration apparatus and concentration method
CN201834781U (en) Single-stage vacuum distillation seawater desalination device
US9023211B2 (en) Vacuum membrane distillation (VMD) using aspirator to generate vacuum pressure
CN104190259A (en) Multi-effect decompression membrane distillation method and device thereof
KR20170119301A (en) Distillation apparatus including distillation column
JP2021525857A (en) How to process feeds such as plate heat exchangers, heat exchange plates, and seawater
JP7250325B2 (en) Membrane distillation system
NL2009613C2 (en) Membrane distillation system, method of starting such a system and use thereof.
CN208877938U (en) A kind of multiple-effect evaporation concentration systems
JP2013188665A (en) Seawater desalination device, and seawater desalination method using the same
CN213569596U (en) Low-temperature evaporation treatment system for membrane-making wastewater
JP6375891B2 (en) Fresh water generator and fresh water generation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171214

R150 Certificate of patent or registration of utility model

Ref document number: 6262678

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250