JP2008307447A - Fresh water generating apparatus and method - Google Patents

Fresh water generating apparatus and method Download PDF

Info

Publication number
JP2008307447A
JP2008307447A JP2007156298A JP2007156298A JP2008307447A JP 2008307447 A JP2008307447 A JP 2008307447A JP 2007156298 A JP2007156298 A JP 2007156298A JP 2007156298 A JP2007156298 A JP 2007156298A JP 2008307447 A JP2008307447 A JP 2008307447A
Authority
JP
Japan
Prior art keywords
water
concentrated salt
evaporator
salt water
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007156298A
Other languages
Japanese (ja)
Other versions
JP5264108B2 (en
Inventor
Yoshio Taniguchi
良雄 谷口
Mitsuyoshi Hirai
光芳 平井
Toru Kaminari
徹 神成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZOUSUI SOKUSHIN CENTER
ZOUSUI SOKUSHIN CT
Sasakura Engineering Co Ltd
Original Assignee
ZOUSUI SOKUSHIN CENTER
ZOUSUI SOKUSHIN CT
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZOUSUI SOKUSHIN CENTER, ZOUSUI SOKUSHIN CT, Sasakura Engineering Co Ltd filed Critical ZOUSUI SOKUSHIN CENTER
Priority to JP2007156298A priority Critical patent/JP5264108B2/en
Priority to PCT/JP2007/068750 priority patent/WO2008152749A1/en
Publication of JP2008307447A publication Critical patent/JP2008307447A/en
Application granted granted Critical
Publication of JP5264108B2 publication Critical patent/JP5264108B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0057Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
    • B01D5/006Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with evaporation or distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/26Multiple-effect evaporating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0033Other features
    • B01D5/0036Multiple-effect condensation; Fractional condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2673Evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fresh water generating apparatus and method which can generate fresh water for drinking and the like without discharging highly concentrated salt water generated in an evaporator. <P>SOLUTION: The fresh water generating apparatus 1 comprises the evaporator 2 which generates concentrated salt water and condensed water by evaporating and concentrating sodium chloride-containing water to be treated, and condensing generated steam, a semipermeable membrane permeator 3 which is partitioned by a semipermeable membrane 3a permeating water, and has a concentrated salt water chamber 31 and a dilute water chamber 32 into which the concentrated salt water generated in the evaporator 2 and dilute water having a sodium chloride concentration lower than that of the concentrated salt water are introduced respectively, and a returning means 7 which returns concentrated salt water in the concentrated salt water chamber 31, diluted by water permeating from the dilute water chamber 32 through the semipermeable membrane 3a, to the evaporator 2 as water to be treated. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、造水装置及び造水方法に関する。   The present invention relates to a fresh water generator and a fresh water generation method.

従来、海水から飲料用水を生成する造水方法として、例えば特許文献1に開示されているような方法が知られている。この方法は、海水に含まれるスケール成分をナノ濾過膜装置により除去したスケール成分除去海水と、海水とをブレンドしたブレンド海水を多重効用型の蒸発装置に被処理水として供給して蒸発させることにより飲料用の淡水を生成するというものである。
特表2003−507183号公報
Conventionally, for example, a method as disclosed in Patent Document 1 is known as a method for producing drinking water from seawater. In this method, scale component-removed seawater from which scale components contained in seawater have been removed by a nanofiltration membrane device and blended seawater blended with seawater are supplied to the multi-effect evaporator as treated water and evaporated. It produces fresh water for beverages.
Japanese translation of PCT publication No. 2003-507183

しかしながら、上述の造水方法によれば、海水から飲料用の淡水を生成する過程において高濃度に濃縮された濃縮塩水が生成される。生成された濃縮塩水は、何ら利用されること無く海に放流して廃棄されているが、この濃縮塩水の塩分濃度は、海水の塩分濃度の2倍〜3倍程度に達するため、放流される海域の塩分濃度が高まり生態系に悪影響を与えるおそれがあった。   However, according to the above-described fresh water generation method, concentrated salt water concentrated to a high concentration is generated in the process of generating fresh water for drinking from seawater. The produced concentrated salt water is discharged to the sea without being used at all and discarded, but the salt concentration of this concentrated salt water reaches about 2 to 3 times the salt concentration of seawater, so it is discharged. There was a risk that the salinity of the sea area would increase and adversely affect the ecosystem.

本発明は、このような問題を解決するためになされたものであって、蒸発装置において生成される高濃度の濃縮塩水を外部に排出することなく飲料用等の淡水を生成することができる造水装置及び造水方法を提供することを目的とする。   The present invention has been made to solve such a problem, and is capable of producing fresh water for beverages or the like without discharging high-concentration concentrated salt water produced in the evaporator. An object is to provide a water device and a water production method.

本発明の上記目的は、塩化ナトリウムを含む被処理水を蒸発濃縮させると共に、発生した水蒸気を凝縮させることにより濃縮塩水及び凝縮水を生成する蒸発装置と、水を透過する半透膜により仕切られ、前記蒸発装置で生成された濃縮塩水及び当該濃縮塩水よりも塩化ナトリウム濃度の低い希釈水がそれぞれ導かれる濃縮塩水室及び希薄水室を有する半透膜透過器と、前記半透膜を介して前記希薄水室から透過された水により希釈された前記濃縮塩水室における濃縮塩水を前記蒸発装置に被処理水として還流させる還流手段とを備える造水装置により達成される。   The above-mentioned object of the present invention is partitioned by an evaporator that evaporates and concentrates water to be treated containing sodium chloride and condenses the generated water vapor to produce concentrated salt water and condensed water, and a semipermeable membrane that transmits water. A semipermeable membrane permeator having a concentrated salt water chamber and a dilute water chamber through which the concentrated salt water generated by the evaporator and diluted water having a sodium chloride concentration lower than that of the concentrated salt water are guided, respectively, through the semipermeable membrane This is achieved by a desalinator comprising reflux means for refluxing the concentrated salt water in the concentrated salt water chamber diluted with water permeated from the dilute water chamber to the evaporator as treated water.

また、この造水装置において、前記蒸発装置に供給される被処理水は、食塩水であることが好ましい。   Moreover, in this fresh water generator, it is preferable that the to-be-processed water supplied to the said evaporator is salt solution.

また、前記還流手段は、希釈水が混入される希釈水混入手段を更に備えることが好ましい。   Moreover, it is preferable that the said reflux means is further provided with the dilution water mixing means in which dilution water is mixed.

また、本発明の上記目的は、蒸発装置に塩化ナトリウムを含む被処理水を供給し蒸発濃縮することにより濃縮塩水を生成する濃縮塩水生成ステップと、発生した水蒸気を凝縮することにより凝縮水を生成する凝縮水生成ステップと、水を透過する半透膜により仕切られ、前記蒸発装置で生成された濃縮塩水及び当該濃縮塩水よりも塩化ナトリウム濃度の低い希釈水がそれぞれ導かれる濃縮塩水室及び希薄水室を有する半透膜透過器において、前記半透膜を介して前記希薄水室から透過された水により前記濃縮塩水室における濃縮塩水を希釈する希釈ステップと、希釈された濃縮塩水を前記蒸発装置に被処理水として還流させる還流ステップとを備える造水方法により達成される。   In addition, the above object of the present invention is to provide a concentrated salt water generating step for generating concentrated salt water by supplying water to be treated containing sodium chloride to an evaporator and evaporating and condensing the generated water vapor to generate condensed water. A concentrated salt water chamber and dilute water, which are partitioned by a condensed water generating step and a semipermeable membrane that permeates water and into which the concentrated salt water generated by the evaporation device and diluted water having a lower sodium chloride concentration than the concentrated salt water are guided, respectively. In the semipermeable membrane permeator having a chamber, a diluting step of diluting the concentrated salt water in the concentrated salt water chamber with water permeated from the diluted water chamber through the semipermeable membrane, and the evaporator for diluting the concentrated salt water And a reflux step of refluxing as treated water.

本発明によれば、蒸発装置において生成される高濃度の濃縮塩水を外部に排出することなく飲料用等の淡水を生成することができる造水装置及び造水方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the fresh water generator and fresh water generation method which can produce | generate fresh water for drinks, etc. can be provided, without discharging | emitting the high concentration concentrated salt water produced | generated in an evaporation apparatus outside.

以下、本発明に係る造水装置1について添付図面を参照して説明する。図1は、本発明の一実施形態に係る造水装置1の概略構成図である。なお、各図面は、構成の理解を容易にするため、実寸比ではなく部分的に拡大又は縮小されている。   Hereinafter, the fresh water generator 1 which concerns on this invention is demonstrated with reference to an accompanying drawing. Drawing 1 is a schematic structure figure of fresh water generator 1 concerning one embodiment of the present invention. Each drawing is partially enlarged or reduced, not the actual size ratio, for easy understanding of the configuration.

図1に示すように、造水装置1は、多重効用型の蒸発装置2と、半透膜透過器3とを備えている。   As shown in FIG. 1, the fresh water generator 1 includes a multi-effect evaporator 2 and a semipermeable membrane permeator 3.

蒸発装置2は、複数の蒸発缶2a〜2dと、凝縮部29とを備えている。複数の蒸発缶2a〜2dは直列的に接続されており、各蒸発缶2a〜2dは、図2に示すように、密閉型の蒸発室21、間接式加熱器22および塩化ナトリウムを含む被処理水を散布する散布ノズル23を備えている。蒸発室21内の底部は、散布ノズル23から伝熱管221に散布された被処理水の一部が、伝熱管221の熱交換作用により水蒸気となって蒸発した後の濃縮塩水が貯留される濃縮塩水貯留部24を構成している。また、蒸発室21の底部には、生成された濃縮塩水を外部に排出するための濃縮塩水排出部26aが設けられている。蒸発室21の上部には、伝熱管221の熱交換作用により伝熱管221の外表面において生成した水蒸気を外部に排出するための蒸気排出部25aが設けられている。   The evaporator 2 includes a plurality of evaporators 2 a to 2 d and a condensing unit 29. Several evaporators 2a-2d are connected in series, and each evaporator 2a-2d is the to-be-processed process containing the enclosed evaporation chamber 21, the indirect heater 22, and sodium chloride, as shown in FIG. A spray nozzle 23 for spraying water is provided. Concentrated in the bottom of the evaporation chamber 21 is a portion of the water to be treated sprayed from the spray nozzle 23 to the heat transfer tube 221 so as to store concentrated salt water after evaporating into water vapor by the heat exchange action of the heat transfer tube 221. A salt water storage unit 24 is configured. Moreover, the concentrated salt water discharge part 26a for discharging | emitting the produced | generated concentrated salt water outside is provided in the bottom part of the evaporation chamber 21. As shown in FIG. In the upper part of the evaporation chamber 21, a steam discharge portion 25 a is provided for discharging water vapor generated on the outer surface of the heat transfer tube 221 by the heat exchange action of the heat transfer tube 221 to the outside.

間接式加熱器22は、蒸発室21内に設けられる複数の伝熱管221と、これら複数の伝熱管221の両端にそれぞれ接続されている第1ヘッダ222、第2ヘッダ223とを備えている。第1ヘッダ222は、伝熱管221内に蒸気を導く蒸気導入部25bと、他の蒸発缶の伝熱管221内で生成される凝縮水を導入するための凝縮水導入部27aとを備えている。第2ヘッダ223は、伝熱管221の熱交換作用により伝熱管221内で生成した凝縮水を外部に排出する凝縮水排出部27bを備えている。なお、第1ヘッダ222に貯留される凝縮水は、その水量が所定量を超えた場合、伝熱管221の内部を通過して第2ヘッダ223に導かれる。   The indirect heater 22 includes a plurality of heat transfer tubes 221 provided in the evaporation chamber 21, and a first header 222 and a second header 223 respectively connected to both ends of the plurality of heat transfer tubes 221. The first header 222 includes a steam introduction part 25b for introducing steam into the heat transfer pipe 221 and a condensed water introduction part 27a for introducing condensed water generated in the heat transfer pipe 221 of another evaporator. . The 2nd header 223 is provided with the condensed water discharge part 27b which discharges the condensed water produced | generated in the heat exchanger tube 221 by the heat exchange effect | action of the heat exchanger tube 221 outside. Note that the condensed water stored in the first header 222 passes through the heat transfer tube 221 and is guided to the second header 223 when the amount of water exceeds a predetermined amount.

散布ノズル23は、間接式加熱器22の上方に配置されており、被処理水を伝熱管221の外表面に向けて散布する散布手段である。   The spray nozzle 23 is disposed above the indirect heater 22 and is a spray unit that sprays the water to be treated toward the outer surface of the heat transfer tube 221.

各蒸発缶2a〜2dの相互間は、図1に示すように、前段の蒸発缶で生成された蒸気を一つ後段側の蒸発缶の伝熱管221内部に熱源として導くように、前段の蒸発缶における蒸気排出部25aと、後段の蒸発缶における蒸気導入部25bとが蒸気管路25を介して接続されている。また、前段の蒸発缶で生成され濃縮塩水貯留部24に貯留される濃縮塩水を一つ後段側の蒸発缶における散布ノズル23に導くように、前段の蒸発缶における濃縮塩水排出部26aと、後段の蒸発缶の散布ノズル23とが濃縮塩水移送管路26を介して接続されている。また、前段の蒸発缶における伝熱管221内で生成され第2ヘッダ223内に貯留される凝縮水を一つ後段側の蒸発缶における間接式加熱器22の第1ヘッダ222内に導くように、前段の蒸発缶における凝縮水排出部27bと、後段の蒸発缶における凝縮水導入部27aとが凝縮水管路27を介して接続されている。   As shown in FIG. 1, between the evaporators 2a to 2d, the vaporization of the preceding stage is performed so that the steam generated by the preceding evaporator can be guided as a heat source into the heat transfer tube 221 of the evaporator on the next stage. A steam discharge part 25 a in the can and a steam introduction part 25 b in the latter stage evaporator are connected via a steam line 25. Further, the concentrated salt water discharge part 26a in the preceding stage evaporator and the subsequent stage so that the concentrated salt water generated in the preceding stage evaporator and stored in the concentrated salt water storage part 24 is guided to the spray nozzle 23 in the latter stage side evaporator. The evaporator spray nozzle 23 is connected via a concentrated salt water transfer pipe 26. In addition, the condensed water generated in the heat transfer tube 221 in the previous stage evaporator and stored in the second header 223 is guided into the first header 222 of the indirect heater 22 in the second stage evaporator, A condensed water discharge part 27 b in the former evaporator and a condensed water introduction part 27 a in the latter evaporator are connected via a condensed water pipe 27.

また、最初段の蒸発缶2aにおける間接式加熱器22の第1ヘッダ222の蒸気導入部25bには、ボイラー等において生成される駆動蒸気を導く駆動蒸気管路90が接続している。なお、最初段の蒸発缶2aにおいては、凝縮水導入部27aや濃縮塩水導入部26aを設ける必要はない。   In addition, a driving steam line 90 that guides driving steam generated in a boiler or the like is connected to the steam introducing portion 25b of the first header 222 of the indirect heater 22 in the first stage evaporator 2a. In the first stage evaporator 2a, it is not necessary to provide the condensed water introduction part 27a and the concentrated salt water introduction part 26a.

最終段の蒸発缶2dにおける凝縮水排出部27bには、凝縮水を外部に排出する凝縮水取出管路91が接続している。また、間接式加熱器22の第2ヘッダ223の蒸気排出部25aには、凝縮部29に蒸気を導く蒸気取出管路92が接続している。凝縮部29は、図示しない冷却水供給管路から導かれた冷却水によって、蒸気取出管路92を介して導かれた水蒸気を間接的に冷却して凝縮水を生成する装置である。冷却水としては、図示しない冷却塔等で冷却された工業用水や冷凍装置で冷却された冷水(チラー水)等を使用できる。   A condensed water discharge pipe 91 for discharging condensed water to the outside is connected to the condensed water discharge portion 27b in the final stage evaporator 2d. Further, a steam discharge pipe 92 that guides the steam to the condensing part 29 is connected to the steam discharge part 25 a of the second header 223 of the indirect heater 22. The condensing unit 29 is a device that generates condensed water by indirectly cooling the water vapor guided through the steam outlet pipe 92 with cooling water guided from a cooling water supply pipe (not shown). As the cooling water, industrial water cooled by a cooling tower (not shown), cold water (chiller water) cooled by a refrigeration apparatus, or the like can be used.

半透膜透過器3は、図1に示すように、プレート型の半透膜3aにより内部空間が仕切られており、一方の空間が濃縮塩水室31を構成し、他方の空間が希薄水室32を構成している。濃縮塩水室31は、蒸発装置2において生成される濃縮塩水が後述の濃縮塩水供給手段6を介して供給される空間である。希薄水室32は、濃縮塩水室31に導かれる濃縮塩水よりも塩分濃度(塩化ナトリウム濃度)が低い海水や淡水等の希釈水が後述の希釈水供給手段4を介して供給される空間である。半透膜3aは、水を透過させる性質を有する膜であり、セルロース膜やポリアミド膜などの高分子膜を例示することができる。このような構成により、希薄水室32に導かれた希釈水中の水分が、濃縮塩水室31内の濃縮塩水が有する正浸透圧エネルギーによって吸引されて半透膜3aを透過して濃縮塩水室31に流入し、濃縮塩水の水量を増加させてその塩分濃度を低下させることができる。   As shown in FIG. 1, the semipermeable membrane permeator 3 has an internal space partitioned by a plate-type semipermeable membrane 3a. One space constitutes a concentrated salt water chamber 31, and the other space is a dilute water chamber. 32. The concentrated salt water chamber 31 is a space in which the concentrated salt water generated in the evaporator 2 is supplied via the concentrated salt water supply means 6 described later. The diluted water chamber 32 is a space in which diluted water such as seawater or fresh water having a lower salinity concentration (sodium chloride concentration) than the concentrated salt water guided to the concentrated salt water chamber 31 is supplied via the diluted water supply means 4 described later. . The semipermeable membrane 3a is a membrane having a property of allowing water to permeate, and examples thereof include a polymer membrane such as a cellulose membrane and a polyamide membrane. With such a configuration, the water in the diluted water guided to the dilute water chamber 32 is sucked by the normal osmotic pressure energy of the concentrated salt water in the concentrated salt water chamber 31 and permeates through the semipermeable membrane 3a to be concentrated in the salt water chamber 31. The amount of concentrated salt water can be increased to decrease the salt concentration.

また、造水装置1は、希釈水供給手段4、希釈水排出手段5、濃縮塩水供給手段6および還流手段7を備えている。希釈水供給手段4は、蒸発装置2において生成され、半透膜透過器3の濃縮塩水室31に導かれる濃縮塩水よりも塩分濃度が低い海水や淡水等の希釈水を、半透膜透過器3における希薄水室32に導く手段であり、希釈水が通過する希釈水供給管路41と、ポンプ42とを備えている。なお、希釈水供給管路41の途中には、フィルターや濾過器等が取り付けられており、希釈水中に含まれる不純物が除去されるように構成されている。   The fresh water generator 1 further includes a dilution water supply means 4, a dilution water discharge means 5, a concentrated salt water supply means 6, and a reflux means 7. The diluting water supply means 4 generates diluting water such as seawater or fresh water generated in the evaporator 2 and having a lower salinity than the concentrated salt water 31 guided to the concentrated salt water chamber 31 of the semipermeable membrane permeator 3. 3, a diluting water supply pipe 41 through which the diluting water passes, and a pump 42. In addition, a filter, a filter, etc. are attached in the middle of the dilution water supply pipe 41, and it is comprised so that the impurity contained in dilution water may be removed.

希釈水排出手段5は、半透膜透過器3の希薄水室32において水の一部が半透膜3aを介して濃縮塩水室31側に透過された残りの希釈水を外部に排出する手段であり、希薄水室32に一端が接続する希釈水移送管路51と、当該希釈水移送管路51の他端が接続し希釈水を貯留する貯留槽52と、貯留槽52に貯留される希釈水を外部に排出する排出管路53と、ポンプ54とを備えている。   The dilution water discharge means 5 is means for discharging the remaining dilution water in which a part of the water is transmitted to the concentrated salt water chamber 31 side through the semipermeable membrane 3a in the diluted water chamber 32 of the semipermeable membrane permeator 3. The dilution water transfer pipe 51 having one end connected to the diluted water chamber 32, the storage tank 52 connected to the other end of the dilution water transfer pipe 51 and storing dilution water, and stored in the storage tank 52. A discharge pipe 53 for discharging dilution water to the outside and a pump 54 are provided.

濃縮塩水供給手段6は、蒸発装置2において生成された濃縮塩水を半透膜透過器3における濃縮塩水室31に導く手段であり、最終段の蒸発缶2dにおける濃縮塩水排出部26a及び半透膜透過器3における濃縮塩水室31を接続する濃縮塩水供給管路61と、ポンプ62とを備えている。   The concentrated salt water supply means 6 is a means for guiding the concentrated salt water generated in the evaporator 2 to the concentrated salt water chamber 31 in the semipermeable membrane permeator 3, and the concentrated salt water discharge part 26a and the semipermeable membrane in the final stage evaporator 2d. A concentrated salt water supply pipe 61 connecting the concentrated salt water chamber 31 in the permeator 3 and a pump 62 are provided.

還流手段7は、半透膜透過器3の濃縮塩水室31において塩分濃度が薄められた濃縮塩水を蒸発装置2に被処理水として還流する手段であり、半透膜透過器3における濃縮塩水室31及び最前段の蒸発缶2aにおける散布ノズル23を接続する還流管路71と、ポンプ72とを備えている。   The reflux means 7 is means for refluxing the concentrated salt water whose salinity is diluted in the concentrated salt water chamber 31 of the semipermeable membrane permeator 3 as treated water to the evaporator 2, and the concentrated salt water chamber in the semipermeable membrane permeator 3. 31 and a reflux pipe 71 for connecting the spray nozzle 23 in the foremost evaporator 2a, and a pump 72.

このように構成された造水装置1により海水から飲料用等の凝縮水(淡水)を製造する方法について以下説明する。まず、還流手段7を駆動し、半透膜透過器3の濃縮塩水室31に予め収容していた被処理水を蒸発装置2に供給する。また、半透膜透過器3の希薄水室32には、希釈水である海水を供給する。そして、駆動蒸気管路90を介してボイラー等により生成された駆動蒸気を蒸発装置2に供給する。ここで、半透膜透過器3の濃縮塩水室31に予め収容する被処理水として食塩水(塩化ナトリウム水溶液)を採用する。この食塩水の塩分濃度(塩化ナトリウム濃度)は、半透膜透過器3の希薄水室32に供給される海水の塩分濃度により適宜変更されるが、例えば、蒸発装置2において蒸発濃縮され半透膜透過器3の濃縮塩水室31に導かれる濃縮塩水の塩分濃度が、3〜26%(30g/L〜260g/L)となるように設定する。   A method for producing condensed water (fresh water) for drinking from seawater by the fresh water generator 1 configured as described above will be described below. First, the reflux means 7 is driven, and the water to be treated previously stored in the concentrated salt water chamber 31 of the semipermeable membrane permeator 3 is supplied to the evaporator 2. Moreover, seawater which is dilution water is supplied to the diluted water chamber 32 of the semipermeable membrane permeator 3. Then, the driving steam generated by a boiler or the like is supplied to the evaporator 2 through the driving steam line 90. Here, a saline solution (sodium chloride aqueous solution) is employed as the water to be stored in the concentrated salt water chamber 31 of the semipermeable membrane permeator 3 in advance. The salt concentration of sodium chloride (sodium chloride concentration) is appropriately changed depending on the salt concentration of seawater supplied to the dilute water chamber 32 of the semipermeable membrane permeator 3. The salt concentration of the concentrated salt water led to the concentrated salt water chamber 31 of the membrane permeator 3 is set to be 3 to 26% (30 g / L to 260 g / L).

蒸発装置2に供給された駆動蒸気は、最前段に配置される蒸発缶2aの伝熱管221の内部に導かれる。還流手段7により導かれた被処理水(食塩水)は、蒸発装置2を構成する最前段の蒸発缶2aの散布ノズル23に供給され、伝熱管221の外表面に散布される。   The driving steam supplied to the evaporator 2 is guided to the inside of the heat transfer tube 221 of the evaporator 2a arranged in the foremost stage. The water to be treated (saline solution) guided by the reflux means 7 is supplied to the spray nozzle 23 of the front-stage evaporator 2 a constituting the evaporator 2 and sprayed on the outer surface of the heat transfer tube 221.

最前段の蒸発缶2aの伝熱管221外表面に散布された被処理水(食塩水)は、伝熱管221の内部を通過する駆動蒸気との間で熱交換を行い、その一部が蒸発して水蒸気となる。発生した水蒸気は、一つ後段側の蒸発缶2bにおける伝熱管221に熱源として導かれる。また、伝熱管221の外表面において蒸発しなかった被処理水は、その塩分濃度が高められた濃縮塩水となり、伝熱管221の外表面に沿って流下して蒸発室21の底部に貯留される。底部に貯留された濃縮塩水は、濃縮塩水排出部26aから濃縮塩水移送管路26を介して一つ後段側の蒸発缶2bの散布ノズル23に導かれる。また、伝熱管221の内部を通過する駆動蒸気は、伝熱管221の外表面に散布された被処理水との熱交換により凝縮水(淡水)に変換され、間接式加熱器22の第2ヘッダ223に貯留され、凝縮水管路27を介して、一つ後段側の蒸発缶2bにおける間接式加熱器22の第1ヘッダ222に導かれる。   The water to be treated (saline solution) sprayed on the outer surface of the heat transfer tube 221 of the evaporator 2a at the foremost stage exchanges heat with the driving steam passing through the inside of the heat transfer tube 221, and part of the water evaporates. It becomes water vapor. The generated water vapor is led as a heat source to the heat transfer tube 221 in the evaporator 2b on the next stage side. Further, the water to be treated that has not evaporated on the outer surface of the heat transfer tube 221 becomes concentrated salt water whose salt concentration is increased, flows down along the outer surface of the heat transfer tube 221, and is stored in the bottom of the evaporation chamber 21. . The concentrated salt water stored at the bottom is led from the concentrated salt water discharge portion 26a through the concentrated salt water transfer pipe 26 to the spray nozzle 23 of the first evaporator 2b. The driving steam passing through the inside of the heat transfer tube 221 is converted into condensed water (fresh water) by heat exchange with the water to be treated sprayed on the outer surface of the heat transfer tube 221, and the second header of the indirect heater 22. It is stored in 223 and led to the first header 222 of the indirect heater 22 in the evaporator 2b on the next stage side through the condensed water pipe 27.

最前段の蒸発缶2aの一つ後段側に配置される蒸発缶2bにおいては、散布ノズル23から伝熱管221の外表面に散布される濃縮塩水と、一つ前側の蒸発缶2aにおいて生成され伝熱管221内を通過する蒸気との間で熱交換を行い、水蒸気と濃縮塩水とが生成されると共に、伝熱管221内において凝縮水(淡水)が生成される。蒸発装置2を構成する他の蒸発缶2c,2dにおいても同様な処理を順次行うことにより、飲料用等の淡水の生成及び被処理水の濃縮が行われる。   In the evaporator 2b disposed on the one-stage side of the first-stage evaporator 2a, the concentrated salt water sprayed from the spray nozzle 23 to the outer surface of the heat transfer tube 221 and the one generated and transmitted in the one-front evaporator 2a. Heat exchange is performed with steam passing through the heat pipe 221 to generate water vapor and concentrated salt water, and condensed water (fresh water) is generated in the heat transfer pipe 221. The other evaporators 2c and 2d constituting the evaporator 2 are also subjected to the same process in order to generate fresh water for beverages and concentrate the water to be treated.

蒸発装置2を構成する各蒸発缶2a〜2dの伝熱管221内で生成された凝縮水(淡水)は、順次、凝縮水管路27を介して後段側の蒸発缶に導かれ、最終的に、蒸発装置2の最も後段側に配置される蒸発缶2dの凝縮水排出部27bから凝縮水取出管路91を介して取り出される。また、蒸発装置2の最も後段側に配置される蒸発缶2dの伝熱管221表面において生成された水蒸気は、蒸気取出管路92を介して、凝縮部29に導かれて淡水に変換された後、管路93を介して取り出される。取り出された淡水は、その後、飲料用水や、電子工業等の各種工業における洗浄用水等として利用される。   Condensed water (fresh water) generated in the heat transfer pipes 221 of the respective evaporators 2a to 2d constituting the evaporator 2 is sequentially guided to the subsequent stage side evaporator via the condensed water pipe 27, and finally, The water is taken out from the condensed water discharge part 27b of the evaporator 2d arranged on the most rear side of the evaporator 2 through the condensed water discharge conduit 91. Further, after the water vapor generated on the surface of the heat transfer tube 221 of the evaporator 2d arranged on the most rear side of the evaporator 2 is led to the condensing unit 29 via the vapor extraction pipe 92 and converted into fresh water. , Taken out via the conduit 93. The extracted fresh water is then used as drinking water or cleaning water in various industries such as the electronics industry.

蒸発装置2の最も後段側に配置される蒸発缶2dに貯留される高濃度の濃縮塩水は、濃縮塩水供給手段6により半透膜透過器3の濃縮塩水室31に導かれる。希薄水室32には、希釈水供給手段4を介して、濃縮塩水室31に導かれる濃縮塩水よりも塩分濃度が低い海水が供給されているので、濃縮塩水と希釈水との浸透圧差により、半透膜3aを介して希釈水中(海水中)の水のみが濃縮塩水室31側に浸透する。この結果、濃縮塩水室31に供給された濃縮塩水は希釈増量されて、その塩分濃度が低下する。一方、希薄水室32に供給された海水は、当該海水中の一部の水が半透膜3aを介して濃縮塩水室31側に透過された後、希釈水移送管路51を介して貯留槽52に一端貯留され、その後、排出管路53を介して、例えば、海に排出される。なお、希釈水排出手段5を介して排出される海水は塩分濃度が高められた状態になっているが、半透膜透過器3の希薄水室32を通過する海水の流量を適宜調整することにより、海水が放流される海域の生態系に悪影響を与えない範囲となるように、放流されるる海水の塩分濃度を設定する。希薄水室32を通過する海水(希釈水)の流量は、例えば、海水の10%〜30%の水分が、半透膜3aを介して濃縮塩水室31に透過されるように設定することが好ましい。   High-concentration concentrated salt water stored in the evaporator 2 d arranged on the most rear side of the evaporator 2 is guided to the concentrated salt water chamber 31 of the semipermeable membrane permeator 3 by the concentrated salt water supply means 6. Since the seawater having a lower salinity than the concentrated salt water led to the concentrated salt water chamber 31 is supplied to the dilute water chamber 32 via the dilution water supply means 4, due to the osmotic pressure difference between the concentrated salt water and the diluted water, Only the water in the diluted water (in the seawater) permeates the concentrated salt water chamber 31 side through the semipermeable membrane 3a. As a result, the concentrated salt water supplied to the concentrated salt water chamber 31 is diluted and increased, and its salinity concentration decreases. On the other hand, the seawater supplied to the diluted water chamber 32 is stored via the diluting water transfer pipe 51 after a part of the water in the seawater is transmitted to the concentrated saltwater chamber 31 side through the semipermeable membrane 3a. One end is stored in the tank 52, and then, for example, discharged to the sea through the discharge pipe 53. The seawater discharged through the dilution water discharge means 5 is in a state in which the salinity concentration is increased, but the flow rate of the seawater passing through the diluted water chamber 32 of the semipermeable membrane permeator 3 should be adjusted as appropriate. Therefore, the salinity of the discharged seawater is set so that it does not adversely affect the ecosystem of the sea area where the seawater is discharged. The flow rate of the seawater (diluted water) passing through the dilute water chamber 32 may be set so that, for example, 10% to 30% of the seawater is transmitted to the concentrated saltwater chamber 31 through the semipermeable membrane 3a. preferable.

希釈増量され塩分濃度が低下した濃縮塩水は、還流手段7により最前段の蒸発缶2aにおける散布ノズル23に被処理水として還流され、再び蒸発装置2において蒸発濃縮されて飲料用等の淡水が製造される。   Concentrated salt water that has been diluted and reduced in salinity is recirculated as treated water to the spray nozzle 23 in the first evaporator 2a by the reflux means 7, and again evaporated and concentrated in the evaporator 2 to produce fresh water for beverages and the like. Is done.

上述のように、本実施形態に係る造水装置1によれば、蒸発装置2で濃縮された濃縮塩水を半透膜透過器3において希釈増量した後、蒸発装置2における被処理水として繰り返し再利用できるように構成されているので、蒸発装置2において生成された濃縮塩水を外部に排出することなく(例えば、海に放流して廃棄することなく)、飲料用等の淡水を製造することが可能になる。   As described above, according to the fresh water generator 1 according to the present embodiment, the concentrated salt water concentrated in the evaporator 2 is diluted and increased in the semipermeable membrane permeator 3 and then repeatedly reused as treated water in the evaporator 2. Since it is configured so that it can be used, it is possible to produce fresh water for beverages without discharging the concentrated salt water generated in the evaporator 2 to the outside (for example, without discharging it to the sea and discarding it). It becomes possible.

また、半透膜透過器3においては、希釈水供給手段4により導かれる海水中の水のみを半透膜3aを介して蒸発装置2に還流される濃縮塩水に移動させており、海水に含まれる硫酸カルシウム等のスケール成分が、蒸発装置2に還流される被処理水中に移動することがない。つまり、蒸発装置2及び半透膜透過器3を循環する液体が、食塩水であることを維持することができる。その結果、各蒸発缶2a〜2dの伝熱管221の表面等に硫酸カルシウム等のスケールが析出することを確実に防止できるので、伝熱管221の熱交換効率が低下することがなく、海水から淡水を効率よく製造することが可能になる。また、スケールの析出を防止できるので、蒸発装置2に供給される駆動蒸気の温度をより一層高めて、各蒸発缶2a〜2dを更に高温の作動温度条件下で駆動することが可能になり、効率よく大量の淡水を製造することができる。   Further, in the semipermeable membrane permeator 3, only the water in the seawater guided by the dilution water supply means 4 is moved to the concentrated salt water that is returned to the evaporator 2 through the semipermeable membrane 3a, and is contained in the seawater. The scale component such as calcium sulfate does not move into the water to be treated which is refluxed to the evaporator 2. That is, it is possible to maintain that the liquid circulating through the evaporator 2 and the semipermeable membrane permeator 3 is saline. As a result, scales such as calcium sulfate can be reliably prevented from depositing on the surfaces of the heat transfer tubes 221 of the respective evaporators 2a to 2d, so that the heat exchange efficiency of the heat transfer tubes 221 does not decrease, and the fresh water is fed from seawater. Can be manufactured efficiently. Moreover, since precipitation of scale can be prevented, the temperature of the driving steam supplied to the evaporator 2 can be further increased, and each of the evaporators 2a to 2d can be driven under a higher operating temperature condition. A large amount of fresh water can be produced efficiently.

また、蒸発缶2a〜2dの伝熱管221の表面等にスケールが析出することを確実に防止できる結果、海水からスケール成分を予め除去するためのナノ濾過膜装置や、スケール析出抑制のための薬品添加装置、脱炭酸塔設備等のスケール析出防止対策装置を設ける必要がなく、造水装置1のコンパクト化・低コスト化を図ることができる。更に、酸添加も不要になるので、蒸発缶における腐食を防止することもできる。   In addition, as a result of reliably preventing the scale from being deposited on the surface of the heat transfer tube 221 of the evaporators 2a to 2d, a nanofiltration membrane device for removing scale components from seawater in advance, and a chemical for suppressing scale deposition It is not necessary to provide a device for preventing scale deposition such as an addition device and a decarboxylation tower facility, and the water freshening device 1 can be made compact and low in cost. Furthermore, since no acid addition is required, corrosion in the evaporator can be prevented.

本発明の発明者は、半透膜透過器3が、希薄水室32から濃縮塩水室31に十分な量の水を透過させることができることを物質収支計算により確認したので、その結果について以下説明する。   The inventor of the present invention confirmed that the semipermeable membrane permeator 3 can permeate a sufficient amount of water from the dilute water chamber 32 to the concentrated salt water chamber 31 by mass balance calculation. To do.

まず、蒸発装置2において生成され、半透膜透過器3における濃縮塩水室31に導かれる濃縮塩水の塩分濃度(塩化ナトリウム濃度)を130g/Lとした。この濃縮塩水の浸透圧は、約108atmに相当する。また、希薄水室32に導かれる海水(希釈水)の塩分濃度を43g/Lとした。この海水の塩分濃度は、造水装置1の需要が多い中近東地区における海水の塩分濃度に相当し、その浸透圧は、約31atmである。なお、海水等の浸透圧は、大矢晴彦著「逆浸透法・限外ろ過法I理論 表A−20」を参照して計算した。   First, the salt concentration (sodium chloride concentration) of the concentrated salt water generated in the evaporator 2 and led to the concentrated salt water chamber 31 in the semipermeable membrane permeator 3 was 130 g / L. The osmotic pressure of this concentrated salt water corresponds to about 108 atm. Further, the salt concentration of seawater (diluted water) guided to the dilute water chamber 32 was set to 43 g / L. The salinity of this seawater corresponds to the salinity of seawater in the Middle East region where demand for the fresh water generator 1 is high, and its osmotic pressure is about 31 atm. The osmotic pressure of seawater and the like was calculated by referring to “Reverse Osmosis Method / Ultrafiltration Method I Theory Table A-20” by Haruhiko Oya.

希薄水室32における海水の30%の水分が、半透膜3aを介して濃縮塩水室31側に移動する場合、希薄水室32の出口部分(希釈水移送管路51との接続部)における海水濃度は、100/(100−30)=1.43倍となる。つまり、中近東地区の海水(塩分濃度=43g/L、浸透圧=31atm)の場合、希薄水室32の出口部分における海水濃度は、60g/Lとなり、その浸透圧は、約47atmに相当する。よって、希薄水室32の平均浸透圧は、(31atm+47atm)/2=39atmとなる。   When 30% of the seawater in the diluted water chamber 32 moves to the concentrated saltwater chamber 31 side through the semipermeable membrane 3a, the outlet portion of the diluted water chamber 32 (connecting portion with the diluted water transfer pipe 51). The seawater concentration is 100 / (100-30) = 1.43 times. That is, in the case of seawater in the Middle East region (salinity concentration = 43 g / L, osmotic pressure = 31 atm), the seawater concentration at the outlet of the dilute water chamber 32 is 60 g / L, and the osmotic pressure corresponds to about 47 atm. . Therefore, the average osmotic pressure of the diluted water chamber 32 is (31 atm + 47 atm) / 2 = 39 atm.

一方、半透膜透過器3の濃縮塩水室31に導かれた濃縮塩水(塩分濃度=130g/L、浸透圧=108atm)は、半透膜3aを介して浸透してきた水により希釈されるが、その希釈率は、濃縮塩水室31を通過する濃縮塩水の流量によって変動する。濃縮塩水室31を通過する濃縮塩水の流量は、蒸発装置2や半透膜透過器3の設備容量比率によって最適設計がなされるが、蒸発装置2において被処理水が2〜3倍に濃縮されるのが一般的であるので、濃縮塩水室31において濃縮塩水が2倍に希釈されるものとして濃縮塩水の流量を設定すると、濃縮塩水室31の出口部分(還流管路71との接続部)における塩分濃度は、130g/L/2=65g/L(浸透圧=51.5atm)となる。よって、濃縮塩水室31の平均浸透圧は、(108atm+51.5atm)/2=80atmとなる。   On the other hand, the concentrated salt water (salt concentration = 130 g / L, osmotic pressure = 108 atm) guided to the concentrated salt water chamber 31 of the semipermeable membrane permeator 3 is diluted with water that has permeated through the semipermeable membrane 3a. The dilution rate varies depending on the flow rate of the concentrated salt water passing through the concentrated salt water chamber 31. The flow rate of the concentrated salt water passing through the concentrated salt water chamber 31 is optimally designed depending on the equipment capacity ratio of the evaporator 2 and the semipermeable membrane permeator 3, but the water to be treated is concentrated 2 to 3 times in the evaporator 2. Therefore, when the flow rate of the concentrated salt water is set on the assumption that the concentrated salt water is diluted twice in the concentrated salt water chamber 31, the outlet portion of the concentrated salt water chamber 31 (connecting portion with the reflux pipe 71). The salinity concentration in is 130 g / L / 2 = 65 g / L (osmotic pressure = 51.5 atm). Therefore, the average osmotic pressure of the concentrated salt water chamber 31 is (108 atm + 51.5 atm) / 2 = 80 atm.

以上より、半透膜透過器3における濃縮塩水室31と希薄水室32との平均浸透圧の差は、80atm−39atm=41atmとなり、希薄水室32側から濃縮塩水室31側に十分な流量の浸透水を供給できることがわかる。なお、上記の物質収支計算においては、希薄水室32における海水の30%の水分が半透膜3aを介して濃縮塩水室31側に移動する場合について説明したが、海水の10%〜20%の水分が、半透膜3aを介して移動するように希薄水室32を通過する海水の流量を設定することが好ましい。   From the above, the difference in average osmotic pressure between the concentrated salt water chamber 31 and the diluted water chamber 32 in the semipermeable membrane permeator 3 is 80 atm−39 atm = 41 atm, and a sufficient flow rate from the diluted water chamber 32 side to the concentrated salt water chamber 31 side. It can be seen that osmotic water can be supplied. In the above-described material balance calculation, the case where 30% of the seawater in the diluted water chamber 32 moves to the concentrated saltwater chamber 31 side through the semipermeable membrane 3a has been described, but 10% to 20% of the seawater. It is preferable to set the flow rate of the seawater that passes through the dilute water chamber 32 so that the water moves through the semipermeable membrane 3a.

以上、本発明に係る造水装置1の一実施形態について説明したが、本発明の具体的な構成は、上記実施形態に限定されない。例えば、還流手段7が蒸発装置2に導く希釈増量後の濃縮塩水に対して、海水や淡水等の希釈水を混入するような構成を採用することもできる。具体的には、図3に示すように、還流手段7が、希釈水供給管路41と還流管路71とを接続する希釈水混入手段8を備えるように構成することができる。この希釈水混入手段8は、希釈水供給手段4により導かれる希釈水の一部を分岐させて還流管路71に導く希釈水混入管路81及び図示しない流量調整弁を備えている。このような構成により、蒸発装置2においてスケールの析出を防止できる範囲で、蒸発装置2において蒸発濃縮される被処理水の水量を増加させることができるので、飲料用等の凝縮水(淡水)を効率よく大量に製造することが可能になる。   As mentioned above, although one Embodiment of the fresh water generator 1 which concerns on this invention was described, the specific structure of this invention is not limited to the said embodiment. For example, it is possible to adopt a configuration in which diluted water such as seawater or fresh water is mixed into the concentrated salt water after the dilution increase that the reflux means 7 leads to the evaporator 2. Specifically, as shown in FIG. 3, the reflux means 7 can be configured to include dilution water mixing means 8 that connects the dilution water supply pipe 41 and the reflux pipe 71. The dilution water mixing means 8 includes a dilution water mixing pipe 81 that branches a part of the dilution water guided by the dilution water supply means 4 and leads to the reflux pipe 71 and a flow rate adjusting valve (not shown). With such a configuration, the amount of water to be treated that is evaporated and concentrated in the evaporation device 2 can be increased within a range in which scale deposition can be prevented in the evaporation device 2, so that condensed water (fresh water) for beverages and the like can be used. It becomes possible to manufacture efficiently and in large quantities.

また、上記実施形態においては、プレート型の半透膜3aにより、内部が濃縮塩水室31及び希薄水室32に仕切られる半透膜透過器3を採用しているが、このような構成に特に限定されない。例えば、中空糸型、スパイラル型又は管状型等種々の半透膜により、内部が濃縮塩水室31及び希薄水室32に仕切られる半透膜透過器3を採用することができる。   Moreover, in the said embodiment, although the semipermeable membrane permeation | transmission device 3 by which the inside is divided into the concentrated salt water chamber 31 and the diluted water chamber 32 by the plate-type semipermeable membrane 3a is employ | adopted, especially in such a structure. It is not limited. For example, it is possible to employ the semipermeable membrane permeator 3 in which the inside is partitioned into the concentrated salt water chamber 31 and the dilute water chamber 32 by various semipermeable membranes such as a hollow fiber type, a spiral type, and a tubular type.

また、本実施形態に係る造水装置1を用いて海水から飲料用等の淡水を製造する方法についての上記説明において、半透膜透過器3の濃縮塩水室31に予め食塩水を収容して造水装置1の駆動を開始する構成について説明したが、食塩水の代わりに所定の加熱運転温度と所定の塩分濃度でスケールが析出しないように予めスケール成分を除去した海水を供給して造水装置1の駆動を開始してもよい。このような構成であっても、蒸発装置2で濃縮された濃縮海水を半透膜透過器3において希釈増量した後、蒸発装置2における被処理水として繰り返し再利用でき、蒸発装置2において生成された濃縮海水を海に放流して廃棄することなく、飲料用等の淡水を製造することができる。   Moreover, in the said description about the method of manufacturing fresh water for drinks etc. from seawater using the fresh water generator 1 which concerns on this embodiment, salt solution is previously accommodated in the concentrated salt water chamber 31 of the semipermeable membrane permeation device 3. Although the structure which starts the drive of the fresh water generator 1 was demonstrated, the seawater from which the scale component was removed beforehand was supplied instead of salt water, and the scale component was removed so that a scale might not precipitate at predetermined heat operation temperature and predetermined salt concentration. The driving of the device 1 may be started. Even in such a configuration, the concentrated seawater concentrated in the evaporator 2 can be reused as treated water in the evaporator 2 after being diluted and increased in the semipermeable membrane permeator 3 and generated in the evaporator 2. It is possible to produce fresh water for drinking, etc., without discharging the concentrated seawater to the sea and discarding it.

また、上記実施形態においては、蒸発装置2が複数の蒸発缶2a〜2dを備える多重効用型の蒸発装置であるが、例えば、単一の蒸発缶を備える単缶型の蒸発装置であってもよい。また、多段フラッシュ蒸発型の蒸発装置であってもよい。   Moreover, in the said embodiment, although the evaporator 2 is a multi-effect type evaporator provided with several evaporators 2a-2d, for example, even if it is a single can type evaporator provided with a single evaporator Good. Further, it may be a multistage flash evaporation type evaporator.

また、上記実施形態において、半透膜透過器3に導く希釈水として、蒸発装置2の熱放出部(Heat Rejection Section)の冷却海水出口水を使用することもできる。温度上昇によって浸透圧が高くなること(負の効果)よりも粘度低下による透過速度の上昇(正の効果)が勝ると考えられるので、性能向上が期待できる。   Moreover, in the said embodiment, the cooling seawater outlet water of the heat | fever discharge | release part (Heat Rejection Section) of the evaporation apparatus 2 can also be used as dilution water led to the semipermeable membrane permeation device 3. Since it is considered that the increase in permeation speed (positive effect) due to the decrease in viscosity is superior to the increase in osmotic pressure due to temperature increase (negative effect), an improvement in performance can be expected.

本発明の一実施形態に係る造水装置を示す概略構成図である。It is a schematic structure figure showing a fresh water generator concerning one embodiment of the present invention. 図1に示す造水装置を構成する蒸発缶を示す概略構成図である。It is a schematic block diagram which shows the evaporator which comprises the fresh water generator shown in FIG. 図1に示す造水装置の変形例を示す概略構成図である。It is a schematic block diagram which shows the modification of the fresh water generator shown in FIG.

符号の説明Explanation of symbols

1 造水装置
2 蒸発装置
2a〜2d 蒸発缶
3 半透膜透過器
3a 半透膜
31 濃縮塩水室
32 希薄水室
DESCRIPTION OF SYMBOLS 1 Water generator 2 Evaporator 2a-2d Evaporator 3 Semipermeable membrane permeator 3a Semipermeable membrane 31 Concentrated salt water chamber 32 Dilute water chamber

Claims (4)

塩化ナトリウムを含む被処理水を蒸発濃縮させると共に、発生した水蒸気を凝縮させることにより濃縮塩水及び凝縮水を生成する蒸発装置と、
水を透過する半透膜により仕切られ、前記蒸発装置で生成された濃縮塩水及び当該濃縮塩水よりも塩化ナトリウム濃度の低い希釈水がそれぞれ導かれる濃縮塩水室及び希薄水室を有する半透膜透過器と、
前記半透膜を介して前記希薄水室から透過された水により希釈された前記濃縮塩水室における濃縮塩水を前記蒸発装置に被処理水として還流させる還流手段とを備える造水装置。
An evaporator for evaporating and concentrating water to be treated containing sodium chloride, and generating concentrated salt water and condensed water by condensing the generated water vapor; and
Semipermeable membrane permeation having a concentrated salt water chamber and a dilute water chamber, which are partitioned by a semipermeable membrane that permeates water and into which the concentrated salt water generated by the evaporator and diluted water having a sodium chloride concentration lower than that of the concentrated salt water are guided, respectively. And
A fresh water generator comprising reflux means for recirculating the concentrated salt water in the concentrated salt water chamber diluted with water transmitted from the dilute water chamber through the semipermeable membrane to the evaporation device as treated water.
前記蒸発装置に供給される被処理水は、食塩水である請求項1に記載の造水装置。   The fresh water generating apparatus according to claim 1, wherein the water to be treated supplied to the evaporation apparatus is a saline solution. 前記還流手段は、希釈水が混入される希釈水混入手段を更に備える請求項1又は2に記載の造水装置。   The fresh water generator according to claim 1 or 2, wherein the reflux means further includes dilution water mixing means in which dilution water is mixed. 蒸発装置に塩化ナトリウムを含む被処理水を供給し蒸発濃縮することにより濃縮塩水を生成する濃縮塩水生成ステップと、
発生した水蒸気を凝縮することにより凝縮水を生成する凝縮水生成ステップと、
水を透過する半透膜により仕切られ、前記蒸発装置で生成された濃縮塩水及び当該濃縮塩水よりも塩化ナトリウム濃度の低い希釈水がそれぞれ導かれる濃縮塩水室及び希薄水室を有する半透膜透過器において、前記半透膜を介して前記希薄水室から透過された水により前記濃縮塩水室における濃縮塩水を希釈する希釈ステップと、
希釈された濃縮塩水を前記蒸発装置に被処理水として還流させる還流ステップとを備える造水方法。

A concentrated salt water generating step for generating concentrated salt water by supplying water to be treated containing sodium chloride to the evaporator and evaporating and concentrating;
A condensed water generation step for generating condensed water by condensing the generated water vapor;
Semipermeable membrane permeation having a concentrated salt water chamber and a dilute water chamber, which are partitioned by a semipermeable membrane that permeates water and into which the concentrated salt water generated by the evaporator and diluted water having a sodium chloride concentration lower than that of the concentrated salt water are guided, respectively. A diluting step of diluting the concentrated salt water in the concentrated salt water chamber with water transmitted from the diluted water chamber through the semipermeable membrane;
A water refining method comprising: a refluxing step of refluxing the diluted concentrated salt water as treated water to the evaporator.

JP2007156298A 2007-06-13 2007-06-13 Fresh water generator and fresh water generation method Expired - Fee Related JP5264108B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007156298A JP5264108B2 (en) 2007-06-13 2007-06-13 Fresh water generator and fresh water generation method
PCT/JP2007/068750 WO2008152749A1 (en) 2007-06-13 2007-09-27 Water desalination system and water desalination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007156298A JP5264108B2 (en) 2007-06-13 2007-06-13 Fresh water generator and fresh water generation method

Publications (2)

Publication Number Publication Date
JP2008307447A true JP2008307447A (en) 2008-12-25
JP5264108B2 JP5264108B2 (en) 2013-08-14

Family

ID=40129363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007156298A Expired - Fee Related JP5264108B2 (en) 2007-06-13 2007-06-13 Fresh water generator and fresh water generation method

Country Status (2)

Country Link
JP (1) JP5264108B2 (en)
WO (1) WO2008152749A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010076841A1 (en) * 2008-12-29 2010-07-08 Takezaki Motohide Air flow-circulation seawater desalination plant
WO2016043259A1 (en) * 2014-09-19 2016-03-24 東洋紡株式会社 Fresh water generation device and fresh water generation method
JP2016047523A (en) * 2010-05-21 2016-04-07 ブロゼル,エイドリアン Self-assembled surfactant structure
JP2016097328A (en) * 2014-11-19 2016-05-30 東洋紡株式会社 Fresh water generator, and fresh water generation method
JP2016097327A (en) * 2014-11-19 2016-05-30 東洋紡株式会社 Fresh water generator, and fresh water generation method
JP2016150308A (en) * 2015-02-17 2016-08-22 株式会社ササクラ Concentration apparatus and concentration method for oral or external application
JP2016205242A (en) * 2015-04-23 2016-12-08 株式会社ササクラ Electric power generation/seawater desalination method and system
JP2017025834A (en) * 2015-07-24 2017-02-02 東洋紡株式会社 Forward osmotic power generation method, and forward osmotic power generation system used therefor
US9919936B2 (en) 2012-11-16 2018-03-20 Samsung Electronics Co., Ltd. Water recovery method
US10259723B2 (en) 2010-05-21 2019-04-16 Znano Llc Self-assembled surfactant structures

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0918916D0 (en) * 2009-10-28 2009-12-16 Surrey Aquatechnology Ltd Thermal desalination
FR2958179B1 (en) * 2010-03-31 2012-09-07 I D INSTALLATION OF SEA WATER DESALINATION BY MULTI-EFFECT DISTILLATION
JP6333573B2 (en) * 2014-02-19 2018-05-30 株式会社ササクラ Fresh water generator and fresh water generation method
CN114890601B (en) * 2022-05-19 2023-07-21 杭州特种纸业有限公司 Balance utilization method for vulcanized paper production water

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5241174A (en) * 1975-09-29 1977-03-30 Kuraray Co Ltd Concentrating process by dehydration with osmotic pressure of solute
WO2001053210A1 (en) * 2000-01-20 2001-07-26 Mikio Kinoshita System and method for desalinating salt water

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5496252A (en) * 1978-01-13 1979-07-30 Mitsubishi Heavy Ind Ltd Treatment of waste water containing hardness constituent
JPS60150883A (en) * 1984-01-13 1985-08-08 Nippon Atom Ind Group Co Ltd Concentration device
JP2005262078A (en) * 2004-03-18 2005-09-29 Nitto Denko Corp Fresh water producing method
JP2006305412A (en) * 2005-04-26 2006-11-09 Dainichiseika Color & Chem Mfg Co Ltd Mineral water, and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5241174A (en) * 1975-09-29 1977-03-30 Kuraray Co Ltd Concentrating process by dehydration with osmotic pressure of solute
WO2001053210A1 (en) * 2000-01-20 2001-07-26 Mikio Kinoshita System and method for desalinating salt water

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010076841A1 (en) * 2008-12-29 2010-07-08 Takezaki Motohide Air flow-circulation seawater desalination plant
US11401179B2 (en) 2010-05-21 2022-08-02 Diamond Gold Investors, Llc Self-assembled surfactant structures
JP2016047523A (en) * 2010-05-21 2016-04-07 ブロゼル,エイドリアン Self-assembled surfactant structure
US10589231B2 (en) 2010-05-21 2020-03-17 Znano Llc Self-assembled surfactant structures
US10259723B2 (en) 2010-05-21 2019-04-16 Znano Llc Self-assembled surfactant structures
US9919936B2 (en) 2012-11-16 2018-03-20 Samsung Electronics Co., Ltd. Water recovery method
JP2016059891A (en) * 2014-09-19 2016-04-25 東洋紡株式会社 Apparatus and method for generating fresh water
WO2016043259A1 (en) * 2014-09-19 2016-03-24 東洋紡株式会社 Fresh water generation device and fresh water generation method
JP2016097327A (en) * 2014-11-19 2016-05-30 東洋紡株式会社 Fresh water generator, and fresh water generation method
JP2016097328A (en) * 2014-11-19 2016-05-30 東洋紡株式会社 Fresh water generator, and fresh water generation method
JP2016150308A (en) * 2015-02-17 2016-08-22 株式会社ササクラ Concentration apparatus and concentration method for oral or external application
JP2016205242A (en) * 2015-04-23 2016-12-08 株式会社ササクラ Electric power generation/seawater desalination method and system
JP2017025834A (en) * 2015-07-24 2017-02-02 東洋紡株式会社 Forward osmotic power generation method, and forward osmotic power generation system used therefor

Also Published As

Publication number Publication date
JP5264108B2 (en) 2013-08-14
WO2008152749A1 (en) 2008-12-18

Similar Documents

Publication Publication Date Title
JP5264108B2 (en) Fresh water generator and fresh water generation method
JP5089236B2 (en) Fresh water generator and fresh water generation method
WO2016043259A1 (en) Fresh water generation device and fresh water generation method
JP6333573B2 (en) Fresh water generator and fresh water generation method
JP4917962B2 (en) Fresh water generator and fresh water generation method
CN106470753B (en) Vacuum membrane distillation type water making device for ship
WO2020049579A1 (en) Combinatorial membrane-based systems and methods for dewatering and concentrating applications
JP6289413B2 (en) Power generation / desalination method and system
JP5943924B2 (en) Osmotic pressure driven membrane process and system, and extraction solute recovery method
JP6432300B2 (en) Fresh water generator and fresh water generation method
JP6375891B2 (en) Fresh water generator and fresh water generation method
KR102212585B1 (en) Seawater desalination system using heat pump with mixing valve and cyclone, and operating method thereof
KR20130017933A (en) Forward osmotic desalination device using membrane distillation method in which a part of draw solution is directly fed to a forward osmotic type separator
TW201023960A (en) System for separation of volatile components from solution and process thereof
JP6649309B2 (en) Water treatment system and working medium
WO2018173329A1 (en) Drawing agent for forward osmosis or pressure retarded osmosis and corresponding system
KR20150137167A (en) Freshwater Apparatus of Seawater of MED and VMD Hybrid Type using Ejector
US20240058758A1 (en) Multi-stage direct contact membrane distillation system and process
JP5900745B2 (en) Fresh water production method and fresh water production apparatus
KR101567653B1 (en) Plant for desalination of water
JP2017018927A (en) Multi-utility type water producing apparatus
JP2010036129A (en) Distillation device
KR20150079195A (en) TVC-MED having Non-condensible Gas Venting System
JP2023038920A (en) Water treatment method and water treatment apparatus
JP2023043988A (en) Water treatment system and water treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130430

R150 Certificate of patent or registration of utility model

Ref document number: 5264108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees