JP2016146610A - 放射線撮像装置および放射線撮像システム - Google Patents

放射線撮像装置および放射線撮像システム Download PDF

Info

Publication number
JP2016146610A
JP2016146610A JP2015023715A JP2015023715A JP2016146610A JP 2016146610 A JP2016146610 A JP 2016146610A JP 2015023715 A JP2015023715 A JP 2015023715A JP 2015023715 A JP2015023715 A JP 2015023715A JP 2016146610 A JP2016146610 A JP 2016146610A
Authority
JP
Japan
Prior art keywords
detection
radiation
voltage
switch element
imaging apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015023715A
Other languages
English (en)
Other versions
JP6555893B2 (ja
Inventor
和哉 古本
Kazuya Furumoto
和哉 古本
渡辺 実
Minoru Watanabe
実 渡辺
啓吾 横山
Keigo Yokoyama
啓吾 横山
将人 大藤
Masahito Ofuji
将人 大藤
潤 川鍋
Jun Kawanabe
潤 川鍋
健太郎 藤吉
Kentaro Fujiyoshi
健太郎 藤吉
弘 和山
Hiroshi Wayama
弘 和山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2015023715A priority Critical patent/JP6555893B2/ja
Priority to US14/960,609 priority patent/US9912881B2/en
Priority to CN201510906326.5A priority patent/CN105702689B/zh
Publication of JP2016146610A publication Critical patent/JP2016146610A/ja
Application granted granted Critical
Publication of JP6555893B2 publication Critical patent/JP6555893B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

【課題】 放射線検知画素のスイッチ素子への制御信号の切り替えに起因して信号線に発生する電位変動を抑制し、放射線の照射を精度よく読み出すために有利な技術を提供すること。
【解決手段】 放射線画像の取得のための撮像画素1と、検知用変換素子6からの信号を出力するための検知用スイッチ素子7を有し、放射線の入射を検知する検知画素2と、を含む放射線撮像装置200であって、検知用スイッチ素子7の制御電極201に電気的に接続された制御線9と、制御線9に電気的に接続された駆動部52と、を有し、駆動部52は、検知用スイッチ素子7を非導通状態にするオフ電圧と導通状態にするオン電圧との間で電圧を段階的に変化させることを特徴とする。
【選択図】 図1

Description

本発明は、放射線撮像装置および放射線撮像システムに関する。
X線等の放射線による医療画像診断や非破壊検査に用いる放射撮像装置として、TFT(薄膜トランジスタ)等のスイッチと光電変換素子等の変換素子とを組み合わせた画素アレイを有するマトリクス基板を有する放射線撮像装置が実用化されている。
近年、放射線撮像装置の多機能化が検討されている。その一つとして、放射線の照射をモニタする機能を内蔵することが検討されている。この機能によって、例えば、放射線源からの放射線の照射が開始されたタイミングの検知、放射線の照射を停止されるべきタイミングの検知、放射線の照射量または積算照射量の検知が可能になる。
特許文献1には、放射線画像を取得するための撮像画素と、放射線を検知するための検知画素とを備えた放射線撮像装置が開示されている。そして、当該検知画素と接続されたスイッチ素子を介して放射線を検知するための信号を読み出す構成が開示されている。そして、検知画素の信号を読み出す際にスイッチ素子の導通状態を切り替えるために駆動電圧を導通電圧及び非導通電圧に適宜切り替える。
特開2012−15913号公報
しかしながら、特許文献1の放射線撮像装置では、当該駆動電圧切り替えの際に、制御線の電圧の変化に伴いスイッチ素子へ接続される制御線と信号線の間の寄生素子(寄生容量)に起因して信号線の電位変動が生じるおそれがある。そのため、当該信号線の電位変動により放射線の照射の検知精度が不十分な場合があった。
本発明は、放射線検知用画素のスイッチ素子への制御信号の切り替えに起因して信号線に発生する電位変動を抑制し、放射線の照射を精度よく読み出すために有利な技術を提供する。
本発明の一つの側面は、放射線画像の取得のための撮像画素と、検知用変換素子からの信号を出力するための検知用スイッチ素子を有し、放射線の入射を検知する検知画素と、を含む放射線撮像装置であって、前記検知用スイッチ素子の制御電極に電気的に接続された制御線と、前記制御線に電気的に接続された駆動部と、を有し、前記駆動部は、前記検知用スイッチ素子を非導通状態にするオフ電圧と導通状態にするオン電圧との間で電圧を段階的に変化させることを特徴とする。
本発明は、放射線検知画素のスイッチ素子への制御信号の切り替えに起因して信号線に発生する電位変動を抑制し、放射線の照射を精度よく読み出すために有利な技術を提供する。
第一の実施形態における放射線撮像装置の構成を示す図である。 放射線撮像装置を含む放射線撮像システムの構成例を示す図である。 第一の実施形態における放射線撮像装置の撮像画素を示す図である。 第一の実施形態における放射線撮像装置の検知画素を示す図である。 第一の実施形態における放射線撮像装置の動作を示す図である。 第二の実施形態における放射線撮像装置の構成を示す図である。 第三の実施形態における放射線撮像装置の動作を示す図である。 放射線撮像装置の応用例を示す図である。
以下、添付図面を参照しながら例示的な実施形態を通して説明する。なお、各実施形態において、放射線とは、放射線崩壊によって放出される粒子(光子を含む)の作るビームであるα線、β線、γ線などの他に、同程度以上のエネルギーを有するビーム、例えばX線や粒子線、宇宙線なども、含まれるものとする。
(第一の実施形態)
図1を用いて第一の実施形態について説明する。図1は第一の実施形態における放射線撮像装置の構成を示す図である。ここで、図1には9行9列の画素が設けられている例を示すが、1000×1000画素が設けられていても良いし、5000×5000画素が設けられてもよい。
図1の放射線撮像装置200は、放射線画像の取得のための複数の撮像画素1と、放射線の入射を検知する検知用変換素子6と当該検知用変換素子6に接続されるスイッチ素子7とを夫々が有する複数の検知画素2を有する。更に、放射線撮像装置200は、制御線9と、駆動部52を少なくとも有している。
なお、以下の説明では、複数の撮像画素1および複数の検知画素2において、信号線10が延びる方向に並ぶ画素の配列を列方向とし、列方向と直行する方向に並ぶ画素の配列を行方向とする。
撮像画素1は、放射線画像の取得のための画素であり、撮像用変換素子4と第一のスイッチ素子5を含んで構成される。検知画素2は、放射線の入射を検知するための機能を有する画素であり、撮像用変換素子4と第一のスイッチ素子5、検知用変換素子6と第二のスイッチ素子7を含んで構成される。このため、本実施形態では検知画素2は、放射線の入射を検知するための機能と、放射線画像の取得のための機能を有している。検知画素2を、撮像用変換素子4と第一のスイッチ素子5、検知用変換素子6と第二のスイッチ素子7を含む構成で記載したが、この限りではない。例えば、検知画素2を、検知用変換素子6と第二のスイッチ素子7のみの構成にしても良い。この場合の検知画素2の検知用変換素子6は、撮像画素1の撮像用変換素子4と同等の大きさで配置しても良い。なお、本発明における撮像用スイッチ素子は、本実施形態における第一のスイッチ素子5に相当する。また、本発明における検知用スイッチ素子は、本実施形態における第二のスイッチ素子7に相当する。
撮像用変換素子4および検知用変換素子6は、放射線を光に変換するシンチレータ(不図示)および光を電気信号に変換する光電変換素子とで構成されうる。シンチレータは、一例として、撮像領域を覆うようにシート状に形成され、複数の撮像画素1および複数の検知画素2によって共有されうる。あるいは、撮像用変換素子4および検知用変換素子6は、放射線を直接に電気信号に変換する変換素子で構成されうる。
第一のスイッチ素子5および第二のスイッチ素子7は、例えば、非晶質シリコンまたは多結晶シリコンなどの半導体で活性領域が構成された薄膜トランジスタ(TFT)を含みうる。
撮像用変換素子4は、第一のスイッチ素子5及び信号線10(S1〜S9)を介して、読出部51へ接続されている。検知用変換素子6は、第二のスイッチ素子7及び検知信号線12を介して、読出部51へ接続されている。検知信号線12は、一例として複数の検知画素2の夫々のスイッチ素子7に共通に接続されている。
全ての画素は共通のバイアス配線11に接続されており、バイアス電源53から所定のバイアス電圧が印加されている。所定の行に配置された第一のスイッチ素子5は、第一の制御線8(Vg1〜Vg9)に接続されている。第二のスイッチ素子7は第二の制御線9(Vd1〜Vd3)と接続されている。
また、図1には、放射線を検知する際の放射線検知領域(ROI)が9か所設けられている(図1中のR1〜R9)。この放射線検知領域(ROI)の中には検知画素2が配置されておいる。また、R1、R2、R3の検知画素2は、共通の検知信号線12(図1中D1)に接続されている。同様に、R4、R5、R6の検知画素2は共通の検知信号線12(図1中D2)に接続され、R7、R8、R9の検知画素2は共通の検知信号線12(図1中D3)に接続されている。本実施形態では各放射線検知領域(ROI)の中に検知画素2が1画素ずつ配置されている例を示したが、1つの放射線検知領域(ROI)の中に検知画素2を複数配置しても良い。一例として、検知画素2は、行又は列方向に複数接続しても配置してもよい。この場合において、検知画素2は、検知領域20の中で行方向又は列方向叉は斜め方向の少なくとも規則的な配置であることが望ましい。ここで、規則的な配置とは、連続的に配置されている場合だけでなく、検知領域20内に所定の間隔で撮像画素1と検知画素2が配置されている場合も含み得る。図1には放射線検知領域(ROI)が3×3の9領域配置されているが、この限りではない。例えば、放射線検知領域(ROI)を5×5の25領域設けてもよいし、10×10の100領域設けてもよい。放射線検知領域(ROI)については、基板上に均等になるように配置してもよいし、特定の範囲に偏るように放射線検知領域(ROI)を配置してもよい。また、なお、撮像画素1及び検知画素2の配置は、一例であり、当該配置に限定されるものではない。
読出部51は、複数の検知部132と、マルチプレクサ144と、アナログデジタル変換器146(以下、ADC)とを含みうる。複数の信号線10および複数の検知信号線12のそれぞれは、読出部51の複数の検知部132のうち対応する検知部132に接続される。ここで、1つの信号線10または検知信号線12は、1つの検知部132に対応する。検知部132は、例えば、差動増幅器、サンプルホールド回路(不図示)を含む。当該サンプルホールド回路により、サンプルホールドを行い検知武132により信号を取得し得る。マルチプレクサ144は、複数の検知部132を所定の順番で選択し、選択した検知部132からの信号をADC146に供給する。ADC146は、供給された信号をデジタル信号に変換して出力する。ADC146の出力は、信号処理部224に供給され、信号処理部224によって処理される。信号処理部224は、ADC146の出力に基づいて、放射線撮像装置200に対する放射線の照射を示す情報を出力する。具体的には、信号処理部224は、例えば、放射線撮像装置200に対する放射線の照射を検知したり、放射線の照射量および/または積算照射量を演算したりする。
駆動部52は、第一の制御線8を介して複数の撮像画素1を駆動する。更に駆動部52は、第二の制御線9を介して複数の検知画素2を駆動する。駆動部52と第一の制御線8及び第二の制御線9は、電気的に接続されている。本実施形態において、駆動部52は、第一のスイッチ素子5及び第二のスイッチ素子7を導通状態にするオン電圧と、第一のスイッチ素子5及び第二のスイッチ素子7を非導通状態にするオフ電圧を出力する。更に、駆動部52は、第二のスイッチ素子7に印加する電圧をオフ電圧とオン電圧の間で段階的に変化する電圧を第二の制御線9に出力する。ここで、「段階的に変化させる」とは、オン・オフ電圧の2つの状態を遷移させる間に当該2つの状態とは異なる電圧に変化させることを示す。一例として、後述する図5で示すように、駆動部52は、階段状に制御電圧を変化させる。そのため、駆動部52は、少なくとも3つ以上の状態(多段階の状態)の出力電圧を取り得る。一例として、駆動部52は、検知用スイッチ素子を非導通状態にするオフ電圧と、検知用スイッチ素子を導通状態にする第一のオン電圧と、第一のオン電圧よりもオフ電圧との差が大きい第二のオン電圧を出力し得る。駆動部52から出力される電圧は、一例として、後述するように制御部55からの制御に基づいて変更され得る。また、「段階的に変化させる電圧」が出力されるものであれば、駆動部52の電圧は、制御部55からの制御に基づいていなくてもよい。例えば、駆動部52が出力するオフ電圧又はオン電圧が検知用スイッチ素子に印加される時の電圧の波形が、瞬間的に変化することを抑制するように所定の時定数を有していればよい。この場合、当該所定の時定数を持たせるように受動素子等を適宜挿入することで当該電圧を段階的に変化させることができる。この場合の時定数は、オン・オフ電圧の切り替えの間に、読出部51が検知画素2からの信号を読み出し可能な程度に設定することが好適である。
制御部55は、駆動部52および読出部51を制御し得る。制御部55は、信号処理部224からの情報に基づいて、例えば、露出(撮像画素1による照射された放射線に対応する電荷の蓄積)の開始および終了を制御する。つまり、制御部55は、検知用変換素子6で検知された放射線の量に基づいて放射線の入射量を測定し、取得し得る。
図2には、放射線撮像装置200を含む放射線撮像システムの構成が例示されている。放射線撮像システムは、放射線撮像装置200の他、コントローラ1002、インターフェース1003、放射線源インターフェース1004、放射線源1005を備えている。
コントローラ1002には、線量A、照射時間B(ms)、管電流C(mA)、管電圧D(kV)、放射線をモニタすべき領域である放射線検知領域(ROI)などが入力されうる。放射線源1005に付属された爆射スイッチが操作されると、放射線源1005から放射線が放射される。放射線撮像装置200の制御部55は、例えば、放射線検知領域(ROI)に配置された検知画素2から読み出された信号の積分値が線量A’に到達したら、インターフェース1003を介して放射線源インターフェース1004に曝射停止信号を送る。これに応答して、放射線源インターフェース1004は、放射線源1005に放射線の放射を停止させる。ここで、線量A’は、線量A、放射線照射強度、各ユニット間の通信ディレイ、処理ディレイ等に基づいて、制御部55によって決定されうる。放射線の照射時間が照射時間Bに達した場合は、放射線源1005は、爆射停止信号の有無にかかわらず、放射線の照射を停止する。
次に、図3を用いて撮像画素の構成について説明する。図3(a)は撮像画素1の平面図、図3(b)は撮像画素1のA−A‘の断面図である。
本実施形態における撮像画素1は、撮像用変換素子4と、撮像用変換素子4の電荷に応じた電気信号を出力する第一のスイッチ素子5とを含む。撮像用変換素子4は、ガラス基板等の絶縁性の基板100の上に設けられた第一のスイッチ素子5の上に第一の層間絶縁層110を挟んで積層されて配置されている。第一のスイッチ素子5は、基板100の上に、基板100側から順に、制御電極101と、第一の絶縁層102と、第一の半導体層103と、第一の半導体層103よりも不純物濃度の高い第一の不純物半導体層104と、第一主電極105と、第二主電極106と、を含む。第一の不純物半導体層104はその一部領域で第一主電極105及び第二主電極106と接しており、その一部領域と接する第一の半導体層103の領域の間の領域が、第一のスイッチ素子5のチャネル領域となる。制御電極101は制御線と電気的に接合されており、第一主電極105は信号線10と電気的に接合されており、第二主電極106は変換素子の個別電極111と電気的に接合されている。なお、本実施形態では第一主電極105と第二主電極106と信号線10と同じ導電層で一体的に構成されており、第一主電極105が信号線10の一部をなしている。第一主電極105、第二主電極106、及び信号線10上には、信号線10側から順に、第二の絶縁層107、第一の層間絶縁層110が配置されている。本実施形態では、スイッチ素子として非晶質シリコンを主材料とした半導体層及び不純物半導体層を用いた逆スタガ型のスイッチ素子を用いたが、本発明はそれに限定されるものではない。例えば、多結晶シリコンを主材料としたスタガ型のスイッチ素子を用いたり、有機TFT、酸化物TFT等をスイッチ素子として用いたりすることができる。第一の層間絶縁層110は、第一のスイッチ素子5を覆うように、基板100と複数の個別電極111との間に配置されており、コンタクトホールを有している。撮像用変換素子4の個別電極111と第二主電極106とが、第一の層間絶縁層110に設けられたコンタクトホールにおいて、電気的に接合される。撮像用変換素子4は、第一の層間絶縁層110の上に、第一の層間絶縁層側から順に、個別電極111と、第二の不純物半導体層112と、第二の半導体層113と、第三の不純物半導体層114と、共通電極115と、を含む。撮像用変換素子4の共通電極115上には、第三の絶縁層116が配置されている。また、撮像用変換素子4の共通電極115は、第二の層間絶縁層120上に配置されたバイアス配線11が電気的に接合される。そして、バイアス配線11の上には保護膜としての第四の絶縁層121が配置されている。
次に、図4を用いて検知画素の構成について説明する。図4(a)は検知画素2の平面図、図4(b)はB−B’の断面図である。
本実施形態における検知画素2は、撮像用変換素子4と第一のスイッチ素子5、検知用変換素子6と第二のスイッチ素子7を含む。検知用変換素子6は、第一の層間絶縁層110の上層に、撮像画素1の撮像用変換素子4と同様の構造で積層されている。撮像用変換素子4及び検知用変換素子6の共通電極115には第二の層間絶縁層120上に配置されたバイアス配線11が電気的に接合される。また、検知用変換素子6の個別電極111は、第一の層間絶縁層110に設けられたコンタクトホール介して、検知信号線12に接続されている。又、検知信号線12上には検知信号線12側から順に、第二の絶縁層107、第一の層間絶縁層110が配置されている。なお、第二のスイッチ素子7の構造は、第一のスイッチ素子5と同様の構造を取り得る。第二のスイッチ素子7は、基板100の上に、基板100側から順に、制御電極201と、第一の絶縁層102と、第一の半導体層202と、第一の半導体層202よりも不純物濃度の高い第一の不純物半導体層203と、第1主電極204と、第2主電極205と、を含む。第一の不純物半導体層203はその一部領域で第1主電極204及び第2主電極205と接しており、その一部領域と接する第一の半導体層202の領域の間の領域が、第二のスイッチ素子7のチャネル領域となる。制御電極201は制御線と電気的に接合されており、第1主電極204は信号線12と電気的に接合されている。
尚、本実施形態における撮像画素1に対して、検知画素2は撮像用変換素子4の開口面積が小さくなっている為、検知画素2からの信号量が減少してしまう。これによる影響は、検知部132のゲインを調整すること、あるいは、撮像される画像を補正することによって、低減することができる。当該補正は、検知画素2の周囲の撮像画素1の値を用いて補間する処理等により実現可能である。尚、本実施形態では、撮像用変換素子4及び検知用変換素子6はPIN型のセンサとしているが、これに限られるものではなく、MIS型、TFT型のセンサを使用してもよい。
次に、本実施形態の放射線撮像装置の動作を、図5のタイミングチャートを用いて説明する。本実施形態において、Von電圧あるいはオン電圧は、第一のスイッチ素子5及び第二のスイッチ素子7を導通状態にする電圧を示す。また、Voff電圧あるいはオフ電圧は、第一のスイッチ素子5及び第二のスイッチ素子7を非導通状態にする電圧を示す。第一のスイッチ素子5、第二のスイッチ素子7は、ゲートに供給される信号がハイレベルであるときに導通状態となり、ゲートに供給される信号がローレベルであるときに非導通状態となる。なお、当該信号レベルと導通状態の組み合わせは、回路構成及びスイッチ素子の導電型の組み合わせによって決定することもできる。また、図5中に示す読出部51、駆動部52の動作は上述したように制御部55の制御に基づいて動作する。ただし、前述したように、駆動部52の動作はこれに限定されるものではない。図5中では、各スイッチ素子を導通状態にするオン電圧は「Von」と表記し、非導通状態にするオフ電圧は「Voff」で示す。「Vc」は、オン電圧よりもオフ電圧との電位差が小さいオン電圧である。本実施形態において、駆動部52から出力される電圧は、Voff、Vc、Vonの順に変化させる電圧となっている。
まず、図5中のT1の期間について説明する。期間T1は、放射線の照射の開始を待つ期間である。本実施形態では、放射線撮像装置200の電源が投入され、放射線画像の撮像が可能な状態となってから放射線源1005の曝射スイッチが操作され、放射線の照射が検知されるまでの期間が期間T1である。T1の期間は、第一のスイッチ素子5及び第二のスイッチ素子7に順次Vonの電圧を印加していき、撮像用変換素子4及び検知用変換素子6の個別電極111を信号線10及び検知信号線12の電位にリセットしておく。なお、第二のスイッチ素子7は常にVonを印加した状態であってもよい。これによって、ダーク電流による電荷が撮像素子1の変換素子に長時間にわたって蓄積されることが防止される。期間T1の長さは、撮像手法・条件等により大きく異なるが、例えば、数sec〜数minでありうる。
次に、図5中のT2の期間について説明する。期間T2は、放射線が照射されている期間である。一例として、期間T2は、放射線の照射の開始が検知されてから放射線の曝射量が最適線量となるまでの期間である。また、期間T2は、放射線の照射量をモニタする期間であるとも言える。期間T2では、Vd1〜Vd3に断続的にVonが印加され、検知画素2の第二のスイッチ7が断続的に導通状態にされる。Vg1〜Vgmに常時Voff1が印加されているために、第一のスイッチ素子5が非導通状態となっている。ここで、第二のスイッチ素子7にVon又はVoffを印加する際に、第二の制御線9と検知信号線12の間の寄生容量を介して検知信号線12の電位を変動させる場合がある。例えば、Von又はVoffの印加に基づいて瞬間的に第二の制御線9から検知信号線12に寄生容量を介して電荷が注入され検知信号線12の電位が変動させられる。この場合に、検知信号線12に現れる寄生容量に基づく電荷が検知信号線12を介して読出部51へ転送されてしまう。ここで、寄生容量は、検知信号線12の材料、物理的な構造、他の配線等との距離、他の配線間の物質の誘電率等に起因する容量成分を示す。
駆動部52は、検知用スイッチ素子に印加する電圧をオフ電圧とオン電圧の間で段階的に変化する電圧を制御線に印加する。本実施形態において、当該オン・オフ間の電圧の変化の際にオン電圧とオフ電圧の中間の電圧としてVcを印加する。このため、駆動部52は、電圧の切り替え時における急峻な変化が抑制できるため、寄生容量を介して発生する電位変動を抑制し得る。本実施形態では、Voff、Vc、Vonの3つの状態に変化させているがこれに限定されるものではない。例えば、3つ以上の状態に制御してもよく、VoffとVonの間で複数の電圧を出力してもよい。あるいは、VoffとVonの間なだらかに変化させてもよい。段階的な電圧の変化のさせ方は、同時に電圧を印加させる検知用スイッチ素子の個数や、先述した寄生容量の値に基づいて規定され得る。
次に、図5中のT2の期間における各部の動作について説明する。まず、読出部51は、各検知信号線(D1〜D3)のリセット動作を行う。次に、制御部55は、駆動部52に対して第二の制御線にVOFF→VC→VON→VC→VOFFと段階的に電圧を印加させる。この場合に制御部55は、一連の駆動部52の動作が終了した場合に、検知部132が有するサンプルホールド回路により、サンプルホールドを行うように制御し得る。各サンプルホールド毎に取得した信号の積算量に基づいて加算、平均等の処理を行うことで各検知画素に到達した放射線量を取得し得る。これらの動作をT2の期間において繰り返し行う。以上の動作により、各検知画素から信号を取得し得る。次に、放射線検知領域(ROI)毎の放射線入射量を取得する場合について述べる。なお、詳細については第三の実施形態で説明する。この場合において、制御部55は、共通の検知信号線12に接続されている第二のスイッチ素子7については、異なるタイミングで駆動部52が電圧を出力するように制御する。そして、読出部51は、第二のスイッチ素子7から個別の信号量を取得する。
次に、図5中のT3の期間について説明する。期間T3は、放射線の照射が終了した後に、放射線により撮像画素101に蓄積された信号を読み出す期間である。期間T3では、駆動部52より、Vd1〜Vd3が非導通状態にされる。期間T3では、検知信号線12がフローティングになることを防ぐために、検知信号線125を固定電位に接続することが好ましい。また、駆動部52は、第一の制御線7を走査する為に、Vg1〜Vg9に順次Von電圧を印加し、信号線10を介して撮像用変換素子4に蓄積された信号を読出部51へ転送される。
第一の実施形態では、上述したように、放射線検出用のための検知画素は、放射線照射中(期間T2に相当)に順次読み出しを行う。そのため、撮像画素の読み出しよりも高い頻度で、小さな信号を取得するため寄生容量の影響が検知信号に現れやすい。そのため、駆動部52は、検知用スイッチ素子に印加する電圧をオフ電圧とオン電圧の間で段階的に変化する電圧を制御線に印加する。これにより、放射線検出のための検知画素のスイッチ素子への制御信号の切り替えに起因して検知信号線に発生する電位変動を抑制し得る。そして、第一の実施形態の放射線撮像装置では、放射線の照射を高い精度で読み出すことができ、より適切な線量制御および露出制御の実現に寄与し得る。
(第二の実施形態)
次に、第二の実施形態について図6を用いて説明する。図6は第二の実施形態に係る放射線撮像装置の構成を示す図である。ここで、図6には9行9列の画素が設けられている例を示すが、1000×1000画素が設けられていても良いし、5000×5000画素が設けられてもよい。本実施形態と第一の実施形態との構成上の差異は、図6に示すように、検知画素2が、検知用変換素子6と第二のスイッチ素子7の組み合わせから成り、撮像用変換素子4と第一のスイッチ素子5を含まない点である。さらに、各検知領域R1〜R9の各々が複数の検知画素を有している。このため、各検知領域への放射線の入射量を複数の画素を用いて算出することができる。また、検知画素2は撮像用画素と信号線が共通である。この構成によると、検知用変換素子6の面積を大きく配置できるため放射線の検知感度の向上を図ることができる。さらに、検知用変換素子6は第二のスイッチ素子7を介して信号線10に接続されている。この場合において、検知画素2には撮像用変換素子4が配置されていないため欠陥画素となってしまうが、隣接する撮像画素の出力や画像データからデータを補完することで補正可能である。
(第三の実施形態)
次に、図7を用いて本実施形態における放射線撮像装置の動作について説明する。本実施形態の動作は、先述した、第一および第二の実施形態のいずれの放射線撮像装置においても適用可能である。本実施形態と第一の実施形態との動作上の主な差異は、信号線のサンプルホールド及び配線リセットを検知画素への駆動電圧がオン電圧の印加中に行う点である。以下、図7を用いて詳細な動作について説明する。なお、放射線撮像装置の構成については、前述のいずれであっても適用可能である。
図7中のT1の期間は、第一の実施形態と同様に放射線曝射前の準備期間である。第一の実施形態と異なる点は、放射線源と放射線撮像装置が同期しており、放射線の曝射タイミングを取得できる例を示す。この場合、駆動部52は、各検知画素に対して、定期的に定電位にリセットする駆動を行う。そして、放射線を曝射する情報が放射線源から伝達された場合、図3のT2の区間に遷移する。なお、本実施形態において、T1の期間の動作はこれに限定されるものでなく、第一の実施形態と同様の動作であってもよい。
図7中のT2の期間は、放射線が曝射されている期間である。この期間中は、第一の実施形態と同様、Vg1〜Vg9にはVoffが印加され、第一のスイッチ素子5は非導通状態となっている。
次にT2の期間である。制御部55は、段階的に変化させる各電圧の状態でリセット動作とサンプルホールド動作の両方を行うように各部を制御する。そのため、第一の実施形態と比較して、制御部55が読出部51に対して各オン電圧でサンプルホールドを行うように制御することで、サンプルホールド回路に一度に大きな電流が流れることを抑制し得る。オン電圧毎に読み出した積算量に基づいて加算、平均等の処理を行うことで各検知画素に到達した放射線量を取得し得る。すなわち、読出部51が、T2の期間に、検知画素2に接続された信号線に現れる信号を複数回読み出しているともいえる。これらの動作をT2の期間において繰り返し行う。ところで、読出部51が検知画素2から発生する信号も分割して読出したい場合おいても上述の動作は有効である。このように、駆動部52が、第二の制御線9に電圧を段階的に印加し、検知画素2からの信号が段階的に取得することができるため、サンプルホールド回路のダイナミックレンジが飽和することを抑制し得る。
また、同じ検知信号線に接続された検知画素に対して同時に電圧を印加する駆動にすると、R1、R2およびR3のそれぞれの検知領域からの信号が混在し、検知領域毎の信号量が正しく取得されない場合がある。そのため、これを回避するため、制御部55は、駆動部52に対して図7のようにVd1、Vd2に電圧を印加するタイミングとVd3、Vd4に電圧を印加するタイミングが重複しないように駆動を行う。そして、制御部55は、図7に示すように、駆動部52を制御することにより検知領域内の検知画素2からの信号を重複するタイミングで読み出すこともできる。この場合には、上述した電位変動の影響がより大きくなり得る。そのため、各実施形態で示す動作による電位変動の抑制効果がより大きくなり得る。また、図7のように、駆動部52は、制御部55からの制御により、Vd1、Vd2へ電圧を同時に印加するように制御される。このように、制御部55は、複数の検知領域R1〜R3への放射線の入射量を取得する場合に、複数の検知領域の夫々に配置された複数の検知画素2を同時に駆動するように制御している。このことにより、複数の検知画素2から取得する信号量を加算又は平均することにより、信号量を増加させ、放射線の入射量の取得値の精度が向上をはかることができる。
なお、図7中のT3の期間の動作については第一の実施形態と同様である。
以上の本実施形態の構成において、放射線の照射を高い精度で読み出すことができ、より適切な線量制御および露出制御の実現に寄与し得る。
(応用実施形態)
次に、図10を参照しながら、放射線撮像装置200を放射線検知システムに応用した例を説明する。
放射線源であるX線チューブ6050で発生したX線6060は、患者あるいは被験者6061の胸部6062を透過し、放射線撮像装置200に入射する。この入射したX線には患者6061の体内部の情報が含まれている。X線の入射に対応して変換部3で放射線を電荷に変換して、電気的情報を得る。この情報はデジタルデータに変換され信号処理手段となるイメージプロセッサ6070により画像処理され制御室の表示手段となるディスプレイ6080で観察できる。
また、この情報は電話回線6090等の伝送処理手段により遠隔地へ転送でき、別の場所のドクタールームなど表示手段となるディスプレイ6081に表示もしくは光ディスク等の記録手段に保存することができ、遠隔地の医師が診断することも可能である。また記録手段となるフィルムプロセッサ6100により記録媒体となるフィルム6110に記録することもできる。
なお、本発明の実施形態は、コンピュータや制御コンピュータがプログラム(コンピュータプログラム)を実行することによって実現することもできる。また、プログラムをコンピュータに供給するための手段、例えばかかるプログラムを記録したCD−ROM等のコンピュータが読み取り可能な記録媒体又はかかるプログラムを伝送するインターネット等の伝送媒体も本発明の実施形態として適用することができる。また、上記のプログラムも本発明の実施形態として適用することができる。上記のプログラム、記録媒体、伝送媒体およびプログラムプロダクトは、本発明の範疇に含まれる。
以上、本発明を実施形態に基づいて詳述してきたが、本発明はこれらの特定の実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の様々な形態も本発明の範疇に含まれる。更に、上述した各実施形態は本発明の一実施の形態を示すものにすぎず、各実施形態を適宜組み合わせることも可能である。
1 撮像画素
2 検知画素
6 検知用変換素子
7 検知用スイッチ素子
52 駆動部
55 制御部
200 放射線撮像装置

Claims (15)

  1. 放射線画像の取得のための撮像画素と、検知用変換素子からの信号を出力するための検知用スイッチ素子を有し、放射線の入射を検知する検知画素と、を含む放射線撮像装置であって、
    前記検知用スイッチ素子の制御電極に電気的に接続された制御線と、
    前記制御線に電気的に接続された駆動部と、を有し、
    前記駆動部は、前記検知用スイッチ素子を非導通状態にするオフ電圧と導通状態にするオン電圧との間で電圧を段階的に変化させることを特徴とする放射線撮像装置。
  2. 前記電圧を段階的に変化させるように前記駆動部を制御する制御部を更に有することを特徴とする請求項1に記載の放射線撮像装置。
  3. 前記駆動部は、前記電圧の波形を階段状に変化させることを特徴とする請求項1に記載の放射線撮像装置。
  4. 前記制御部は、前記電圧が3つ以上の状態になるように前記駆動部を制御することを特徴とする請求項2に記載の放射線撮像装置。
  5. 前記駆動部は、前記オン電圧として、第一のオン電圧と、前記第一のオン電圧よりも前記オフ電圧との差が大きい第二のオン電圧と、を前記検知用スイッチ素子に印加することを特徴とする請求項1から4のいずれか1項に記載の放射線撮像装置。
  6. 前記検知用スイッチ素子に電気的に接続された信号線を更に有することを特徴とする請求項1から5のいずれか1項に記載の放射線撮像装置。
  7. 前記制御線と前記信号線との間の容量に基づいて前記オン電圧の大きさが規定されていることを特徴とする請求項6のいずれか1項に記載の放射線撮像装置。
  8. 前記信号線に現れる信号を読み出す読出部を更に有し、
    前記制御部は、前記駆動部が前記オン電圧を印加している期間に、前記オン電圧が印加される検知画素に接続された信号線に現れる信号を読み出させるように前記読出部を制御することを特徴とする請求項6又は7に記載の放射線撮像装置。
  9. 前記読出部はサンプルホールド回路を有し、前記制御部からの制御に基づいてサンプルホールドを行うことを特徴とする請求項8に記載の放射線撮像装置。
  10. 前記読出部は、前記期間に、前記検知画素に接続された信号線に現れる信号を複数回読み出し、
    前記制御部は、前記読み出した信号を積算した信号に基づいて放射線の入射量を取得することを特徴とする請求項8又は9に記載の放射線撮像装置。
  11. 夫々に複数の前記検知画素が配置された複数の検知領域を更に有し、
    前記駆動部は、前記複数の検知領域の夫々に配置された複数の検知画素を同時に駆動するように電圧を出力し、
    前記制御部は、前記複数の検知領域における検知領域毎に放射線の入射量を取得することを特徴とする請求項1から10のいずれか1項に記載の放射線撮像装置。
  12. 前記検知画素は、撮像用変換素子と前記撮像用変換素子からの信号を出力する撮像用スイッチ素子とを更に有することを特徴とする請求項1から11のいずれか1項に記載の放射線撮像装置。
  13. 前記撮像画素と前記検知画素は夫々異なる信号線に接続されていることを特徴とする請求項1から12のいずれか1項に記載の放射線撮像装置。
  14. 放射線を発生する放射線源と、
    請求項1から13のいずれか1項に記載の放射線撮像装置と、
    を有する放射線撮像システム。
  15. 放射線画像の取得のための撮像画素と、放射線の入射を検知する検知用変換素子と前記検知用変換素子に接続される検知用スイッチ素子と有する検知画素と、前記検知用スイッチ素子の制御電極に接続された制御線と、前記制御線に電気的に接続された駆動部と、を含む放射線撮像装置の制御方法であって、
    前記駆動部が、前記検知用スイッチ素子を非導通状態にするオフ電圧を前記制御線に印加する工程と、
    前記駆動部が、前記オフ電圧と前記検知用スイッチ素子を導通状態にするオン電圧との間で段階的に変化する電圧を前記制御線に印加する工程と、
    を含むことを特徴とする放射線撮像装置の制御方法。
JP2015023715A 2014-12-09 2015-02-09 放射線撮像装置および放射線撮像システム Active JP6555893B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015023715A JP6555893B2 (ja) 2015-02-09 2015-02-09 放射線撮像装置および放射線撮像システム
US14/960,609 US9912881B2 (en) 2014-12-09 2015-12-07 Apparatus, system, and method of controlling apparatus
CN201510906326.5A CN105702689B (zh) 2014-12-09 2015-12-09 放射线摄像设备、系统和该设备的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015023715A JP6555893B2 (ja) 2015-02-09 2015-02-09 放射線撮像装置および放射線撮像システム

Publications (2)

Publication Number Publication Date
JP2016146610A true JP2016146610A (ja) 2016-08-12
JP6555893B2 JP6555893B2 (ja) 2019-08-07

Family

ID=56685577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015023715A Active JP6555893B2 (ja) 2014-12-09 2015-02-09 放射線撮像装置および放射線撮像システム

Country Status (1)

Country Link
JP (1) JP6555893B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010158292A (ja) * 2009-01-06 2010-07-22 Konica Minolta Medical & Graphic Inc 可搬型放射線画像撮影装置および放射線画像撮影システム
JP2012015913A (ja) * 2010-07-02 2012-01-19 Fujifilm Corp 放射線検出素子、及び放射線画像撮影装置
JP2013135390A (ja) * 2011-12-27 2013-07-08 Fujifilm Corp 放射線画像検出装置およびその駆動方法
JP2013244166A (ja) * 2012-05-25 2013-12-09 Fujifilm Corp 放射線画像検出装置およびその駆動制御方法、並びに放射線撮影システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010158292A (ja) * 2009-01-06 2010-07-22 Konica Minolta Medical & Graphic Inc 可搬型放射線画像撮影装置および放射線画像撮影システム
JP2012015913A (ja) * 2010-07-02 2012-01-19 Fujifilm Corp 放射線検出素子、及び放射線画像撮影装置
JP2013135390A (ja) * 2011-12-27 2013-07-08 Fujifilm Corp 放射線画像検出装置およびその駆動方法
JP2013244166A (ja) * 2012-05-25 2013-12-09 Fujifilm Corp 放射線画像検出装置およびその駆動制御方法、並びに放射線撮影システム

Also Published As

Publication number Publication date
JP6555893B2 (ja) 2019-08-07

Similar Documents

Publication Publication Date Title
US9835732B2 (en) Radiation imaging apparatus and radiation imaging system
RU2627929C2 (ru) Устройство визуализации излучения и система обнаружения излучения
US9661240B2 (en) Radiation imaging apparatus comprising a pixel including a conversion element and radiation imaging system
JP6570315B2 (ja) 放射線撮像装置及び放射線撮像システム
JP6555909B2 (ja) 放射線撮像装置及び放射線撮像システム
JP2015212645A (ja) 放射線撮像装置および放射線撮像システム
US11294078B2 (en) Radiation imaging apparatus and radiation imaging system
JP2010011033A (ja) 光電変換装置及び放射線検出装置
US10921466B2 (en) Radiation imaging apparatus and radiation imaging system
JP6302122B1 (ja) 放射線検出器
US9715021B2 (en) Radiation imaging apparatus and radiation imaging system
US9912881B2 (en) Apparatus, system, and method of controlling apparatus
JP6808458B2 (ja) 放射線撮像装置および放射線撮像システム
JP6456127B2 (ja) 放射線撮像装置および放射線撮像システム
JP6494387B2 (ja) 放射線撮像装置及び放射線撮像システム
JP6618251B2 (ja) 放射線撮像装置および放射線撮像システム
JP6555893B2 (ja) 放射線撮像装置および放射線撮像システム
JP6436754B2 (ja) 放射線撮像装置および放射線撮像システム
JP2019164125A (ja) 放射線撮像装置および放射線撮像システム
JP2012134827A (ja) 放射線画像検出器
JPWO2011125312A1 (ja) 放射線画像検出器及びその駆動方法
JP2018195949A (ja) 放射線撮像装置及び放射線撮像システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190709

R151 Written notification of patent or utility model registration

Ref document number: 6555893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151