JP2016146420A - Determination method for anode junction conditions - Google Patents

Determination method for anode junction conditions Download PDF

Info

Publication number
JP2016146420A
JP2016146420A JP2015022945A JP2015022945A JP2016146420A JP 2016146420 A JP2016146420 A JP 2016146420A JP 2015022945 A JP2015022945 A JP 2015022945A JP 2015022945 A JP2015022945 A JP 2015022945A JP 2016146420 A JP2016146420 A JP 2016146420A
Authority
JP
Japan
Prior art keywords
anodic bonding
bonding
junction
temperature
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015022945A
Other languages
Japanese (ja)
Inventor
興仁 結城
Koji Yuki
興仁 結城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2015022945A priority Critical patent/JP2016146420A/en
Publication of JP2016146420A publication Critical patent/JP2016146420A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pressure Sensors (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a three-layer substrate while maintaining satisfactory bondability, without depositing movable ions and with energy as little as possible.SOLUTION: Primary anode junction is performed at any junction temperature T1 between a lowest junction temperature TL and a highest junction temperature TH and at a junction voltage V1 that is obtained from a current equal to or higher than a minimum current density IL. A junction voltage at which the minimum current density IL can be obtained is defined as a lowest reference voltage VL and a relation between VL and the junction temperature is calculated as a first relation line I. Secondary anode junction is performed, a junction voltage at which deposition of movable ions is started is defined as a highest reference voltage VH and a relation between the highest reference voltage VH and the junction temperature is calculated as a second relation line II. A region S1 surrounded by the first relation line I, the second relation line II, the lowest junction temperature TL and the highest junction temperature TH is defined as a target region and secondary anode junction conditions P2 (T2 and V2) are determined from a region S2 where the conditions are weaker than primary anode junction conditions P1 (T1 and V1) in the target region S1.SELECTED DRAWING: Figure 4

Description

この発明は、ガラス基板を挟んで構成される三層基板を製造する際の陽極接合条件の決定方法に関するものである。   The present invention relates to a method for determining anodic bonding conditions when manufacturing a three-layer substrate having a glass substrate interposed therebetween.

従来より、ガラス基板を挟んで構成される三層基板の一例として、センサチップ(シリコン基板)と、ガラス台座と、シリコンチューブとから構成される三層構造の圧力センサがある。この三層構造の圧力センサにおいて、センサチップとガラス台座とシリコンチューブとは、それぞれが陽極接合により接合される(例えば、特許文献1参照)。   Conventionally, as an example of a three-layer substrate configured with a glass substrate interposed therebetween, there is a pressure sensor having a three-layer structure including a sensor chip (silicon substrate), a glass pedestal, and a silicon tube. In the three-layer structure pressure sensor, the sensor chip, the glass pedestal, and the silicon tube are joined by anodic bonding (see, for example, Patent Document 1).

陽極接合は、接合部材間に第3の材料を介在させない直接的な接合方法であって、可動イオン(Na+やK+などの金属陽イオン)を含むガラスとシリコンや金属とを重ね合わせた状態で高温、高電圧を印加すると、界面に静電引力が働き、共有結合が起きて両者が接合される技術である。この技術を用いて、センサチップとガラス台座とシリコンチューブとを接合し、3層構造の圧力センサを得る。なお、陽極接合する際には接合部を加熱するが、この時の加熱温度を接合温度と呼んでいる。また、印加電圧を接合電圧と呼んでいる。 Anodic bonding is a direct bonding method in which a third material is not interposed between bonding members, and glass containing movable ions (metal cations such as Na + and K + ) and silicon or metal are overlapped. In this state, when high temperature and high voltage are applied, electrostatic attraction acts on the interface, and covalent bonding occurs to bond the two. Using this technique, a sensor chip, a glass pedestal, and a silicon tube are joined to obtain a three-layer pressure sensor. In addition, when anodic bonding is performed, the bonding portion is heated, and the heating temperature at this time is called the bonding temperature. The applied voltage is called a junction voltage.

〔1度目の陽極接合(1次陽極接合)〕
先ず、図5に示すように、ガラス台座12とシリコンチューブ13とを重ね合わせ、ガラス台座12の上面をマイナス電極側(陰極側)、シリコンチューブ13の下面をプラス電極側(陽極側)とし、接合温度に達した状態で高電圧を印加して、ガラス台座12とシリコンチューブ13とを陽極接合する。これにより、ガラス台座12とシリコンチューブ13との接合体(ガラス台座・シリコンチューブ接合体)14が形成される。
[First anodic bonding (primary anodic bonding)]
First, as shown in FIG. 5, the glass pedestal 12 and the silicon tube 13 are overlapped, the upper surface of the glass pedestal 12 is the negative electrode side (cathode side), the lower surface of the silicon tube 13 is the positive electrode side (anode side), A high voltage is applied in a state where the bonding temperature has been reached, and the glass pedestal 12 and the silicon tube 13 are anodically bonded. Thereby, the joined body (glass pedestal / silicon tube joined body) 14 of the glass pedestal 12 and the silicon tube 13 is formed.

〔2度目の陽極接合(2次陽極接合)〕
次に、図6に示すように、センサチップ(シリコン基板)11とガラス台座・シリコンチューブ接合体14とを重ね合わせ、センサチップ11の上面をプラス電極側(陽極側)、ガラス台座・シリコンチューブ接合体14の下面(シリコンチューブ13の下面)をマイナス電極側(陰極側)とし、接合温度に達した状態で高電圧を印加して、センサチップ11とガラス台座・シリコンチューブ接合体14とを陽極接合する。これにより、センサチップ11とガラス台座・シリコンチューブ接合体14との接合体(センサチップ・ガラス台座・シリコンチューブ接合体)15が形成され、3層構造の圧力センサ200が得られる。
[Second anodic bonding (secondary anodic bonding)]
Next, as shown in FIG. 6, the sensor chip (silicon substrate) 11 and the glass pedestal / silicon tube assembly 14 are overlapped, and the upper surface of the sensor chip 11 is placed on the positive electrode side (anode side), and the glass pedestal / silicon tube. The lower surface of the bonded body 14 (the lower surface of the silicon tube 13) is set to the negative electrode side (cathode side), and a high voltage is applied in a state where the bonding temperature is reached, so that the sensor chip 11 and the glass pedestal / silicon tube bonded body 14 are connected. Anodized. Thereby, the joined body (sensor chip / glass pedestal / silicon tube joined body) 15 of the sensor chip 11 and the glass pedestal / silicon tube joined body 14 is formed, and the pressure sensor 200 having a three-layer structure is obtained.

なお、圧力センサ200の製造方法としては、圧力センサ200を効率良く大量に生産するために、センサチップ11を複数作成したウエハ(センサチップウエハ)と、ガラス台座12を複数作成したウエハ(ガラス台座ウエハ)と、シリコンチューブ13を複数作成したウエハ(シリコンチューブウエハ)とを接合して3層のウエハの接合体とし、この3層のウエハの接合体をダイシングで切断して複数の圧力センサ200を得るという方法が採用される。すなわち、ウエハレベルで、上述した1次陽極接合と2次陽極接合とが行われる。   As a manufacturing method of the pressure sensor 200, in order to efficiently produce the pressure sensor 200 in large quantities, a wafer in which a plurality of sensor chips 11 are created (sensor chip wafer) and a wafer in which a plurality of glass pedestals 12 are created (glass pedestal). Wafer) and a wafer (silicon tube wafer) on which a plurality of silicon tubes 13 are formed are bonded to form a three-layer wafer bonded body, and the three-layer wafer bonded body is cut by dicing to form a plurality of pressure sensors 200. The method of obtaining is adopted. That is, the primary anodic bonding and the secondary anodic bonding described above are performed at the wafer level.

ところが、このように1次陽極接合と2次陽極接合とを同軸(三層構造を貫く軸)上で電圧を反対方向に印加して行うと、1次陽極接合で可動イオン(Na+,K+)が移動した後(図7(a)参照)、ガラス台座12とシリコンチューブ13との接合面(1次接合面)付近に可動イオンの欠乏層が発生し、2次陽極接合で欠乏層に可動イオン(Na+,K+)が集まる事により(図7(b)参照)、ナトリウムなどがガラス台座12中で偏析して、ガラス台座12内にクラックが生じ、ガラス台座12の強度低下を招く。 However, when primary anodic bonding and secondary anodic bonding are performed in this way by applying a voltage in the opposite direction on the same axis (axis passing through the three-layer structure), mobile ions (Na + , K) are formed in the primary anodic bonding. + ) Is moved (see FIG. 7A), a deficient layer of mobile ions is generated in the vicinity of the bonding surface (primary bonding surface) between the glass pedestal 12 and the silicon tube 13, and the deficient layer is formed in the secondary anodic bonding. When mobile ions (Na + , K + ) gather on the surface (see FIG. 7B), sodium and the like are segregated in the glass pedestal 12 to cause cracks in the glass pedestal 12 and reduce the strength of the glass pedestal 12. Invite.

そこで、特許文献1では、これを防ぐために、上述と同様にして1次陽極接合を行った後(図8(a)参照)、2次陽極接合に際しては、図8(b)に示すように、センサチップ11の上面をプラス電極側とし、ガラス台座12の側面をマイナス電極側とし、接合温度に達した状態で高電圧を印加して、センサチップ11とガラス台座・シリコンチューブ接合体14とを陽極接合するようにしている。このガラス台座12の側面を利用しての陽極接合を側面陽極接合方式と呼ぶ。これにより、ガラス台座12中の可動イオン(Na+,K+)が1次陽極接合の接合面に移動することが防止され、ガラス台座2の強度の低下が防がれる。 Therefore, in Patent Document 1, in order to prevent this, after performing primary anodic bonding in the same manner as described above (see FIG. 8A), the secondary anodic bonding is performed as shown in FIG. 8B. The upper surface of the sensor chip 11 is the positive electrode side, the side surface of the glass pedestal 12 is the negative electrode side, and a high voltage is applied in a state where the bonding temperature has been reached, and the sensor chip 11 and the glass pedestal / silicon tube assembly 14 Are anodically bonded. This anodic bonding using the side surface of the glass pedestal 12 is referred to as a side anodic bonding method. Thereby, the movable ions (Na + , K + ) in the glass pedestal 12 are prevented from moving to the joining surface of the primary anodic bonding, and the strength of the glass pedestal 2 is prevented from being lowered.

特開2009−135190号公報JP 2009-135190 A

しかしながら、側面陽極接合方式を採用すると、片方の電極を側面側から取るため、特にウエハレベルで接合を行う場合、電極間距離が著しく長くなり、電流が流れにくくなる。このため、高電圧を長時間印加する必要が生じ、消費エネルギーが増大する。   However, when the side surface anodic bonding method is employed, one electrode is taken from the side surface side, and particularly when bonding is performed at the wafer level, the distance between the electrodes becomes remarkably long, and current does not easily flow. For this reason, it is necessary to apply a high voltage for a long time, and energy consumption increases.

本発明は、このような課題を解決するためになされたもので、その目的とするところは、良好な接合性を維持した状態で、かつ可動イオンが析出することなく、可能な限り少ないエネルギーで、三層基板を製造することを可能とする陽極接合条件の決定方法を提供することにある。   The present invention has been made in order to solve such a problem, and the object of the present invention is to maintain a good bondability, and with as little energy as possible without precipitation of mobile ions. Another object of the present invention is to provide a method for determining anodic bonding conditions that makes it possible to manufacture a three-layer substrate.

このような目的を達成するために本発明は、第1の基板を陽極とし、ガラス基板を陰極として、第1の基板にガラス基板の一方の面を陽極接合する1次陽極接合工程と、1次陽極接合工程によって接合された第1の基板とガラス基板との接合体の第1の基板を陰極とし、第2の基板を陽極として、ガラス基板の他方の面に第2の基板を陽極接合する2次陽極接合工程とを経て三層基板を製造する際の陽極接合条件を決定する陽極接合条件の決定方法において、陽極接合時の接合温度の下限値および上限値を最低接合温度および最高接合温度とし、この最低接合温度と最高接合温度との間の任意の接合温度で、かつ良好な接合性を確保するために必要な最低限の電流密度以上の電流が得られる接合電圧で、1次陽極接合工程での陽極接合を行う第1工程と、良好な接合性を確保するために必要な最低限の電流密度が得られる接合電圧を最低基準電圧とし、少なくとも最低接合温度と最高接合温度との間を含む温度範囲において、最低基準電圧と接合温度との関係を第1の関係線として求める第2工程と、第1工程によって接合された第1の基板とガラス基板との接合体に対して2次陽極接合工程での陽極接合を行い、ガラス基板と第1の基板との接合面付近から可動イオンが析出し始める接合電圧を最高基準電圧とし、少なくとも最低接合温度と最高接合温度との間を含む温度範囲において、最高基準電圧と接合温度との関係を第2の関係線として求める第3工程と、第1の関係線と第2の関係線と最低接合温度と最高接合温度とで囲まれた領域を対象領域とし、この対象領域中の第1工程での陽極接合条件よりも条件が弱い領域から2次陽極接合工程での陽極接合条件を決定する第4工程とを備える特徴とする。   In order to achieve such an object, the present invention includes a primary anodic bonding process in which one surface of a glass substrate is anodically bonded to the first substrate using the first substrate as an anode and the glass substrate as a cathode, The first substrate of the joined body of the first substrate and the glass substrate bonded by the next anodic bonding step is used as the cathode, the second substrate is used as the anode, and the second substrate is anodically bonded to the other surface of the glass substrate. In the method of determining anodic bonding conditions for determining anodic bonding conditions when manufacturing a three-layer substrate through a secondary anodic bonding process, the minimum and maximum bonding temperatures are determined as the minimum and maximum bonding temperatures during anodic bonding. The primary voltage is a junction voltage at which a current exceeding the minimum current density necessary for ensuring good jointability can be obtained at any junction temperature between the minimum junction temperature and the maximum junction temperature. Anodic bonding in anodic bonding process The lowest reference voltage in a temperature range including at least the minimum junction temperature and the maximum junction temperature is the minimum reference voltage, which is the minimum reference voltage for obtaining the minimum current density necessary to ensure one step and good bondability. A second step for obtaining the relationship between the voltage and the bonding temperature as a first relationship line, and anodic bonding in the secondary anodic bonding step for the bonded body of the first substrate and the glass substrate bonded by the first step. And the highest reference voltage in the temperature range including at least the lowest junction temperature and the highest junction temperature, where the highest reference voltage is the junction voltage at which mobile ions begin to precipitate from the vicinity of the junction surface between the glass substrate and the first substrate. And a region surrounded by the first relationship line, the second relationship line, the lowest junction temperature, and the highest junction temperature as a target region. In the target area Conditions than anodic bonding conditions in step is characterized and a fourth step of determining the anodic bonding conditions in the secondary anodic bonding process from the weak region.

本発明において、2次陽極接合工程での陽極接合条件として適切な条件を決定することができなかった場合、第1工程での陽極接合条件を設定し直すようにするとよい。すなわち、第1工程での接合温度や接合電圧を設定し直すようにするとよい。   In the present invention, when conditions suitable as anodic bonding conditions in the secondary anodic bonding process cannot be determined, the anodic bonding conditions in the first process may be reset. That is, it is preferable to reset the junction temperature and the junction voltage in the first step.

また、本発明では、対象領域中の第1工程での陽極接合条件よりも条件が弱い領域から2次陽極接合工程での陽極接合条件を決定するが、例えば、陽極接合条件を接合温度および接合電圧とし、対象領域中の第1工程での接合温度および接合電圧よりも接合温度および接合電圧の両方が低い領域から2次陽極接合工程での接合温度および接合電圧を決定するようにする。   Further, in the present invention, the anodic bonding conditions in the secondary anodic bonding process are determined from the region where the conditions are weaker than the anodic bonding conditions in the first process in the target region. The junction temperature and the junction voltage in the secondary anodic bonding process are determined from the region where both the junction temperature and the junction voltage are lower than the junction temperature and the junction voltage in the first step in the target region.

なお、本発明において、良好な接合性とは、破断した際に接合面(界面)で破断せず、母材破壊をする事を指す。多層での陽極接合ではこれに可動イオンの析出が接合面付近に発生しない事が良好な接合性を持つとする。   In the present invention, good bondability means that the base material is destroyed without breaking at the joint surface (interface) when it breaks. In multi-layer anodic bonding, it is assumed that there is good bonding property that no mobile ions are precipitated near the bonding surface.

本発明によれば、最低接合温度と最高接合温度との間の任意の接合温度で、かつ良好な接合性を確保するために必要な最低限の電流密度以上の電流が得られる接合電圧で、1次陽極接合工程での陽極接合を第1工程として行うものとし、良好な接合性を確保するために必要な最低限の電流密度が得られる接合電圧を最低基準電圧とし、少なくとも最低接合温度と最高接合温度との間を含む温度範囲において、最低基準電圧と接合温度との関係を第1の関係線として求め、第1工程によって接合された第1の基板とガラス基板との接合体に対して2次陽極接合工程での陽極接合を行い、ガラス基板と第1の基板との接合面付近から可動イオンが析出し始める接合電圧を最高基準電圧とし、少なくとも最低接合温度と最高接合温度との間を含む温度範囲において、最高基準電圧と接合温度との関係を第2の関係線として求め、第1の関係線と第2の関係線と最低接合温度と最高接合温度とで囲まれた領域を対象領域とし、この対象領域中の第1工程での陽極接合条件よりも条件が弱い領域から2次陽極接合工程での陽極接合条件を決定するようにしたので、良好な接合性を維持した状態で、かつ可動イオンが析出することなく、可能な限り少ないエネルギーで、三層基板を製造することが可能となる。   According to the present invention, at any junction temperature between the minimum junction temperature and the maximum junction temperature, and at a junction voltage that can obtain a current equal to or higher than the minimum current density necessary to ensure good bondability, Anodic bonding in the primary anodic bonding process is performed as the first process, and a minimum reference voltage is set as a minimum reference voltage, which is a minimum reference voltage required to secure a good bonding property, and at least a minimum bonding temperature In a temperature range including between the highest bonding temperature, the relationship between the lowest reference voltage and the bonding temperature is obtained as a first relationship line, and the bonded body of the first substrate and the glass substrate bonded in the first step The anodic bonding in the secondary anodic bonding process is performed, and the maximum reference voltage is defined as the bonding voltage at which mobile ions start to precipitate from the vicinity of the bonding surface between the glass substrate and the first substrate, and at least the minimum bonding temperature and the maximum bonding temperature Temperature including In the range, the relationship between the highest reference voltage and the junction temperature is obtained as the second relationship line, and the region surrounded by the first relationship line, the second relationship line, the lowest junction temperature, and the highest junction temperature is set as the target region. Since the anodic bonding conditions in the secondary anodic bonding step are determined from the region where the conditions are weaker than the anodic bonding conditions in the first step in the target region, the state in which good bondability is maintained and It is possible to manufacture a three-layer substrate with as little energy as possible without depositing mobile ions.

三層基板の一例を示す図である。It is a figure which shows an example of a three-layer board | substrate. この三層基板を製造する際の1度目の陽極接合(1次陽極接合)および2度目の陽極接合(2次陽極接合)を示す図である。It is a figure which shows the 1st anodic bonding (primary anodic bonding) and the 2nd anodic bonding (secondary anodic bonding) at the time of manufacturing this three-layer substrate. この三層基板を製造する際の陽極接合条件の決定手順の概要を示すフローチャートである。It is a flowchart which shows the outline | summary of the determination procedure of the anodic bonding conditions at the time of manufacturing this three-layer board | substrate. 第1の関係線と第2の関係線と最低接合温度と最高接合温度とで囲まれた対象領域を示す図である。It is a figure which shows the object area | region enclosed by the 1st relationship line, the 2nd relationship line, the minimum junction temperature, and the maximum junction temperature. 1度目の陽極接合(1次陽極接合)を説明する図である。It is a figure explaining the first anodic bonding (primary anodic bonding). 2度目の陽極接合(2次陽極接合)を説明する図である。It is a figure explaining the second anodic bonding (secondary anodic bonding). 可動イオンが析出する様子を説明する図である。It is a figure explaining a mode that a mobile ion precipitates. 側面陽極接合方式を説明する図である。It is a figure explaining a side anodic bonding system.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、三層基板の一例として、3層構造の圧力センサ100を示す図である。同図において、1はセンサチップ(シリコン基板)、2はガラス台座、3はシリコンチューブであり、1度目の陽極接合(1次陽極接合)によって、ガラス台座2とシリコンチューブ3との接合体(ガラス台座・シリコンチューブ接合体)4が形成されている。また、2度目の陽極接合(2次陽極接合)によって、センサチップ1とガラス台座・シリコンチューブ接合体14との接合体(センサチップ・ガラス台座・シリコンチューブ接合体)5が形成されている。   FIG. 1 is a diagram showing a pressure sensor 100 having a three-layer structure as an example of a three-layer substrate. In the figure, reference numeral 1 denotes a sensor chip (silicon substrate), 2 denotes a glass pedestal, 3 denotes a silicon tube, and a joined body of the glass pedestal 2 and the silicon tube 3 by the first anodic bonding (primary anodic bonding) ( A glass pedestal / silicone tube assembly) 4 is formed. Further, a joined body (sensor chip / glass pedestal / silicon tube joined body) 5 of the sensor chip 1 and the glass pedestal / silicon tube joined body 14 is formed by the second anodic joining (secondary anodic joining).

すなわち、図2(a)に示すように、ガラス台座2を本発明でいうガラス基板とし、シリコンチューブ3を本発明でいう第1の基板とし、ガラス台座2とシリコンチューブ3とを重ね合わせ、ガラス台座2の上面をマイナス電極側(陰極側)、シリコンチューブ3の下面をプラス電極側(陽極側)とし、接合温度に達した状態で高電圧を印加して、ガラス台座2とシリコンチューブ3とを陽極接合し、ガラス台座・シリコンチューブ接合体4を形成している。   That is, as shown in FIG. 2 (a), the glass pedestal 2 is a glass substrate referred to in the present invention, the silicon tube 3 is a first substrate referred to in the present invention, and the glass pedestal 2 and the silicon tube 3 are overlaid, The upper surface of the glass pedestal 2 is the negative electrode side (cathode side), the lower surface of the silicon tube 3 is the positive electrode side (anode side), and a high voltage is applied in a state where the bonding temperature is reached. And the glass pedestal / silicon tube joined body 4 are formed.

また、図2(b)に示すように、センサチップ1を本発明でいう第2の基板とし、センサチップ1とガラス台座・シリコンチューブ接合体4とを重ね合わせ、センサチップ1の上面をプラス電極側(陽極側)、ガラス台座・シリコンチューブ接合体4の下面(シリコンチューブ3の下面)をマイナス電極側(陰極側)とし、接合温度に達した状態で高電圧を印加して、センサチップ1とガラス台座・シリコンチューブ接合体4とを陽極接合し、センサチップ・ガラス台座・シリコンチューブ接合体15として形成している。   Further, as shown in FIG. 2B, the sensor chip 1 is used as the second substrate in the present invention, the sensor chip 1 and the glass pedestal / silicon tube assembly 4 are overlapped, and the upper surface of the sensor chip 1 is added. The electrode side (anode side), the lower surface of the glass pedestal / silicon tube assembly 4 (the lower surface of the silicon tube 3) is the negative electrode side (cathode side), and a high voltage is applied in a state where the bonding temperature has been reached. 1 and the glass pedestal / silicon tube joined body 4 are anodically joined to form a sensor chip / glass pedestal / silicon tube joined body 15.

なお、圧力センサ100の製造方法としては、圧力センサ100を効率良く大量に生産するために、センサチップ1を複数作成したウエハ(センサチップウエハ)と、ガラス台座2を複数作成したウエハ(ガラス台座ウエハ)と、シリコンチューブ3を複数作成したウエハ(シリコンチューブウエハ)とを接合して3層のウエハの接合体とし、この3層のウエハの接合体をダイシングで切断して複数の圧力センサ100を得るという方法が採用される。   As a method for manufacturing the pressure sensor 100, in order to efficiently produce the pressure sensor 100 in large quantities, a wafer (sensor chip wafer) in which a plurality of sensor chips 1 are created and a wafer (glass pedestal) in which a plurality of glass pedestals 2 are created. Wafer) and a wafer (silicon tube wafer) on which a plurality of silicon tubes 3 are formed are bonded to form a three-layer wafer bonded body, and the three-layer wafer bonded body is cut by dicing to form a plurality of pressure sensors 100. The method of obtaining is adopted.

図3はこの圧力センサ100を製造する際の陽極接合条件の決定手順の概略を示すフローチャートである。以下、このフローチャートに従って、圧力センサ100を製造する際の1次陽極接合条件および2次陽極接合条件の決定方法について説明する。なお、以下の説明において、1次陽極接合や2次陽極接合は、ウエハレベルで行われるものとする。   FIG. 3 is a flowchart showing an outline of a procedure for determining anodic bonding conditions when manufacturing the pressure sensor 100. Hereinafter, a method for determining the primary anodic bonding conditions and the secondary anodic bonding conditions when manufacturing the pressure sensor 100 will be described with reference to this flowchart. In the following description, it is assumed that primary anodic bonding and secondary anodic bonding are performed at the wafer level.

先ず、陽極接合時の接合温度の下限値および上限値を最低接合温度TL(例えば、TL=300℃)および最高接合温度TH(例えば、TH=380℃)とし、この最低接合温度TLと最高接合温度THとの間の任意の接合温度T1で、かつ良好な接合性を確保するために必要な最低限の電流密度IL(例えば、IL=1.5A/m2)以上の電流が得られる接合電圧V1で、ガラス台座2とシリコンチューブ3との陽極接合(1次陽極接合)を行う(ステップS101、図2(a))。なお、陽極接合時の接合温度の上限値は製品仕様から定められる。 First, the lower limit value and the upper limit value of the bonding temperature at the time of anodic bonding are set to a minimum bonding temperature TL (for example, TL = 300 ° C.) and a maximum bonding temperature TH (for example, TH = 380 ° C.). Junction at which a current equal to or higher than a minimum current density IL (for example, IL = 1.5 A / m 2 ) necessary for ensuring good bonding performance can be obtained at an arbitrary bonding temperature T1 between the temperature TH. At the voltage V1, anodic bonding (primary anodic bonding) between the glass pedestal 2 and the silicon tube 3 is performed (step S101, FIG. 2A). In addition, the upper limit value of the bonding temperature at the time of anodic bonding is determined from the product specifications.

このようにして、ガラス台座2とシリコンチューブ3とを陽極接合した後、接合性が良好であるか否かを確認する(ステップS102)。接合性が良好でなければ(ステップS102のNO)、接合温度T1や接合電圧V1を変えて、すなわち1次陽極接合条件を変えて、ガラス台座2とシリコンチューブ3との陽極接合を繰り返す。以下、接合温度T1を1次接合温度、接合電圧V1を1次接合電圧と呼ぶ。   Thus, after anodically bonding the glass pedestal 2 and the silicon tube 3, it is confirmed whether or not the bonding property is good (step S102). If the bondability is not good (NO in step S102), the anodic bonding between the glass pedestal 2 and the silicon tube 3 is repeated by changing the bonding temperature T1 and the bonding voltage V1, that is, changing the primary anodic bonding conditions. Hereinafter, the junction temperature T1 is referred to as a primary junction temperature, and the junction voltage V1 is referred to as a primary junction voltage.

接合性が良好であれば(ステップS102のYES)、良好な接合性を確保するために必要な最低限の電流密度ILが得られる接合電圧を最低基準電圧VLとし、少なくとも最低接合温度TLと最高接合温度THとの間を含む温度範囲において、最低基準電圧VLと接合温度との関係を第1の関係線Iとして求める(ステップS103)。   If the bondability is good (YES in step S102), the minimum reference voltage VL is set as the minimum reference voltage VL to obtain the minimum current density IL necessary for ensuring good bondability, and at least the minimum junction temperature TL and the maximum In a temperature range including between the junction temperature TH, the relationship between the lowest reference voltage VL and the junction temperature is obtained as a first relationship line I (step S103).

具体的には、最低接合温度TLと最高接合温度THの温度範囲の数ポイントで、良好な接合性を確保するために必要な最低限の電流密度ILが得られる接合電圧を求め、この求めた接合電圧を最低基準電圧VLとして、横軸を接合温度T、縦軸を接合電圧Vとするグラフ中にプロットし、そのプロットした点を結ぶことによって第1の関係線Iを求める(図4参照)。   Specifically, the junction voltage that can obtain the minimum current density IL necessary to ensure good jointability at several points in the temperature range of the minimum junction temperature TL and the maximum junction temperature TH was obtained and obtained. A first relation line I is obtained by plotting a graph in which the junction voltage is the lowest reference voltage VL, the horizontal axis is the junction temperature T, and the vertical axis is the junction voltage V, and the plotted points are connected (see FIG. 4). ).

そして、ステップS102においてその接合性が良好と判断されたガラス台座2とシリコンチューブ3との接合体をガラス台座・シリコンチューブ接合体4とし、このガラス台座・シリコンチューブ接合体4とシリコンチップ1との陽極接合(2次陽極接合)を行う(ステップS104,図2(b))。   Then, the joined body of the glass pedestal 2 and the silicon tube 3 determined to have good bondability in step S102 is a glass pedestal / silicon tube joined body 4, and the glass pedestal / silicon tube joined body 4 and the silicon chip 1 Anodic bonding (secondary anodic bonding) is performed (step S104, FIG. 2B).

このステップS104では、2次陽極接合をその陽極接合条件を変えて繰り返し行い、ガラス台座2とシリコンチューブ3との接合面(1次接合面)付近から可動イオンが析出し始める接合電圧を最高基準電圧VHとし、少なくとも最低接合温度TLと最高接合温度THとの間を含む温度範囲において、最高基準電圧VHと接合温度Tとの関係を第2の関係線IIとして求める。   In this step S104, the secondary anodic bonding is repeatedly performed while changing the anodic bonding conditions, and the highest standard is set to the bonding voltage at which mobile ions start to precipitate from the vicinity of the bonding surface (primary bonding surface) between the glass pedestal 2 and the silicon tube 3. The relationship between the highest reference voltage VH and the junction temperature T is obtained as a second relationship line II in the temperature range including at least the minimum junction temperature TL and the maximum junction temperature TH.

具体的には、最低接合温度TLと最高接合温度THの温度範囲の数ポイントで、ガラス台座2とシリコンチューブ3との接合面(1次接合面)付近から可動イオンが析出し始める接合電圧を求め、この求めた接合電圧を最高基準電圧VHとして横軸を接合温度T、縦軸を接合電圧Vとするグラフ中にプロットし、そのプロットした点を結ぶことによって第2の関係線IIを求める(図4参照)。   Specifically, at several points in the temperature range of the lowest bonding temperature TL and the highest bonding temperature TH, the bonding voltage at which mobile ions begin to precipitate from the vicinity of the bonding surface (primary bonding surface) between the glass pedestal 2 and the silicon tube 3 is set. The second relationship line II is obtained by plotting the obtained junction voltage in a graph with the junction voltage T as the maximum reference voltage VH and the junction temperature T as the horizontal axis and the junction voltage V as the vertical axis. (See FIG. 4).

そして、第1の関係線Iと第2の関係線IIと最低接合温度TLと最高接合温度THとで囲まれた領域(図4に点線で示す領域S1)を対象領域とし、この対象領域S1中の1次陽極接合条件P1(T1,V1)よりも条件が弱い領域から2次陽極接合条件P2(T2,V2)を決定する(ステップS105)。   Then, a region surrounded by the first relationship line I, the second relationship line II, the lowest junction temperature TL, and the highest junction temperature TH (region S1 indicated by a dotted line in FIG. 4) is set as a target region, and this target region S1 The secondary anodic bonding condition P2 (T2, V2) is determined from the region where the condition is weaker than the primary anodic bonding condition P1 (T1, V1) (step S105).

具体的には、ステップS101で設定した1次接合温度T1および1次接合電圧V1を1次陽極接合条件とし、対象領域S1中の1次接合温度T1および1次接合電圧V1よりも接合温度および接合電圧の両方が低い領域(図4に網線で示す領域S2)から、安全率とエネルギーの消費量とを考慮した最適な接合温度T2および接合電圧V2を2次陽極接合条件として決定する。以下、接合温度T2を2次接合温度、接合電圧V2を2次接合電圧と呼ぶ。   Specifically, the primary junction temperature T1 and the primary junction voltage V1 set in step S101 are set as primary anodic bonding conditions, and the junction temperature and the primary junction temperature T1 and the primary junction voltage V1 in the target region S1 are set. From the region where both of the junction voltages are low (region S2 indicated by the mesh line in FIG. 4), the optimum junction temperature T2 and junction voltage V2 considering the safety factor and the energy consumption are determined as the secondary anodic junction conditions. Hereinafter, the junction temperature T2 is referred to as a secondary junction temperature, and the junction voltage V2 is referred to as a secondary junction voltage.

本実施の形態では、側面陽極接合方式を採用しないので、電極間距離は短く、対象領域S1中の2次陽極接合条件は側面陽極接合方式に比べると全て省エネルギーとなる。さらに1次陽極接合条件P1(T1,V1)よりも条件が弱い領域S2から安全率とエネルギーの消費量とを考慮した最適な2次陽極接合条件P2(T2,V2)を決定することから、さらに省エネルギーが図られる。   In the present embodiment, since the side anodic bonding method is not adopted, the distance between the electrodes is short, and the secondary anodic bonding conditions in the target region S1 are all energy saving as compared with the side anodic bonding method. Furthermore, since the optimum secondary anodic bonding condition P2 (T2, V2) in consideration of the safety factor and the energy consumption is determined from the region S2 where the conditions are weaker than the primary anodic bonding condition P1 (T1, V1). Furthermore, energy saving is achieved.

なお、安全率は、第1の関係線I上で2次接合温度T2と2次接合電圧V2のペアを定めると、すなわち最低基準電圧VLのラインで2次接合温度T2と2次接合電圧V2のペアを定めると、ぎりぎりのラインであるので電流密度が不足し、良好な接合性が得られない虞がある。そこで、第1の関係線I上ではなく、安全率を考慮した第1の関係線Iよりも上の領域で、2次接合温度T2と2次接合電圧V2のペアを定めるようにする。また、エネルギーの消費量は、電圧低下分によるエネルギーの消費量の減少と、温度上昇分によるエネルギーの消費量の増加とを考慮し、安全率と合わせて、エネルギー消費的に有利となるように、2次接合温度T2と2次接合電圧V2のペアを定めるようにする。   The safety factor is determined by defining a pair of the secondary junction temperature T2 and the secondary junction voltage V2 on the first relationship line I, that is, the secondary junction temperature T2 and the secondary junction voltage V2 in the line of the lowest reference voltage VL. If this pair is determined, the current density is insufficient because it is a marginal line, and there is a possibility that good jointability may not be obtained. Therefore, a pair of the secondary junction temperature T2 and the secondary junction voltage V2 is determined not in the first relationship line I but in a region above the first relationship line I considering the safety factor. In addition, considering the decrease in energy consumption due to the voltage drop and the increase in energy consumption due to the temperature rise, the energy consumption should be combined with the safety factor to be advantageous in terms of energy consumption. A pair of the secondary junction temperature T2 and the secondary junction voltage V2 is determined.

このようにして、2次陽極接合条件P2(T2,V2)を決定した後、この決定した2次陽極接合条件P2(T2,V2)で2次陽極接合を実際に行い、2次陽極接合で良好な接合性が得られれば(ステップS106のYES)、また1次接合面に可動イオンの析出がなければ(ステップS107のYES)、ステップS101で設定した1次陽極接合条件P1(T2,V2)およびステップS105で決定した2次陽極接合条件P2(T2,V2)を圧力センサ100を製造する際の1次陽極接合条件P1(T1,V1)および2次陽極接合条件P2(T2,V2)として確定する(ステップS108)。   After determining the secondary anodic bonding condition P2 (T2, V2) in this way, the secondary anodic bonding is actually performed under the determined secondary anodic bonding condition P2 (T2, V2). If good bondability is obtained (YES in step S106), and if no mobile ions are deposited on the primary bonding surface (YES in step S107), the primary anodic bonding condition P1 (T2, V2) set in step S101 is obtained. ) And the secondary anodic bonding condition P2 (T2, V2) determined in step S105, the primary anodic bonding condition P1 (T1, V1) and the secondary anodic bonding condition P2 (T2, V2) when the pressure sensor 100 is manufactured. (Step S108).

なお、2次陽極接合で良好な接合性が得られなかった場合には(ステップS106のNO)、また1次接合面に可動イオンの析出があった場合には(ステップS107のNO)、ステップS105へ戻り、2次陽極接合条件P2(T2,V2)の決定をやり直す。   In the case where good bondability is not obtained by secondary anodic bonding (NO in step S106), and when mobile ions are deposited on the primary bonding surface (NO in step S107), step Returning to S105, the secondary anodic bonding condition P2 (T2, V2) is determined again.

また、ステップS105において、2次陽極接合条件P2(T2,V2)として適切な条件を決定できなかった場合には、ステップS101へ戻って、1次陽極接合条件P1(T1,V1)の設定をやり直す。   In Step S105, when an appropriate condition cannot be determined as the secondary anodic bonding condition P2 (T2, V2), the process returns to Step S101 to set the primary anodic bonding condition P1 (T1, V1). Try again.

〔実施の形態の拡張〕
以上、実施の形態を参照して本発明を説明したが、本発明は上記の実施の形態に限定されるものではない。本発明の構成や詳細には、本発明の技術思想の範囲内で当業者が理解し得る様々な変更をすることができる。
[Extension of the embodiment]
The present invention has been described above with reference to the embodiment. However, the present invention is not limited to the above embodiment. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the technical idea of the present invention.

1…センサチップ(シリコン基板)、2…ガラス台座、3…シリコンチューブ、4…ガラス台座・シリコンチューブ接合体、5…センサチップ・ガラス台座・シリコンチューブ接合体、100…圧力センサ。   DESCRIPTION OF SYMBOLS 1 ... Sensor chip (silicon substrate), 2 ... Glass base, 3 ... Silicon tube, 4 ... Glass base / silicon tube joined body, 5 ... Sensor chip / glass base / silicon tube joined body, 100 ... Pressure sensor.

Claims (3)

第1の基板を陽極とし、ガラス基板を陰極として、前記第1の基板に前記ガラス基板の一方の面を陽極接合する1次陽極接合工程と、
前記1次陽極接合工程によって接合された前記第1の基板と前記ガラス基板との接合体の第1の基板を陰極とし、第2の基板を陽極として、前記ガラス基板の他方の面に前記第2の基板を陽極接合する2次陽極接合工程とを経て三層基板を製造する際の陽極接合条件を決定する陽極接合条件の決定方法において、
前記陽極接合時の接合温度の下限値および上限値を最低接合温度および最高接合温度とし、この最低接合温度と最高接合温度との間の任意の接合温度で、かつ良好な接合性を確保するために必要な最低限の電流密度以上の電流が得られる接合電圧で、前記1次陽極接合工程での陽極接合を行う第1工程と、
前記良好な接合性を確保するために必要な最低限の電流密度が得られる接合電圧を最低基準電圧とし、少なくとも前記最低接合温度と前記最高接合温度との間を含む温度範囲において、前記最低基準電圧と接合温度との関係を第1の関係線として求める第2工程と、
前記第1工程によって接合された前記第1の基板と前記ガラス基板との接合体に対して前記2次陽極接合工程での陽極接合を行い、前記ガラス基板と前記第1の基板との接合面付近から可動イオンが析出し始める接合電圧を最高基準電圧とし、少なくとも前記最低接合温度と前記最高接合温度との間を含む温度範囲において、前記最高基準電圧と接合温度との関係を第2の関係線として求める第3工程と、
前記第1の関係線と前記第2の関係線と前記最低接合温度と前記最高接合温度とで囲まれた領域を対象領域とし、この対象領域中の前記第1工程での陽極接合条件よりも条件が弱い領域から前記2次陽極接合工程での陽極接合条件を決定する第4工程と
を備える特徴とする陽極接合条件の決定方法。
A primary anodic bonding step of anodic bonding one surface of the glass substrate to the first substrate using the first substrate as an anode and the glass substrate as a cathode;
The first substrate of the joined body of the first substrate and the glass substrate bonded by the primary anodic bonding step is used as a cathode, the second substrate is used as an anode, and the second substrate is used as the second substrate. In a method for determining anodic bonding conditions for determining anodic bonding conditions when a three-layer substrate is manufactured through a secondary anodic bonding step of anodic bonding two substrates,
The lower limit value and the upper limit value of the bonding temperature at the time of anodic bonding are set as the minimum bonding temperature and the maximum bonding temperature, and in order to ensure good bonding performance at an arbitrary bonding temperature between the minimum bonding temperature and the maximum bonding temperature. A first step of performing anodic bonding in the primary anodic bonding step at a bonding voltage at which a current equal to or higher than the minimum current density necessary for the above is obtained;
The lowest reference voltage is a junction voltage at which a minimum current density necessary for ensuring good jointability is obtained, and at least in the temperature range including between the lowest junction temperature and the highest junction temperature. A second step for obtaining a relationship between the voltage and the junction temperature as a first relationship line;
Anodic bonding in the secondary anodic bonding step is performed on the bonded body of the first substrate and the glass substrate bonded in the first step, and a bonding surface between the glass substrate and the first substrate The junction voltage at which mobile ions begin to precipitate from the vicinity is defined as the maximum reference voltage, and the relationship between the maximum reference voltage and the junction temperature is a second relationship at least in a temperature range including between the minimum junction temperature and the maximum junction temperature. A third step as a line;
A region surrounded by the first relationship line, the second relationship line, the minimum junction temperature, and the maximum junction temperature is set as a target region, and the anodic bonding condition in the first step in the target region is set. And a fourth step of determining an anodic bonding condition in the secondary anodic bonding step from a region where the conditions are weak.
請求項1に記載された陽極接合条件の決定方法において、
前記2次陽極接合工程での陽極接合条件として適切な条件を決定することができなかった場合、前記第1工程での陽極接合条件を設定し直す
ことを特徴とする陽極接合条件の決定方法。
In the method for determining anodic bonding conditions according to claim 1,
A method for determining an anodic bonding condition, wherein when an appropriate condition as an anodic bonding condition in the secondary anodic bonding process cannot be determined, the anodic bonding condition in the first process is reset.
請求項1又は2に記載された陽極接合条件の決定方法において、
前記陽極接合条件は接合温度および接合電圧であり、
前記第4工程は、
前記対象領域中の前記第1工程での接合温度および接合電圧よりも接合温度および接合電圧の両方が低い領域から前記2次陽極接合工程での接合温度および接合電圧を決定する
ことを特徴とする陽極接合条件の決定方法。
In the method for determining anodic bonding conditions according to claim 1 or 2,
The anodic bonding conditions are a bonding temperature and a bonding voltage,
The fourth step includes
The junction temperature and junction voltage in the secondary anodic bonding step are determined from a region where both the junction temperature and junction voltage are lower than the junction temperature and junction voltage in the first step in the target region. A method for determining anodic bonding conditions.
JP2015022945A 2015-02-09 2015-02-09 Determination method for anode junction conditions Pending JP2016146420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015022945A JP2016146420A (en) 2015-02-09 2015-02-09 Determination method for anode junction conditions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015022945A JP2016146420A (en) 2015-02-09 2015-02-09 Determination method for anode junction conditions

Publications (1)

Publication Number Publication Date
JP2016146420A true JP2016146420A (en) 2016-08-12

Family

ID=56686045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015022945A Pending JP2016146420A (en) 2015-02-09 2015-02-09 Determination method for anode junction conditions

Country Status (1)

Country Link
JP (1) JP2016146420A (en)

Similar Documents

Publication Publication Date Title
KR100846529B1 (en) Semiconductor physical quantity sensor of electrostatic capacitance type and method for manufacturing the same
US12040209B2 (en) Electrostatic chuck heater and manufacturing method therefor
US9875935B2 (en) Semiconductor device and method for producing the same
JP2005347559A (en) Electrostatic chuck and method for manufacturing ceramic electrostatic chuck
TW201841266A (en) Semiconductor device and manufacturing method of semiconductor device
US10145745B2 (en) Bonding method for three-layer substrate
JP2016146420A (en) Determination method for anode junction conditions
JP2016046480A (en) Semiconductor manufacturing method
JP2020053572A (en) Manufacturing method of thermoelectric module, thermoelectric element, and thermoelectric module
ES2630371T3 (en) Multi-level metallization on a ceramic substrate
US10048286B2 (en) Wafer level package of MEMS sensor and method for manufacturing the same
CN115497821A (en) SiC cutting process based on flexible carrier plate
ES2802479T3 (en) Procedure for the manufacture of a solar cell
JP2010165797A (en) Solid electrolytic capacitor and method of manufacturing the same
KR20160048899A (en) Barrier layers for electrostatic chucks
JP4807080B2 (en) Manufacturing method of semiconductor device
JP7023157B2 (en) Holding device
KR20130000553A (en) Adhesive, heater and method producing of heater using the same
KR102021353B1 (en) Edge ring of electrostatic chuck
JP2021044305A (en) Holding device and manufacturing method of holding device
CN105489747B (en) High-thermal conductive metal base plate and preparation method thereof, LED module and preparation method thereof
CN104134614B (en) A kind of chip welding method
CN1307683C (en) Small gap non-binding electrostatic sealing process for sensor
JP4663450B2 (en) Method for manufacturing photoelectric integrated circuit device
TWI791590B (en) Method for joining quartz pieces and quartz electrodes and other devices of joined quartz