JP2016142523A - Spectral characteristic measuring apparatus and adjustment method thereof - Google Patents

Spectral characteristic measuring apparatus and adjustment method thereof Download PDF

Info

Publication number
JP2016142523A
JP2016142523A JP2015015735A JP2015015735A JP2016142523A JP 2016142523 A JP2016142523 A JP 2016142523A JP 2015015735 A JP2015015735 A JP 2015015735A JP 2015015735 A JP2015015735 A JP 2015015735A JP 2016142523 A JP2016142523 A JP 2016142523A
Authority
JP
Japan
Prior art keywords
movable
fixed
reflection surface
reflecting surface
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015015735A
Other languages
Japanese (ja)
Other versions
JP2016142523A5 (en
JP6482886B2 (en
Inventor
伊知郎 石丸
Ichiro Ishimaru
伊知郎 石丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagawa University NUC
Original Assignee
Kagawa University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagawa University NUC filed Critical Kagawa University NUC
Priority to JP2015015735A priority Critical patent/JP6482886B2/en
Publication of JP2016142523A publication Critical patent/JP2016142523A/en
Publication of JP2016142523A5 publication Critical patent/JP2016142523A5/ja
Application granted granted Critical
Publication of JP6482886B2 publication Critical patent/JP6482886B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a spectral characteristic measuring apparatus capable of acquiring a clear interferogram.SOLUTION: A spectral characteristic measuring apparatus comprises: a fixed reflection surface 201 and a movable reflection surface 301 arranged side by side; an objective lens 10 for guiding a measurement beam emitted from a measurement point of a measurement target object to the fixed reflection surface 201 and the movable reflection surface 301; an imaging lens 12 for condensing measurement beams reflected on the fixed reflection surface 201 and the movable reflection surface 301 onto an imaging surface respectively; a CCD camera 13 having a plurality of detection pixels two-dimensionally arranged on the imaging surface; and a processing unit 141 finding an interferogram of the measurement beam on the basis of light intensity change detected by the CCD camera 13 by moving the movable reflection surface 301, and acquiring a spectrum through Fourier transformation of the interferogram. The apparatus further comprises a determination unit 142 which determines whether or not the movable reflection surface 301 is relatively inclined with respect to the fixed reflection surface 201 on the basis of the detection result of the CCD camera 13.SELECTED DRAWING: Figure 5

Description

本発明は、被測定物から発せられる透過光や反射光、蛍光等の測定光の分光特性を測定するための分光特性測定装置及びその調整方法に関する。   The present invention relates to a spectral characteristic measuring apparatus for measuring spectral characteristics of measurement light such as transmitted light, reflected light, and fluorescence emitted from an object to be measured, and an adjustment method thereof.

分光特性の測定技術の一つに結像型2次元フーリエ分光法と呼ばれる手法がある(特許文献1参照)。この手法では、図1に示すように、試料面(物体面)から発せられる無指向の光(測定光)を対物レンズにより平行光束にした上で、固定ミラー部と可動ミラー部から成る位相シフタに照射し、両ミラー部で反射された測定光(反射光)をそれぞれ結像レンズにより結像面上の同一点に集光させる。可動ミラー部を移動させて固定ミラー部で反射された測定光と可動ミラー部で反射された測定光の間に光路長差を付与することにより、結像面上に集光した測定光が干渉し、該測定光の干渉光を形成する。この干渉光の強度を、結像面上に配置されたCCDカメラなどの2次元アレイデバイスの各画素において検出することにより、干渉光強度変化であるインターフェログラムが取得され、このインターフェログラムを数学的にフーリエ変換することにより測定光の分光特性(スペクトル)が取得される。   One technique for measuring spectral characteristics is a technique called imaging type two-dimensional Fourier spectroscopy (see Patent Document 1). In this method, as shown in FIG. 1, omnidirectional light (measurement light) emitted from a sample surface (object surface) is converted into a parallel light beam by an objective lens, and then a phase shifter composed of a fixed mirror portion and a movable mirror portion. , And the measurement light (reflected light) reflected by both mirrors is condensed at the same point on the imaging plane by the imaging lens. By moving the movable mirror part and providing a difference in optical path length between the measurement light reflected by the fixed mirror part and the measurement light reflected by the movable mirror part, the measurement light collected on the imaging surface interferes. Then, interference light of the measurement light is formed. By detecting the intensity of the interference light at each pixel of a two-dimensional array device such as a CCD camera disposed on the imaging plane, an interferogram that is a change in the interference light intensity is obtained. The spectral characteristic (spectrum) of the measurement light is obtained by mathematically Fourier transforming.

特開2008-309706号公報JP 2008-309706 A

正確で再現性の良い分光特性を取得するためには、固定ミラー部で反射された測定光と可動ミラー部で反射された測定光を結像レンズによって結像面上で確実に交差させる必要がある。そのため、固定ミラー部及び可動ミラー部の相対的な位置関係を調整し、両ミラー部の反射面の向きを揃えるようにしている。このような固定ミラー部及び可動ミラー部の調整は通常、装置の製造時に行われている。   In order to obtain accurate and reproducible spectral characteristics, it is necessary to ensure that the measurement light reflected by the fixed mirror and the measurement light reflected by the movable mirror intersect each other on the image plane by the imaging lens. is there. Therefore, the relative positional relationship between the fixed mirror part and the movable mirror part is adjusted so that the directions of the reflecting surfaces of both mirror parts are aligned. Such adjustment of the fixed mirror portion and the movable mirror portion is usually performed at the time of manufacturing the apparatus.

しかしながら、可動ミラー部の繰り返しの移動に伴い、あるいは振動等の外的要因により、可動ミラー部の反射面と固定ミラー部の反射面の向きにずれが生じる場合がある。このような2つの反射面の向きのずれは、本来、結像レンズによって結像面の同一位置に集光するはずの固定ミラー部による反射光及び可動ミラー部による反射光の間に集光位置のずれを生じさせる。そこで、ピエゾ素子やMEMS(Micro Electro Mechanical Systems:微小電気機械システム)技術による静電駆動アクチュエータ等によって高精度に可動ミラー部を移動させることにより、可動ミラー部の移動時に反射面の向きが変化することを極力抑えるようにしているが、固定ミラー部及び可動ミラー部の反射面の向きのずれが視覚的に認識できない程度でも、干渉光が形成されないほど集光位置が大きくずれる場合がある。   However, there is a case in which the direction of the reflection surface of the movable mirror portion and the direction of the reflection surface of the fixed mirror portion may be displaced due to repeated movement of the movable mirror portion or due to external factors such as vibration. Such a deviation in the orientation of the two reflecting surfaces is due to the converging position between the reflected light from the fixed mirror portion and the reflected light from the movable mirror portion, which should be condensed at the same position on the imaging surface by the imaging lens. Cause a shift. Therefore, the direction of the reflective surface changes when the movable mirror is moved by moving the movable mirror with high precision by means of a piezoelectric element or an electrostatic drive actuator using MEMS (Micro Electro Mechanical Systems) technology. In order to suppress this as much as possible, there is a case where the converging position is largely deviated so that interference light is not formed even if the deviation in the direction of the reflecting surfaces of the fixed mirror portion and the movable mirror portion cannot be visually recognized.

具体的には、図2に示すように、固定反射面と可動反射面の角度のずれ量をφ[deg.]、結像レンズの焦点距離をf[mm]、結像面上の集光位置のずれ量をd[mm]とするとd、φ、fの関係は次の式(1)で表される。
d=2×f×tanφ (1)
式(1)から分かるように、角度のずれ量φが小さくても、結像レンズの焦点距離fの大きさによっては、集光位置のずれ量dが大きくなる。
このように固定ミラー部の反射光と可動ミラー部の反射光の集光位置が大きくずれると、両反射光が結像面上で干渉せず、インターフェログラムを取得することができない。
Specifically, as shown in FIG. 2, the angle deviation between the fixed reflecting surface and the movable reflecting surface is φ [deg.], The focal length of the imaging lens is f [mm], and the light is condensed on the imaging surface. If the positional deviation amount is d [mm], the relationship between d, φ, and f is expressed by the following equation (1).
d = 2 × f × tanφ (1)
As can be seen from the equation (1), even if the angle shift amount φ is small, the condensing position shift amount d increases depending on the focal length f of the imaging lens.
Thus, if the condensing position of the reflected light of a fixed mirror part and the reflected light of a movable mirror part shift | deviates large, both reflected light will not interfere on an imaging surface and an interferogram cannot be acquired.

本発明が解決しようとする課題は、固定反射面と可動反射面の傾きの僅かなずれを認識して、正確で再現性の良い分光特性を取得することができる分光特性測定装置及び分光特性測定装置の調整方法を提供することである。   A problem to be solved by the present invention is a spectral characteristic measuring apparatus and a spectral characteristic measurement capable of recognizing a slight deviation in inclination between a fixed reflecting surface and a movable reflecting surface and obtaining accurate and reproducible spectral characteristics. An apparatus adjustment method is provided.

上記課題を解決するために成された本発明に係る分光特性測定装置は、
a) 並んで配置された固定反射面及び可動反射面と、
b) 被測定物の測定点から発せられた測定光を前記固定反射面と前記可動反射面に導く導入光学系と、
c) 前記固定反射面に導入され該固定反射面によって反射された測定光と、前記可動反射面に導入され該可動反射面によって反射された測定光をそれぞれ結像面上に集光させる結像光学系と、
d) 前記結像面上に2次元配置された複数の検出画素を有する、前記結像面上に集光した光の強度を検出するための光検出部と、
e) 前記可動反射面を移動させることにより前記光検出部で検出される光強度変化に基づき、前記測定光のインターフェログラムを求め、このインターフェログラムをフーリエ変換することによりスペクトルを取得する処理部とを備えた分光特性測定装置において、
前記光検出部の検出結果に基づき前記固定反射面に対して前記可動反射面が相対的に傾いているか否かを判別する判別手段と
を備えることを特徴とする。
The spectral characteristic measuring apparatus according to the present invention, which has been made to solve the above problems,
a) a fixed reflecting surface and a movable reflecting surface arranged side by side;
b) an introduction optical system that guides measurement light emitted from the measurement point of the object to be measured to the fixed reflection surface and the movable reflection surface;
c) Image formation for condensing the measurement light introduced into the fixed reflection surface and reflected by the fixed reflection surface and the measurement light introduced into the movable reflection surface and reflected by the movable reflection surface on the image formation surface, respectively. Optical system,
d) a light detection unit for detecting the intensity of the light collected on the imaging surface, having a plurality of detection pixels arranged two-dimensionally on the imaging surface;
e) Processing for obtaining an interferogram of the measurement light based on a change in light intensity detected by the light detection unit by moving the movable reflecting surface, and acquiring a spectrum by Fourier transforming the interferogram In a spectral characteristic measuring device comprising a unit,
And determining means for determining whether or not the movable reflecting surface is inclined relative to the fixed reflecting surface based on a detection result of the light detection unit.

上記分光特性測定装置においては、
さらに、前記可動反射面に平行な第1軸周りの該可動反射面の傾き量を調整するための第1治具と、前記第1軸に垂直で且つ前記固定反射面に平行な第2軸周りの該固定反射面の傾き量を調整するための第2治具を備えることが好ましい。
このような構成によれば、判別手段により固定反射面に対して可動反射面が相対的に傾いていると判別されたときに、前記第1治具又は前記第2治具、あるいは第1及び第2治具の両方を用いて可動反射面及び/又は固定反射面の傾きを簡単に調整することができる。
In the spectral characteristic measuring apparatus,
Furthermore, a first jig for adjusting the amount of inclination of the movable reflecting surface around a first axis parallel to the movable reflecting surface, and a second axis perpendicular to the first axis and parallel to the fixed reflecting surface It is preferable to include a second jig for adjusting the amount of inclination of the surrounding fixed reflecting surface.
According to such a configuration, when the determination unit determines that the movable reflection surface is relatively inclined with respect to the fixed reflection surface, the first jig, the second jig, or the first and second jigs The inclination of the movable reflecting surface and / or the fixed reflecting surface can be easily adjusted using both of the second jigs.

また、本発明に係る分光特性測定装置の調整方法は、
a) 並んで配置された固定反射面及び可動反射面と、
b) 被測定物の測定点から発せられた測定光を前記固定反射面と前記可動反射面に導く導入光学系と、
c) 前記固定反射面に導入され該固定反射面によって反射された測定光と、前記可動反射面に導入され該可動反射面によって反射された測定光をそれぞれ結像面上に集光させる結像光学系と、
d) 前記結像面上に2次元配置された複数の検出画素を有する、前記結像面上に集光した光の強度を検出するための光検出部と、
e) 前記可動反射面を移動させることにより前記光検出部で検出される光強度変化に基づき、前記測定光のインターフェログラムを求め、このインターフェログラムをフーリエ変換することによりスペクトルを取得する処理部とを備えた分光特性測定装置において、
前記光検出部の検出結果に基づき前記固定反射面に対する前記可動反射面の相対的な傾きを調整することを特徴とする。
In addition, the method for adjusting the spectral characteristic measuring apparatus according to the present invention includes:
a) a fixed reflecting surface and a movable reflecting surface arranged side by side;
b) an introduction optical system that guides measurement light emitted from the measurement point of the object to be measured to the fixed reflection surface and the movable reflection surface;
c) Image formation for condensing the measurement light introduced into the fixed reflection surface and reflected by the fixed reflection surface and the measurement light introduced into the movable reflection surface and reflected by the movable reflection surface on the image formation surface, respectively. Optical system,
d) a light detection unit for detecting the intensity of the light collected on the imaging surface, having a plurality of detection pixels arranged two-dimensionally on the imaging surface;
e) Processing for obtaining an interferogram of the measurement light based on a change in light intensity detected by the light detection unit by moving the movable reflecting surface, and acquiring a spectrum by Fourier transforming the interferogram In a spectral characteristic measuring device comprising a unit,
The relative inclination of the movable reflective surface with respect to the fixed reflective surface is adjusted based on the detection result of the light detection unit.

物体面上の理想的な輝点から発せられた光線群は、分割光学系や結像光学系を構成するレンズの円形開口によるフラウンホーファー回折を生じ、エアリーパターンと呼ばれる同心円状の明暗パターンである干渉縞を結像面上に形成する。エアリーパターン(明暗パターン)は、その中心が「エアリーディスク」とよばれる明るい領域であり、その周りを複数の同心円環がとりまく。一般的に、エアリーディスクは、レンズの円形開口による多光線干渉現象として理解される。   A group of rays emitted from an ideal luminescent spot on the object plane causes Fraunhofer diffraction due to the circular aperture of the lens constituting the splitting optical system and the imaging optical system, and is a concentric light and dark pattern called an Airy pattern. Interference fringes are formed on the image plane. The Airy pattern (light / dark pattern) is a bright region whose center is called an “Airy disk”, and a plurality of concentric rings surround it. In general, an Airy disk is understood as a multi-beam interference phenomenon due to a circular aperture of a lens.

従って、固定反射面によって反射された測定光と可動反射面によって反射された測定光についても、フラウンホーファー回折によって結像面上にエアリーパターンを形成する。固定反射面と可動反射面の傾きが同じであるとき、固定反射面によって反射された測定光と可動反射面によって反射された測定光は結像面上の同一点に集光するため、各測定光に対応するエアリーパターンが1つに重なった状態で観察される(図3参照)。   Therefore, an Airy pattern is also formed on the image plane by Fraunhofer diffraction for the measurement light reflected by the fixed reflection surface and the measurement light reflected by the movable reflection surface. When the fixed reflection surface and the movable reflection surface have the same inclination, the measurement light reflected by the fixed reflection surface and the measurement light reflected by the movable reflection surface are collected at the same point on the imaging surface. The airy pattern corresponding to the light is observed in a state of being overlapped (see FIG. 3).

一方、固定反射面と可動反射面の間に相対的な角度ずれφが生じた場合、結像面上において固定反射面と可動反射面のそれぞれで反射された測定光は幾何光学的に結像面上で1点に交わることができない。このため、図4に示すように、結像面上には、固定反射面及び可動反射面からの測定光によるエアリーパターンがずれた状態で観察される。
従って、結像面上に観察されるエアリーパターンの状態から固定反射面に対して可動反射面が相対的に傾いていると判別することができる。
On the other hand, when a relative angular deviation φ occurs between the fixed reflecting surface and the movable reflecting surface, the measurement light reflected by the fixed reflecting surface and the movable reflecting surface on the imaging surface is imaged geometrically. Cannot cross one point on the surface. For this reason, as shown in FIG. 4, the Airy pattern by the measurement light from the fixed reflecting surface and the movable reflecting surface is observed on the imaging surface in a shifted state.
Therefore, it can be determined that the movable reflective surface is inclined relative to the fixed reflective surface from the state of the Airy pattern observed on the imaging surface.

ところで、レイリーの判断基準による2つの像の分解の限界は、ある焦点像のエアリーディスクの中心と、隣り合う輝点の焦点像のエアリーディスクの第1暗環(エアリーディスクを取り巻く暗い同心環)が重なる条件(エアリーディスク半径r=0.61λ/N.A.。ここで、λ:波長、N.A.:数値開口数 Numerical Aperture=n×sinθ)として定義されている。固定反射面により反射された測定光と可動反射面により反射された測定光がこの条件を満たすときは、これら2つの測定光の位相がπ[rad.]異なることから、互いの干渉縞を打ち消しあってしまい、高い鮮明度の干渉像(インターフェログラム)を得ることができない。言い換えると、固定反射面により反射された測定光と可動反射面により反射された測定光が上記条件を満たさなければ、鮮明度は落ちるものの両測定光の干渉像を得ることができる。   By the way, the limits of the separation of two images according to the Rayleigh criterion are the center of the Airy disk of a certain focus image and the first dark ring of the Airy disk of the focus image of the adjacent bright spot (the dark concentric ring surrounding the Airy disk). (Airy disk radius r = 0.61λ / NA, where λ: wavelength, NA: numerical numerical aperture Numerical Aperture = n × sin θ). When the measurement light reflected by the fixed reflection surface and the measurement light reflected by the movable reflection surface satisfy this condition, the phase of the two measurement lights is different by π [rad.], So that the interference fringes are canceled out. Therefore, an interference image (interferogram) with high definition cannot be obtained. In other words, if the measurement light reflected by the fixed reflection surface and the measurement light reflected by the movable reflection surface do not satisfy the above conditions, an interference image of both measurement lights can be obtained although the sharpness is lowered.

本発明に係る分光特性測定装置では、物体光束を2分割していることから、可動反射面、固定反射面それぞれで反射した物体光束の実効的なN.A.は、レンズのN.A.の半分になる。つまり、物体光束の実効的なN.A.は、レンズのN.A.の1/2倍となり、許容値は1.22×λ/N.A.により求めることができる。つまり、固定反射面により反射された測定光と可動反射面により反射された測定光の結像面上の集光位置の間隔がレイリーの判断基準による2つの像の分解の限界である1.22×λ/N.A.よりも狭いことが必要となる。従って、1.22×λ/N.A.、あるいはこれよりも小さい値(例えばλ/N.A.)を、結像面上に測定光の干渉光を形成するための許容値とし、2つのエアリーディスクの中心間の距離が該許容値よりも大きいか否かによって、固定反射面と可動反射面が相対的に傾いているか否かを判別する指標にしても良い。   In the spectral characteristic measuring apparatus according to the present invention, since the object light beam is divided into two, the effective NA of the object light beam reflected by each of the movable reflecting surface and the fixed reflecting surface is half of the NA of the lens. In other words, the effective N.A. of the object luminous flux is 1/2 times that of the lens, and the allowable value can be obtained by 1.22 × λ / N.A. That is, the distance between the condensing positions of the measurement light reflected by the fixed reflection surface and the measurement light reflected by the movable reflection surface on the imaging surface is the limit of decomposition of the two images according to the Rayleigh criterion 1.22 × λ Narrower than / NA is required. Therefore, 1.22 × λ / NA or a value smaller than this (for example, λ / NA) is an allowable value for forming the interference light of the measurement light on the imaging surface, and the distance between the centers of the two Airy disks. Depending on whether or not is larger than the allowable value, it may be used as an index for determining whether or not the fixed reflecting surface and the movable reflecting surface are relatively inclined.

本発明によれば、固定反射面及び可動反射面によって反射され、結像面上に集光した測定光の強度を検出する光検出部の検出結果に基づき前記固定反射面に対して前記可動反射面が相対的に傾いているか否かを判別することができる。そして、前記固定反射面に対して前記可動反射面が相対的に傾いていると判断された場合には、第1治具及び/又は第2治具を用いて固定反射面と可動反射面の傾きを調節して両反射面の向きを揃えることができるため、正確で再現性の良いインターフェログラムを取得することができる。   According to the present invention, the movable reflection with respect to the fixed reflection surface based on the detection result of the light detection unit that detects the intensity of the measurement light reflected by the fixed reflection surface and the movable reflection surface and collected on the imaging surface. It can be determined whether or not the surface is relatively inclined. And when it is judged that the movable reflective surface is inclined relative to the fixed reflective surface, the fixed reflective surface and the movable reflective surface are used by using the first jig and / or the second jig. Since the direction of both reflecting surfaces can be aligned by adjusting the tilt, an accurate and reproducible interferogram can be acquired.

分光特性測定装置によって試料面から出射された測定光が固定反射面及び可動反射面によって反射された後、結像レンズによって結像面上に集光する様子を説明する図。The figure explaining a mode that the measurement light radiate | emitted from the sample surface by the spectral characteristic measuring apparatus is condensed on an imaging surface by an imaging lens, after being reflected by the fixed reflective surface and the movable reflective surface. 固定反射面と可動反射面の間の角度ずれ量、結像レンズの焦点距離、結像面上の集光位置のずれ量の関係を示す図。The figure which shows the relationship between the amount of angular deviations between a fixed reflective surface and a movable reflective surface, the focal distance of an imaging lens, and the deviation | shift amount of the condensing position on an imaging surface. 固定反射面と可動反射面の間の角度ずれ量がゼロのときに結像面上に形成されるエアリーディスクの説明図。Explanatory drawing of the Airy disk formed on an image plane when the amount of angular deviations between a fixed reflective surface and a movable reflective surface is zero. 固定反射面と可動反射面の間の角度ずれ量がθのときに結像面上に形成されるエアリーディスクの説明図。Explanatory drawing of the Airy disk formed on an image plane when the amount of angle shifts between a fixed reflective surface and a movable reflective surface is (theta). 本発明の一実施形態に係る分光特性測定装置の概略構成図。1 is a schematic configuration diagram of a spectral characteristic measuring apparatus according to an embodiment of the present invention. 位相シフタの全体構成を示す斜視図。The perspective view which shows the whole structure of a phase shifter. 第1治具の構成を示す図。The figure which shows the structure of a 1st jig | tool. 第1実施例の判別方法を説明するための図であり、被測定物(人物)の撮影画像(a)及び中赤外画像(b)並びに固定反射面と可動反射面の傾きがほぼ同じであるときの測定光のインターフェログラム(c)及びこのインターフェログラムをフーリエ変換して得られるスペクトル(d)の例を示す。It is a figure for demonstrating the discrimination | determination method of 1st Example, and the inclination of a picked-up image (a) and a mid-infrared image (b) of a to-be-measured object (person), and a fixed reflective surface and a movable reflective surface is substantially the same. An example of an interferogram (c) of measurement light at a certain time and a spectrum (d) obtained by Fourier transforming this interferogram are shown. 固定反射面と可動反射面の間の相対的な角度ずれ量を徐々に変化させたときのインターフェログラムの変化を示す図。The figure which shows the change of an interferogram when changing the relative angular deviation | shift amount between a fixed reflective surface and a movable reflective surface gradually. 第2実施例の判別方法を説明するための図であり、物体面にピンホールを有する調整部材を設置した状態の分光特性測定装置の概略図(a)、及び結像面上に形成される輝点像(b)。It is a figure for demonstrating the discrimination method of 2nd Example, and is formed on the schematic surface (a) of the spectral characteristic measuring apparatus of the state which installed the adjustment member which has a pinhole in an object surface, and an image plane Bright spot image (b). 第1治具のねじのねじ込み量を変化させたときの輝点像の移動の様子を示す図。The figure which shows the mode of the movement of the bright spot image when changing the screwing amount of the screw of a 1st jig | tool. 第2治具のねじのねじ込み量を変化させたときの輝点像の移動の様子を示す図。固定反射面と可動反射面の角度ずれ量と集光位置のずれ量との関係の説明図。The figure which shows the mode of the movement of a bright spot image when changing the screwing amount of the screw of a 2nd jig | tool. Explanatory drawing of the relationship between the angle deviation | shift amount of a fixed reflective surface and a movable reflective surface, and the deviation | shift amount of a condensing position. 調整目標値の求め方の説明図。Explanatory drawing of how to obtain | require adjustment target value. 調整目標値から輝点像までの位置ずれ量の求め方の説明図。Explanatory drawing of how to obtain | require the positional offset amount from an adjustment target value to a luminescent spot image. 第1治具の変形例。The modification of a 1st jig | tool.

以下、本発明の具体的な実施形態について図5〜図7を参照して説明する。図5は、本実施形態に係る分光特性測定装置の概略的な全体構成を示しており、分光特性測定装置は、対物レンズ10、位相シフタ11、結像レンズ12、該結像レンズ12の結像面上に位置する受光面を有するCCDカメラ13、CCDカメラ13の検出信号の処理や位相シフタ11の駆動を制御する制御装置14を備えている。本実施形態においては対物レンズ10が導入光学系、結像レンズ12が結像光学系、CCDカメラ13が光検出部として機能する。   Hereinafter, specific embodiments of the present invention will be described with reference to FIGS. FIG. 5 shows a schematic overall configuration of the spectral characteristic measuring apparatus according to the present embodiment. The spectral characteristic measuring apparatus includes an objective lens 10, a phase shifter 11, an imaging lens 12, and a connection between the imaging lens 12. A CCD camera 13 having a light receiving surface located on the image plane, and a control device 14 for controlling detection signal processing of the CCD camera 13 and driving of the phase shifter 11 are provided. In this embodiment, the objective lens 10 functions as an introduction optical system, the imaging lens 12 functions as an imaging optical system, and the CCD camera 13 functions as a light detection unit.

CCDカメラ13は、受光面が受光した光の強度を検出する、2次元配置された複数の検出画素を備えている。制御装置14は、CCDカメラ13の検出信号からインターフェログラムを求め、このインターフェログラムを数学的にフーリエ変換て測定光の波長毎の相対強度である分光特性(スペクトル)を求める処理部141、CCDカメラ13の検出信号から、位相シフタ11を構成する固定ミラー部111及び可動ミラー部112の位置関係を判別する判別部142、処理部141の処理結果や判別部142の判別結果等を出力するディスプレイ、プリンタ等の出力装置143を備える。   The CCD camera 13 includes a plurality of two-dimensionally arranged detection pixels that detect the intensity of light received by the light receiving surface. The control device 14 obtains an interferogram from the detection signal of the CCD camera 13, and mathematically Fourier transforms the interferogram to obtain a spectral characteristic (spectrum) that is a relative intensity for each wavelength of the measurement light. From the detection signal of the CCD camera 13, a determination unit 142 that determines the positional relationship between the fixed mirror unit 111 and the movable mirror unit 112 constituting the phase shifter 11, a processing result of the processing unit 141, a determination result of the determination unit 142, and the like are output. An output device 143 such as a display or a printer is provided.

図6に示すように、位相シフタ11は固定ミラー部20と可動ミラー部30及び可動ミラー部30を駆動する駆動機構40から構成されている。固定ミラー部20は、分光特性測定装置の筐体(図示せず)に固定された支持板50に固定されており、固定反射面201と、該固定反射面201を保持するL字状の保持具202と、保持具202を支持板50に取り付けるための第1治具203とから構成されている。可動ミラー部30は、可動反射面301と、該可動反射面301を保持するL字状の保持具302と、該保持具302を駆動機構40に取り付けるための第2治具303とから構成されている。   As shown in FIG. 6, the phase shifter 11 includes a fixed mirror unit 20, a movable mirror unit 30, and a drive mechanism 40 that drives the movable mirror unit 30. The fixed mirror unit 20 is fixed to a support plate 50 fixed to a casing (not shown) of the spectral characteristic measuring device, and has a fixed reflection surface 201 and an L-shaped holding for holding the fixed reflection surface 201. It comprises a tool 202 and a first jig 203 for attaching the holder 202 to the support plate 50. The movable mirror unit 30 includes a movable reflective surface 301, an L-shaped holder 302 that holds the movable reflective surface 301, and a second jig 303 for attaching the holder 302 to the drive mechanism 40. ing.

固定反射面201及び可動反射面301はいずれも対物レンズ10から位相シフタ11に向かう測定光の光軸に対して約45度傾けて設置されている。可動ミラー部30は、駆動機構40により矢印Hで示す方向に移動される。なお、固定ミラー部20と可動ミラー部30を上下のどちらに配置しても良いが、ここでは上側に固定ミラー部20を、下側に可動ミラー部30を配置している。   Both the fixed reflection surface 201 and the movable reflection surface 301 are installed with an inclination of about 45 degrees with respect to the optical axis of the measurement light traveling from the objective lens 10 toward the phase shifter 11. The movable mirror unit 30 is moved in the direction indicated by the arrow H by the drive mechanism 40. In addition, although the fixed mirror part 20 and the movable mirror part 30 may be arrange | positioned in any of upper and lower sides, here the fixed mirror part 20 is arrange | positioned at the upper side and the movable mirror part 30 is arrange | positioned at the lower side.

次に、図6及び図7を参照しながら第1治具203の構成を説明する。第1治具203は、3本のねじS1〜S3と3組の座金W1〜W3から構成されている。3本のねじS1〜S3は保持具202及び支持板50にそれぞれ形成された3個のねじ穴に挿通され、3組の座金W1〜W3は、保持具202と支持板50の間に位置するねじS1〜S3の軸部に介挿されている。3個のねじ穴のうちの1個は、固定反射面201に平行で且つ測定光の光軸に垂直な第1軸(z軸)の一方側に形成され、このねじ穴にねじS1が挿通されている。また、残り2個のねじ穴は第1軸の他方側に形成され、これらねじ穴にねじS2、S3が挿通されている。第1軸から一方側のねじ穴までの距離と他方側のねじ穴までの距離は等しくなっており、このため、ねじS1のねじ穴へのねじ込み量を調整することにより保持具202は第1軸を中心に回動し、これに伴い固定反射面201の傾きが変化する。
尚、第2治具303は、基本的には第1治具203と同じ構成であるが、可動反射面301に平行で且つ第1軸と直交する第2軸周りに保持具302を回転させることにより該可動反射面301の傾きを調整する。
Next, the configuration of the first jig 203 will be described with reference to FIGS. 6 and 7. The first jig 203 is composed of three screws S1 to S3 and three sets of washers W1 to W3. The three screws S1 to S3 are inserted into three screw holes respectively formed in the holder 202 and the support plate 50, and the three sets of washers W1 to W3 are located between the holder 202 and the support plate 50. The shafts of the screws S1 to S3 are inserted. One of the three screw holes is formed on one side of the first axis (z axis) parallel to the fixed reflecting surface 201 and perpendicular to the optical axis of the measurement light, and the screw S1 is inserted into the screw hole. Has been. The remaining two screw holes are formed on the other side of the first shaft, and screws S2 and S3 are inserted through these screw holes. The distance from the first shaft to the screw hole on one side is equal to the distance from the screw hole on the other side. Therefore, the holder 202 is adjusted to the first by adjusting the screwing amount of the screw S1 into the screw hole. It rotates around the axis, and the inclination of the fixed reflecting surface 201 changes accordingly.
The second jig 303 basically has the same configuration as the first jig 203, but rotates the holder 302 around a second axis that is parallel to the movable reflecting surface 301 and orthogonal to the first axis. Thus, the inclination of the movable reflecting surface 301 is adjusted.

例えば、ねじS1のねじ穴へのねじ込み量をM[mm]変化させたときの固定反射面201の傾き(角度)の変化量をθ[rad.]とすると、ねじS2とねじS3を結ぶ線分とねじS1との間隔がPのとき、θは次の式(2)で表される。
Δθ=tan−1(M/P) (2)
For example, if the amount of change in the inclination (angle) of the fixed reflecting surface 201 when the screw amount of the screw S1 into the screw hole is changed by M [mm] is θ [rad.], A line connecting the screw S2 and the screw S3 When the distance between the minute and the screw S1 is P, θ is expressed by the following equation (2).
Δθ = tan −1 (M / P) (2)

従って、式(2)から、固定反射面201の傾きを角度θだけ変化させるために必要なねじ込み量Mを求めることができる。また、ねじS1を1回転させたときのねじ込み量はねじ山のピッチによって決まるため、ねじ込みMとねじ山のピッチとから、ねじS1の回転量を求めることができる。   Therefore, the screwing amount M necessary for changing the inclination of the fixed reflecting surface 201 by the angle θ can be obtained from the equation (2). Further, since the screwing amount when the screw S1 is rotated once is determined by the pitch of the screw thread, the rotation amount of the screw S1 can be obtained from the screwing M and the screw thread pitch.

次に、上記分光特性測定装置における、固定反射面201に対して可動反射面301が相対的に傾いているか否かの判別方法について説明する。
[実施例1]
図8(b)は、図8(a)に示す被検者に中赤外を照射したときに該被検者から発せられる測定光(中赤外光)を上記分光特性測定装置に導入したとき、CCDカメラ13の複数の検出画素の検出信号を処理することにより得られる中赤外画像を示している。このとき、固定反射面201と可動反射面301の傾きが略同じであれば、全ての検出画素から測定光のインターフェログラムを取得することができ、このインターフェログラムをフーリエ変換することによりスペクトルを求めることができる。例えば図8(c)は図8(b)に示す中赤外画像中の2点に対応する検出画素から取得されるインターフェログラムを、図8(d)はこれらインターフェログラムをフーリエ変換して得られるスペクトルを示す。
Next, a method for determining whether or not the movable reflective surface 301 is inclined relative to the fixed reflective surface 201 in the spectral characteristic measuring apparatus will be described.
[Example 1]
FIG. 8B introduces measurement light (mid-infrared light) emitted from the subject when the subject shown in FIG. 8A is irradiated with mid-infrared light into the spectral characteristic measurement apparatus. FIG. 4 shows a mid-infrared image obtained by processing detection signals of a plurality of detection pixels of the CCD camera 13. At this time, if the inclinations of the fixed reflection surface 201 and the movable reflection surface 301 are substantially the same, the interferogram of the measurement light can be acquired from all the detection pixels, and the spectrum is obtained by Fourier-transforming the interferogram. Can be requested. For example, FIG. 8C shows an interferogram acquired from detection pixels corresponding to two points in the mid-infrared image shown in FIG. 8B, and FIG. 8D shows a Fourier transform of these interferograms. The spectrum obtained is shown.

これに対して、固定反射面201と可動反射面301の一方が傾き、両反射面の角度ずれ量が大きくなると、図9に示すように、インターフェログラムの鮮明度が劣化していく。そこで、本実施例では、判別部142は、処理部141によって得られたインターフェログラムの形状に基づき固定反射面201と可動反射面301が相対的に傾いているか否かを判別し、判別結果を出力装置142に出力する。例えば、固定反射面201及び可動反射面301によって反射された測定光の集光位置の間隔が段落[0015]で説明した許容値であるときのインターフェログラムを実験的に、あるいは計算上、予め求めておき、このインターフェログラムの形状と上記の得られたインターフェログラムの形状を比較することにより固定反射面201と可動反射面301が相対的に傾いているか否かを判別する。   On the other hand, when one of the fixed reflecting surface 201 and the movable reflecting surface 301 is inclined and the amount of angular deviation between the reflecting surfaces is increased, the sharpness of the interferogram deteriorates as shown in FIG. Therefore, in this embodiment, the determination unit 142 determines whether the fixed reflection surface 201 and the movable reflection surface 301 are relatively inclined based on the shape of the interferogram obtained by the processing unit 141, and the determination result. Is output to the output device 142. For example, the interferogram when the interval between the collection positions of the measurement light reflected by the fixed reflecting surface 201 and the movable reflecting surface 301 is the allowable value described in paragraph [0015] is experimentally or computationally calculated in advance. Then, it is determined whether or not the fixed reflecting surface 201 and the movable reflecting surface 301 are relatively inclined by comparing the shape of the interferogram with the shape of the obtained interferogram.

出力装置143に出力された判別結果を見たユーザは、第1治具203あるいは第2治具303のねじS1を回転させることにより、固定反射面201と可動反射面301の相対的な傾きを調整することができる。なお、ユーザによる調整作業の際にインターフェログラムを出力装置143に表示するようにすれば、該インターフェログラムの形状の変化を見ながら最適な調整を行うことができる。   The user who sees the determination result output to the output device 143 rotates the screw S1 of the first jig 203 or the second jig 303 to change the relative inclination of the fixed reflecting surface 201 and the movable reflecting surface 301. Can be adjusted. If the interferogram is displayed on the output device 143 during the adjustment work by the user, the optimum adjustment can be performed while watching the change in the shape of the interferogram.

[第2実施例]
本実施例では、図10に示すように、物体面に空間解像度(=1.22λ/N.A.)程度の直径のピンホールを有する調整部材を設置し、このとき、CCDカメラ13からの検出信号を処理することにより得られる画像(図10(b))から、固定反射面201と可動反射面301が相対的に傾いているか否かを判別する。
[Second Embodiment]
In this embodiment, as shown in FIG. 10, an adjustment member having a pinhole with a diameter of about spatial resolution (= 1.22λ / NA) is installed on the object plane. At this time, detection from the CCD camera 13 is performed. It is determined from the image obtained by processing the signal (FIG. 10B) whether or not the fixed reflective surface 201 and the movable reflective surface 301 are relatively inclined.

すなわち、本実施例においては、ピンホールから出射した測定光は、固定反射面201及び可動反射面301によって反射された後、結像レンズによってそれぞれ輝点像P1、P2を形成する。固定反射面201に対して可動反射面301が相対的に傾いている場合は、図10(b)に示すように異なる位置に輝点像P1、P2が形成され、傾いていなければ、輝点像P1と輝点像P2は重なった状態となる。従って、輝点像P1、P2の形成位置に基づき判別部142は固定反射面201と可動反射面301が相対的に傾いているか否かを判別する。   That is, in this embodiment, the measurement light emitted from the pinhole is reflected by the fixed reflecting surface 201 and the movable reflecting surface 301, and then forms bright spot images P1 and P2 by the imaging lens, respectively. When the movable reflective surface 301 is inclined relative to the fixed reflective surface 201, the bright spot images P1 and P2 are formed at different positions as shown in FIG. The image P1 and the bright spot image P2 are overlapped. Therefore, the determination unit 142 determines whether the fixed reflection surface 201 and the movable reflection surface 301 are relatively inclined based on the formation positions of the bright spot images P1 and P2.

また、図10(b)に示す状態から第1治具203のねじS1を回転して保持具202を第1軸周りに回転させると、輝点像の一方が移動する。例えば輝点像P1が図11に矢印で示す方向に移動すれば、この方向に延びる軸が第1治具203によって調整可能な結像面上での座標軸(以下「A座標軸」とする)となる。同様に、第2治具303のねじS1を回転して保持具302を第2軸周りに回転させることにより他方の輝点像P2が図12に矢印で示す方向に移動すれば、この方向に延びる軸が第2治具303によって調整可能な結像面上での座標軸(以下「B座標軸」とする)となる。   Further, when the screw S1 of the first jig 203 is rotated from the state shown in FIG. 10B to rotate the holder 202 around the first axis, one of the bright spot images moves. For example, if the bright spot image P1 moves in the direction indicated by the arrow in FIG. 11, the axis extending in this direction is the coordinate axis on the image plane that can be adjusted by the first jig 203 (hereinafter referred to as “A coordinate axis”). Become. Similarly, if the other bright spot image P2 is moved in the direction indicated by the arrow in FIG. 12 by rotating the screw S1 of the second jig 303 and rotating the holder 302 around the second axis, this direction will be indicated. The extending axis is a coordinate axis (hereinafter referred to as “B coordinate axis”) on the image plane that can be adjusted by the second jig 303.

図13に示すように、A座標軸とB座標軸の交点が固定反射面201と可動反射面301の傾きがずれていない状態を示す調整目標値となる。調整目標値が求まれば、図14に示すように、結像面上における調整目標量値との位置ずれ量ΔP1、ΔP2を輝点像P1、P2のそれぞれについて求めることができるため、位置ずれ量ΔP1、ΔP2と上述の式(1)及び(2)等から、第1治具203のねじS1及び第2治具303のねじS1の高さ移動量を求めることができ、容易に固定反射面201と可動反射面301の傾きを調整することができる。   As shown in FIG. 13, the intersection of the A coordinate axis and the B coordinate axis is an adjustment target value indicating a state in which the inclination of the fixed reflecting surface 201 and the movable reflecting surface 301 is not shifted. When the adjustment target value is obtained, as shown in FIG. 14, the positional deviation amounts ΔP1 and ΔP2 with respect to the adjustment target amount value on the imaging plane can be obtained for each of the bright spot images P1 and P2. From the amounts ΔP1 and ΔP2 and the above formulas (1) and (2), the amount of height movement of the screw S1 of the first jig 203 and the screw S1 of the second jig 303 can be obtained, and fixed reflection can be easily performed. The inclination of the surface 201 and the movable reflecting surface 301 can be adjusted.

尚、上記した実施形態では、第1治具203(又は第2治具303)を、3本のねじS1〜S3と3組の座金W1〜W3から構成したが、図15に示すように、ねじS2、S3の軸部に介挿する座金に代えて支持板50(あるいは駆動機構40)に保持具202に点接触する突起60を形成しても良い。この場合、ねじS1〜S3の頭部の下面を面取りすると、ねじS1のねじ込み量を変化させたときに、第1軸(あるいは第2軸)を中心に保持具202(あるいは保持具302)を滑らかに回転させることができる。   In the above-described embodiment, the first jig 203 (or the second jig 303) is composed of three screws S1 to S3 and three sets of washers W1 to W3. However, as shown in FIG. Instead of the washers inserted in the shaft portions of the screws S2 and S3, the support plate 50 (or the drive mechanism 40) may be provided with a protrusion 60 that makes point contact with the holder 202. In this case, if the lower surfaces of the heads of the screws S1 to S3 are chamfered, the holder 202 (or the holder 302) is moved around the first axis (or the second axis) when the screwing amount of the screw S1 is changed. Can be rotated smoothly.

10…対物レンズ
11…位相シフタ
12…結像レンズ
13…CCDカメラ
14…制御装置
141…処理部
142…判別部
143…出力装置
20…固定ミラー部
201…固定反射面
202…保持具
203…第1治具
30…可動ミラー部
301…可動反射面
302…保持具
303…第2治具
40…駆動機構
50…支持板
S1〜S3…ねじ
W1〜W3…座金
DESCRIPTION OF SYMBOLS 10 ... Objective lens 11 ... Phase shifter 12 ... Imaging lens 13 ... CCD camera 14 ... Control device 141 ... Processing part 142 ... Processing part 143 ... Output device 20 ... Fixed mirror part 201 ... Fixed reflection surface 202 ... Holder 203 ... First DESCRIPTION OF SYMBOLS 1 Jig 30 ... Movable mirror part 301 ... Movable reflective surface 302 ... Holder 303 ... 2nd jig 40 ... Drive mechanism 50 ... Support plate S1-S3 ... Screw W1-W3 ... Washer

Claims (4)

a) 並んで配置された固定反射面及び可動反射面と、
b) 被測定物の測定点から発せられた測定光を前記固定反射面と前記可動反射面に導く導入光学系と、
c) 前記固定反射面に導入され該固定反射面によって反射された測定光と、前記可動反射面に導入され該可動反射面によって反射された測定光をそれぞれ結像面上に集光させる結像光学系と、
d) 前記結像面上に2次元配置された複数の検出画素を有する、前記結像面上に集光した光の強度を検出するための光検出部と、
e) 前記可動反射面を移動させることにより前記光検出部で検出される光強度変化に基づき、前記測定光のインターフェログラムを求め、このインターフェログラムをフーリエ変換することによりスペクトルを取得する処理部とを備えた分光特性測定装置において、
前記光検出部の検出結果に基づき前記固定反射面に対して前記可動反射面が相対的に傾いているか否かを判別する判別手段と
を備えることを特徴とする分光特性測定装置。
a) a fixed reflecting surface and a movable reflecting surface arranged side by side;
b) an introduction optical system that guides measurement light emitted from the measurement point of the object to be measured to the fixed reflection surface and the movable reflection surface;
c) Image formation for condensing the measurement light introduced into the fixed reflection surface and reflected by the fixed reflection surface and the measurement light introduced into the movable reflection surface and reflected by the movable reflection surface on the image formation surface, respectively. Optical system,
d) a light detection unit for detecting the intensity of the light collected on the imaging surface, having a plurality of detection pixels arranged two-dimensionally on the imaging surface;
e) Processing for obtaining an interferogram of the measurement light based on a change in light intensity detected by the light detection unit by moving the movable reflecting surface, and acquiring a spectrum by Fourier transforming the interferogram In a spectral characteristic measuring device comprising a unit,
A spectral characteristic measuring apparatus comprising: a determination unit configured to determine whether or not the movable reflective surface is inclined relative to the fixed reflective surface based on a detection result of the light detection unit.
さらに、
前記可動反射面に平行な第1軸周りの該可動反射面の傾き量を調整するための第1治具と、前記第1軸に垂直で且つ前記固定反射面に平行な第2軸周りの該固定反射面の傾き量を調整するための第2治具とを備えることを特徴とする請求項1に記載の分光特性測定装置。
further,
A first jig for adjusting the amount of inclination of the movable reflecting surface around a first axis parallel to the movable reflecting surface; and a second jig around a second axis perpendicular to the first axis and parallel to the fixed reflecting surface. The spectral characteristic measuring apparatus according to claim 1, further comprising a second jig for adjusting an inclination amount of the fixed reflecting surface.
前記被測定物の表面に設置される、ピンホールを有する調整部材を備え、
前記導入光学系が、前記ピンホールを通して発せられた測定光を前記固定反射面と前記可動反射面に導くことにより、前記結像面上に形成される輝点像の位置に基づき、前記判別手段は前記固定反射面に対して前記可動反射面が相対的に傾いているか否かを判別することを特徴とする請求項1又は2に記載の分光特性測定装置。
An adjusting member having a pinhole, which is installed on the surface of the object to be measured;
The introducing optical system guides the measurement light emitted through the pinhole to the fixed reflecting surface and the movable reflecting surface, thereby determining the discriminating means based on the position of the bright spot image formed on the imaging surface. The spectral characteristic measuring apparatus according to claim 1, wherein it is determined whether or not the movable reflective surface is inclined relative to the fixed reflective surface.
a) 並んで配置された固定反射面及び可動反射面と、
b) 被測定物の測定点から発せられた測定光を前記固定反射面と前記可動反射面に導く導入光学系と、
c) 前記固定反射面に導入され該固定反射面によって反射された測定光と、前記可動反射面に導入され該可動反射面によって反射された測定光をそれぞれ結像面上に集光させる結像光学系と、
d) 前記結像面上に2次元配置された複数の検出画素を有する、前記結像面上に集光した光の強度を検出するための光検出部と、
e) 前記可動反射面を移動させることにより前記光検出部で検出される光強度変化に基づき、前記測定光のインターフェログラムを求め、このインターフェログラムをフーリエ変換することによりスペクトルを取得する処理部とを備えた分光特性測定装置において、
前記光検出部の検出結果に基づき前記固定反射面に対する前記可動反射面の相対的な傾きを調整することを特徴とする分光特性測定装置の調整方法。
a) a fixed reflecting surface and a movable reflecting surface arranged side by side;
b) an introduction optical system that guides measurement light emitted from the measurement point of the object to be measured to the fixed reflection surface and the movable reflection surface;
c) Image formation for condensing the measurement light introduced into the fixed reflection surface and reflected by the fixed reflection surface and the measurement light introduced into the movable reflection surface and reflected by the movable reflection surface on the image formation surface, respectively. Optical system,
d) a light detection unit for detecting the intensity of the light collected on the imaging surface, having a plurality of detection pixels arranged two-dimensionally on the imaging surface;
e) Processing for obtaining an interferogram of the measurement light based on a change in light intensity detected by the light detection unit by moving the movable reflecting surface, and acquiring a spectrum by Fourier transforming the interferogram In a spectral characteristic measuring device comprising a unit,
A method for adjusting a spectral characteristic measuring apparatus, comprising: adjusting a relative inclination of the movable reflective surface with respect to the fixed reflective surface based on a detection result of the light detection unit.
JP2015015735A 2015-01-29 2015-01-29 Spectral characteristic measuring apparatus and adjustment method thereof Active JP6482886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015015735A JP6482886B2 (en) 2015-01-29 2015-01-29 Spectral characteristic measuring apparatus and adjustment method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015015735A JP6482886B2 (en) 2015-01-29 2015-01-29 Spectral characteristic measuring apparatus and adjustment method thereof

Publications (3)

Publication Number Publication Date
JP2016142523A true JP2016142523A (en) 2016-08-08
JP2016142523A5 JP2016142523A5 (en) 2017-11-30
JP6482886B2 JP6482886B2 (en) 2019-03-13

Family

ID=56568621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015015735A Active JP6482886B2 (en) 2015-01-29 2015-01-29 Spectral characteristic measuring apparatus and adjustment method thereof

Country Status (1)

Country Link
JP (1) JP6482886B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020175694A1 (en) * 2019-02-28 2020-09-03 国立大学法人香川大学 Spectrometry device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038625A (en) * 1983-08-12 1985-02-28 Hitachi Ltd 2-luminous flux interferometer
JPS63168502A (en) * 1986-12-30 1988-07-12 Shimadzu Corp Control apparatus of interferometer
JPS63168522A (en) * 1986-12-30 1988-07-12 Shimadzu Corp Adjuscting apparatus for interferometer
JPH04106732U (en) * 1991-02-27 1992-09-14 株式会社東芝 interferometer
US5546185A (en) * 1994-09-23 1996-08-13 Kabushiki Kaisha Toshiba Angle detecting apparatus for detecting angle of inclination of scanning mirror provided on michelson interferometer
JP2008309707A (en) * 2007-06-15 2008-12-25 Kagawa Univ Spectrometer and spectrometry
JP2012181060A (en) * 2011-02-28 2012-09-20 Kagawa Univ Spectral characteristic measuring apparatus and calibration method thereof
WO2014054708A1 (en) * 2012-10-05 2014-04-10 国立大学法人香川大学 Spectral characteristic measurement device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038625A (en) * 1983-08-12 1985-02-28 Hitachi Ltd 2-luminous flux interferometer
JPS63168502A (en) * 1986-12-30 1988-07-12 Shimadzu Corp Control apparatus of interferometer
JPS63168522A (en) * 1986-12-30 1988-07-12 Shimadzu Corp Adjuscting apparatus for interferometer
JPH04106732U (en) * 1991-02-27 1992-09-14 株式会社東芝 interferometer
US5546185A (en) * 1994-09-23 1996-08-13 Kabushiki Kaisha Toshiba Angle detecting apparatus for detecting angle of inclination of scanning mirror provided on michelson interferometer
JP2008309707A (en) * 2007-06-15 2008-12-25 Kagawa Univ Spectrometer and spectrometry
JP2012181060A (en) * 2011-02-28 2012-09-20 Kagawa Univ Spectral characteristic measuring apparatus and calibration method thereof
WO2014054708A1 (en) * 2012-10-05 2014-04-10 国立大学法人香川大学 Spectral characteristic measurement device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020175694A1 (en) * 2019-02-28 2020-09-03 国立大学法人香川大学 Spectrometry device
JP7422413B2 (en) 2019-02-28 2024-01-26 国立大学法人 香川大学 Spectrometer

Also Published As

Publication number Publication date
JP6482886B2 (en) 2019-03-13

Similar Documents

Publication Publication Date Title
EP3179209B1 (en) Measuring instrument
JP5079558B2 (en) Surface height detection method and apparatus
JP5440801B2 (en) Reference sphere detection device, reference sphere position detection device, and three-dimensional coordinate measurement device
US5940181A (en) Measuring method and measuring apparatus
US5321259A (en) Imaging device with prism scan element means
EP2426459B1 (en) Measuring method and measuring device
JP2008275612A (en) Device equipped with high resolution measurement structure on substrate for manufacturing semiconductor, and use of aperture in measuring device
JP7169994B2 (en) Method and related optical device for measuring curvature of reflective surfaces
US5076689A (en) Off axis mirror alignment
CN107850555B (en) Interferometric roll-off measurement using static fringe patterns
JP3509088B2 (en) Optical device for three-dimensional shape measurement
JP5305281B2 (en) Autocollimator
JPH0593868A (en) Microscope using tandem scanning reflected light having confocal point
JP6482886B2 (en) Spectral characteristic measuring apparatus and adjustment method thereof
JP5231927B2 (en) Microprojection inspection device
JP2008102014A (en) Apparatus and method for measuring surface profile
JP2735104B2 (en) Aspherical lens eccentricity measuring apparatus and measuring method
JP3048895B2 (en) Position detection method applied to proximity exposure
JP2010169472A (en) Method of interference measurement
JP2014145684A (en) Measuring device
JP2007163227A (en) Optical characteristics measuring apparatus and optical characteristics measuring method for laser scanning optical system
JP6980304B2 (en) Non-contact inner surface shape measuring device
WO2022162881A1 (en) Defect inspection device
NL2028376B1 (en) Method of and arrangement for verifying an alignment of an infinity-corrected objective.
WO2021215026A1 (en) Shape-measuring device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171020

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190213

R150 Certificate of patent or registration of utility model

Ref document number: 6482886

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250